xref: /openbmc/linux/lib/idr.c (revision 87c2ce3b)
1 /*
2  * 2002-10-18  written by Jim Houston jim.houston@ccur.com
3  *	Copyright (C) 2002 by Concurrent Computer Corporation
4  *	Distributed under the GNU GPL license version 2.
5  *
6  * Modified by George Anzinger to reuse immediately and to use
7  * find bit instructions.  Also removed _irq on spinlocks.
8  *
9  * Small id to pointer translation service.
10  *
11  * It uses a radix tree like structure as a sparse array indexed
12  * by the id to obtain the pointer.  The bitmap makes allocating
13  * a new id quick.
14  *
15  * You call it to allocate an id (an int) an associate with that id a
16  * pointer or what ever, we treat it as a (void *).  You can pass this
17  * id to a user for him to pass back at a later time.  You then pass
18  * that id to this code and it returns your pointer.
19 
20  * You can release ids at any time. When all ids are released, most of
21  * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we
22  * don't need to go to the memory "store" during an id allocate, just
23  * so you don't need to be too concerned about locking and conflicts
24  * with the slab allocator.
25  */
26 
27 #ifndef TEST                        // to test in user space...
28 #include <linux/slab.h>
29 #include <linux/init.h>
30 #include <linux/module.h>
31 #endif
32 #include <linux/string.h>
33 #include <linux/idr.h>
34 
35 static kmem_cache_t *idr_layer_cache;
36 
37 static struct idr_layer *alloc_layer(struct idr *idp)
38 {
39 	struct idr_layer *p;
40 
41 	spin_lock(&idp->lock);
42 	if ((p = idp->id_free)) {
43 		idp->id_free = p->ary[0];
44 		idp->id_free_cnt--;
45 		p->ary[0] = NULL;
46 	}
47 	spin_unlock(&idp->lock);
48 	return(p);
49 }
50 
51 static void free_layer(struct idr *idp, struct idr_layer *p)
52 {
53 	/*
54 	 * Depends on the return element being zeroed.
55 	 */
56 	spin_lock(&idp->lock);
57 	p->ary[0] = idp->id_free;
58 	idp->id_free = p;
59 	idp->id_free_cnt++;
60 	spin_unlock(&idp->lock);
61 }
62 
63 /**
64  * idr_pre_get - reserver resources for idr allocation
65  * @idp:	idr handle
66  * @gfp_mask:	memory allocation flags
67  *
68  * This function should be called prior to locking and calling the
69  * following function.  It preallocates enough memory to satisfy
70  * the worst possible allocation.
71  *
72  * If the system is REALLY out of memory this function returns 0,
73  * otherwise 1.
74  */
75 int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
76 {
77 	while (idp->id_free_cnt < IDR_FREE_MAX) {
78 		struct idr_layer *new;
79 		new = kmem_cache_alloc(idr_layer_cache, gfp_mask);
80 		if (new == NULL)
81 			return (0);
82 		free_layer(idp, new);
83 	}
84 	return 1;
85 }
86 EXPORT_SYMBOL(idr_pre_get);
87 
88 static int sub_alloc(struct idr *idp, void *ptr, int *starting_id)
89 {
90 	int n, m, sh;
91 	struct idr_layer *p, *new;
92 	struct idr_layer *pa[MAX_LEVEL];
93 	int l, id;
94 	long bm;
95 
96 	id = *starting_id;
97 	p = idp->top;
98 	l = idp->layers;
99 	pa[l--] = NULL;
100 	while (1) {
101 		/*
102 		 * We run around this while until we reach the leaf node...
103 		 */
104 		n = (id >> (IDR_BITS*l)) & IDR_MASK;
105 		bm = ~p->bitmap;
106 		m = find_next_bit(&bm, IDR_SIZE, n);
107 		if (m == IDR_SIZE) {
108 			/* no space available go back to previous layer. */
109 			l++;
110 			id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
111 			if (!(p = pa[l])) {
112 				*starting_id = id;
113 				return -2;
114 			}
115 			continue;
116 		}
117 		if (m != n) {
118 			sh = IDR_BITS*l;
119 			id = ((id >> sh) ^ n ^ m) << sh;
120 		}
121 		if ((id >= MAX_ID_BIT) || (id < 0))
122 			return -3;
123 		if (l == 0)
124 			break;
125 		/*
126 		 * Create the layer below if it is missing.
127 		 */
128 		if (!p->ary[m]) {
129 			if (!(new = alloc_layer(idp)))
130 				return -1;
131 			p->ary[m] = new;
132 			p->count++;
133 		}
134 		pa[l--] = p;
135 		p = p->ary[m];
136 	}
137 	/*
138 	 * We have reached the leaf node, plant the
139 	 * users pointer and return the raw id.
