xref: /openbmc/linux/lib/idr.c (revision a0ae2562c6c4b2721d9fddba63b7286c13517d9f)
1 #include <linux/bitmap.h>
2 #include <linux/bug.h>
3 #include <linux/export.h>
4 #include <linux/idr.h>
5 #include <linux/slab.h>
6 #include <linux/spinlock.h>
7 #include <linux/xarray.h>
8 
9 DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap);
10 
11 /**
12  * idr_alloc_u32() - Allocate an ID.
13  * @idr: IDR handle.
14  * @ptr: Pointer to be associated with the new ID.
15  * @nextid: Pointer to an ID.
16  * @max: The maximum ID to allocate (inclusive).
17  * @gfp: Memory allocation flags.
18  *
19  * Allocates an unused ID in the range specified by @nextid and @max.
20  * Note that @max is inclusive whereas the @end parameter to idr_alloc()
21  * is exclusive.  The new ID is assigned to @nextid before the pointer
22  * is inserted into the IDR, so if @nextid points into the object pointed
23  * to by @ptr, a concurrent lookup will not find an uninitialised ID.
24  *
25  * The caller should provide their own locking to ensure that two
26  * concurrent modifications to the IDR are not possible.  Read-only
27  * accesses to the IDR may be done under the RCU read lock or may
28  * exclude simultaneous writers.
29  *
30  * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
31  * or -ENOSPC if no free IDs could be found.  If an error occurred,
32  * @nextid is unchanged.
33  */
34 int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
35 			unsigned long max, gfp_t gfp)
36 {
37 	struct radix_tree_iter iter;
38 	void __rcu **slot;
39 	unsigned int base = idr->idr_base;
40 	unsigned int id = *nextid;
41 
42 	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
43 		return -EINVAL;
44 	if (WARN_ON_ONCE(!(idr->idr_rt.gfp_mask & ROOT_IS_IDR)))
45 		idr->idr_rt.gfp_mask |= IDR_RT_MARKER;
46 
47 	id = (id < base) ? 0 : id - base;
48 	radix_tree_iter_init(&iter, id);
49 	slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base);
50 	if (IS_ERR(slot))
51 		return PTR_ERR(slot);
52 
53 	*nextid = iter.index + base;
54 	/* there is a memory barrier inside radix_tree_iter_replace() */
55 	radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
56 	radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
57 
58 	return 0;
59 }
60 EXPORT_SYMBOL_GPL(idr_alloc_u32);
61 
62 /**
63  * idr_alloc() - Allocate an ID.
64  * @idr: IDR handle.
65  * @ptr: Pointer to be associated with the new ID.
66  * @start: The minimum ID (inclusive).
67  * @end: The maximum ID (exclusive).
68  * @gfp: Memory allocation flags.
69  *
70  * Allocates an unused ID in the range specified by @start and @end.  If
71  * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
72  * callers to use @start + N as @end as long as N is within integer range.
73  *
74  * The caller should provide their own locking to ensure that two
75  * concurrent modifications to the IDR are not possible.  Read-only
76  * accesses to the IDR may be done under the RCU read lock or may
77  * exclude simultaneous writers.
78  *
79  * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
80  * or -ENOSPC if no free IDs could be found.
81  */
82 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
83 {
84 	u32 id = start;
85 	int ret;
86 
87 	if (WARN_ON_ONCE(start < 0))
88 		return -EINVAL;
89 
90 	ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
91 	if (ret)
92 		return ret;
93 
94 	return id;
95 }
96 EXPORT_SYMBOL_GPL(idr_alloc);
97 
98 /**
99  * idr_alloc_cyclic() - Allocate an ID cyclically.
100  * @idr: IDR handle.
101  * @ptr: Pointer to be associated with the new ID.
102  * @start: The minimum ID (inclusive).
103  * @end: The maximum ID (exclusive).
104  * @gfp: Memory allocation flags.
105  *
106  * Allocates an unused ID in the range specified by @nextid and @end.  If
107  * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
108  * callers to use @start + N as @end as long as N is within integer range.
109  * The search for an unused ID will start at the last ID allocated and will
110  * wrap around to @start if no free IDs are found before reaching @end.
111  *
112  * The caller should provide their own locking to ensure that two
113  * concurrent modifications to the IDR are not possible.  Read-only
114  * accesses to the IDR may be done under the RCU read lock or may
115  * exclude simultaneous writers.
116  *
117  * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
118  * or -ENOSPC if no free IDs could be found.
