xref: /openbmc/linux/lib/idr.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  * 2002-10-18  written by Jim Houston jim.houston@ccur.com
3  *	Copyright (C) 2002 by Concurrent Computer Corporation
4  *	Distributed under the GNU GPL license version 2.
5  *
6  * Modified by George Anzinger to reuse immediately and to use
7  * find bit instructions.  Also removed _irq on spinlocks.
8  *
9  * Modified by Nadia Derbey to make it RCU safe.
10  *
11  * Small id to pointer translation service.
12  *
13  * It uses a radix tree like structure as a sparse array indexed
14  * by the id to obtain the pointer.  The bitmap makes allocating
15  * a new id quick.
16  *
17  * You call it to allocate an id (an int) an associate with that id a
18  * pointer or what ever, we treat it as a (void *).  You can pass this
19  * id to a user for him to pass back at a later time.  You then pass
20  * that id to this code and it returns your pointer.
21 
22  * You can release ids at any time. When all ids are released, most of
23  * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we
24  * don't need to go to the memory "store" during an id allocate, just
25  * so you don't need to be too concerned about locking and conflicts
26  * with the slab allocator.
27  */
28 
29 #ifndef TEST                        // to test in user space...
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/export.h>
33 #endif
34 #include <linux/err.h>
35 #include <linux/string.h>
36 #include <linux/idr.h>
37 #include <linux/spinlock.h>
38 #include <linux/percpu.h>
39 #include <linux/hardirq.h>
40 
41 #define MAX_IDR_SHIFT		(sizeof(int) * 8 - 1)
42 #define MAX_IDR_BIT		(1U << MAX_IDR_SHIFT)
43 
44 /* Leave the possibility of an incomplete final layer */
45 #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
46 
47 /* Number of id_layer structs to leave in free list */
48 #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
49 
50 static struct kmem_cache *idr_layer_cache;
51 static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
52 static DEFINE_PER_CPU(int, idr_preload_cnt);
53 static DEFINE_SPINLOCK(simple_ida_lock);
54 
55 /* the maximum ID which can be allocated given idr->layers */
56 static int idr_max(int layers)
57 {
58 	int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
59 
60 	return (1 << bits) - 1;
61 }
62 
63 /*
64  * Prefix mask for an idr_layer at @layer.  For layer 0, the prefix mask is
65  * all bits except for the lower IDR_BITS.  For layer 1, 2 * IDR_BITS, and
66  * so on.
67  */
68 static int idr_layer_prefix_mask(int layer)
69 {
70 	return ~idr_max(layer + 1);
71 }
72 
73 static struct idr_layer *get_from_free_list(struct idr *idp)
74 {
75 	struct idr_layer *p;
76 	unsigned long flags;
77 
78 	spin_lock_irqsave(&idp->lock, flags);
79 	if ((p = idp->id_free)) {
80 		idp->id_free = p->ary[0];
81 		idp->id_free_cnt--;
82 		p->ary[0] = NULL;
83 	}
84 	spin_unlock_irqrestore(&idp->lock, flags);
85 	return(p);
86 }
87 
88 /**
89  * idr_layer_alloc - allocate a new idr_layer
90  * @gfp_mask: allocation mask
91  * @layer_idr: optional idr to allocate from
92  *
93  * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
94  * one from the per-cpu preload buffer.  If @layer_idr is not %NULL, fetch
95  * an idr_layer from @idr->id_free.
96  *
97  * @layer_idr is to maintain backward compatibility with the old alloc
98  * interface - idr_pre_get() and idr_get_new*() - and will be removed
99  * together with per-pool preload buffer.
100  */
101 static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
102 {
103 	struct idr_layer *new;
104 
105 	/* this is the old path, bypass to get_from_free_list() */
106 	if (layer_idr)
107 		return get_from_free_list(layer_idr);
108 
109 	/* try to allocate directly from kmem_cache */
110 	new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
111 	if (new)
112 		return new;
113 
114 	/*
115 	 * Try to fetch one from the per-cpu preload buffer if in process
116 	 * context.  See idr_preload() for details.
117 	 */
118 	if (in_interrupt())
119 		return NULL;
120 
121 	preempt_disable();
122 	new = __this_cpu_read(idr_preload_head);
123 	if (new) {
124 		__this_cpu_write(idr_preload_head, new->ary[0]);
125 		__this_cpu_dec(idr_preload_cnt);
126 		new->ary[0] = NULL;
127 	}
128 	preempt_enable();
129 	return new;
130 }
131 
132 static void idr_layer_rcu_free(struct rcu_head *head)
133 {
134 	struct idr_layer *layer;
135 
136 	layer = container_of(head, struct idr_layer, rcu_head);
137 	kmem_cache_free(idr_layer_cache, layer);
138 }
139 
140 static inline void free_layer(struct idr *idr, struct idr_layer *p)
141 {
142 	if (idr->hint && idr->hint == p)
143 		RCU_INIT_POINTER(idr->hint, NULL);
144 	call_rcu(&p->rcu_head, idr_layer_rcu_free);
145 }
146 
147 /* only called when idp->lock is held */
148 static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
149 {
150 	p->ary[0] = idp->id_free;
151 	idp->id_free = p;
152 	idp->id_free_cnt++;
153 }
154 
155 static void move_to_free_list(struct idr *idp, struct idr_layer *p)
156 {
157 	unsigned long flags;
158 
159 	/*
160 	 * Depends on the return element being zeroed.