140 	 */
141 	p->ary[m] = (struct idr_layer *)ptr;
142 	__set_bit(m, &p->bitmap);
143 	p->count++;
144 	/*
145 	 * If this layer is full mark the bit in the layer above
146 	 * to show that this part of the radix tree is full.
147 	 * This may complete the layer above and require walking
148 	 * up the radix tree.
149 	 */
150 	n = id;
151 	while (p->bitmap == IDR_FULL) {
152 		if (!(p = pa[++l]))
153 			break;
154 		n = n >> IDR_BITS;
155 		__set_bit((n & IDR_MASK), &p->bitmap);
156 	}
157 	return(id);
158 }
159 
160 static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id)
161 {
162 	struct idr_layer *p, *new;
163 	int layers, v, id;
164 
165 	id = starting_id;
166 build_up:
167 	p = idp->top;
168 	layers = idp->layers;
169 	if (unlikely(!p)) {
170 		if (!(p = alloc_layer(idp)))
171 			return -1;
172 		layers = 1;
173 	}
174 	/*
175 	 * Add a new layer to the top of the tree if the requested
176 	 * id is larger than the currently allocated space.
177 	 */
178 	while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) {
179 		layers++;
180 		if (!p->count)
181 			continue;
182 		if (!(new = alloc_layer(idp))) {
183 			/*
184 			 * The allocation failed.  If we built part of
185 			 * the structure tear it down.
186 			 */
187 			for (new = p; p && p != idp->top; new = p) {
188 				p = p->ary[0];
189 				new->ary[0] = NULL;
190 				new->bitmap = new->count = 0;
191 				free_layer(idp, new);
192 			}
193 			return -1;
194 		}
195 		new->ary[0] = p;
196 		new->count = 1;
197 		if (p->bitmap == IDR_FULL)
198 			__set_bit(0, &new->bitmap);
199 		p = new;
200 	}
201 	idp->top = p;
202 	idp->layers = layers;
203 	v = sub_alloc(idp, ptr, &id);
204 	if (v == -2)
205 		goto build_up;
206 	return(v);
207 }
208 
209 /**
210  * idr_get_new_above - allocate new idr entry above or equal to a start id
211  * @idp: idr handle
212  * @ptr: pointer you want associated with the ide
213  * @start_id: id to start search at
214  * @id: pointer to the allocated handle
215  *
216  * This is the allocate id function.  It should be called with any
217  * required locks.
218  *
219  * If memory is required, it will return -EAGAIN, you should unlock
220  * and go back to the idr_pre_get() call.  If the idr is full, it will
221  * return -ENOSPC.
222  *
223  * @id returns a value in the range 0 ... 0x7fffffff
224  */
225 int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
226 {
227 	int rv;
228 
229 	rv = idr_get_new_above_int(idp, ptr, starting_id);
230 	/*
231 	 * This is a cheap hack until the IDR code can be fixed to
232 	 * return proper error values.
233 	 */
234 	if (rv < 0) {
235 		if (rv == -1)
236 			return -EAGAIN;
237 		else /* Will be -3 */
238 			return -ENOSPC;
239 	}
240 	*id = rv;
241 	return 0;
242 }
243 EXPORT_SYMBOL(idr_get_new_above);
244 
245 /**
246  * idr_get_new - allocate new idr entry
247  * @idp: idr handle
248  * @ptr: pointer you want associated with the ide
249  * @id: pointer to the allocated handle
250  *
251  * This is the allocate id function.  It should be called with any
252  * required locks.
253  *
254  * If memory is required, it will return -EAGAIN, you should unlock
255  * and go back to the idr_pre_get() call.  If the idr is full, it will
256  * return -ENOSPC.
257  *
258  * @id returns a value in the range 0 ... 0x7fffffff
259  */
260 int idr_get_new(struct idr *idp, void *ptr, int *id)
261 {
262 	int rv;
263 
264 	rv = idr_get_new_above_int(idp, ptr, 0);
265 	/*
266 	 * This is a cheap hack until the IDR code can be fixed to
267 	 * return proper error values.