119  */
120 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
121 {
122 	u32 id = idr->idr_next;
123 	int err, max = end > 0 ? end - 1 : INT_MAX;
124 
125 	if ((int)id < start)
126 		id = start;
127 
128 	err = idr_alloc_u32(idr, ptr, &id, max, gfp);
129 	if ((err == -ENOSPC) && (id > start)) {
130 		id = start;
131 		err = idr_alloc_u32(idr, ptr, &id, max, gfp);
132 	}
133 	if (err)
134 		return err;
135 
136 	idr->idr_next = id + 1;
137 	return id;
138 }
139 EXPORT_SYMBOL(idr_alloc_cyclic);
140 
141 /**
142  * idr_remove() - Remove an ID from the IDR.
143  * @idr: IDR handle.
144  * @id: Pointer ID.
145  *
146  * Removes this ID from the IDR.  If the ID was not previously in the IDR,
147  * this function returns %NULL.
148  *
149  * Since this function modifies the IDR, the caller should provide their
150  * own locking to ensure that concurrent modification of the same IDR is
151  * not possible.
152  *
153  * Return: The pointer formerly associated with this ID.
154  */
155 void *idr_remove(struct idr *idr, unsigned long id)
156 {
157 	return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL);
158 }
159 EXPORT_SYMBOL_GPL(idr_remove);
160 
161 /**
162  * idr_find() - Return pointer for given ID.
163  * @idr: IDR handle.
164  * @id: Pointer ID.
165  *
166  * Looks up the pointer associated with this ID.  A %NULL pointer may
167  * indicate that @id is not allocated or that the %NULL pointer was
168  * associated with this ID.
169  *
170  * This function can be called under rcu_read_lock(), given that the leaf
171  * pointers lifetimes are correctly managed.
172  *
173  * Return: The pointer associated with this ID.
174  */
175 void *idr_find(const struct idr *idr, unsigned long id)
176 {
177 	return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base);
178 }
179 EXPORT_SYMBOL_GPL(idr_find);
180 
181 /**
182  * idr_for_each() - Iterate through all stored pointers.
183  * @idr: IDR handle.
184  * @fn: Function to be called for each pointer.
185  * @data: Data passed to callback function.
186  *
187  * The callback function will be called for each entry in @idr, passing
188  * the ID, the entry and @data.
189  *
190  * If @fn returns anything other than %0, the iteration stops and that
191  * value is returned from this function.
192  *
193  * idr_for_each() can be called concurrently with idr_alloc() and
194  * idr_remove() if protected by RCU.  Newly added entries may not be
195  * seen and deleted entries may be seen, but adding and removing entries
196  * will not cause other entries to be skipped, nor spurious ones to be seen.
197  */
198 int idr_for_each(const struct idr *idr,
199 		int (*fn)(int id, void *p, void *data), void *data)
200 {
201 	struct radix_tree_iter iter;
202 	void __rcu **slot;
203 	int base = idr->idr_base;
204 
205 	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
206 		int ret;
207 		unsigned long id = iter.index + base;
208 
209 		if (WARN_ON_ONCE(id > INT_MAX))
210 			break;
211 		ret = fn(id, rcu_dereference_raw(*slot), data);
212 		if (ret)
213 			return ret;
214 	}
215 
216 	return 0;
217 }
218 EXPORT_SYMBOL(idr_for_each);
219 
220 /**
221  * idr_get_next() - Find next populated entry.
222  * @idr: IDR handle.
223  * @nextid: Pointer to an ID.
224  *
225  * Returns the next populated entry in the tree with an ID greater than
226  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
227  * to the ID of the found value.  To use in a loop, the value pointed to by
228  * nextid must be incremented by the user.
229  */
230 void *idr_get_next(struct idr *idr, int *nextid)
231 {
232 	struct radix_tree_iter iter;
233 	void __rcu **slot;
234 	unsigned long base = idr->idr_base;
235 	unsigned long id = *nextid;
236 
237 	id = (id < base) ? 0 : id - base;
238 	slot = radix_tree_iter_find(&idr->idr_rt, &iter, id);
239 	if (!slot)
240 		return NULL;
241 	id = iter.index + base;
242 
243 	if (WARN_ON_ONCE(id > INT_MAX))
244 		return NULL;
245 
246 	*nextid = id;
247 	return rcu_dereference_raw(*slot);
248 }
249 EXPORT_SYMBOL(idr_get_next);
250 
251 /**
252  * idr_get_next_ul() - Find next populated entry.