161 	 */
162 	spin_lock_irqsave(&idp->lock, flags);
163 	__move_to_free_list(idp, p);
164 	spin_unlock_irqrestore(&idp->lock, flags);
165 }
166 
167 static void idr_mark_full(struct idr_layer **pa, int id)
168 {
169 	struct idr_layer *p = pa[0];
170 	int l = 0;
171 
172 	__set_bit(id & IDR_MASK, p->bitmap);
173 	/*
174 	 * If this layer is full mark the bit in the layer above to
175 	 * show that this part of the radix tree is full.  This may
176 	 * complete the layer above and require walking up the radix
177 	 * tree.
178 	 */
179 	while (bitmap_full(p->bitmap, IDR_SIZE)) {
180 		if (!(p = pa[++l]))
181 			break;
182 		id = id >> IDR_BITS;
183 		__set_bit((id & IDR_MASK), p->bitmap);
184 	}
185 }
186 
187 /**
188  * idr_pre_get - reserve resources for idr allocation
189  * @idp:	idr handle
190  * @gfp_mask:	memory allocation flags
191  *
192  * This function should be called prior to calling the idr_get_new* functions.
193  * It preallocates enough memory to satisfy the worst possible allocation. The
194  * caller should pass in GFP_KERNEL if possible.  This of course requires that
195  * no spinning locks be held.
196  *
197  * If the system is REALLY out of memory this function returns %0,
198  * otherwise %1.
199  */
200 int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
201 {
202 	while (idp->id_free_cnt < MAX_IDR_FREE) {
203 		struct idr_layer *new;
204 		new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
205 		if (new == NULL)
206 			return (0);
207 		move_to_free_list(idp, new);
208 	}
209 	return 1;
210 }
211 EXPORT_SYMBOL(idr_pre_get);
212 
213 /**
214  * sub_alloc - try to allocate an id without growing the tree depth
215  * @idp: idr handle
216  * @starting_id: id to start search at
217  * @id: pointer to the allocated handle
218  * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
219  * @gfp_mask: allocation mask for idr_layer_alloc()
220  * @layer_idr: optional idr passed to idr_layer_alloc()
221  *
222  * Allocate an id in range [@starting_id, INT_MAX] from @idp without
223  * growing its depth.  Returns
224  *
225  *  the allocated id >= 0 if successful,
226  *  -EAGAIN if the tree needs to grow for allocation to succeed,
227  *  -ENOSPC if the id space is exhausted,
228  *  -ENOMEM if more idr_layers need to be allocated.
229  */
230 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
231 		     gfp_t gfp_mask, struct idr *layer_idr)
232 {
233 	int n, m, sh;
234 	struct idr_layer *p, *new;
235 	int l, id, oid;
236 
237 	id = *starting_id;
238  restart:
239 	p = idp->top;
240 	l = idp->layers;
241 	pa[l--] = NULL;
242 	while (1) {
243 		/*
244 		 * We run around this while until we reach the leaf node...
245 		 */
246 		n = (id >> (IDR_BITS*l)) & IDR_MASK;
247 		m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
248 		if (m == IDR_SIZE) {
249 			/* no space available go back to previous layer. */
250 			l++;
251 			oid = id;
252 			id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
253 
254 			/* if already at the top layer, we need to grow */
255 			if (id >= 1 << (idp->layers * IDR_BITS)) {
256 				*starting_id = id;
257 				return -EAGAIN;
258 			}
259 			p = pa[l];
260 			BUG_ON(!p);
261 
262 			/* If we need to go up one layer, continue the
263 			 * loop; otherwise, restart from the top.
264 			 */
265 			sh = IDR_BITS * (l + 1);
266 			if (oid >> sh == id >> sh)
267 				continue;
268 			else
269 				goto restart;
270 		}
271 		if (m != n) {
272 			sh = IDR_BITS*l;
273 			id = ((id >> sh) ^ n ^ m) << sh;
274 		}
275 		if ((id >= MAX_IDR_BIT) || (id < 0))
276 			return -ENOSPC;
277 		if (l == 0)
278 			break;
279 		/*
280 		 * Create the layer below if it is missing.
