xref: /openbmc/linux/lib/idr.c (revision 94c7b6fc)
1 /*
2  * 2002-10-18  written by Jim Houston jim.houston@ccur.com
3  *	Copyright (C) 2002 by Concurrent Computer Corporation
4  *	Distributed under the GNU GPL license version 2.
5  *
6  * Modified by George Anzinger to reuse immediately and to use
7  * find bit instructions.  Also removed _irq on spinlocks.
8  *
9  * Modified by Nadia Derbey to make it RCU safe.
10  *
11  * Small id to pointer translation service.
12  *
13  * It uses a radix tree like structure as a sparse array indexed
14  * by the id to obtain the pointer.  The bitmap makes allocating
15  * a new id quick.
16  *
17  * You call it to allocate an id (an int) an associate with that id a
18  * pointer or what ever, we treat it as a (void *).  You can pass this
19  * id to a user for him to pass back at a later time.  You then pass
20  * that id to this code and it returns your pointer.
21  */
22 
23 #ifndef TEST                        // to test in user space...
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/export.h>
27 #endif
28 #include <linux/err.h>
29 #include <linux/string.h>
30 #include <linux/idr.h>
31 #include <linux/spinlock.h>
32 #include <linux/percpu.h>
33 #include <linux/hardirq.h>
34 
35 #define MAX_IDR_SHIFT		(sizeof(int) * 8 - 1)
36 #define MAX_IDR_BIT		(1U << MAX_IDR_SHIFT)
37 
38 /* Leave the possibility of an incomplete final layer */
39 #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
40 
41 /* Number of id_layer structs to leave in free list */
42 #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
43 
44 static struct kmem_cache *idr_layer_cache;
45 static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
46 static DEFINE_PER_CPU(int, idr_preload_cnt);
47 static DEFINE_SPINLOCK(simple_ida_lock);
48 
49 /* the maximum ID which can be allocated given idr->layers */
50 static int idr_max(int layers)
51 {
52 	int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
53 
54 	return (1 << bits) - 1;
55 }
56 
57 /*
58  * Prefix mask for an idr_layer at @layer.  For layer 0, the prefix mask is
59  * all bits except for the lower IDR_BITS.  For layer 1, 2 * IDR_BITS, and
60  * so on.
61  */
62 static int idr_layer_prefix_mask(int layer)
63 {
64 	return ~idr_max(layer + 1);
65 }
66 
67 static struct idr_layer *get_from_free_list(struct idr *idp)
68 {
69 	struct idr_layer *p;
70 	unsigned long flags;
71 
72 	spin_lock_irqsave(&idp->lock, flags);
73 	if ((p = idp->id_free)) {
74 		idp->id_free = p->ary[0];
75 		idp->id_free_cnt--;
76 		p->ary[0] = NULL;
77 	}
78 	spin_unlock_irqrestore(&idp->lock, flags);
79 	return(p);
80 }
81 
82 /**
83  * idr_layer_alloc - allocate a new idr_layer
84  * @gfp_mask: allocation mask
85  * @layer_idr: optional idr to allocate from
86  *
87  * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
88  * one from the per-cpu preload buffer.  If @layer_idr is not %NULL, fetch
89  * an idr_layer from @idr->id_free.
90  *
91  * @layer_idr is to maintain backward compatibility with the old alloc
92  * interface - idr_pre_get() and idr_get_new*() - and will be removed
93  * together with per-pool preload buffer.
94  */
95 static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
96 {
97 	struct idr_layer *new;
98 
99 	/* this is the old path, bypass to get_from_free_list() */
100 	if (layer_idr)
101 		return get_from_free_list(layer_idr);
102 
103 	/*
104 	 * Try to allocate directly from kmem_cache.  We want to try this
105 	 * before preload buffer; otherwise, non-preloading idr_alloc()
106 	 * users will end up taking advantage of preloading ones.  As the
107 	 * following is allowed to fail for preloaded cases, suppress
108 	 * warning this time.
109 	 */
110 	new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN);
111 	if (new)
112 		return new;
113 
114 	/*
115 	 * Try to fetch one from the per-cpu preload buffer if in process
116 	 * context.  See idr_preload() for details.
117 	 */
118 	if (!in_interrupt()) {
119 		preempt_disable();
120 		new = __this_cpu_read(idr_preload_head);
121 		if (new) {
122 			__this_cpu_write(idr_preload_head, new->ary[0]);
123 			__this_cpu_dec(idr_preload_cnt);
124 			new->ary[0] = NULL;
125 		}
126 		preempt_enable();
127 		if (new)
128 			return new;
129 	}
130 
131 	/*
132 	 * Both failed.  Try kmem_cache again w/o adding __GFP_NOWARN so
133 	 * that memory allocation failure warning is printed as intended.