253  * @idr: IDR handle.
254  * @nextid: Pointer to an ID.
255  *
256  * Returns the next populated entry in the tree with an ID greater than
257  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
258  * to the ID of the found value.  To use in a loop, the value pointed to by
259  * nextid must be incremented by the user.
260  */
261 void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
262 {
263 	struct radix_tree_iter iter;
264 	void __rcu **slot;
265 	unsigned long base = idr->idr_base;
266 	unsigned long id = *nextid;
267 
268 	id = (id < base) ? 0 : id - base;
269 	slot = radix_tree_iter_find(&idr->idr_rt, &iter, id);
270 	if (!slot)
271 		return NULL;
272 
273 	*nextid = iter.index + base;
274 	return rcu_dereference_raw(*slot);
275 }
276 EXPORT_SYMBOL(idr_get_next_ul);
277 
278 /**
279  * idr_replace() - replace pointer for given ID.
280  * @idr: IDR handle.
281  * @ptr: New pointer to associate with the ID.
282  * @id: ID to change.
283  *
284  * Replace the pointer registered with an ID and return the old value.
285  * This function can be called under the RCU read lock concurrently with
286  * idr_alloc() and idr_remove() (as long as the ID being removed is not
287  * the one being replaced!).
288  *
289  * Returns: the old value on success.  %-ENOENT indicates that @id was not
290  * found.  %-EINVAL indicates that @ptr was not valid.
291  */
292 void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
293 {
294 	struct radix_tree_node *node;
295 	void __rcu **slot = NULL;
296 	void *entry;
297 
298 	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
299 		return ERR_PTR(-EINVAL);
300 	id -= idr->idr_base;
301 
302 	entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
303 	if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
304 		return ERR_PTR(-ENOENT);
305 
306 	__radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL);
307 
308 	return entry;
309 }
310 EXPORT_SYMBOL(idr_replace);
311 
312 /**
313  * DOC: IDA description
314  *
315  * The IDA is an ID allocator which does not provide the ability to
316  * associate an ID with a pointer.  As such, it only needs to store one
317  * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
318  * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
319  * then initialise it using ida_init()).  To allocate a new ID, call
320  * ida_simple_get().  To free an ID, call ida_simple_remove().
321  *
322  * If you have more complex locking requirements, use a loop around
323  * ida_pre_get() and ida_get_new() to allocate a new ID.  Then use
324  * ida_remove() to free an ID.  You must make sure that ida_get_new() and
325  * ida_remove() cannot be called at the same time as each other for the
326  * same IDA.
327  *
328  * You can also use ida_get_new_above() if you need an ID to be allocated
329  * above a particular number.  ida_destroy() can be used to dispose of an
330  * IDA without needing to free the individual IDs in it.  You can use
331  * ida_is_empty() to find out whether the IDA has any IDs currently allocated.
332  *
333  * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
334  * limitation, it should be quite straightforward to raise the maximum.
335  */
336 
337 /*
338  * Developer's notes:
339  *
340  * The IDA uses the functionality provided by the IDR & radix tree to store
341  * bitmaps in each entry.  The IDR_FREE tag means there is at least one bit
342  * free, unlike the IDR where it means at least one entry is free.
343  *
344  * I considered telling the radix tree that each slot is an order-10 node
345  * and storing the bit numbers in the radix tree, but the radix tree can't
346  * allow a single multiorder entry at index 0, which would significantly
347  * increase memory consumption for the IDA.  So instead we divide the index
348  * by the number of bits in the leaf bitmap before doing a radix tree lookup.
349  *
350  * As an optimisation, if there are only a few low bits set in any given
351  * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional
352  * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits
353  * directly in the entry.  By being really tricksy, we could store
354  * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising
355  * for 0-3 allocated IDs.
356  *
357  * We allow the radix tree 'exceptional' count to get out of date.  Nothing
358  * in the IDA nor the radix tree code checks it.  If it becomes important
359  * to maintain an accurate exceptional count, switch the rcu_assign_pointer()
360  * calls to radix_tree_iter_replace() which will correct the exceptional
361  * count.
362  *
363  * The IDA always requires a lock to alloc/free.  If we add a 'test_bit'
364  * equivalent, it will still need locking.  Going to RCU lookup would require
365  * using RCU to free bitmaps, and that's not trivial without embedding an
366  * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
367  * bitmap, which is excessive.
