xref: /openbmc/linux/lib/idr.c (revision 36bccb11)
1 /*
2  * 2002-10-18  written by Jim Houston jim.houston@ccur.com
3  *	Copyright (C) 2002 by Concurrent Computer Corporation
4  *	Distributed under the GNU GPL license version 2.
5  *
6  * Modified by George Anzinger to reuse immediately and to use
7  * find bit instructions.  Also removed _irq on spinlocks.
8  *
9  * Modified by Nadia Derbey to make it RCU safe.
10  *
11  * Small id to pointer translation service.
12  *
13  * It uses a radix tree like structure as a sparse array indexed
14  * by the id to obtain the pointer.  The bitmap makes allocating
15  * a new id quick.
16  *
17  * You call it to allocate an id (an int) an associate with that id a
18  * pointer or what ever, we treat it as a (void *).  You can pass this
19  * id to a user for him to pass back at a later time.  You then pass
20  * that id to this code and it returns your pointer.
21 
22  * You can release ids at any time. When all ids are released, most of
23  * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we
24  * don't need to go to the memory "store" during an id allocate, just
25  * so you don't need to be too concerned about locking and conflicts
26  * with the slab allocator.
27  */
28 
29 #ifndef TEST                        // to test in user space...
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/export.h>
33 #endif
34 #include <linux/err.h>
35 #include <linux/string.h>
36 #include <linux/idr.h>
37 #include <linux/spinlock.h>
38 #include <linux/percpu.h>
39 #include <linux/hardirq.h>
40 
41 #define MAX_IDR_SHIFT		(sizeof(int) * 8 - 1)
42 #define MAX_IDR_BIT		(1U << MAX_IDR_SHIFT)
43 
44 /* Leave the possibility of an incomplete final layer */
45 #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
46 
47 /* Number of id_layer structs to leave in free list */
48 #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
49 
50 static struct kmem_cache *idr_layer_cache;
51 static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
52 static DEFINE_PER_CPU(int, idr_preload_cnt);
53 static DEFINE_SPINLOCK(simple_ida_lock);
54 
55 /* the maximum ID which can be allocated given idr->layers */
56 static int idr_max(int layers)
57 {
58 	int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
59 
60 	return (1 << bits) - 1;
61 }
62 
63 /*
64  * Prefix mask for an idr_layer at @layer.  For layer 0, the prefix mask is
65  * all bits except for the lower IDR_BITS.  For layer 1, 2 * IDR_BITS, and
66  * so on.
67  */
68 static int idr_layer_prefix_mask(int layer)
69 {
70 	return ~idr_max(layer + 1);
71 }
72 
73 static struct idr_layer *get_from_free_list(struct idr *idp)
74 {
75 	struct idr_layer *p;
76 	unsigned long flags;
77 
78 	spin_lock_irqsave(&idp->lock, flags);
79 	if ((p = idp->id_free)) {
80 		idp->id_free = p->ary[0];
81 		idp->id_free_cnt--;
82 		p->ary[0] = NULL;
83 	}
84 	spin_unlock_irqrestore(&idp->lock, flags);
85 	return(p);
86 }
87 
88 /**
89  * idr_layer_alloc - allocate a new idr_layer
90  * @gfp_mask: allocation mask
91  * @layer_idr: optional idr to allocate from
92  *
93  * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
94  * one from the per-cpu preload buffer.  If @layer_idr is not %NULL, fetch
95  * an idr_layer from @idr->id_free.
96  *
97  * @layer_idr is to maintain backward compatibility with the old alloc
98  * interface - idr_pre_get() and idr_get_new*() - and will be removed
99  * together with per-pool preload buffer.
100  */
101 static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
102 {
103 	struct idr_layer *new;
104 
105 	/* this is the old path, bypass to get_from_free_list() */
106 	if (layer_idr)
107 		return get_from_free_list(layer_idr);
108 
109 	/*
110 	 * Try to allocate directly from kmem_cache.  We want to try this
111 	 * before preload buffer; otherwise, non-preloading idr_alloc()
112 	 * users will end up taking advantage of preloading ones.  As the
113 	 * following is allowed to fail for preloaded cases, suppress
114 	 * warning this time.
115 	 */
116 	new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN);
117 	if (new)
118 		return new;
119 
120 	/*
121 	 * Try to fetch one from the per-cpu preload buffer if in process
122 	 * context.  See idr_preload() for details.
123 	 */
124 	if (!in_interrupt()) {
125 		preempt_disable();
126 		new = __this_cpu_read(idr_preload_head);
127 		if (new) {
128 			__this_cpu_write(idr_preload_head, new->ary[0]);
129 			__this_cpu_dec(idr_preload_cnt);
130 			new->ary[0] = NULL;
131 		}
132 		preempt_enable();
133 		if (new)
134 			return new;
135 	}
136 
137 	/*
138 	 * Both failed.  Try kmem_cache again w/o adding __GFP_NOWARN so
139 	 * that memory allocation failure warning is printed as intended.