268 	 */
269 	if (rv < 0) {
270 		if (rv == -1)
271 			return -EAGAIN;
272 		else /* Will be -3 */
273 			return -ENOSPC;
274 	}
275 	*id = rv;
276 	return 0;
277 }
278 EXPORT_SYMBOL(idr_get_new);
279 
280 static void idr_remove_warning(int id)
281 {
282 	printk("idr_remove called for id=%d which is not allocated.\n", id);
283 	dump_stack();
284 }
285 
286 static void sub_remove(struct idr *idp, int shift, int id)
287 {
288 	struct idr_layer *p = idp->top;
289 	struct idr_layer **pa[MAX_LEVEL];
290 	struct idr_layer ***paa = &pa[0];
291 	int n;
292 
293 	*paa = NULL;
294 	*++paa = &idp->top;
295 
296 	while ((shift > 0) && p) {
297 		n = (id >> shift) & IDR_MASK;
298 		__clear_bit(n, &p->bitmap);
299 		*++paa = &p->ary[n];
300 		p = p->ary[n];
301 		shift -= IDR_BITS;
302 	}
303 	n = id & IDR_MASK;
304 	if (likely(p != NULL && test_bit(n, &p->bitmap))){
305 		__clear_bit(n, &p->bitmap);
306 		p->ary[n] = NULL;
307 		while(*paa && ! --((**paa)->count)){
308 			free_layer(idp, **paa);
309 			**paa-- = NULL;
310 		}
311 		if (!*paa)
312 			idp->layers = 0;
313 	} else
314 		idr_remove_warning(id);
315 }
316 
317 /**
318  * idr_remove - remove the given id and free it's slot
319  * idp: idr handle
320  * id: uniqueue key
321  */
322 void idr_remove(struct idr *idp, int id)
323 {
324 	struct idr_layer *p;
325 
326 	/* Mask off upper bits we don't use for the search. */
327 	id &= MAX_ID_MASK;
328 
329 	sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
330 	if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
331 	    idp->top->ary[0]) {  // We can drop a layer
332 
333 		p = idp->top->ary[0];
334 		idp->top->bitmap = idp->top->count = 0;
335 		free_layer(idp, idp->top);
336 		idp->top = p;
337 		--idp->layers;
338 	}
339 	while (idp->id_free_cnt >= IDR_FREE_MAX) {
340 		p = alloc_layer(idp);
341 		kmem_cache_free(idr_layer_cache, p);
342 		return;
343 	}
344 }
345 EXPORT_SYMBOL(idr_remove);
346 
347 /**
348  * idr_destroy - release all cached layers within an idr tree
349  * idp: idr handle
350  */
351 void idr_destroy(struct idr *idp)
352 {
353 	while (idp->id_free_cnt) {
354 		struct idr_layer *p = alloc_layer(idp);
355 		kmem_cache_free(idr_layer_cache, p);
356 	}
357 }
358 EXPORT_SYMBOL(idr_destroy);
359 
360 /**
361  * idr_find - return pointer for given id
362  * @idp: idr handle
363  * @id: lookup key
364  *
365  * Return the pointer given the id it has been registered with.  A %NULL
366  * return indicates that @id is not valid or you passed %NULL in
367  * idr_get_new().
368  *
369  * The caller must serialize idr_find() vs idr_get_new() and idr_remove().
370  */
371 void *idr_find(struct idr *idp, int id)
372 {
373 	int n;
374 	struct idr_layer *p;
375 
376 	n = idp->layers * IDR_BITS;
377 	p = idp->top;
378 
379 	/* Mask off upper bits we don't use for the search. */
380 	id &= MAX_ID_MASK;
381 
382 	if (id >= (1 << n))
383 		return NULL;
384 
385 	while (n > 0 && p) {
386 		n -= IDR_BITS;
387 		p = p->ary[(id >> n) & IDR_MASK];
388 	}
389 	return((void *)p);
390 }
391 EXPORT_SYMBOL(idr_find);
392 
393 static void idr_cache_ctor(void * idr_layer, kmem_cache_t *idr_layer_cache,
394 		unsigned long flags)
395 {
396 	memset(idr_layer, 0, sizeof(struct idr_layer));
397 }
398 
399 static  int init_id_cache(void)
400 {
401 	if (!idr_layer_cache)
402 		idr_layer_cache = kmem_cache_create("idr_layer_cache",
403 			sizeof(struct idr_layer), 0, 0, idr_cache_ctor, NULL);
404 	return 0;
405 }
406 
407 /**
408  * idr_init - initialize idr handle
409  * @idp:	idr handle
410  *
411  * This function is use to set up the handle (@idp) that you will pass
412  * to the rest of the functions.
413  */
414 void idr_init(struct idr *idp)
415 {
416 	init_id_cache();
417 	memset(idp, 0, sizeof(struct idr));
418 	spin_lock_init(&idp->lock);
419 }
420 EXPORT_SYMBOL(idr_init);
421