368  */
369 
370 #define IDA_MAX (0x80000000U / IDA_BITMAP_BITS - 1)
371 
372 /**
373  * ida_get_new_above - allocate new ID above or equal to a start id
374  * @ida: ida handle
375  * @start: id to start search at
376  * @id: pointer to the allocated handle
377  *
378  * Allocate new ID above or equal to @start.  It should be called
379  * with any required locks to ensure that concurrent calls to
380  * ida_get_new_above() / ida_get_new() / ida_remove() are not allowed.
381  * Consider using ida_simple_get() if you do not have complex locking
382  * requirements.
383  *
384  * If memory is required, it will return %-EAGAIN, you should unlock
385  * and go back to the ida_pre_get() call.  If the ida is full, it will
386  * return %-ENOSPC.  On success, it will return 0.
387  *
388  * @id returns a value in the range @start ... %0x7fffffff.
389  */
390 int ida_get_new_above(struct ida *ida, int start, int *id)
391 {
392 	struct radix_tree_root *root = &ida->ida_rt;
393 	void __rcu **slot;
394 	struct radix_tree_iter iter;
395 	struct ida_bitmap *bitmap;
396 	unsigned long index;
397 	unsigned bit, ebit;
398 	int new;
399 
400 	index = start / IDA_BITMAP_BITS;
401 	bit = start % IDA_BITMAP_BITS;
402 	ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT;
403 
404 	slot = radix_tree_iter_init(&iter, index);
405 	for (;;) {
406 		if (slot)
407 			slot = radix_tree_next_slot(slot, &iter,
408 						RADIX_TREE_ITER_TAGGED);
409 		if (!slot) {
410 			slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX);
411 			if (IS_ERR(slot)) {
412 				if (slot == ERR_PTR(-ENOMEM))
413 					return -EAGAIN;
414 				return PTR_ERR(slot);
415 			}
416 		}
417 		if (iter.index > index) {
418 			bit = 0;
419 			ebit = RADIX_TREE_EXCEPTIONAL_SHIFT;
420 		}
421 		new = iter.index * IDA_BITMAP_BITS;
422 		bitmap = rcu_dereference_raw(*slot);
423 		if (radix_tree_exception(bitmap)) {
424 			unsigned long tmp = (unsigned long)bitmap;
425 			ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit);
426 			if (ebit < BITS_PER_LONG) {
427 				tmp |= 1UL << ebit;
428 				rcu_assign_pointer(*slot, (void *)tmp);
429 				*id = new + ebit - RADIX_TREE_EXCEPTIONAL_SHIFT;
430 				return 0;
431 			}
432 			bitmap = this_cpu_xchg(ida_bitmap, NULL);
433 			if (!bitmap)
434 				return -EAGAIN;
435 			bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT;
436 			rcu_assign_pointer(*slot, bitmap);
437 		}
438 
439 		if (bitmap) {
440 			bit = find_next_zero_bit(bitmap->bitmap,
441 							IDA_BITMAP_BITS, bit);
442 			new += bit;
443 			if (new < 0)
444 				return -ENOSPC;
445 			if (bit == IDA_BITMAP_BITS)
446 				continue;
447 
448 			__set_bit(bit, bitmap->bitmap);
449 			if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
450 				radix_tree_iter_tag_clear(root, &iter,
451 								IDR_FREE);
452 		} else {
453 			new += bit;
454 			if (new < 0)
455 				return -ENOSPC;
456 			if (ebit < BITS_PER_LONG) {
457 				bitmap = (void *)((1UL << ebit) |
458 						RADIX_TREE_EXCEPTIONAL_ENTRY);
459 				radix_tree_iter_replace(root, &iter, slot,
460 						bitmap);
461 				*id = new;
462 				return 0;
463 			}
464 			bitmap = this_cpu_xchg(ida_bitmap, NULL);
465 			if (!bitmap)
466 				return -EAGAIN;
467 			__set_bit(bit, bitmap->bitmap);
468 			radix_tree_iter_replace(root, &iter, slot, bitmap);
469 		}
470 
471 		*id = new;
472 		return 0;
473 	}
474 }
475 EXPORT_SYMBOL(ida_get_new_above);
476 
477 /**
478  * ida_remove - Free the given ID
479  * @ida: ida handle
480  * @id: ID to free
481  *
482  * This function should not be called at the same time as ida_get_new_above().