140 	 */
141 	return kmem_cache_zalloc(idr_layer_cache, gfp_mask);
142 }
143 
144 static void idr_layer_rcu_free(struct rcu_head *head)
145 {
146 	struct idr_layer *layer;
147 
148 	layer = container_of(head, struct idr_layer, rcu_head);
149 	kmem_cache_free(idr_layer_cache, layer);
150 }
151 
152 static inline void free_layer(struct idr *idr, struct idr_layer *p)
153 {
154 	if (idr->hint && idr->hint == p)
155 		RCU_INIT_POINTER(idr->hint, NULL);
156 	call_rcu(&p->rcu_head, idr_layer_rcu_free);
157 }
158 
159 /* only called when idp->lock is held */
160 static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
161 {
162 	p->ary[0] = idp->id_free;
163 	idp->id_free = p;
164 	idp->id_free_cnt++;
165 }
166 
167 static void move_to_free_list(struct idr *idp, struct idr_layer *p)
168 {
169 	unsigned long flags;
170 
171 	/*
172 	 * Depends on the return element being zeroed.
173 	 */
174 	spin_lock_irqsave(&idp->lock, flags);
175 	__move_to_free_list(idp, p);
176 	spin_unlock_irqrestore(&idp->lock, flags);
177 }
178 
179 static void idr_mark_full(struct idr_layer **pa, int id)
180 {
181 	struct idr_layer *p = pa[0];
182 	int l = 0;
183 
184 	__set_bit(id & IDR_MASK, p->bitmap);
185 	/*
186 	 * If this layer is full mark the bit in the layer above to
187 	 * show that this part of the radix tree is full.  This may
188 	 * complete the layer above and require walking up the radix
189 	 * tree.
190 	 */
191 	while (bitmap_full(p->bitmap, IDR_SIZE)) {
192 		if (!(p = pa[++l]))
193 			break;
194 		id = id >> IDR_BITS;
195 		__set_bit((id & IDR_MASK), p->bitmap);
196 	}
197 }
198 
199 static int __idr_pre_get(struct idr *idp, gfp_t gfp_mask)
200 {
201 	while (idp->id_free_cnt < MAX_IDR_FREE) {
202 		struct idr_layer *new;
203 		new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
204 		if (new == NULL)
205 			return (0);
206 		move_to_free_list(idp, new);
207 	}
208 	return 1;
209 }
210 
211 /**
212  * sub_alloc - try to allocate an id without growing the tree depth
213  * @idp: idr handle
214  * @starting_id: id to start search at
215  * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
216  * @gfp_mask: allocation mask for idr_layer_alloc()
217  * @layer_idr: optional idr passed to idr_layer_alloc()
218  *
219  * Allocate an id in range [@starting_id, INT_MAX] from @idp without
220  * growing its depth.  Returns
221  *
222  *  the allocated id >= 0 if successful,
223  *  -EAGAIN if the tree needs to grow for allocation to succeed,
224  *  -ENOSPC if the id space is exhausted,
225  *  -ENOMEM if more idr_layers need to be allocated.
226  */
227 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
228 		     gfp_t gfp_mask, struct idr *layer_idr)
229 {
230 	int n, m, sh;
231 	struct idr_layer *p, *new;
232 	int l, id, oid;
233 
234 	id = *starting_id;
235  restart:
236 	p = idp->top;
237 	l = idp->layers;
238 	pa[l--] = NULL;
239 	while (1) {
240 		/*
241 		 * We run around this while until we reach the leaf node...
242 		 */
243 		n = (id >> (IDR_BITS*l)) & IDR_MASK;
244 		m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
245 		if (m == IDR_SIZE) {
246 			/* no space available go back to previous layer. */
247 			l++;
248 			oid = id;
249 			id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
250 
251 			/* if already at the top layer, we need to grow */
252 			if (id >= 1 << (idp->layers * IDR_BITS)) {
253 				*starting_id = id;
254 				return -EAGAIN;
255 			}
256 			p = pa[l];
257 			BUG_ON(!p);
258 
259 			/* If we need to go up one layer, continue the
260 			 * loop; otherwise, restart from the top.
261 			 */
262 			sh = IDR_BITS * (l + 1);
263 			if (oid >> sh == id >> sh)
264 				continue;
265 			else
266 				goto restart;
267 		}
268 		if (m != n) {
269 			sh = IDR_BITS*l;
270 			id = ((id >> sh) ^ n ^ m) << sh;
271 		}
272 		if ((id >= MAX_IDR_BIT) || (id < 0))
273 			return -ENOSPC;
274 		if (l == 0)
275 			break;
276 		/*
277 		 * Create the layer below if it is missing.
