1 /* 2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com 3 * Copyright (C) 2002 by Concurrent Computer Corporation 4 * Distributed under the GNU GPL license version 2. 5 * 6 * Modified by George Anzinger to reuse immediately and to use 7 * find bit instructions. Also removed _irq on spinlocks. 8 * 9 * Modified by Nadia Derbey to make it RCU safe. 10 * 11 * Small id to pointer translation service. 12 * 13 * It uses a radix tree like structure as a sparse array indexed 14 * by the id to obtain the pointer. The bitmap makes allocating 15 * a new id quick. 16 * 17 * You call it to allocate an id (an int) an associate with that id a 18 * pointer or what ever, we treat it as a (void *). You can pass this 19 * id to a user for him to pass back at a later time. You then pass 20 * that id to this code and it returns your pointer. 21 22 * You can release ids at any time. When all ids are released, most of 23 * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we 24 * don't need to go to the memory "store" during an id allocate, just 25 * so you don't need to be too concerned about locking and conflicts 26 * with the slab allocator. 27 */ 28 29 #ifndef TEST // to test in user space... 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/module.h> 33 #endif 34 #include <linux/err.h> 35 #include <linux/string.h> 36 #include <linux/idr.h> 37 38 static struct kmem_cache *idr_layer_cache; 39 40 static struct idr_layer *get_from_free_list(struct idr *idp) 41 { 42 struct idr_layer *p; 43 unsigned long flags; 44 45 spin_lock_irqsave(&idp->lock, flags); 46 if ((p = idp->id_free)) { 47 idp->id_free = p->ary[0]; 48 idp->id_free_cnt--; 49 p->ary[0] = NULL; 50 } 51 spin_unlock_irqrestore(&idp->lock, flags); 52 return(p); 53 } 54 55 static void idr_layer_rcu_free(struct rcu_head *head) 56 { 57 struct idr_layer *layer; 58 59 layer = container_of(head, struct idr_layer, rcu_head); 60 kmem_cache_free(idr_layer_cache, layer); 61 } 62 63 static inline void free_layer(struct idr_layer *p) 64 { 65 call_rcu(&p->rcu_head, idr_layer_rcu_free); 66 } 67 68 /* only called when idp->lock is held */ 69 static void __move_to_free_list(struct idr *idp, struct idr_layer *p) 70 { 71 p->ary[0] = idp->id_free; 72 idp->id_free = p; 73 idp->id_free_cnt++; 74 } 75 76 static void move_to_free_list(struct idr *idp, struct idr_layer *p) 77 { 78 unsigned long flags; 79 80 /* 81 * Depends on the return element being zeroed. 82 */ 83 spin_lock_irqsave(&idp->lock, flags); 84 __move_to_free_list(idp, p); 85 spin_unlock_irqrestore(&idp->lock, flags); 86 } 87 88 static void idr_mark_full(struct idr_layer **pa, int id) 89 { 90 struct idr_layer *p = pa[0]; 91 int l = 0; 92 93 __set_bit(id & IDR_MASK, &p->bitmap); 94 /* 95 * If this layer is full mark the bit in the layer above to 96 * show that this part of the radix tree is full. This may 97 * complete the layer above and require walking up the radix 98 * tree. 99 */ 100 while (p->bitmap == IDR_FULL) { 101 if (!(p = pa[++l])) 102 break; 103 id = id >> IDR_BITS; 104 __set_bit((id & IDR_MASK), &p->bitmap); 105 } 106 } 107 108 /** 109 * idr_pre_get - reserver resources for idr allocation 110 * @idp: idr handle 111 * @gfp_mask: memory allocation flags 112 * 113 * This function should be called prior to locking and calling the 114 * idr_get_new* functions. It preallocates enough memory to satisfy 115 * the worst possible allocation. 116 * 117 * If the system is REALLY out of memory this function returns 0, 118 * otherwise 1. 