134 	 */
135 	return kmem_cache_zalloc(idr_layer_cache, gfp_mask);
136 }
137 
138 static void idr_layer_rcu_free(struct rcu_head *head)
139 {
140 	struct idr_layer *layer;
141 
142 	layer = container_of(head, struct idr_layer, rcu_head);
143 	kmem_cache_free(idr_layer_cache, layer);
144 }
145 
146 static inline void free_layer(struct idr *idr, struct idr_layer *p)
147 {
148 	if (idr->hint == p)
149 		RCU_INIT_POINTER(idr->hint, NULL);
150 	call_rcu(&p->rcu_head, idr_layer_rcu_free);
151 }
152 
153 /* only called when idp->lock is held */
154 static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
155 {
156 	p->ary[0] = idp->id_free;
157 	idp->id_free = p;
158 	idp->id_free_cnt++;
159 }
160 
161 static void move_to_free_list(struct idr *idp, struct idr_layer *p)
162 {
163 	unsigned long flags;
164 
165 	/*
166 	 * Depends on the return element being zeroed.
167 	 */
168 	spin_lock_irqsave(&idp->lock, flags);
169 	__move_to_free_list(idp, p);
170 	spin_unlock_irqrestore(&idp->lock, flags);
171 }
172 
173 static void idr_mark_full(struct idr_layer **pa, int id)
174 {
175 	struct idr_layer *p = pa[0];
176 	int l = 0;
177 
178 	__set_bit(id & IDR_MASK, p->bitmap);
179 	/*
180 	 * If this layer is full mark the bit in the layer above to
181 	 * show that this part of the radix tree is full.  This may
182 	 * complete the layer above and require walking up the radix
183 	 * tree.
184 	 */
185 	while (bitmap_full(p->bitmap, IDR_SIZE)) {
186 		if (!(p = pa[++l]))
187 			break;
188 		id = id >> IDR_BITS;
189 		__set_bit((id & IDR_MASK), p->bitmap);
190 	}
191 }
192 
193 static int __idr_pre_get(struct idr *idp, gfp_t gfp_mask)
194 {
195 	while (idp->id_free_cnt < MAX_IDR_FREE) {
196 		struct idr_layer *new;
197 		new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
198 		if (new == NULL)
199 			return (0);
200 		move_to_free_list(idp, new);
201 	}
202 	return 1;
203 }
204 
205 /**
206  * sub_alloc - try to allocate an id without growing the tree depth
207  * @idp: idr handle
208  * @starting_id: id to start search at
209  * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
210  * @gfp_mask: allocation mask for idr_layer_alloc()
211  * @layer_idr: optional idr passed to idr_layer_alloc()
212  *
213  * Allocate an id in range [@starting_id, INT_MAX] from @idp without
214  * growing its depth.  Returns
215  *
216  *  the allocated id >= 0 if successful,
217  *  -EAGAIN if the tree needs to grow for allocation to succeed,
218  *  -ENOSPC if the id space is exhausted,
219  *  -ENOMEM if more idr_layers need to be allocated.
220  */
221 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
222 		     gfp_t gfp_mask, struct idr *layer_idr)
223 {
224 	int n, m, sh;
225 	struct idr_layer *p, *new;
226 	int l, id, oid;
227 
228 	id = *starting_id;
229  restart:
230 	p = idp->top;
231 	l = idp->layers;
232 	pa[l--] = NULL;
233 	while (1) {
234 		/*
235 		 * We run around this while until we reach the leaf node...
236 		 */
237 		n = (id >> (IDR_BITS*l)) & IDR_MASK;
238 		m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
239 		if (m == IDR_SIZE) {
240 			/* no space available go back to previous layer. */
241 			l++;
242 			oid = id;
243 			id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
244 
245 			/* if already at the top layer, we need to grow */
246 			if (id > idr_max(idp->layers)) {
247 				*starting_id = id;
248 				return -EAGAIN;
249 			}
250 			p = pa[l];
251 			BUG_ON(!p);
252 
253 			/* If we need to go up one layer, continue the
254 			 * loop; otherwise, restart from the top.
255 			 */
256 			sh = IDR_BITS * (l + 1);
257 			if (oid >> sh == id >> sh)
258 				continue;
259 			else
260 				goto restart;
261 		}
262 		if (m != n) {
263 			sh = IDR_BITS*l;
264 			id = ((id >> sh) ^ n ^ m) << sh;
265 		}
266 		if ((id >= MAX_IDR_BIT) || (id < 0))
267 			return -ENOSPC;
268 		if (l == 0)
269 			break;
270 		/*
271 		 * Create the layer below if it is missing.