278 		 */
279 		if (!p->ary[m]) {
280 			new = idr_layer_alloc(gfp_mask, layer_idr);
281 			if (!new)
282 				return -ENOMEM;
283 			new->layer = l-1;
284 			new->prefix = id & idr_layer_prefix_mask(new->layer);
285 			rcu_assign_pointer(p->ary[m], new);
286 			p->count++;
287 		}
288 		pa[l--] = p;
289 		p = p->ary[m];
290 	}
291 
292 	pa[l] = p;
293 	return id;
294 }
295 
296 static int idr_get_empty_slot(struct idr *idp, int starting_id,
297 			      struct idr_layer **pa, gfp_t gfp_mask,
298 			      struct idr *layer_idr)
299 {
300 	struct idr_layer *p, *new;
301 	int layers, v, id;
302 	unsigned long flags;
303 
304 	id = starting_id;
305 build_up:
306 	p = idp->top;
307 	layers = idp->layers;
308 	if (unlikely(!p)) {
309 		if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
310 			return -ENOMEM;
311 		p->layer = 0;
312 		layers = 1;
313 	}
314 	/*
315 	 * Add a new layer to the top of the tree if the requested
316 	 * id is larger than the currently allocated space.
317 	 */
318 	while (id > idr_max(layers)) {
319 		layers++;
320 		if (!p->count) {
321 			/* special case: if the tree is currently empty,
322 			 * then we grow the tree by moving the top node
323 			 * upwards.
324 			 */
325 			p->layer++;
326 			WARN_ON_ONCE(p->prefix);
327 			continue;
328 		}
329 		if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
330 			/*
331 			 * The allocation failed.  If we built part of
332 			 * the structure tear it down.
333 			 */
334 			spin_lock_irqsave(&idp->lock, flags);
335 			for (new = p; p && p != idp->top; new = p) {
336 				p = p->ary[0];
337 				new->ary[0] = NULL;
338 				new->count = 0;
339 				bitmap_clear(new->bitmap, 0, IDR_SIZE);
340 				__move_to_free_list(idp, new);
341 			}
342 			spin_unlock_irqrestore(&idp->lock, flags);
343 			return -ENOMEM;
344 		}
345 		new->ary[0] = p;
346 		new->count = 1;
347 		new->layer = layers-1;
348 		new->prefix = id & idr_layer_prefix_mask(new->layer);
349 		if (bitmap_full(p->bitmap, IDR_SIZE))
350 			__set_bit(0, new->bitmap);
351 		p = new;
352 	}
353 	rcu_assign_pointer(idp->top, p);
354 	idp->layers = layers;
355 	v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
356 	if (v == -EAGAIN)
357 		goto build_up;
358 	return(v);
359 }
360 
361 /*
362  * @id and @pa are from a successful allocation from idr_get_empty_slot().
363  * Install the user pointer @ptr and mark the slot full.
364  */
365 static void idr_fill_slot(struct idr *idr, void *ptr, int id,
366 			  struct idr_layer **pa)
367 {
368 	/* update hint used for lookup, cleared from free_layer() */
369 	rcu_assign_pointer(idr->hint, pa[0]);
370 
371 	rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
372 	pa[0]->count++;
373 	idr_mark_full(pa, id);
374 }
375 
376 
377 /**
378  * idr_preload - preload for idr_alloc()
379  * @gfp_mask: allocation mask to use for preloading
380  *
381  * Preload per-cpu layer buffer for idr_alloc().  Can only be used from
382  * process context and each idr_preload() invocation should be matched with
383  * idr_preload_end().  Note that preemption is disabled while preloaded.
384  *
385  * The first idr_alloc() in the preloaded section can be treated as if it
386  * were invoked with @gfp_mask used for preloading.  This allows using more
387  * permissive allocation masks for idrs protected by spinlocks.
388  *
389  * For example, if idr_alloc() below fails, the failure can be treated as
390  * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
391  *
392  *	idr_preload(GFP_KERNEL);
393  *	spin_lock(lock);
394  *
395  *	id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
396  *
397  *	spin_unlock(lock);
398  *	idr_preload_end();
399  *	if (id < 0)
400  *		error;
401  */
402 void idr_preload(gfp_t gfp_mask)
403 {
404 	/*
405 	 * Consuming preload buffer from non-process context breaks preload
406 	 * allocation guarantee.  Disallow usage from those contexts.
407 	 */
408 	WARN_ON_ONCE(in_interrupt());
409 	might_sleep_if(gfp_mask & __GFP_WAIT);
410 
411 	preempt_disable();
412 
413 	/*
414 	 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
415 	 * return value from idr_alloc() needs to be checked for failure
416 	 * anyway.  Silently give up if allocation fails.  The caller can
417 	 * treat failures from idr_alloc() as if idr_alloc() were called
418 	 * with @gfp_mask which should be enough.