281 		 */
282 		if (!p->ary[m]) {
283 			new = idr_layer_alloc(gfp_mask, layer_idr);
284 			if (!new)
285 				return -ENOMEM;
286 			new->layer = l-1;
287 			new->prefix = id & idr_layer_prefix_mask(new->layer);
288 			rcu_assign_pointer(p->ary[m], new);
289 			p->count++;
290 		}
291 		pa[l--] = p;
292 		p = p->ary[m];
293 	}
294 
295 	pa[l] = p;
296 	return id;
297 }
298 
299 static int idr_get_empty_slot(struct idr *idp, int starting_id,
300 			      struct idr_layer **pa, gfp_t gfp_mask,
301 			      struct idr *layer_idr)
302 {
303 	struct idr_layer *p, *new;
304 	int layers, v, id;
305 	unsigned long flags;
306 
307 	id = starting_id;
308 build_up:
309 	p = idp->top;
310 	layers = idp->layers;
311 	if (unlikely(!p)) {
312 		if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
313 			return -ENOMEM;
314 		p->layer = 0;
315 		layers = 1;
316 	}
317 	/*
318 	 * Add a new layer to the top of the tree if the requested
319 	 * id is larger than the currently allocated space.
320 	 */
321 	while (id > idr_max(layers)) {
322 		layers++;
323 		if (!p->count) {
324 			/* special case: if the tree is currently empty,
325 			 * then we grow the tree by moving the top node
326 			 * upwards.
327 			 */
328 			p->layer++;
329 			WARN_ON_ONCE(p->prefix);
330 			continue;
331 		}
332 		if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
333 			/*
334 			 * The allocation failed.  If we built part of
335 			 * the structure tear it down.
336 			 */
337 			spin_lock_irqsave(&idp->lock, flags);
338 			for (new = p; p && p != idp->top; new = p) {
339 				p = p->ary[0];
340 				new->ary[0] = NULL;
341 				new->count = 0;
342 				bitmap_clear(new->bitmap, 0, IDR_SIZE);
343 				__move_to_free_list(idp, new);
344 			}
345 			spin_unlock_irqrestore(&idp->lock, flags);
346 			return -ENOMEM;
347 		}
348 		new->ary[0] = p;
349 		new->count = 1;
350 		new->layer = layers-1;
351 		new->prefix = id & idr_layer_prefix_mask(new->layer);
352 		if (bitmap_full(p->bitmap, IDR_SIZE))
353 			__set_bit(0, new->bitmap);
354 		p = new;
355 	}
356 	rcu_assign_pointer(idp->top, p);
357 	idp->layers = layers;
358 	v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
359 	if (v == -EAGAIN)
360 		goto build_up;
361 	return(v);
362 }
363 
364 /*
365  * @id and @pa are from a successful allocation from idr_get_empty_slot().
366  * Install the user pointer @ptr and mark the slot full.
367  */
368 static void idr_fill_slot(struct idr *idr, void *ptr, int id,
369 			  struct idr_layer **pa)
370 {
371 	/* update hint used for lookup, cleared from free_layer() */
372 	rcu_assign_pointer(idr->hint, pa[0]);
373 
374 	rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
375 	pa[0]->count++;
376 	idr_mark_full(pa, id);
377 }
378 
379 /**
380  * idr_get_new_above - allocate new idr entry above or equal to a start id
381  * @idp: idr handle
382  * @ptr: pointer you want associated with the id
383  * @starting_id: id to start search at
384  * @id: pointer to the allocated handle
385  *
386  * This is the allocate id function.  It should be called with any
387  * required locks.
388  *
389  * If allocation from IDR's private freelist fails, idr_get_new_above() will
390  * return %-EAGAIN.  The caller should retry the idr_pre_get() call to refill
391  * IDR's preallocation and then retry the idr_get_new_above() call.
392  *
393  * If the idr is full idr_get_new_above() will return %-ENOSPC.
394  *
395  * @id returns a value in the range @starting_id ... %0x7fffffff
396  */
397 int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
398 {
399 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
400 	int rv;
401 
402 	rv = idr_get_empty_slot(idp, starting_id, pa, 0, idp);
403 	if (rv < 0)
404 		return rv == -ENOMEM ? -EAGAIN : rv;
405 
406 	idr_fill_slot(idp, ptr, rv, pa);
407 	*id = rv;
408 	return 0;
409 }
410 EXPORT_SYMBOL(idr_get_new_above);
411 
412 /**
413  * idr_preload - preload for idr_alloc()
414  * @gfp_mask: allocation mask to use for preloading
415  *
416  * Preload per-cpu layer buffer for idr_alloc().  Can only be used from
417  * process context and each idr_preload() invocation should be matched with
418  * idr_preload_end().  Note that preemption is disabled while preloaded.
419  *
420  * The first idr_alloc() in the preloaded section can be treated as if it
421  * were invoked with @gfp_mask used for preloading.  This allows using more
422  * permissive allocation masks for idrs protected by spinlocks.