272 		 */
273 		if (!p->ary[m]) {
274 			new = idr_layer_alloc(gfp_mask, layer_idr);
275 			if (!new)
276 				return -ENOMEM;
277 			new->layer = l-1;
278 			new->prefix = id & idr_layer_prefix_mask(new->layer);
279 			rcu_assign_pointer(p->ary[m], new);
280 			p->count++;
281 		}
282 		pa[l--] = p;
283 		p = p->ary[m];
284 	}
285 
286 	pa[l] = p;
287 	return id;
288 }
289 
290 static int idr_get_empty_slot(struct idr *idp, int starting_id,
291 			      struct idr_layer **pa, gfp_t gfp_mask,
292 			      struct idr *layer_idr)
293 {
294 	struct idr_layer *p, *new;
295 	int layers, v, id;
296 	unsigned long flags;
297 
298 	id = starting_id;
299 build_up:
300 	p = idp->top;
301 	layers = idp->layers;
302 	if (unlikely(!p)) {
303 		if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
304 			return -ENOMEM;
305 		p->layer = 0;
306 		layers = 1;
307 	}
308 	/*
309 	 * Add a new layer to the top of the tree if the requested
310 	 * id is larger than the currently allocated space.
311 	 */
312 	while (id > idr_max(layers)) {
313 		layers++;
314 		if (!p->count) {
315 			/* special case: if the tree is currently empty,
316 			 * then we grow the tree by moving the top node
317 			 * upwards.
318 			 */
319 			p->layer++;
320 			WARN_ON_ONCE(p->prefix);
321 			continue;
322 		}
323 		if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
324 			/*
325 			 * The allocation failed.  If we built part of
326 			 * the structure tear it down.
327 			 */
328 			spin_lock_irqsave(&idp->lock, flags);
329 			for (new = p; p && p != idp->top; new = p) {
330 				p = p->ary[0];
331 				new->ary[0] = NULL;
332 				new->count = 0;
333 				bitmap_clear(new->bitmap, 0, IDR_SIZE);
334 				__move_to_free_list(idp, new);
335 			}
336 			spin_unlock_irqrestore(&idp->lock, flags);
337 			return -ENOMEM;
338 		}
339 		new->ary[0] = p;
340 		new->count = 1;
341 		new->layer = layers-1;
342 		new->prefix = id & idr_layer_prefix_mask(new->layer);
343 		if (bitmap_full(p->bitmap, IDR_SIZE))
344 			__set_bit(0, new->bitmap);
345 		p = new;
346 	}
347 	rcu_assign_pointer(idp->top, p);
348 	idp->layers = layers;
349 	v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
350 	if (v == -EAGAIN)
351 		goto build_up;
352 	return(v);
353 }
354 
355 /*
356  * @id and @pa are from a successful allocation from idr_get_empty_slot().
357  * Install the user pointer @ptr and mark the slot full.
358  */
359 static void idr_fill_slot(struct idr *idr, void *ptr, int id,
360 			  struct idr_layer **pa)
361 {
362 	/* update hint used for lookup, cleared from free_layer() */
363 	rcu_assign_pointer(idr->hint, pa[0]);
364 
365 	rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
366 	pa[0]->count++;
367 	idr_mark_full(pa, id);
368 }
369 
370 
371 /**
372  * idr_preload - preload for idr_alloc()
373  * @gfp_mask: allocation mask to use for preloading
374  *
375  * Preload per-cpu layer buffer for idr_alloc().  Can only be used from
376  * process context and each idr_preload() invocation should be matched with
377  * idr_preload_end().  Note that preemption is disabled while preloaded.
378  *
379  * The first idr_alloc() in the preloaded section can be treated as if it
380  * were invoked with @gfp_mask used for preloading.  This allows using more
381  * permissive allocation masks for idrs protected by spinlocks.
382  *
383  * For example, if idr_alloc() below fails, the failure can be treated as
384  * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
385  *
386  *	idr_preload(GFP_KERNEL);
387  *	spin_lock(lock);
388  *
389  *	id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
390  *
391  *	spin_unlock(lock);
392  *	idr_preload_end();
393  *	if (id < 0)
394  *		error;
395  */
396 void idr_preload(gfp_t gfp_mask)
397 {
398 	/*
399 	 * Consuming preload buffer from non-process context breaks preload
400 	 * allocation guarantee.  Disallow usage from those contexts.
401 	 */
402 	WARN_ON_ONCE(in_interrupt());
403 	might_sleep_if(gfp_mask & __GFP_WAIT);
404 
405 	preempt_disable();
406 
407 	/*
408 	 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
409 	 * return value from idr_alloc() needs to be checked for failure
410 	 * anyway.  Silently give up if allocation fails.  The caller can
411 	 * treat failures from idr_alloc() as if idr_alloc() were called
412 	 * with @gfp_mask which should be enough.