419 	 */
420 	while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
421 		struct idr_layer *new;
422 
423 		preempt_enable();
424 		new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
425 		preempt_disable();
426 		if (!new)
427 			break;
428 
429 		/* link the new one to per-cpu preload list */
430 		new->ary[0] = __this_cpu_read(idr_preload_head);
431 		__this_cpu_write(idr_preload_head, new);
432 		__this_cpu_inc(idr_preload_cnt);
433 	}
434 }
435 EXPORT_SYMBOL(idr_preload);
436 
437 /**
438  * idr_alloc - allocate new idr entry
439  * @idr: the (initialized) idr
440  * @ptr: pointer to be associated with the new id
441  * @start: the minimum id (inclusive)
442  * @end: the maximum id (exclusive, <= 0 for max)
443  * @gfp_mask: memory allocation flags
444  *
445  * Allocate an id in [start, end) and associate it with @ptr.  If no ID is
446  * available in the specified range, returns -ENOSPC.  On memory allocation
447  * failure, returns -ENOMEM.
448  *
449  * Note that @end is treated as max when <= 0.  This is to always allow
450  * using @start + N as @end as long as N is inside integer range.
451  *
452  * The user is responsible for exclusively synchronizing all operations
453  * which may modify @idr.  However, read-only accesses such as idr_find()
454  * or iteration can be performed under RCU read lock provided the user
455  * destroys @ptr in RCU-safe way after removal from idr.
456  */
457 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
458 {
459 	int max = end > 0 ? end - 1 : INT_MAX;	/* inclusive upper limit */
460 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
461 	int id;
462 
463 	might_sleep_if(gfp_mask & __GFP_WAIT);
464 
465 	/* sanity checks */
466 	if (WARN_ON_ONCE(start < 0))
467 		return -EINVAL;
468 	if (unlikely(max < start))
469 		return -ENOSPC;
470 
471 	/* allocate id */
472 	id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
473 	if (unlikely(id < 0))
474 		return id;
475 	if (unlikely(id > max))
476 		return -ENOSPC;
477 
478 	idr_fill_slot(idr, ptr, id, pa);
479 	return id;
480 }
481 EXPORT_SYMBOL_GPL(idr_alloc);
482 
483 /**
484  * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
485  * @idr: the (initialized) idr
486  * @ptr: pointer to be associated with the new id
487  * @start: the minimum id (inclusive)
488  * @end: the maximum id (exclusive, <= 0 for max)
489  * @gfp_mask: memory allocation flags
490  *
491  * Essentially the same as idr_alloc, but prefers to allocate progressively
492  * higher ids if it can. If the "cur" counter wraps, then it will start again
493  * at the "start" end of the range and allocate one that has already been used.
494  */
495 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end,
496 			gfp_t gfp_mask)
497 {
498 	int id;
499 
500 	id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask);
501 	if (id == -ENOSPC)
502 		id = idr_alloc(idr, ptr, start, end, gfp_mask);
503 
504 	if (likely(id >= 0))
505 		idr->cur = id + 1;
506 	return id;
507 }
508 EXPORT_SYMBOL(idr_alloc_cyclic);
509 
510 static void idr_remove_warning(int id)
511 {
512 	WARN(1, "idr_remove called for id=%d which is not allocated.\n", id);
513 }
514 
515 static void sub_remove(struct idr *idp, int shift, int id)
516 {
517 	struct idr_layer *p = idp->top;
518 	struct idr_layer **pa[MAX_IDR_LEVEL + 1];
519 	struct idr_layer ***paa = &pa[0];
520 	struct idr_layer *to_free;
521 	int n;
522 
523 	*paa = NULL;
524 	*++paa = &idp->top;
525 
526 	while ((shift > 0) && p) {
527 		n = (id >> shift) & IDR_MASK;
528 		__clear_bit(n, p->bitmap);
529 		*++paa = &p->ary[n];
530 		p = p->ary[n];
531 		shift -= IDR_BITS;
532 	}
533 	n = id & IDR_MASK;
534 	if (likely(p != NULL && test_bit(n, p->bitmap))) {
535 		__clear_bit(n, p->bitmap);
536 		RCU_INIT_POINTER(p->ary[n], NULL);
537 		to_free = NULL;
538 		while(*paa && ! --((**paa)->count)){
539 			if (to_free)
540 				free_layer(idp, to_free);
541 			to_free = **paa;
542 			**paa-- = NULL;
543 		}
544 		if (!*paa)
545 			idp->layers = 0;
546 		if (to_free)
547 			free_layer(idp, to_free);
548 	} else
549 		idr_remove_warning(id);
550 }
551 
552 /**
553  * idr_remove - remove the given id and free its slot
554  * @idp: idr handle
555  * @id: unique key
556  */
557 void idr_remove(struct idr *idp, int id)
558 {
559 	struct idr_layer *p;
560 	struct idr_layer *to_free;
561 
562 	if (id < 0)
563 		return;
564 
565 	sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
566 	if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
567 	    idp->top->ary[0]) {
568 		/*
569 		 * Single child at leftmost slot: we can shrink the tree.