483  */
484 void ida_remove(struct ida *ida, int id)
485 {
486 	unsigned long index = id / IDA_BITMAP_BITS;
487 	unsigned offset = id % IDA_BITMAP_BITS;
488 	struct ida_bitmap *bitmap;
489 	unsigned long *btmp;
490 	struct radix_tree_iter iter;
491 	void __rcu **slot;
492 
493 	slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index);
494 	if (!slot)
495 		goto err;
496 
497 	bitmap = rcu_dereference_raw(*slot);
498 	if (radix_tree_exception(bitmap)) {
499 		btmp = (unsigned long *)slot;
500 		offset += RADIX_TREE_EXCEPTIONAL_SHIFT;
501 		if (offset >= BITS_PER_LONG)
502 			goto err;
503 	} else {
504 		btmp = bitmap->bitmap;
505 	}
506 	if (!test_bit(offset, btmp))
507 		goto err;
508 
509 	__clear_bit(offset, btmp);
510 	radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE);
511 	if (radix_tree_exception(bitmap)) {
512 		if (rcu_dereference_raw(*slot) ==
513 					(void *)RADIX_TREE_EXCEPTIONAL_ENTRY)
514 			radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
515 	} else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) {
516 		kfree(bitmap);
517 		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
518 	}
519 	return;
520  err:
521 	WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
522 }
523 EXPORT_SYMBOL(ida_remove);
524 
525 /**
526  * ida_destroy - Free the contents of an ida
527  * @ida: ida handle
528  *
529  * Calling this function releases all resources associated with an IDA.  When
530  * this call returns, the IDA is empty and can be reused or freed.  The caller
531  * should not allow ida_remove() or ida_get_new_above() to be called at the
532  * same time.
533  */
534 void ida_destroy(struct ida *ida)
535 {
536 	struct radix_tree_iter iter;
537 	void __rcu **slot;
538 
539 	radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) {
540 		struct ida_bitmap *bitmap = rcu_dereference_raw(*slot);
541 		if (!radix_tree_exception(bitmap))
542 			kfree(bitmap);
543 		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
544 	}
545 }
546 EXPORT_SYMBOL(ida_destroy);
547 
548 /**
549  * ida_simple_get - get a new id.
550  * @ida: the (initialized) ida.
551  * @start: the minimum id (inclusive, < 0x8000000)
552  * @end: the maximum id (exclusive, < 0x8000000 or 0)
553  * @gfp_mask: memory allocation flags
554  *
555  * Allocates an id in the range start <= id < end, or returns -ENOSPC.
556  * On memory allocation failure, returns -ENOMEM.
557  *
558  * Compared to ida_get_new_above() this function does its own locking, and
559  * should be used unless there are special requirements.
560  *
561  * Use ida_simple_remove() to get rid of an id.
562  */
563 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
564 		   gfp_t gfp_mask)
565 {
566 	int ret, id;
567 	unsigned int max;
568 	unsigned long flags;
569 
570 	BUG_ON((int)start < 0);
571 	BUG_ON((int)end < 0);
572 
573 	if (end == 0)
574 		max = 0x80000000;
575 	else {
576 		BUG_ON(end < start);
577 		max = end - 1;
578 	}
579 
580 again:
581 	if (!ida_pre_get(ida, gfp_mask))
582 		return -ENOMEM;
583 
584 	xa_lock_irqsave(&ida->ida_rt, flags);
585 	ret = ida_get_new_above(ida, start, &id);
586 	if (!ret) {
587 		if (id > max) {
588 			ida_remove(ida, id);
589 			ret = -ENOSPC;
590 		} else {
591 			ret = id;
592 		}
593 	}
594 	xa_unlock_irqrestore(&ida->ida_rt, flags);
595 
596 	if (unlikely(ret == -EAGAIN))
597 		goto again;
598 
599 	return ret;
600 }
601 EXPORT_SYMBOL(ida_simple_get);
602 
603 /**
604  * ida_simple_remove - remove an allocated id.
605  * @ida: the (initialized) ida.
606  * @id: the id returned by ida_simple_get.
607  *
608  * Use to release an id allocated with ida_simple_get().
609  *
610  * Compared to ida_remove() this function does its own locking, and should be
611  * used unless there are special requirements.
612  */
613 void ida_simple_remove(struct ida *ida, unsigned int id)
614 {
615 	unsigned long flags;
616 
617 	BUG_ON((int)id < 0);
618 	xa_lock_irqsave(&ida->ida_rt, flags);
619 	ida_remove(ida, id);
620 	xa_unlock_irqrestore(&ida->ida_rt, flags);
621 }
622 EXPORT_SYMBOL(ida_simple_remove);
623