119 */ 120 int idr_pre_get(struct idr *idp, gfp_t gfp_mask) 121 { 122 while (idp->id_free_cnt < IDR_FREE_MAX) { 123 struct idr_layer *new; 124 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); 125 if (new == NULL) 126 return (0); 127 move_to_free_list(idp, new); 128 } 129 return 1; 130 } 131 EXPORT_SYMBOL(idr_pre_get); 132 133 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa) 134 { 135 int n, m, sh; 136 struct idr_layer *p, *new; 137 int l, id, oid; 138 unsigned long bm; 139 140 id = *starting_id; 141 restart: 142 p = idp->top; 143 l = idp->layers; 144 pa[l--] = NULL; 145 while (1) { 146 /* 147 * We run around this while until we reach the leaf node... 148 */ 149 n = (id >> (IDR_BITS*l)) & IDR_MASK; 150 bm = ~p->bitmap; 151 m = find_next_bit(&bm, IDR_SIZE, n); 152 if (m == IDR_SIZE) { 153 /* no space available go back to previous layer. */ 154 l++; 155 oid = id; 156 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1; 157 158 /* if already at the top layer, we need to grow */ 159 if (!(p = pa[l])) { 160 *starting_id = id; 161 return IDR_NEED_TO_GROW; 162 } 163 164 /* If we need to go up one layer, continue the 165 * loop; otherwise, restart from the top. 166 */ 167 sh = IDR_BITS * (l + 1); 168 if (oid >> sh == id >> sh) 169 continue; 170 else 171 goto restart; 172 } 173 if (m != n) { 174 sh = IDR_BITS*l; 175 id = ((id >> sh) ^ n ^ m) << sh; 176 } 177 if ((id >= MAX_ID_BIT) || (id < 0)) 178 return IDR_NOMORE_SPACE; 179 if (l == 0) 180 break; 181 /* 182 * Create the layer below if it is missing. 183 */ 184 if (!p->ary[m]) { 185 new = get_from_free_list(idp); 186 if (!new) 187 return -1; 188 new->layer = l-1; 189 rcu_assign_pointer(p->ary[m], new); 190 p->count++; 191 } 192 pa[l--] = p; 193 p = p->ary[m]; 194 } 195 196 pa[l] = p; 197 return id; 198 } 199 200 static int idr_get_empty_slot(struct idr *idp, int starting_id, 201 struct idr_layer **pa) 202 { 203 struct idr_layer *p, *new; 204 int layers, v, id; 205 unsigned long flags; 206 207 id = starting_id; 208 build_up: 209 p = idp->top; 210 layers = idp->layers; 211 if (unlikely(!p)) { 212 if (!(p = get_from_free_list(idp))) 213 return -1; 214 p->layer = 0; 215 layers = 1; 216 } 217 /* 218 * Add a new layer to the top of the tree if the requested 219 * id is larger than the currently allocated space. 220 */ 221 while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) { 222 layers++; 223 if (!p->count) { 224 /* special case: if the tree is currently empty, 225 * then we grow the tree by moving the top node 226 * upwards. 227 */ 228 p->layer++; 229 continue; 230 } 231 if (!(new = get_from_free_list(idp))) { 232 /* 233 * The allocation failed. If we built part of 234 * the structure tear it down. 235 */ 236 spin_lock_irqsave(&idp->lock, flags); 237 for (new = p; p && p != idp->top; new = p) { 238 p = p->ary[0]; 239 new->ary[0] = NULL; 240 new->bitmap = new->count = 0; 241 __move_to_free_list(idp, new); 242 } 243 spin_unlock_irqrestore(&idp->lock, flags); 244 return -1; 245 } 246 new->ary[0] = p; 247 new->count = 1; 248 new->layer = layers-1; 249 if (p->bitmap == IDR_FULL) 250 __set_bit(0, &new->bitmap); 251 p = new; 252 } 253 rcu_assign_pointer(idp->top, p); 254 idp->layers = layers; 255 v = sub_alloc(idp, &id, pa); 256 if (v == IDR_NEED_TO_GROW) 257 goto build_up; 258 return(v); 259 } 260 261 static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id) 262 { 263 struct idr_layer *pa[MAX_LEVEL]; 264 int id; 265 266 id = idr_get_empty_slot(idp, starting_id, pa); 267 if (id >= 0) { 268 /* 269 * Successfully found an empty slot. Install the user 270 * pointer and mark the slot full. 271 */ 272 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], 273 (struct idr_layer *)ptr); 274 pa[0]->count++; 275 idr_mark_full(pa, id); 276 } 277 278 return id; 279 } 280 281 /** 282 * idr_get_new_above - allocate new idr entry above or equal to a start id 283 * @idp: idr handle 284 * @ptr: pointer you want associated with the ide 285 * @start_id: id to start search at 286 * @id: pointer to the allocated handle 287 * 288 * This is the allocate id function. It should be called with any 289 * required locks. 290 * 291 * If memory is required, it will return -EAGAIN, you should unlock 292 * and go back to the idr_pre_get() call. If the idr is full, it will 293 * return -ENOSPC. 294 * 295 * @id returns a value in the range @starting_id ... 0x7fffffff 296 */ 297 int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id) 298 { 299 int rv; 300 301 rv = idr_get_new_above_int(idp, ptr, starting_id); 302 /* 303 * This is a cheap hack until the IDR code can be fixed to 304 * return proper error values. 305 */ 306 if (rv < 0) 307 return _idr_rc_to_errno(rv); 308 *id = rv; 309 return 0; 310 } 311 EXPORT_SYMBOL(idr_get_new_above); 312 313 /** 314 * idr_get_new - allocate new idr entry 315 * @idp: idr handle 316 * @ptr: pointer you want associated with the ide 317 * @id: pointer to the allocated handle 318 * 319 * This is the allocate id function. It should be called with any 320 * required locks. 321 * 322 * If memory is required, it will return -EAGAIN, you should unlock 323 * and go back to the idr_pre_get() call. If the idr is full, it will 324 * return -ENOSPC. 325 * 326 * @id returns a value in the range 0 ... 0x7fffffff 327 */ 328 int idr_get_new(struct idr *idp, void *ptr, int *id) 329 { 330 int rv; 331 332 rv = idr_get_new_above_int(idp, ptr, 0); 333 /* 334 * This is a cheap hack until the IDR code can be fixed to 335 * return proper error values. 336 */ 337 if (rv < 0) 338 return _idr_rc_to_errno(rv); 339 *id = rv; 340 return 0; 341 } 342 EXPORT_SYMBOL(idr_get_new); 343 344 static void idr_remove_warning(int id) 345 { 346 printk(KERN_WARNING 347 "idr_remove called for id=%d which is not allocated.\n", id); 348 dump_stack(); 349 } 350 351 static void sub_remove(struct idr *idp, int shift, int id) 352 { 353 struct idr_layer *p = idp->top; 354 struct idr_layer **pa[MAX_LEVEL]; 355 struct idr_layer ***paa = &pa[0]; 356 struct idr_layer *to_free; 357 int n; 358 359 *paa = NULL; 360 *++paa = &idp->top; 361 362 while ((shift > 0) && p) { 363 n = (id >> shift) & IDR_MASK; 364 __clear_bit(n, &p->bitmap); 365 *++paa = &p->ary[n]; 366 p = p->ary[n]; 367 shift -= IDR_BITS; 368 } 369 n = id & IDR_MASK; 370 if (likely(p != NULL && test_bit(n, &p->bitmap))){ 371 __clear_bit(n, &p->bitmap); 372 rcu_assign_pointer(p->ary[n], NULL); 373 to_free = NULL; 374 while(*paa && ! --((**paa)->count)){ 375 if (to_free) 376 free_layer(to_free); 377 to_free = **paa; 378 **paa-- = NULL; 379 } 380 if (!