570 		 * This level is not needed anymore since when layers are
571 		 * inserted, they are inserted at the top of the existing
572 		 * tree.
573 		 */
574 		to_free = idp->top;
575 		p = idp->top->ary[0];
576 		rcu_assign_pointer(idp->top, p);
577 		--idp->layers;
578 		to_free->count = 0;
579 		bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
580 		free_layer(idp, to_free);
581 	}
582 	while (idp->id_free_cnt >= MAX_IDR_FREE) {
583 		p = get_from_free_list(idp);
584 		/*
585 		 * Note: we don't call the rcu callback here, since the only
586 		 * layers that fall into the freelist are those that have been
587 		 * preallocated.
588 		 */
589 		kmem_cache_free(idr_layer_cache, p);
590 	}
591 	return;
592 }
593 EXPORT_SYMBOL(idr_remove);
594 
595 static void __idr_remove_all(struct idr *idp)
596 {
597 	int n, id, max;
598 	int bt_mask;
599 	struct idr_layer *p;
600 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
601 	struct idr_layer **paa = &pa[0];
602 
603 	n = idp->layers * IDR_BITS;
604 	p = idp->top;
605 	RCU_INIT_POINTER(idp->top, NULL);
606 	max = idr_max(idp->layers);
607 
608 	id = 0;
609 	while (id >= 0 && id <= max) {
610 		while (n > IDR_BITS && p) {
611 			n -= IDR_BITS;
612 			*paa++ = p;
613 			p = p->ary[(id >> n) & IDR_MASK];
614 		}
615 
616 		bt_mask = id;
617 		id += 1 << n;
618 		/* Get the highest bit that the above add changed from 0->1. */
619 		while (n < fls(id ^ bt_mask)) {
620 			if (p)
621 				free_layer(idp, p);
622 			n += IDR_BITS;
623 			p = *--paa;
624 		}
625 	}
626 	idp->layers = 0;
627 }
628 
629 /**
630  * idr_destroy - release all cached layers within an idr tree
631  * @idp: idr handle
632  *
633  * Free all id mappings and all idp_layers.  After this function, @idp is
634  * completely unused and can be freed / recycled.  The caller is
635  * responsible for ensuring that no one else accesses @idp during or after
636  * idr_destroy().
637  *
638  * A typical clean-up sequence for objects stored in an idr tree will use
639  * idr_for_each() to free all objects, if necessay, then idr_destroy() to
640  * free up the id mappings and cached idr_layers.
641  */
642 void idr_destroy(struct idr *idp)
643 {
644 	__idr_remove_all(idp);
645 
646 	while (idp->id_free_cnt) {
647 		struct idr_layer *p = get_from_free_list(idp);
648 		kmem_cache_free(idr_layer_cache, p);
649 	}
650 }
651 EXPORT_SYMBOL(idr_destroy);
652 
653 void *idr_find_slowpath(struct idr *idp, int id)
654 {
655 	int n;
656 	struct idr_layer *p;
657 
658 	if (id < 0)
659 		return NULL;
660 
661 	p = rcu_dereference_raw(idp->top);
662 	if (!p)
663 		return NULL;
664 	n = (p->layer+1) * IDR_BITS;
665 
666 	if (id > idr_max(p->layer + 1))
667 		return NULL;
668 	BUG_ON(n == 0);
669 
670 	while (n > 0 && p) {
671 		n -= IDR_BITS;
672 		BUG_ON(n != p->layer*IDR_BITS);
673 		p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
674 	}
675 	return((void *)p);
676 }
677 EXPORT_SYMBOL(idr_find_slowpath);
678 
679 /**
680  * idr_for_each - iterate through all stored pointers
681  * @idp: idr handle
682  * @fn: function to be called for each pointer
683  * @data: data passed back to callback function
684  *
685  * Iterate over the pointers registered with the given idr.  The
686  * callback function will be called for each pointer currently
687  * registered, passing the id, the pointer and the data pointer passed
688  * to this function.  It is not safe to modify the idr tree while in
689  * the callback, so functions such as idr_get_new and idr_remove are
690  * not allowed.
691  *
692  * We check the return of @fn each time. If it returns anything other
693  * than %0, we break out and return that value.