413 	 */
414 	while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
415 		struct idr_layer *new;
416 
417 		preempt_enable();
418 		new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
419 		preempt_disable();
420 		if (!new)
421 			break;
422 
423 		/* link the new one to per-cpu preload list */
424 		new->ary[0] = __this_cpu_read(idr_preload_head);
425 		__this_cpu_write(idr_preload_head, new);
426 		__this_cpu_inc(idr_preload_cnt);
427 	}
428 }
429 EXPORT_SYMBOL(idr_preload);
430 
431 /**
432  * idr_alloc - allocate new idr entry
433  * @idr: the (initialized) idr
434  * @ptr: pointer to be associated with the new id
435  * @start: the minimum id (inclusive)
436  * @end: the maximum id (exclusive, <= 0 for max)
437  * @gfp_mask: memory allocation flags
438  *
439  * Allocate an id in [start, end) and associate it with @ptr.  If no ID is
440  * available in the specified range, returns -ENOSPC.  On memory allocation
441  * failure, returns -ENOMEM.
442  *
443  * Note that @end is treated as max when <= 0.  This is to always allow
444  * using @start + N as @end as long as N is inside integer range.
445  *
446  * The user is responsible for exclusively synchronizing all operations
447  * which may modify @idr.  However, read-only accesses such as idr_find()
448  * or iteration can be performed under RCU read lock provided the user
449  * destroys @ptr in RCU-safe way after removal from idr.
450  */
451 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
452 {
453 	int max = end > 0 ? end - 1 : INT_MAX;	/* inclusive upper limit */
454 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
455 	int id;
456 
457 	might_sleep_if(gfp_mask & __GFP_WAIT);
458 
459 	/* sanity checks */
460 	if (WARN_ON_ONCE(start < 0))
461 		return -EINVAL;
462 	if (unlikely(max < start))
463 		return -ENOSPC;
464 
465 	/* allocate id */
466 	id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
467 	if (unlikely(id < 0))
468 		return id;
469 	if (unlikely(id > max))
470 		return -ENOSPC;
471 
472 	idr_fill_slot(idr, ptr, id, pa);
473 	return id;
474 }
475 EXPORT_SYMBOL_GPL(idr_alloc);
476 
477 /**
478  * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
479  * @idr: the (initialized) idr
480  * @ptr: pointer to be associated with the new id
481  * @start: the minimum id (inclusive)
482  * @end: the maximum id (exclusive, <= 0 for max)
483  * @gfp_mask: memory allocation flags
484  *
485  * Essentially the same as idr_alloc, but prefers to allocate progressively
486  * higher ids if it can. If the "cur" counter wraps, then it will start again
487  * at the "start" end of the range and allocate one that has already been used.
488  */
489 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end,
490 			gfp_t gfp_mask)
491 {
492 	int id;
493 
494 	id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask);
495 	if (id == -ENOSPC)
496 		id = idr_alloc(idr, ptr, start, end, gfp_mask);
497 
498 	if (likely(id >= 0))
499 		idr->cur = id + 1;
500 	return id;
501 }
502 EXPORT_SYMBOL(idr_alloc_cyclic);
503 
504 static void idr_remove_warning(int id)
505 {
506 	WARN(1, "idr_remove called for id=%d which is not allocated.\n", id);
507 }
508 
509 static void sub_remove(struct idr *idp, int shift, int id)
510 {
511 	struct idr_layer *p = idp->top;
512 	struct idr_layer **pa[MAX_IDR_LEVEL + 1];
513 	struct idr_layer ***paa = &pa[0];
514 	struct idr_layer *to_free;
515 	int n;
516 
517 	*paa = NULL;
518 	*++paa = &idp->top;
519 
520 	while ((shift > 0) && p) {
521 		n = (id >> shift) & IDR_MASK;
522 		__clear_bit(n, p->bitmap);
523 		*++paa = &p->ary[n];
524 		p = p->ary[n];
525 		shift -= IDR_BITS;
526 	}
527 	n = id & IDR_MASK;
528 	if (likely(p != NULL && test_bit(n, p->bitmap))) {
529 		__clear_bit(n, p->bitmap);
530 		RCU_INIT_POINTER(p->ary[n], NULL);
531 		to_free = NULL;
532 		while(*paa && ! --((**paa)->count)){
533 			if (to_free)
534 				free_layer(idp, to_free);
535 			to_free = **paa;
536 			**paa-- = NULL;
537 		}
538 		if (!*paa)
539 			idp->layers = 0;
540 		if (to_free)
541 			free_layer(idp, to_free);
542 	} else
543 		idr_remove_warning(id);
544 }
545 
546 /**
547  * idr_remove - remove the given id and free its slot
548  * @idp: idr handle
549  * @id: unique key
550  */
551 void idr_remove(struct idr *idp, int id)
552 {
553 	struct idr_layer *p;
554 	struct idr_layer *to_free;
555 
556 	if (id < 0)
557 		return;
558 
559 	if (id > idr_max(idp->layers)) {
560 		idr_remove_warning(id);
561 		return;
562 	}
563 
564 	sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
565 	if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
566 	    idp->top->ary[0]) {
567 		/*
568 		 * Single child at leftmost slot: we can shrink the tree.