423  *
424  * For example, if idr_alloc() below fails, the failure can be treated as
425  * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
426  *
427  *	idr_preload(GFP_KERNEL);
428  *	spin_lock(lock);
429  *
430  *	id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
431  *
432  *	spin_unlock(lock);
433  *	idr_preload_end();
434  *	if (id < 0)
435  *		error;
436  */
437 void idr_preload(gfp_t gfp_mask)
438 {
439 	/*
440 	 * Consuming preload buffer from non-process context breaks preload
441 	 * allocation guarantee.  Disallow usage from those contexts.
442 	 */
443 	WARN_ON_ONCE(in_interrupt());
444 	might_sleep_if(gfp_mask & __GFP_WAIT);
445 
446 	preempt_disable();
447 
448 	/*
449 	 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
450 	 * return value from idr_alloc() needs to be checked for failure
451 	 * anyway.  Silently give up if allocation fails.  The caller can
452 	 * treat failures from idr_alloc() as if idr_alloc() were called
453 	 * with @gfp_mask which should be enough.
454 	 */
455 	while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
456 		struct idr_layer *new;
457 
458 		preempt_enable();
459 		new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
460 		preempt_disable();
461 		if (!new)
462 			break;
463 
464 		/* link the new one to per-cpu preload list */
465 		new->ary[0] = __this_cpu_read(idr_preload_head);
466 		__this_cpu_write(idr_preload_head, new);
467 		__this_cpu_inc(idr_preload_cnt);
468 	}
469 }
470 EXPORT_SYMBOL(idr_preload);
471 
472 /**
473  * idr_alloc - allocate new idr entry
474  * @idr: the (initialized) idr
475  * @ptr: pointer to be associated with the new id
476  * @start: the minimum id (inclusive)
477  * @end: the maximum id (exclusive, <= 0 for max)
478  * @gfp_mask: memory allocation flags
479  *
480  * Allocate an id in [start, end) and associate it with @ptr.  If no ID is
481  * available in the specified range, returns -ENOSPC.  On memory allocation
482  * failure, returns -ENOMEM.
483  *
484  * Note that @end is treated as max when <= 0.  This is to always allow
485  * using @start + N as @end as long as N is inside integer range.
486  *
487  * The user is responsible for exclusively synchronizing all operations
488  * which may modify @idr.  However, read-only accesses such as idr_find()
489  * or iteration can be performed under RCU read lock provided the user
490  * destroys @ptr in RCU-safe way after removal from idr.
491  */
492 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
493 {
494 	int max = end > 0 ? end - 1 : INT_MAX;	/* inclusive upper limit */
495 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
496 	int id;
497 
498 	might_sleep_if(gfp_mask & __GFP_WAIT);
499 
500 	/* sanity checks */
501 	if (WARN_ON_ONCE(start < 0))
502 		return -EINVAL;
503 	if (unlikely(max < start))
504 		return -ENOSPC;
505 
506 	/* allocate id */
507 	id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
508 	if (unlikely(id < 0))
509 		return id;
510 	if (unlikely(id > max))
511 		return -ENOSPC;
512 
513 	idr_fill_slot(idr, ptr, id, pa);
514 	return id;
515 }
516 EXPORT_SYMBOL_GPL(idr_alloc);
517 
518 static void idr_remove_warning(int id)
519 {
520 	printk(KERN_WARNING
521 		"idr_remove called for id=%d which is not allocated.\n", id);
522 	dump_stack();
523 }
524 
525 static void sub_remove(struct idr *idp, int shift, int id)
526 {
527 	struct idr_layer *p = idp->top;
528 	struct idr_layer **pa[MAX_IDR_LEVEL + 1];
529 	struct idr_layer ***paa = &pa[0];
530 	struct idr_layer *to_free;
531 	int n;
532 
533 	*paa = NULL;
534 	*++paa = &idp->top;
535 
536 	while ((shift > 0) && p) {
537 		n = (id >> shift) & IDR_MASK;
538 		__clear_bit(n, p->bitmap);
539 		*++paa = &p->ary[n];
540 		p = p->ary[n];
541 		shift -= IDR_BITS;
542 	}
543 	n = id & IDR_MASK;
544 	if (likely(p != NULL && test_bit(n, p->bitmap))) {
545 		__clear_bit(n, p->bitmap);
546 		rcu_assign_pointer(p->ary[n], NULL);
547 		to_free = NULL;
548 		while(*paa && ! --((**paa)->count)){
549 			if (to_free)
550 				free_layer(idp, to_free);
551 			to_free = **paa;
552 			**paa-- = NULL;
553 		}
554 		if (!*paa)
555 			idp->layers = 0;
556 		if (to_free)
557 			free_layer(idp, to_free);
558 	} else
559 		idr_remove_warning(id);
560 }
561 
562 /**
563  * idr_remove - remove the given id and free its slot
564  * @idp: idr handle
565  * @id: unique key
566  */
567 void idr_remove(struct idr *idp, int id)
568 {
569 	struct idr_layer *p;
570 	struct idr_layer *to_free;
571 
572 	/* see comment in idr_find_slowpath() */
573 	if (WARN_ON_ONCE(id < 0))
574 		return;
575 
576 	sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
577 	if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
578 	    idp->top->ary[0]) {
579 		/*
580 		 * Single child at leftmost slot: we can shrink the tree.