694  *
695  * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
696  */
697 int idr_for_each(struct idr *idp,
698 		 int (*fn)(int id, void *p, void *data), void *data)
699 {
700 	int n, id, max, error = 0;
701 	struct idr_layer *p;
702 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
703 	struct idr_layer **paa = &pa[0];
704 
705 	n = idp->layers * IDR_BITS;
706 	p = rcu_dereference_raw(idp->top);
707 	max = idr_max(idp->layers);
708 
709 	id = 0;
710 	while (id >= 0 && id <= max) {
711 		while (n > 0 && p) {
712 			n -= IDR_BITS;
713 			*paa++ = p;
714 			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
715 		}
716 
717 		if (p) {
718 			error = fn(id, (void *)p, data);
719 			if (error)
720 				break;
721 		}
722 
723 		id += 1 << n;
724 		while (n < fls(id)) {
725 			n += IDR_BITS;
726 			p = *--paa;
727 		}
728 	}
729 
730 	return error;
731 }
732 EXPORT_SYMBOL(idr_for_each);
733 
734 /**
735  * idr_get_next - lookup next object of id to given id.
736  * @idp: idr handle
737  * @nextidp:  pointer to lookup key
738  *
739  * Returns pointer to registered object with id, which is next number to
740  * given id. After being looked up, *@nextidp will be updated for the next
741  * iteration.
742  *
743  * This function can be called under rcu_read_lock(), given that the leaf
744  * pointers lifetimes are correctly managed.
745  */
746 void *idr_get_next(struct idr *idp, int *nextidp)
747 {
748 	struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
749 	struct idr_layer **paa = &pa[0];
750 	int id = *nextidp;
751 	int n, max;
752 
753 	/* find first ent */
754 	p = rcu_dereference_raw(idp->top);
755 	if (!p)
756 		return NULL;
757 	n = (p->layer + 1) * IDR_BITS;
758 	max = idr_max(p->layer + 1);
759 
760 	while (id >= 0 && id <= max) {
761 		while (n > 0 && p) {
762 			n -= IDR_BITS;
763 			*paa++ = p;
764 			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
765 		}
766 
767 		if (p) {
768 			*nextidp = id;
769 			return p;
770 		}
771 
772 		/*
773 		 * Proceed to the next layer at the current level.  Unlike
774 		 * idr_for_each(), @id isn't guaranteed to be aligned to
775 		 * layer boundary at this point and adding 1 << n may
776 		 * incorrectly skip IDs.  Make sure we jump to the
777 		 * beginning of the next layer using round_up().
778 		 */
779 		id = round_up(id + 1, 1 << n);
780 		while (n < fls(id)) {
781 			n += IDR_BITS;
782 			p = *--paa;
783 		}
784 	}
785 	return NULL;
786 }
787 EXPORT_SYMBOL(idr_get_next);
788 
789 
790 /**
791  * idr_replace - replace pointer for given id
792  * @idp: idr handle
793  * @ptr: pointer you want associated with the id
794  * @id: lookup key
795  *
796  * Replace the pointer registered with an id and return the old value.
797  * A %-ENOENT return indicates that @id was not found.
798  * A %-EINVAL return indicates that @id was not within valid constraints.
799  *
800  * The caller must serialize with writers.
801  */
802 void *idr_replace(struct idr *idp, void *ptr, int id)
803 {
804 	int n;
805 	struct idr_layer *p, *old_p;
806 
807 	if (id < 0)
808 		return ERR_PTR(-EINVAL);
809 
810 	p = idp->top;
811 	if (!p)
812 		return ERR_PTR(-EINVAL);
813 
814 	n = (p->layer+1) * IDR_BITS;
815 
816 	if (id >= (1 << n))
817 		return ERR_PTR(-EINVAL);
818 
819 	n -= IDR_BITS;
820 	while ((n > 0) && p) {
821 		p = p->ary[(id >> n) & IDR_MASK];
822 		n -= IDR_BITS;
823 	}
824 
825 	n = id & IDR_MASK;
826 	if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
827 		return ERR_PTR(-ENOENT);
828 
829 	old_p = p->ary[n];
830 	rcu_assign_pointer(p->ary[n], ptr);
831 
832 	return old_p;
833 }
834 EXPORT_SYMBOL(idr_replace);
835 
836 void __init idr_init_cache(void)
837 {
838 	idr_layer_cache = kmem_cache_create("idr_layer_cache",
839 				sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
840 }
841 
842 /**
843  * idr_init - initialize idr handle
844  * @idp:	idr handle
845  *
846  * This function is use to set up the handle (@idp) that you will pass
847  * to the rest of the functions.
848  */
849 void idr_init(struct idr *idp)
850 {
851 	memset(idp, 0, sizeof(struct idr));
852 	spin_lock_init(&idp->lock);
853 }
854 EXPORT_SYMBOL(idr_init);
855 
856 static int idr_has_entry(int id, void *p, void *data)
857 {
858 	return 1;
859 }
860 
861 bool idr_is_empty(struct idr *idp)
862 {
863 	return !idr_for_each(idp, idr_has_entry, NULL);
864 }
865 EXPORT_SYMBOL(idr_is_empty);
866 
867 /**
868  * DOC: IDA description
869  * IDA - IDR based ID allocator
870  *
871  * This is id allocator without id -> pointer translation.  Memory
872  * usage is much lower than full blown idr because each id only
873  * occupies a bit.  ida uses a custom leaf node which contains
874  * IDA_BITMAP_BITS slots.