569 		 * This level is not needed anymore since when layers are
570 		 * inserted, they are inserted at the top of the existing
571 		 * tree.
572 		 */
573 		to_free = idp->top;
574 		p = idp->top->ary[0];
575 		rcu_assign_pointer(idp->top, p);
576 		--idp->layers;
577 		to_free->count = 0;
578 		bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
579 		free_layer(idp, to_free);
580 	}
581 }
582 EXPORT_SYMBOL(idr_remove);
583 
584 static void __idr_remove_all(struct idr *idp)
585 {
586 	int n, id, max;
587 	int bt_mask;
588 	struct idr_layer *p;
589 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
590 	struct idr_layer **paa = &pa[0];
591 
592 	n = idp->layers * IDR_BITS;
593 	p = idp->top;
594 	RCU_INIT_POINTER(idp->top, NULL);
595 	max = idr_max(idp->layers);
596 
597 	id = 0;
598 	while (id >= 0 && id <= max) {
599 		while (n > IDR_BITS && p) {
600 			n -= IDR_BITS;
601 			*paa++ = p;
602 			p = p->ary[(id >> n) & IDR_MASK];
603 		}
604 
605 		bt_mask = id;
606 		id += 1 << n;
607 		/* Get the highest bit that the above add changed from 0->1. */
608 		while (n < fls(id ^ bt_mask)) {
609 			if (p)
610 				free_layer(idp, p);
611 			n += IDR_BITS;
612 			p = *--paa;
613 		}
614 	}
615 	idp->layers = 0;
616 }
617 
618 /**
619  * idr_destroy - release all cached layers within an idr tree
620  * @idp: idr handle
621  *
622  * Free all id mappings and all idp_layers.  After this function, @idp is
623  * completely unused and can be freed / recycled.  The caller is
624  * responsible for ensuring that no one else accesses @idp during or after
625  * idr_destroy().
626  *
627  * A typical clean-up sequence for objects stored in an idr tree will use
628  * idr_for_each() to free all objects, if necessay, then idr_destroy() to
629  * free up the id mappings and cached idr_layers.
630  */
631 void idr_destroy(struct idr *idp)
632 {
633 	__idr_remove_all(idp);
634 
635 	while (idp->id_free_cnt) {
636 		struct idr_layer *p = get_from_free_list(idp);
637 		kmem_cache_free(idr_layer_cache, p);
638 	}
639 }
640 EXPORT_SYMBOL(idr_destroy);
641 
642 void *idr_find_slowpath(struct idr *idp, int id)
643 {
644 	int n;
645 	struct idr_layer *p;
646 
647 	if (id < 0)
648 		return NULL;
649 
650 	p = rcu_dereference_raw(idp->top);
651 	if (!p)
652 		return NULL;
653 	n = (p->layer+1) * IDR_BITS;
654 
655 	if (id > idr_max(p->layer + 1))
656 		return NULL;
657 	BUG_ON(n == 0);
658 
659 	while (n > 0 && p) {
660 		n -= IDR_BITS;
661 		BUG_ON(n != p->layer*IDR_BITS);
662 		p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
663 	}
664 	return((void *)p);
665 }
666 EXPORT_SYMBOL(idr_find_slowpath);
667 
668 /**
669  * idr_for_each - iterate through all stored pointers
670  * @idp: idr handle
671  * @fn: function to be called for each pointer
672  * @data: data passed back to callback function
673  *
674  * Iterate over the pointers registered with the given idr.  The
675  * callback function will be called for each pointer currently
676  * registered, passing the id, the pointer and the data pointer passed
677  * to this function.  It is not safe to modify the idr tree while in
678  * the callback, so functions such as idr_get_new and idr_remove are
679  * not allowed.
680  *
681  * We check the return of @fn each time. If it returns anything other
682  * than %0, we break out and return that value.
683  *
684  * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
685  */
686 int idr_for_each(struct idr *idp,
687 		 int (*fn)(int id, void *p, void *data), void *data)
688 {
689 	int n, id, max, error = 0;
690 	struct idr_layer *p;
691 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
692 	struct idr_layer **paa = &pa[0];
693 
694 	n = idp->layers * IDR_BITS;
695 	p = rcu_dereference_raw(idp->top);
696 	max = idr_max(idp->layers);
697 
698 	id = 0;
699 	while (id >= 0 && id <= max) {
700 		while (n > 0 && p) {
701 			n -= IDR_BITS;
702 			*paa++ = p;
703 			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
704 		}
705 
706 		if (p) {
707 			error = fn(id, (void *)p, data);
708 			if (error)
709 				break;
710 		}
711 
712 		id += 1 << n;
713 		while (n < fls(id)) {
714 			n += IDR_BITS;
715 			p = *--paa;
716 		}
717 	}
718 
719 	return error;
720 }
721 EXPORT_SYMBOL(idr_for_each);
722 
723 /**
724  * idr_get_next - lookup next object of id to given id.