581 		 * This level is not needed anymore since when layers are
582 		 * inserted, they are inserted at the top of the existing
583 		 * tree.
584 		 */
585 		to_free = idp->top;
586 		p = idp->top->ary[0];
587 		rcu_assign_pointer(idp->top, p);
588 		--idp->layers;
589 		to_free->count = 0;
590 		bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
591 		free_layer(idp, to_free);
592 	}
593 	while (idp->id_free_cnt >= MAX_IDR_FREE) {
594 		p = get_from_free_list(idp);
595 		/*
596 		 * Note: we don't call the rcu callback here, since the only
597 		 * layers that fall into the freelist are those that have been
598 		 * preallocated.
599 		 */
600 		kmem_cache_free(idr_layer_cache, p);
601 	}
602 	return;
603 }
604 EXPORT_SYMBOL(idr_remove);
605 
606 void __idr_remove_all(struct idr *idp)
607 {
608 	int n, id, max;
609 	int bt_mask;
610 	struct idr_layer *p;
611 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
612 	struct idr_layer **paa = &pa[0];
613 
614 	n = idp->layers * IDR_BITS;
615 	p = idp->top;
616 	rcu_assign_pointer(idp->top, NULL);
617 	max = idr_max(idp->layers);
618 
619 	id = 0;
620 	while (id >= 0 && id <= max) {
621 		while (n > IDR_BITS && p) {
622 			n -= IDR_BITS;
623 			*paa++ = p;
624 			p = p->ary[(id >> n) & IDR_MASK];
625 		}
626 
627 		bt_mask = id;
628 		id += 1 << n;
629 		/* Get the highest bit that the above add changed from 0->1. */
630 		while (n < fls(id ^ bt_mask)) {
631 			if (p)
632 				free_layer(idp, p);
633 			n += IDR_BITS;
634 			p = *--paa;
635 		}
636 	}
637 	idp->layers = 0;
638 }
639 EXPORT_SYMBOL(__idr_remove_all);
640 
641 /**
642  * idr_destroy - release all cached layers within an idr tree
643  * @idp: idr handle
644  *
645  * Free all id mappings and all idp_layers.  After this function, @idp is
646  * completely unused and can be freed / recycled.  The caller is
647  * responsible for ensuring that no one else accesses @idp during or after
648  * idr_destroy().
649  *
650  * A typical clean-up sequence for objects stored in an idr tree will use
651  * idr_for_each() to free all objects, if necessay, then idr_destroy() to
652  * free up the id mappings and cached idr_layers.
653  */
654 void idr_destroy(struct idr *idp)
655 {
656 	__idr_remove_all(idp);
657 
658 	while (idp->id_free_cnt) {
659 		struct idr_layer *p = get_from_free_list(idp);
660 		kmem_cache_free(idr_layer_cache, p);
661 	}
662 }
663 EXPORT_SYMBOL(idr_destroy);
664 
665 void *idr_find_slowpath(struct idr *idp, int id)
666 {
667 	int n;
668 	struct idr_layer *p;
669 
670 	/*
671 	 * If @id is negative, idr_find() used to ignore the sign bit and
672 	 * performed lookup with the rest of bits, which is weird and can
673 	 * lead to very obscure bugs.  We're now returning NULL for all
674 	 * negative IDs but just in case somebody was depending on the sign
675 	 * bit being ignored, let's trigger WARN_ON_ONCE() so that they can
676 	 * be detected and fixed.  WARN_ON_ONCE() can later be removed.
677 	 */
678 	if (WARN_ON_ONCE(id < 0))
679 		return NULL;
680 
681 	p = rcu_dereference_raw(idp->top);
682 	if (!p)
683 		return NULL;
684 	n = (p->layer+1) * IDR_BITS;
685 
686 	if (id > idr_max(p->layer + 1))
687 		return NULL;
688 	BUG_ON(n == 0);
689 
690 	while (n > 0 && p) {
691 		n -= IDR_BITS;
692 		BUG_ON(n != p->layer*IDR_BITS);
693 		p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
694 	}
695 	return((void *)p);
696 }
697 EXPORT_SYMBOL(idr_find_slowpath);
698 
699 /**
700  * idr_for_each - iterate through all stored pointers
701  * @idp: idr handle
702  * @fn: function to be called for each pointer
703  * @data: data passed back to callback function
704  *
705  * Iterate over the pointers registered with the given idr.  The
706  * callback function will be called for each pointer currently
707  * registered, passing the id, the pointer and the data pointer passed
708  * to this function.  It is not safe to modify the idr tree while in
709  * the callback, so functions such as idr_get_new and idr_remove are
710  * not allowed.
711  *
712  * We check the return of @fn each time. If it returns anything other
713  * than %0, we break out and return that value.