875  *
876  * 2007-04-25  written by Tejun Heo <htejun@gmail.com>
877  */
878 
879 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
880 {
881 	unsigned long flags;
882 
883 	if (!ida->free_bitmap) {
884 		spin_lock_irqsave(&ida->idr.lock, flags);
885 		if (!ida->free_bitmap) {
886 			ida->free_bitmap = bitmap;
887 			bitmap = NULL;
888 		}
889 		spin_unlock_irqrestore(&ida->idr.lock, flags);
890 	}
891 
892 	kfree(bitmap);
893 }
894 
895 /**
896  * ida_pre_get - reserve resources for ida allocation
897  * @ida:	ida handle
898  * @gfp_mask:	memory allocation flag
899  *
900  * This function should be called prior to locking and calling the
901  * following function.  It preallocates enough memory to satisfy the
902  * worst possible allocation.
903  *
904  * If the system is REALLY out of memory this function returns %0,
905  * otherwise %1.
906  */
907 int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
908 {
909 	/* allocate idr_layers */
910 	if (!__idr_pre_get(&ida->idr, gfp_mask))
911 		return 0;
912 
913 	/* allocate free_bitmap */
914 	if (!ida->free_bitmap) {
915 		struct ida_bitmap *bitmap;
916 
917 		bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
918 		if (!bitmap)
919 			return 0;
920 
921 		free_bitmap(ida, bitmap);
922 	}
923 
924 	return 1;
925 }
926 EXPORT_SYMBOL(ida_pre_get);
927 
928 /**
929  * ida_get_new_above - allocate new ID above or equal to a start id
930  * @ida:	ida handle
931  * @starting_id: id to start search at
932  * @p_id:	pointer to the allocated handle
933  *
934  * Allocate new ID above or equal to @starting_id.  It should be called
935  * with any required locks.
936  *
937  * If memory is required, it will return %-EAGAIN, you should unlock
938  * and go back to the ida_pre_get() call.  If the ida is full, it will
939  * return %-ENOSPC.
940  *
941  * @p_id returns a value in the range @starting_id ... %0x7fffffff.
942  */
943 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
944 {
945 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
946 	struct ida_bitmap *bitmap;
947 	unsigned long flags;
948 	int idr_id = starting_id / IDA_BITMAP_BITS;
949 	int offset = starting_id % IDA_BITMAP_BITS;
950 	int t, id;
951 
952  restart:
953 	/* get vacant slot */
954 	t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
955 	if (t < 0)
956 		return t == -ENOMEM ? -EAGAIN : t;
957 
958 	if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
959 		return -ENOSPC;
960 
961 	if (t != idr_id)
962 		offset = 0;
963 	idr_id = t;
964 
965 	/* if bitmap isn't there, create a new one */
966 	bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
967 	if (!bitmap) {
968 		spin_lock_irqsave(&ida->idr.lock, flags);
969 		bitmap = ida->free_bitmap;
970 		ida->free_bitmap = NULL;
971 		spin_unlock_irqrestore(&ida->idr.lock, flags);
972 
973 		if (!bitmap)
974 			return -EAGAIN;
975 
976 		memset(bitmap, 0, sizeof(struct ida_bitmap));
977 		rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
978 				(void *)bitmap);
979 		pa[0]->count++;
980 	}
981 
982 	/* lookup for empty slot */
983 	t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
984 	if (t == IDA_BITMAP_BITS) {
985 		/* no empty slot after offset, continue to the next chunk */
986 		idr_id++;
987 		offset = 0;
988 		goto restart;
989 	}
990 
991 	id = idr_id * IDA_BITMAP_BITS + t;
992 	if (id >= MAX_IDR_BIT)
993 		return -ENOSPC;
994 
995 	__set_bit(t, bitmap->bitmap);
996 	if (++bitmap->nr_busy == IDA_BITMAP_BITS)
997 		idr_mark_full(pa, idr_id);
998 
999 	*p_id = id;
1000 
1001 	/* Each leaf node can handle nearly a thousand slots and the
1002 	 * whole idea of ida is to have small memory foot print.
1003 	 * Throw away extra resources one by one after each successful
1004 	 * allocation.