725  * @idp: idr handle
726  * @nextidp:  pointer to lookup key
727  *
728  * Returns pointer to registered object with id, which is next number to
729  * given id. After being looked up, *@nextidp will be updated for the next
730  * iteration.
731  *
732  * This function can be called under rcu_read_lock(), given that the leaf
733  * pointers lifetimes are correctly managed.
734  */
735 void *idr_get_next(struct idr *idp, int *nextidp)
736 {
737 	struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
738 	struct idr_layer **paa = &pa[0];
739 	int id = *nextidp;
740 	int n, max;
741 
742 	/* find first ent */
743 	p = rcu_dereference_raw(idp->top);
744 	if (!p)
745 		return NULL;
746 	n = (p->layer + 1) * IDR_BITS;
747 	max = idr_max(p->layer + 1);
748 
749 	while (id >= 0 && id <= max) {
750 		while (n > 0 && p) {
751 			n -= IDR_BITS;
752 			*paa++ = p;
753 			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
754 		}
755 
756 		if (p) {
757 			*nextidp = id;
758 			return p;
759 		}
760 
761 		/*
762 		 * Proceed to the next layer at the current level.  Unlike
763 		 * idr_for_each(), @id isn't guaranteed to be aligned to
764 		 * layer boundary at this point and adding 1 << n may
765 		 * incorrectly skip IDs.  Make sure we jump to the
766 		 * beginning of the next layer using round_up().
767 		 */
768 		id = round_up(id + 1, 1 << n);
769 		while (n < fls(id)) {
770 			n += IDR_BITS;
771 			p = *--paa;
772 		}
773 	}
774 	return NULL;
775 }
776 EXPORT_SYMBOL(idr_get_next);
777 
778 
779 /**
780  * idr_replace - replace pointer for given id
781  * @idp: idr handle
782  * @ptr: pointer you want associated with the id
783  * @id: lookup key
784  *
785  * Replace the pointer registered with an id and return the old value.
786  * A %-ENOENT return indicates that @id was not found.
787  * A %-EINVAL return indicates that @id was not within valid constraints.
788  *
789  * The caller must serialize with writers.
790  */
791 void *idr_replace(struct idr *idp, void *ptr, int id)
792 {
793 	int n;
794 	struct idr_layer *p, *old_p;
795 
796 	if (id < 0)
797 		return ERR_PTR(-EINVAL);
798 
799 	p = idp->top;
800 	if (!p)
801 		return ERR_PTR(-ENOENT);
802 
803 	if (id > idr_max(p->layer + 1))
804 		return ERR_PTR(-ENOENT);
805 
806 	n = p->layer * IDR_BITS;
807 	while ((n > 0) && p) {
808 		p = p->ary[(id >> n) & IDR_MASK];
809 		n -= IDR_BITS;
810 	}
811 
812 	n = id & IDR_MASK;
813 	if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
814 		return ERR_PTR(-ENOENT);
815 
816 	old_p = p->ary[n];
817 	rcu_assign_pointer(p->ary[n], ptr);
818 
819 	return old_p;
820 }
821 EXPORT_SYMBOL(idr_replace);
822 
823 void __init idr_init_cache(void)
824 {
825 	idr_layer_cache = kmem_cache_create("idr_layer_cache",
826 				sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
827 }
828 
829 /**
830  * idr_init - initialize idr handle
831  * @idp:	idr handle
832  *
833  * This function is use to set up the handle (@idp) that you will pass
834  * to the rest of the functions.
835  */
836 void idr_init(struct idr *idp)
837 {
838 	memset(idp, 0, sizeof(struct idr));
839 	spin_lock_init(&idp->lock);
840 }
841 EXPORT_SYMBOL(idr_init);
842 
843 static int idr_has_entry(int id, void *p, void *data)
844 {
845 	return 1;
846 }
847 
848 bool idr_is_empty(struct idr *idp)
849 {
850 	return !idr_for_each(idp, idr_has_entry, NULL);
851 }
852 EXPORT_SYMBOL(idr_is_empty);
853 
854 /**
855  * DOC: IDA description
856  * IDA - IDR based ID allocator
857  *
858  * This is id allocator without id -> pointer translation.  Memory
859  * usage is much lower than full blown idr because each id only
860  * occupies a bit.  ida uses a custom leaf node which contains
861  * IDA_BITMAP_BITS slots.