714  *
715  * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
716  */
717 int idr_for_each(struct idr *idp,
718 		 int (*fn)(int id, void *p, void *data), void *data)
719 {
720 	int n, id, max, error = 0;
721 	struct idr_layer *p;
722 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
723 	struct idr_layer **paa = &pa[0];
724 
725 	n = idp->layers * IDR_BITS;
726 	p = rcu_dereference_raw(idp->top);
727 	max = idr_max(idp->layers);
728 
729 	id = 0;
730 	while (id >= 0 && id <= max) {
731 		while (n > 0 && p) {
732 			n -= IDR_BITS;
733 			*paa++ = p;
734 			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
735 		}
736 
737 		if (p) {
738 			error = fn(id, (void *)p, data);
739 			if (error)
740 				break;
741 		}
742 
743 		id += 1 << n;
744 		while (n < fls(id)) {
745 			n += IDR_BITS;
746 			p = *--paa;
747 		}
748 	}
749 
750 	return error;
751 }
752 EXPORT_SYMBOL(idr_for_each);
753 
754 /**
755  * idr_get_next - lookup next object of id to given id.
756  * @idp: idr handle
757  * @nextidp:  pointer to lookup key
758  *
759  * Returns pointer to registered object with id, which is next number to
760  * given id. After being looked up, *@nextidp will be updated for the next
761  * iteration.
762  *
763  * This function can be called under rcu_read_lock(), given that the leaf
764  * pointers lifetimes are correctly managed.
765  */
766 void *idr_get_next(struct idr *idp, int *nextidp)
767 {
768 	struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
769 	struct idr_layer **paa = &pa[0];
770 	int id = *nextidp;
771 	int n, max;
772 
773 	/* find first ent */
774 	p = rcu_dereference_raw(idp->top);
775 	if (!p)
776 		return NULL;
777 	n = (p->layer + 1) * IDR_BITS;
778 	max = idr_max(p->layer + 1);
779 
780 	while (id >= 0 && id <= max) {
781 		while (n > 0 && p) {
782 			n -= IDR_BITS;
783 			*paa++ = p;
784 			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
785 		}
786 
787 		if (p) {
788 			*nextidp = id;
789 			return p;
790 		}
791 
792 		/*
793 		 * Proceed to the next layer at the current level.  Unlike
794 		 * idr_for_each(), @id isn't guaranteed to be aligned to
795 		 * layer boundary at this point and adding 1 << n may
796 		 * incorrectly skip IDs.  Make sure we jump to the
797 		 * beginning of the next layer using round_up().
798 		 */
799 		id = round_up(id + 1, 1 << n);
800 		while (n < fls(id)) {
801 			n += IDR_BITS;
802 			p = *--paa;
803 		}
804 	}
805 	return NULL;
806 }
807 EXPORT_SYMBOL(idr_get_next);
808 
809 
810 /**
811  * idr_replace - replace pointer for given id
812  * @idp: idr handle
813  * @ptr: pointer you want associated with the id
814  * @id: lookup key
815  *
816  * Replace the pointer registered with an id and return the old value.
817  * A %-ENOENT return indicates that @id was not found.
818  * A %-EINVAL return indicates that @id was not within valid constraints.
819  *
820  * The caller must serialize with writers.
821  */
822 void *idr_replace(struct idr *idp, void *ptr, int id)
823 {
824 	int n;
825 	struct idr_layer *p, *old_p;
826 
827 	/* see comment in idr_find_slowpath() */
828 	if (WARN_ON_ONCE(id < 0))
829 		return ERR_PTR(-EINVAL);
830 
831 	p = idp->top;
832 	if (!p)
833 		return ERR_PTR(-EINVAL);
834 
835 	n = (p->layer+1) * IDR_BITS;
836 
837 	if (id >= (1 << n))
838 		return ERR_PTR(-EINVAL);
839 
840 	n -= IDR_BITS;
841 	while ((n > 0) && p) {
842 		p = p->ary[(id >> n) & IDR_MASK];
843 		n -= IDR_BITS;
844 	}
845 
846 	n = id & IDR_MASK;
847 	if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
848 		return ERR_PTR(-ENOENT);
849 
850 	old_p = p->ary[n];
851 	rcu_assign_pointer(p->ary[n], ptr);
852 
853 	return old_p;
854 }
855 EXPORT_SYMBOL(idr_replace);
856 
857 void __init idr_init_cache(void)
858 {
859 	idr_layer_cache = kmem_cache_create("idr_layer_cache",
860 				sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
861 }
862 
863 /**
864  * idr_init - initialize idr handle
865  * @idp:	idr handle
866  *
867  * This function is use to set up the handle (@idp) that you will pass
868  * to the rest of the functions.