*paa) 381 idp->layers = 0; 382 if (to_free) 383 free_layer(to_free); 384 } else 385 idr_remove_warning(id); 386 } 387 388 /** 389 * idr_remove - remove the given id and free it's slot 390 * @idp: idr handle 391 * @id: unique key 392 */ 393 void idr_remove(struct idr *idp, int id) 394 { 395 struct idr_layer *p; 396 struct idr_layer *to_free; 397 398 /* Mask off upper bits we don't use for the search. */ 399 id &= MAX_ID_MASK; 400 401 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); 402 if (idp->top && idp->top->count == 1 && (idp->layers > 1) && 403 idp->top->ary[0]) { 404 /* 405 * Single child at leftmost slot: we can shrink the tree. 406 * This level is not needed anymore since when layers are 407 * inserted, they are inserted at the top of the existing 408 * tree. 409 */ 410 to_free = idp->top; 411 p = idp->top->ary[0]; 412 rcu_assign_pointer(idp->top, p); 413 --idp->layers; 414 to_free->bitmap = to_free->count = 0; 415 free_layer(to_free); 416 } 417 while (idp->id_free_cnt >= IDR_FREE_MAX) { 418 p = get_from_free_list(idp); 419 /* 420 * Note: we don't call the rcu callback here, since the only 421 * layers that fall into the freelist are those that have been 422 * preallocated. 423 */ 424 kmem_cache_free(idr_layer_cache, p); 425 } 426 return; 427 } 428 EXPORT_SYMBOL(idr_remove); 429 430 /** 431 * idr_remove_all - remove all ids from the given idr tree 432 * @idp: idr handle 433 * 434 * idr_destroy() only frees up unused, cached idp_layers, but this 435 * function will remove all id mappings and leave all idp_layers 436 * unused. 437 * 438 * A typical clean-up sequence for objects stored in an idr tree, will 439 * use idr_for_each() to free all objects, if necessay, then 440 * idr_remove_all() to remove all ids, and idr_destroy() to free 441 * up the cached idr_layers. 442 */ 443 void idr_remove_all(struct idr *idp) 444 { 445 int n, id, max; 446 struct idr_layer *p; 447 struct idr_layer *pa[MAX_LEVEL]; 448 struct idr_layer **paa = &pa[0]; 449 450 n = idp->layers * IDR_BITS; 451 p = idp->top; 452 rcu_assign_pointer(idp->top, NULL); 453 max = 1 << n; 454 455 id = 0; 456 while (id < max) { 457 while (n > IDR_BITS && p) { 458 n -= IDR_BITS; 459 *paa++ = p; 460 p = p->ary[(id >> n) & IDR_MASK]; 461 } 462 463 id += 1 << n; 464 while (n < fls(id)) { 465 if (p) 466 free_layer(p); 467 n += IDR_BITS; 468 p = *--paa; 469 } 470 } 471 idp->layers = 0; 472 } 473 EXPORT_SYMBOL(idr_remove_all); 474 475 /** 476 * idr_destroy - release all cached layers within an idr tree 477 * idp: idr handle 478 */ 479 void idr_destroy(struct idr *idp) 480 { 481 while (idp->id_free_cnt) { 482 struct idr_layer *p = get_from_free_list(idp); 483 kmem_cache_free(idr_layer_cache, p); 484 } 485 } 486 EXPORT_SYMBOL(idr_destroy); 487 488 /** 489 * idr_find - return pointer for given id 490 * @idp: idr handle 491 * @id: lookup key 492 * 493 * Return the pointer given the id it has been registered with. A %NULL 494 * return indicates that @id is not valid or you passed %NULL in 495 * idr_get_new(). 496 * 497 * This function can be called under rcu_read_lock(), given that the leaf 498 * pointers lifetimes are correctly managed. 499 */ 500 void *idr_find(struct idr *idp, int id) 501 { 502 int n; 503 struct idr_layer *p; 504 505 p = rcu_dereference(idp->top); 506 if (!p) 507 return NULL; 508 n = (p->layer+1) * IDR_BITS; 509 510 /* Mask off upper bits we don't use for the search. */ 511 id &= MAX_ID_MASK; 512 513 if (id >= (1 << n)) 514 return NULL; 515 BUG_ON(n == 0); 516 517 while (n > 0 && p) { 518 n -= IDR_BITS; 519 BUG_ON(n != p->layer*IDR_BITS); 520 p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]); 521 } 522 return((void *)p); 523 } 524 EXPORT_SYMBOL(idr_find); 525 526 /** 527 * idr_for_each - iterate through