1005 	 */
1006 	if (ida->idr.id_free_cnt || ida->free_bitmap) {
1007 		struct idr_layer *p = get_from_free_list(&ida->idr);
1008 		if (p)
1009 			kmem_cache_free(idr_layer_cache, p);
1010 	}
1011 
1012 	return 0;
1013 }
1014 EXPORT_SYMBOL(ida_get_new_above);
1015 
1016 /**
1017  * ida_remove - remove the given ID
1018  * @ida:	ida handle
1019  * @id:		ID to free
1020  */
1021 void ida_remove(struct ida *ida, int id)
1022 {
1023 	struct idr_layer *p = ida->idr.top;
1024 	int shift = (ida->idr.layers - 1) * IDR_BITS;
1025 	int idr_id = id / IDA_BITMAP_BITS;
1026 	int offset = id % IDA_BITMAP_BITS;
1027 	int n;
1028 	struct ida_bitmap *bitmap;
1029 
1030 	/* clear full bits while looking up the leaf idr_layer */
1031 	while ((shift > 0) && p) {
1032 		n = (idr_id >> shift) & IDR_MASK;
1033 		__clear_bit(n, p->bitmap);
1034 		p = p->ary[n];
1035 		shift -= IDR_BITS;
1036 	}
1037 
1038 	if (p == NULL)
1039 		goto err;
1040 
1041 	n = idr_id & IDR_MASK;
1042 	__clear_bit(n, p->bitmap);
1043 
1044 	bitmap = (void *)p->ary[n];
1045 	if (!test_bit(offset, bitmap->bitmap))
1046 		goto err;
1047 
1048 	/* update bitmap and remove it if empty */
1049 	__clear_bit(offset, bitmap->bitmap);
1050 	if (--bitmap->nr_busy == 0) {
1051 		__set_bit(n, p->bitmap);	/* to please idr_remove() */
1052 		idr_remove(&ida->idr, idr_id);
1053 		free_bitmap(ida, bitmap);
1054 	}
1055 
1056 	return;
1057 
1058  err:
1059 	WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
1060 }
1061 EXPORT_SYMBOL(ida_remove);
1062 
1063 /**
1064  * ida_destroy - release all cached layers within an ida tree
1065  * @ida:		ida handle
1066  */
1067 void ida_destroy(struct ida *ida)
1068 {
1069 	idr_destroy(&ida->idr);
1070 	kfree(ida->free_bitmap);
1071 }
1072 EXPORT_SYMBOL(ida_destroy);
1073 
1074 /**
1075  * ida_simple_get - get a new id.
1076  * @ida: the (initialized) ida.
1077  * @start: the minimum id (inclusive, < 0x8000000)
1078  * @end: the maximum id (exclusive, < 0x8000000 or 0)
1079  * @gfp_mask: memory allocation flags
1080  *
1081  * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1082  * On memory allocation failure, returns -ENOMEM.
1083  *
1084  * Use ida_simple_remove() to get rid of an id.
1085  */
1086 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
1087 		   gfp_t gfp_mask)
1088 {
1089 	int ret, id;
1090 	unsigned int max;
1091 	unsigned long flags;
1092 
1093 	BUG_ON((int)start < 0);
1094 	BUG_ON((int)end < 0);
1095 
1096 	if (end == 0)
1097 		max = 0x80000000;
1098 	else {
1099 		BUG_ON(end < start);
1100 		max = end - 1;
1101 	}
1102 
1103 again:
1104 	if (!ida_pre_get(ida, gfp_mask))
1105 		return -ENOMEM;
1106 
1107 	spin_lock_irqsave(&simple_ida_lock, flags);
1108 	ret = ida_get_new_above(ida, start, &id);
1109 	if (!ret) {
1110 		if (id > max) {
1111 			ida_remove(ida, id);
1112 			ret = -ENOSPC;
1113 		} else {
1114 			ret = id;
1115 		}
1116 	}
1117 	spin_unlock_irqrestore(&simple_ida_lock, flags);
1118 
1119 	if (unlikely(ret == -EAGAIN))
1120 		goto again;
1121 
1122 	return ret;
1123 }
1124 EXPORT_SYMBOL(ida_simple_get);
1125 
1126 /**
1127  * ida_simple_remove - remove an allocated id.
1128  * @ida: the (initialized) ida.
1129  * @id: the id returned by ida_simple_get.
1130  */
1131 void ida_simple_remove(struct ida *ida, unsigned int id)
1132 {
1133 	unsigned long flags;
1134 
1135 	BUG_ON((int)id < 0);
1136 	spin_lock_irqsave(&simple_ida_lock, flags);
1137 	ida_remove(ida, id);
1138 	spin_unlock_irqrestore(&simple_ida_lock, flags);
1139 }
1140 EXPORT_SYMBOL(ida_simple_remove);
1141 
1142 /**
1143  * ida_init - initialize ida handle
1144  * @ida:	ida handle
1145  *
1146  * This function is use to set up the handle (@ida) that you will pass
1147  * to the rest of the functions.
1148  */
1149 void ida_init(struct ida *ida)
1150 {
1151 	memset(ida, 0, sizeof(struct ida));
1152 	idr_init(&ida->idr);
1153 
1154 }
1155 EXPORT_SYMBOL(ida_init);
1156