869  */
870 void idr_init(struct idr *idp)
871 {
872 	memset(idp, 0, sizeof(struct idr));
873 	spin_lock_init(&idp->lock);
874 }
875 EXPORT_SYMBOL(idr_init);
876 
877 
878 /**
879  * DOC: IDA description
880  * IDA - IDR based ID allocator
881  *
882  * This is id allocator without id -> pointer translation.  Memory
883  * usage is much lower than full blown idr because each id only
884  * occupies a bit.  ida uses a custom leaf node which contains
885  * IDA_BITMAP_BITS slots.
886  *
887  * 2007-04-25  written by Tejun Heo <htejun@gmail.com>
888  */
889 
890 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
891 {
892 	unsigned long flags;
893 
894 	if (!ida->free_bitmap) {
895 		spin_lock_irqsave(&ida->idr.lock, flags);
896 		if (!ida->free_bitmap) {
897 			ida->free_bitmap = bitmap;
898 			bitmap = NULL;
899 		}
900 		spin_unlock_irqrestore(&ida->idr.lock, flags);
901 	}
902 
903 	kfree(bitmap);
904 }
905 
906 /**
907  * ida_pre_get - reserve resources for ida allocation
908  * @ida:	ida handle
909  * @gfp_mask:	memory allocation flag
910  *
911  * This function should be called prior to locking and calling the
912  * following function.  It preallocates enough memory to satisfy the
913  * worst possible allocation.
914  *
915  * If the system is REALLY out of memory this function returns %0,
916  * otherwise %1.
917  */
918 int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
919 {
920 	/* allocate idr_layers */
921 	if (!idr_pre_get(&ida->idr, gfp_mask))
922 		return 0;
923 
924 	/* allocate free_bitmap */
925 	if (!ida->free_bitmap) {
926 		struct ida_bitmap *bitmap;
927 
928 		bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
929 		if (!bitmap)
930 			return 0;
931 
932 		free_bitmap(ida, bitmap);
933 	}
934 
935 	return 1;
936 }
937 EXPORT_SYMBOL(ida_pre_get);
938 
939 /**
940  * ida_get_new_above - allocate new ID above or equal to a start id
941  * @ida:	ida handle
942  * @starting_id: id to start search at
943  * @p_id:	pointer to the allocated handle
944  *
945  * Allocate new ID above or equal to @starting_id.  It should be called
946  * with any required locks.
947  *
948  * If memory is required, it will return %-EAGAIN, you should unlock
949  * and go back to the ida_pre_get() call.  If the ida is full, it will
950  * return %-ENOSPC.
951  *
952  * @p_id returns a value in the range @starting_id ... %0x7fffffff.
953  */
954 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
955 {
956 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
957 	struct ida_bitmap *bitmap;
958 	unsigned long flags;
959 	int idr_id = starting_id / IDA_BITMAP_BITS;
960 	int offset = starting_id % IDA_BITMAP_BITS;
961 	int t, id;
962 
963  restart:
964 	/* get vacant slot */
965 	t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
966 	if (t < 0)
967 		return t == -ENOMEM ? -EAGAIN : t;
968 
969 	if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
970 		return -ENOSPC;
971 
972 	if (t != idr_id)
973 		offset = 0;
974 	idr_id = t;
975 
976 	/* if bitmap isn't there, create a new one */
977 	bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
978 	if (!bitmap) {
979 		spin_lock_irqsave(&ida->idr.lock, flags);
980 		bitmap = ida->free_bitmap;
981 		ida->free_bitmap = NULL;
982 		spin_unlock_irqrestore(&ida->idr.lock, flags);
983 
984 		if (!bitmap)
985 			return -EAGAIN;
986 
987 		memset(bitmap, 0, sizeof(struct ida_bitmap));
988 		rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
989 				(void *)bitmap);
990 		pa[0]->count++;
991 	}
992 
993 	/* lookup for empty slot */
994 	t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
995 	if (t == IDA_BITMAP_BITS) {
996 		/* no empty slot after offset, continue to the next chunk */
997 		idr_id++;
998 		offset = 0;
999 		goto restart;
1000 	}
1001 
1002 	id = idr_id * IDA_BITMAP_BITS + t;
1003 	if (id >= MAX_IDR_BIT)
1004 		return -ENOSPC;
1005 
1006 	__set_bit(t, bitmap->bitmap);
1007 	if (++bitmap->nr_busy == IDA_BITMAP_BITS)
1008 		idr_mark_full(pa, idr_id);
1009 
1010 	*p_id = id;
1011 
1012 	/* Each leaf node can handle nearly a thousand slots and the
1013 	 * whole idea of ida is to have small memory foot print.
1014 	 * Throw away extra resources one by one after each successful
1015 	 * allocation.