all stored pointers 528 * @idp: idr handle 529 * @fn: function to be called for each pointer 530 * @data: data passed back to callback function 531 * 532 * Iterate over the pointers registered with the given idr. The 533 * callback function will be called for each pointer currently 534 * registered, passing the id, the pointer and the data pointer passed 535 * to this function. It is not safe to modify the idr tree while in 536 * the callback, so functions such as idr_get_new and idr_remove are 537 * not allowed. 538 * 539 * We check the return of @fn each time. If it returns anything other 540 * than 0, we break out and return that value. 541 * 542 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove(). 543 */ 544 int idr_for_each(struct idr *idp, 545 int (*fn)(int id, void *p, void *data), void *data) 546 { 547 int n, id, max, error = 0; 548 struct idr_layer *p; 549 struct idr_layer *pa[MAX_LEVEL]; 550 struct idr_layer **paa = &pa[0]; 551 552 n = idp->layers * IDR_BITS; 553 p = rcu_dereference(idp->top); 554 max = 1 << n; 555 556 id = 0; 557 while (id < max) { 558 while (n > 0 && p) { 559 n -= IDR_BITS; 560 *paa++ = p; 561 p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]); 562 } 563 564 if (p) { 565 error = fn(id, (void *)p, data); 566 if (error) 567 break; 568 } 569 570 id += 1 << n; 571 while (n < fls(id)) { 572 n += IDR_BITS; 573 p = *--paa; 574 } 575 } 576 577 return error; 578 } 579 EXPORT_SYMBOL(idr_for_each); 580 581 /** 582 * idr_get_next - lookup next object of id to given id. 583 * @idp: idr handle 584 * @id: pointer to lookup key 585 * 586 * Returns pointer to registered object with id, which is next number to 587 * given id. 588 */ 589 590 void *idr_get_next(struct idr *idp, int *nextidp) 591 { 592 struct idr_layer *p, *pa[MAX_LEVEL]; 593 struct idr_layer **paa = &pa[0]; 594 int id = *nextidp; 595 int n, max; 596 597 /* find first ent */ 598 n = idp->layers * IDR_BITS; 599 max = 1 << n; 600 p = rcu_dereference(idp->top); 601 if (!p) 602 return NULL; 603 604 while (id < max) { 605 while (n > 0 && p) { 606 n -= IDR_BITS; 607 *paa++ = p; 608 p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]); 609 } 610 611 if (p) { 612 *nextidp = id; 613 return p; 614 } 615 616 id += 1 << n; 617 while (n < fls(id)) { 618 n += IDR_BITS; 619 p = *--paa; 620 } 621 } 622 return NULL; 623 } 624 625 626 627 /** 628 * idr_replace - replace pointer for given id 629 * @idp: idr handle 630 * @ptr: pointer you want associated with the id 631 * @id: lookup key 632 * 633 * Replace the pointer registered with an id and return the old value. 634 * A -ENOENT return indicates that @id was not found. 635 * A -EINVAL return indicates that @id was not within valid constraints. 636 * 637 * The caller must serialize with writers. 638 */ 639 void *idr_replace(struct idr *idp, void *ptr, int id) 640 { 641 int n; 642 struct idr_layer *p, *old_p; 643 644 p = idp->top; 645 if (!p) 646 return ERR_PTR(-EINVAL); 647 648 n = (p->layer+1) * IDR_BITS; 649 650 id &= MAX_ID_MASK; 651 652 if (id >= (1 << n)) 653 return ERR_PTR(-EINVAL); 654 655 n -= IDR_BITS; 656 while ((n > 0) && p) { 657 p = p->ary[(id >> n) & IDR_MASK]; 658 n -= IDR_BITS; 659 } 660 661 n = id & IDR_MASK; 662 if (unlikely(p == NULL || !test_bit(n, &p->bitmap))) 663 return ERR_PTR(-ENOENT); 664 665 old_p = p->ary[n]; 666 rcu_assign_pointer(p->ary[n], ptr); 667 668 return old_p; 669 } 670 EXPORT_SYMBOL(idr_replace); 671 672 void __init idr_init_cache(void) 673 { 674 idr_layer_cache = kmem_cache_create("idr_layer_cache", 675 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL); 676 } 677 678 /** 679 * idr_init - initialize idr handle 680 * @idp: idr handle 681 * 682 * This function is use to set up the handle (@idp) that you will pass 683 * to the rest of the functions. 