862  *
863  * 2007-04-25  written by Tejun Heo <htejun@gmail.com>
864  */
865 
866 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
867 {
868 	unsigned long flags;
869 
870 	if (!ida->free_bitmap) {
871 		spin_lock_irqsave(&ida->idr.lock, flags);
872 		if (!ida->free_bitmap) {
873 			ida->free_bitmap = bitmap;
874 			bitmap = NULL;
875 		}
876 		spin_unlock_irqrestore(&ida->idr.lock, flags);
877 	}
878 
879 	kfree(bitmap);
880 }
881 
882 /**
883  * ida_pre_get - reserve resources for ida allocation
884  * @ida:	ida handle
885  * @gfp_mask:	memory allocation flag
886  *
887  * This function should be called prior to locking and calling the
888  * following function.  It preallocates enough memory to satisfy the
889  * worst possible allocation.
890  *
891  * If the system is REALLY out of memory this function returns %0,
892  * otherwise %1.
893  */
894 int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
895 {
896 	/* allocate idr_layers */
897 	if (!__idr_pre_get(&ida->idr, gfp_mask))
898 		return 0;
899 
900 	/* allocate free_bitmap */
901 	if (!ida->free_bitmap) {
902 		struct ida_bitmap *bitmap;
903 
904 		bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
905 		if (!bitmap)
906 			return 0;
907 
908 		free_bitmap(ida, bitmap);
909 	}
910 
911 	return 1;
912 }
913 EXPORT_SYMBOL(ida_pre_get);
914 
915 /**
916  * ida_get_new_above - allocate new ID above or equal to a start id
917  * @ida:	ida handle
918  * @starting_id: id to start search at
919  * @p_id:	pointer to the allocated handle
920  *
921  * Allocate new ID above or equal to @starting_id.  It should be called
922  * with any required locks.
923  *
924  * If memory is required, it will return %-EAGAIN, you should unlock
925  * and go back to the ida_pre_get() call.  If the ida is full, it will
926  * return %-ENOSPC.
927  *
928  * @p_id returns a value in the range @starting_id ... %0x7fffffff.
929  */
930 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
931 {
932 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
933 	struct ida_bitmap *bitmap;
934 	unsigned long flags;
935 	int idr_id = starting_id / IDA_BITMAP_BITS;
936 	int offset = starting_id % IDA_BITMAP_BITS;
937 	int t, id;
938 
939  restart:
940 	/* get vacant slot */
941 	t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
942 	if (t < 0)
943 		return t == -ENOMEM ? -EAGAIN : t;
944 
945 	if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
946 		return -ENOSPC;
947 
948 	if (t != idr_id)
949 		offset = 0;
950 	idr_id = t;
951 
952 	/* if bitmap isn't there, create a new one */
953 	bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
954 	if (!bitmap) {
955 		spin_lock_irqsave(&ida->idr.lock, flags);
956 		bitmap = ida->free_bitmap;
957 		ida->free_bitmap = NULL;
958 		spin_unlock_irqrestore(&ida->idr.lock, flags);
959 
960 		if (!bitmap)
961 			return -EAGAIN;
962 
963 		memset(bitmap, 0, sizeof(struct ida_bitmap));
964 		rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
965 				(void *)bitmap);
966 		pa[0]->count++;
967 	}
968 
969 	/* lookup for empty slot */
970 	t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
971 	if (t == IDA_BITMAP_BITS) {
972 		/* no empty slot after offset, continue to the next chunk */
973 		idr_id++;
974 		offset = 0;
975 		goto restart;
976 	}
977 
978 	id = idr_id * IDA_BITMAP_BITS + t;
979 	if (id >= MAX_IDR_BIT)
980 		return -ENOSPC;
981 
982 	__set_bit(t, bitmap->bitmap);
983 	if (++bitmap->nr_busy == IDA_BITMAP_BITS)
984 		idr_mark_full(pa, idr_id);
985 
986 	*p_id = id;
987 
988 	/* Each leaf node can handle nearly a thousand slots and the
989 	 * whole idea of ida is to have small memory foot print.
990 	 * Throw away extra resources one by one after each successful
991 	 * allocation.