1016 	 */
1017 	if (ida->idr.id_free_cnt || ida->free_bitmap) {
1018 		struct idr_layer *p = get_from_free_list(&ida->idr);
1019 		if (p)
1020 			kmem_cache_free(idr_layer_cache, p);
1021 	}
1022 
1023 	return 0;
1024 }
1025 EXPORT_SYMBOL(ida_get_new_above);
1026 
1027 /**
1028  * ida_remove - remove the given ID
1029  * @ida:	ida handle
1030  * @id:		ID to free
1031  */
1032 void ida_remove(struct ida *ida, int id)
1033 {
1034 	struct idr_layer *p = ida->idr.top;
1035 	int shift = (ida->idr.layers - 1) * IDR_BITS;
1036 	int idr_id = id / IDA_BITMAP_BITS;
1037 	int offset = id % IDA_BITMAP_BITS;
1038 	int n;
1039 	struct ida_bitmap *bitmap;
1040 
1041 	/* clear full bits while looking up the leaf idr_layer */
1042 	while ((shift > 0) && p) {
1043 		n = (idr_id >> shift) & IDR_MASK;
1044 		__clear_bit(n, p->bitmap);
1045 		p = p->ary[n];
1046 		shift -= IDR_BITS;
1047 	}
1048 
1049 	if (p == NULL)
1050 		goto err;
1051 
1052 	n = idr_id & IDR_MASK;
1053 	__clear_bit(n, p->bitmap);
1054 
1055 	bitmap = (void *)p->ary[n];
1056 	if (!test_bit(offset, bitmap->bitmap))
1057 		goto err;
1058 
1059 	/* update bitmap and remove it if empty */
1060 	__clear_bit(offset, bitmap->bitmap);
1061 	if (--bitmap->nr_busy == 0) {
1062 		__set_bit(n, p->bitmap);	/* to please idr_remove() */
1063 		idr_remove(&ida->idr, idr_id);
1064 		free_bitmap(ida, bitmap);
1065 	}
1066 
1067 	return;
1068 
1069  err:
1070 	printk(KERN_WARNING
1071 	       "ida_remove called for id=%d which is not allocated.\n", id);
1072 }
1073 EXPORT_SYMBOL(ida_remove);
1074 
1075 /**
1076  * ida_destroy - release all cached layers within an ida tree
1077  * @ida:		ida handle
1078  */
1079 void ida_destroy(struct ida *ida)
1080 {
1081 	idr_destroy(&ida->idr);
1082 	kfree(ida->free_bitmap);
1083 }
1084 EXPORT_SYMBOL(ida_destroy);
1085 
1086 /**
1087  * ida_simple_get - get a new id.
1088  * @ida: the (initialized) ida.
1089  * @start: the minimum id (inclusive, < 0x8000000)
1090  * @end: the maximum id (exclusive, < 0x8000000 or 0)
1091  * @gfp_mask: memory allocation flags
1092  *
1093  * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1094  * On memory allocation failure, returns -ENOMEM.
1095  *
1096  * Use ida_simple_remove() to get rid of an id.
1097  */
1098 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
1099 		   gfp_t gfp_mask)
1100 {
1101 	int ret, id;
1102 	unsigned int max;
1103 	unsigned long flags;
1104 
1105 	BUG_ON((int)start < 0);
1106 	BUG_ON((int)end < 0);
1107 
1108 	if (end == 0)
1109 		max = 0x80000000;
1110 	else {
1111 		BUG_ON(end < start);
1112 		max = end - 1;
1113 	}
1114 
1115 again:
1116 	if (!ida_pre_get(ida, gfp_mask))
1117 		return -ENOMEM;
1118 
1119 	spin_lock_irqsave(&simple_ida_lock, flags);
1120 	ret = ida_get_new_above(ida, start, &id);
1121 	if (!ret) {
1122 		if (id > max) {
1123 			ida_remove(ida, id);
1124 			ret = -ENOSPC;
1125 		} else {
1126 			ret = id;
1127 		}
1128 	}
1129 	spin_unlock_irqrestore(&simple_ida_lock, flags);
1130 
1131 	if (unlikely(ret == -EAGAIN))
1132 		goto again;
1133 
1134 	return ret;
1135 }
1136 EXPORT_SYMBOL(ida_simple_get);
1137 
1138 /**
1139  * ida_simple_remove - remove an allocated id.
1140  * @ida: the (initialized) ida.
1141  * @id: the id returned by ida_simple_get.
1142  */
1143 void ida_simple_remove(struct ida *ida, unsigned int id)
1144 {
1145 	unsigned long flags;
1146 
1147 	BUG_ON((int)id < 0);
1148 	spin_lock_irqsave(&simple_ida_lock, flags);
1149 	ida_remove(ida, id);
1150 	spin_unlock_irqrestore(&simple_ida_lock, flags);
1151 }
1152 EXPORT_SYMBOL(ida_simple_remove);
1153 
1154 /**
1155  * ida_init - initialize ida handle
1156  * @ida:	ida handle
1157  *
1158  * This function is use to set up the handle (@ida) that you will pass
1159  * to the rest of the functions.
1160  */
1161 void ida_init(struct ida *ida)
1162 {
1163 	memset(ida, 0, sizeof(struct ida));
1164 	idr_init(&ida->idr);
1165 
1166 }
1167 EXPORT_SYMBOL(ida_init);
1168