684 */ 685 void idr_init(struct idr *idp) 686 { 687 memset(idp, 0, sizeof(struct idr)); 688 spin_lock_init(&idp->lock); 689 } 690 EXPORT_SYMBOL(idr_init); 691 692 693 /* 694 * IDA - IDR based ID allocator 695 * 696 * this is id allocator without id -> pointer translation. Memory 697 * usage is much lower than full blown idr because each id only 698 * occupies a bit. ida uses a custom leaf node which contains 699 * IDA_BITMAP_BITS slots. 700 * 701 * 2007-04-25 written by Tejun Heo <htejun@gmail.com> 702 */ 703 704 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap) 705 { 706 unsigned long flags; 707 708 if (!ida->free_bitmap) { 709 spin_lock_irqsave(&ida->idr.lock, flags); 710 if (!ida->free_bitmap) { 711 ida->free_bitmap = bitmap; 712 bitmap = NULL; 713 } 714 spin_unlock_irqrestore(&ida->idr.lock, flags); 715 } 716 717 kfree(bitmap); 718 } 719 720 /** 721 * ida_pre_get - reserve resources for ida allocation 722 * @ida: ida handle 723 * @gfp_mask: memory allocation flag 724 * 725 * This function should be called prior to locking and calling the 726 * following function. It preallocates enough memory to satisfy the 727 * worst possible allocation. 728 * 729 * If the system is REALLY out of memory this function returns 0, 730 * otherwise 1. 731 */ 732 int ida_pre_get(struct ida *ida, gfp_t gfp_mask) 733 { 734 /* allocate idr_layers */ 735 if (!idr_pre_get(&ida->idr, gfp_mask)) 736 return 0; 737 738 /* allocate free_bitmap */ 739 if (!ida->free_bitmap) { 740 struct ida_bitmap *bitmap; 741 742 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask); 743 if (!bitmap) 744 return 0; 745 746 free_bitmap(ida, bitmap); 747 } 748 749 return 1; 750 } 751 EXPORT_SYMBOL(ida_pre_get); 752 753 /** 754 * ida_get_new_above - allocate new ID above or equal to a start id 755 * @ida: ida handle 756 * @staring_id: id to start search at 757 * @p_id: pointer to the allocated handle 758 * 759 * Allocate new ID above or equal to @ida. It should be called with 760 * any required locks. 761 * 762 * If memory is required, it will return -EAGAIN, you should unlock 763 * and go back to the ida_pre_get() call. If the ida is full, it will 764 * return -ENOSPC. 765 * 766 * @p_id returns a value in the range @starting_id ... 0x7fffffff. 767 */ 768 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id) 769 { 770 struct idr_layer *pa[MAX_LEVEL]; 771 struct ida_bitmap *bitmap; 772 unsigned long flags; 773 int idr_id = starting_id / IDA_BITMAP_BITS; 774 int offset = starting_id % IDA_BITMAP_BITS; 775 int t, id; 776 777 restart: 778 /* get vacant slot */ 779 t = idr_get_empty_slot(&ida->idr, idr_id, pa); 780 if (t < 0) 781 return _idr_rc_to_errno(t); 782 783 if (t * IDA_BITMAP_BITS >= MAX_ID_BIT) 784 return -ENOSPC; 785 786 if (t != idr_id) 787 offset = 0; 788 idr_id = t; 789 790 /* if bitmap isn't there, create a new one */ 791 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK]; 792 if (!bitmap) { 793 spin_lock_irqsave(&ida->idr.lock, flags); 794 bitmap = ida->free_bitmap; 795 ida->free_bitmap = NULL; 796 spin_unlock_irqrestore(&ida->idr.lock, flags); 797 798 if (!bitmap) 799 