992 	 */
993 	if (ida->idr.id_free_cnt || ida->free_bitmap) {
994 		struct idr_layer *p = get_from_free_list(&ida->idr);
995 		if (p)
996 			kmem_cache_free(idr_layer_cache, p);
997 	}
998 
999 	return 0;
1000 }
1001 EXPORT_SYMBOL(ida_get_new_above);
1002 
1003 /**
1004  * ida_remove - remove the given ID
1005  * @ida:	ida handle
1006  * @id:		ID to free
1007  */
1008 void ida_remove(struct ida *ida, int id)
1009 {
1010 	struct idr_layer *p = ida->idr.top;
1011 	int shift = (ida->idr.layers - 1) * IDR_BITS;
1012 	int idr_id = id / IDA_BITMAP_BITS;
1013 	int offset = id % IDA_BITMAP_BITS;
1014 	int n;
1015 	struct ida_bitmap *bitmap;
1016 
1017 	if (idr_id > idr_max(ida->idr.layers))
1018 		goto err;
1019 
1020 	/* clear full bits while looking up the leaf idr_layer */
1021 	while ((shift > 0) && p) {
1022 		n = (idr_id >> shift) & IDR_MASK;
1023 		__clear_bit(n, p->bitmap);
1024 		p = p->ary[n];
1025 		shift -= IDR_BITS;
1026 	}
1027 
1028 	if (p == NULL)
1029 		goto err;
1030 
1031 	n = idr_id & IDR_MASK;
1032 	__clear_bit(n, p->bitmap);
1033 
1034 	bitmap = (void *)p->ary[n];
1035 	if (!bitmap || !test_bit(offset, bitmap->bitmap))
1036 		goto err;
1037 
1038 	/* update bitmap and remove it if empty */
1039 	__clear_bit(offset, bitmap->bitmap);
1040 	if (--bitmap->nr_busy == 0) {
1041 		__set_bit(n, p->bitmap);	/* to please idr_remove() */
1042 		idr_remove(&ida->idr, idr_id);
1043 		free_bitmap(ida, bitmap);
1044 	}
1045 
1046 	return;
1047 
1048  err:
1049 	WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
1050 }
1051 EXPORT_SYMBOL(ida_remove);
1052 
1053 /**
1054  * ida_destroy - release all cached layers within an ida tree
1055  * @ida:		ida handle
1056  */
1057 void ida_destroy(struct ida *ida)
1058 {
1059 	idr_destroy(&ida->idr);
1060 	kfree(ida->free_bitmap);
1061 }
1062 EXPORT_SYMBOL(ida_destroy);
1063 
1064 /**
1065  * ida_simple_get - get a new id.
1066  * @ida: the (initialized) ida.
1067  * @start: the minimum id (inclusive, < 0x8000000)
1068  * @end: the maximum id (exclusive, < 0x8000000 or 0)
1069  * @gfp_mask: memory allocation flags
1070  *
1071  * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1072  * On memory allocation failure, returns -ENOMEM.
1073  *
1074  * Use ida_simple_remove() to get rid of an id.
1075  */
1076 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
1077 		   gfp_t gfp_mask)
1078 {
1079 	int ret, id;
1080 	unsigned int max;
1081 	unsigned long flags;
1082 
1083 	BUG_ON((int)start < 0);
1084 	BUG_ON((int)end < 0);
1085 
1086 	if (end == 0)
1087 		max = 0x80000000;
1088 	else {
1089 		BUG_ON(end < start);
1090 		max = end - 1;
1091 	}
1092 
1093 again:
1094 	if (!ida_pre_get(ida, gfp_mask))
1095 		return -ENOMEM;
1096 
1097 	spin_lock_irqsave(&simple_ida_lock, flags);
1098 	ret = ida_get_new_above(ida, start, &id);
1099 	if (!ret) {
1100 		if (id > max) {
1101 			ida_remove(ida, id);
1102 			ret = -ENOSPC;
1103 		} else {
1104 			ret = id;
1105 		}
1106 	}
1107 	spin_unlock_irqrestore(&simple_ida_lock, flags);
1108 
1109 	if (unlikely(ret == -EAGAIN))
1110 		goto again;
1111 
1112 	return ret;
1113 }
1114 EXPORT_SYMBOL(ida_simple_get);
1115 
1116 /**
1117  * ida_simple_remove - remove an allocated id.
1118  * @ida: the (initialized) ida.
1119  * @id: the id returned by ida_simple_get.
1120  */
1121 void ida_simple_remove(struct ida *ida, unsigned int id)
1122 {
1123 	unsigned long flags;
1124 
1125 	BUG_ON((int)id < 0);
1126 	spin_lock_irqsave(&simple_ida_lock, flags);
1127 	ida_remove(ida, id);
1128 	spin_unlock_irqrestore(&simple_ida_lock, flags);
1129 }
1130 EXPORT_SYMBOL(ida_simple_remove);
1131 
1132 /**
1133  * ida_init - initialize ida handle
1134  * @ida:	ida handle
1135  *
1136  * This function is use to set up the handle (@ida) that you will pass
1137  * to the rest of the functions.
1138  */
1139 void ida_init(struct ida *ida)
1140 {
1141 	memset(ida, 0, sizeof(struct ida));
1142 	idr_init(&ida->idr);
1143 
1144 }
1145 EXPORT_SYMBOL(ida_init);
1146