return -EAGAIN; 800 801 memset(bitmap, 0, sizeof(struct ida_bitmap)); 802 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK], 803 (void *)bitmap); 804 pa[0]->count++; 805 } 806 807 /* lookup for empty slot */ 808 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset); 809 if (t == IDA_BITMAP_BITS) { 810 /* no empty slot after offset, continue to the next chunk */ 811 idr_id++; 812 offset = 0; 813 goto restart; 814 } 815 816 id = idr_id * IDA_BITMAP_BITS + t; 817 if (id >= MAX_ID_BIT) 818 return -ENOSPC; 819 820 __set_bit(t, bitmap->bitmap); 821 if (++bitmap->nr_busy == IDA_BITMAP_BITS) 822 idr_mark_full(pa, idr_id); 823 824 *p_id = id; 825 826 /* Each leaf node can handle nearly a thousand slots and the 827 * whole idea of ida is to have small memory foot print. 828 * Throw away extra resources one by one after each successful 829 * allocation. 830 */ 831 if (ida->idr.id_free_cnt || ida->free_bitmap) { 832 struct idr_layer *p = get_from_free_list(&ida->idr); 833 if (p) 834 kmem_cache_free(idr_layer_cache, p); 835 } 836 837 return 0; 838 } 839 EXPORT_SYMBOL(ida_get_new_above); 840 841 /** 842 * ida_get_new - allocate new ID 843 * @ida: idr handle 844 * @p_id: pointer to the allocated handle 845 * 846 * Allocate new ID. It should be called with any required locks. 847 * 848 * If memory is required, it will return -EAGAIN, you should unlock 849 * and go back to the idr_pre_get() call. If the idr is full, it will 850 * return -ENOSPC. 851 * 852 * @id returns a value in the range 0 ... 0x7fffffff. 853 */ 854 int ida_get_new(struct ida *ida, int *p_id) 855 { 856 return ida_get_new_above(ida, 0, p_id); 857 } 858 EXPORT_SYMBOL(ida_get_new); 859 860 /** 861 * ida_remove - remove the given ID 862 * @ida: ida handle 863 * @id: ID to free 864 */ 865 void ida_remove(struct ida *ida, int id) 866 { 867 struct idr_layer *p = ida->idr.top; 868 int shift = (ida->idr.layers - 1) * IDR_BITS; 869 int idr_id = id / IDA_BITMAP_BITS; 870 int offset = id % IDA_BITMAP_BITS; 871 int n; 872 struct ida_bitmap *bitmap; 873 874 /* clear full bits while looking up the leaf idr_layer */ 875 while ((shift > 0) && p) { 876 n = (idr_id >> shift) & IDR_MASK; 877 __clear_bit(n, &p->bitmap); 878 p = p->ary[n]; 879 shift -= IDR_BITS; 880 } 881 882 if (p == NULL) 883 goto err; 884 885 n = idr_id & IDR_MASK; 886 __clear_bit(n, &p->bitmap); 887 888 bitmap = (void *)p->ary[n]; 889 if (!test_bit(offset, bitmap->bitmap)) 890 goto err; 891 892 /* update bitmap and remove it if empty */ 893 __clear_bit(offset, bitmap->bitmap); 894 if (--bitmap->nr_busy == 0) { 895 __set_bit(n, &p->bitmap); /* to please idr_remove() */ 896 idr_remove(&ida->idr, idr_id); 897 free_bitmap(ida, bitmap); 898 } 899 900 return; 901 902 err: 903 printk(KERN_WARNING 904 "ida_remove called for id=%d which is not allocated.\n", id); 905 } 906 EXPORT_SYMBOL(ida_remove); 907 908 /** 909 * ida_destroy - release all cached layers within an ida tree 910 * ida: ida handle 911 */ 912 void ida_destroy(struct ida *ida) 913 { 914 idr_destroy(&ida->idr); 915 kfree(ida->free_bitmap); 916 } 917 EXPORT_SYMBOL(ida_destroy); 918 919 /** 920 * ida_init - initialize ida handle 921 * @ida: ida handle 922 * 923 * This function is use to set up the handle (@ida) that you will pass 924 * to the rest of the functions. 925 */ 926 void ida_init(struct ida *ida) 927 { 928 memset(ida, 0, sizeof(struct ida)); 929 idr_init(&ida->idr); 930 931 } 932 EXPORT_SYMBOL(ida_init); 933