1 /* 2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com 3 * Copyright (C) 2002 by Concurrent Computer Corporation 4 * Distributed under the GNU GPL license version 2. 5 * 6 * Modified by George Anzinger to reuse immediately and to use 7 * find bit instructions. Also removed _irq on spinlocks. 8 * 9 * Modified by Nadia Derbey to make it RCU safe. 10 * 11 * Small id to pointer translation service. 12 * 13 * It uses a radix tree like structure as a sparse array indexed 14 * by the id to obtain the pointer. The bitmap makes allocating 15 * a new id quick. 16 * 17 * You call it to allocate an id (an int) an associate with that id a 18 * pointer or what ever, we treat it as a (void *). You can pass this 19 * id to a user for him to pass back at a later time. You then pass 20 * that id to this code and it returns your pointer. 21 22 * You can release ids at any time. When all ids are released, most of 23 * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we 24 * don't need to go to the memory "store" during an id allocate, just 25 * so you don't need to be too concerned about locking and conflicts 26 * with the slab allocator. 27 */ 28 29 #ifndef TEST // to test in user space... 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/export.h> 33 #endif 34 #include <linux/err.h> 35 #include <linux/string.h> 36 #include <linux/idr.h> 37 #include <linux/spinlock.h> 38 #include <linux/percpu.h> 39 #include <linux/hardirq.h> 40 41 #define MAX_IDR_SHIFT (sizeof(int) * 8 - 1) 42 #define MAX_IDR_BIT (1U << MAX_IDR_SHIFT) 43 44 /* Leave the possibility of an incomplete final layer */ 45 #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS) 46 47 /* Number of id_layer structs to leave in free list */ 48 #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2) 49 50 static struct kmem_cache *idr_layer_cache; 51 static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head); 52 static DEFINE_PER_CPU(int, idr_preload_cnt); 53 static DEFINE_SPINLOCK(simple_ida_lock); 54 55 /* the maximum ID which can be allocated given idr->layers */ 56 static int idr_max(int layers) 57 { 58 int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT); 59 60 return (1 << bits) - 1; 61 } 62 63 /* 64 * Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is 65 * all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and 66 * so on. 67 */ 68 static int idr_layer_prefix_mask(int layer) 69 { 70 return ~idr_max(layer + 1); 71 } 72 73 static struct idr_layer *get_from_free_list(struct idr *idp) 74 { 75 struct idr_layer *p; 76 unsigned long flags; 77 78 spin_lock_irqsave(&idp->lock, flags); 79 if ((p = idp->id_free)) { 80 idp->id_free = p->ary[0]; 81 idp->id_free_cnt--; 82 p->ary[0] = NULL; 83 } 84 spin_unlock_irqrestore(&idp->lock, flags); 85 return(p); 86 } 87 88 /** 89 * idr_layer_alloc - allocate a new idr_layer 90 * @gfp_mask: allocation mask 91 * @layer_idr: optional idr to allocate from 92 * 93 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch 94 * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch 95 * an idr_layer from @idr->id_free. 96 * 97 * @layer_idr is to maintain backward compatibility with the old alloc 98 * interface - idr_pre_get() and idr_get_new*() - and will be removed 99 * together with per-pool preload buffer. 100 */ 101 static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr) 102 { 103 struct idr_layer *new; 104 105 /* this is the old path, bypass to get_from_free_list() */ 106 if (layer_idr) 107 return get_from_free_list(layer_idr); 108 109 /* 110 * Try to allocate directly from kmem_cache. We want to try this 111 * before preload buffer; otherwise, non-preloading idr_alloc() 112 * users will end up taking advantage of preloading ones. As the 113 * following is allowed to fail for preloaded cases, suppress 114 * warning this time. 115 */ 116 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN); 117 if (new) 118 return new; 119 120 /* 121 * Try to fetch one from the per-cpu preload buffer if in process 122 * context. See idr_preload() for details. 123 */ 124 if (!in_interrupt()) { 125 preempt_disable(); 126 new = __this_cpu_read(idr_preload_head); 127 if (new) { 128 __this_cpu_write(idr_preload_head, new->ary[0]); 129 __this_cpu_dec(idr_preload_cnt); 130 new->ary[0] = NULL; 131 } 132 preempt_enable(); 133 if (new) 134 return new; 135 } 136 137 /* 138 * Both failed. Try kmem_cache again w/o adding __GFP_NOWARN so 139 * that memory allocation failure warning is printed as intended. 140 */ 141 return kmem_cache_zalloc(idr_layer_cache, gfp_mask); 142 } 143 144 static void idr_layer_rcu_free(struct rcu_head *head) 145 { 146 struct idr_layer *layer; 147 148 layer = container_of(head, struct idr_layer, rcu_head); 149 kmem_cache_free(idr_layer_cache, layer); 150 } 151 152 static inline void free_layer(struct idr *idr, struct idr_layer *p) 153 { 154 if (idr->hint && idr->hint == p) 155 RCU_INIT_POINTER(idr->hint, NULL); 156 call_rcu(&p->rcu_head, idr_layer_rcu_free); 157 } 158 159 /* only called when idp->lock is held */ 160 static void __move_to_free_list(struct idr *idp, struct idr_layer *p) 161 { 162 p->ary[0] = idp->id_free; 163 idp->id_free = p; 164 idp->id_free_cnt++; 165 } 166 167 static void move_to_free_list(struct idr *idp, struct idr_layer *p) 168 { 169 unsigned long flags; 170 171 /* 172 * Depends on the return element being zeroed. 173 */ 174 spin_lock_irqsave(&idp->lock, flags); 175 __move_to_free_list(idp, p); 176 spin_unlock_irqrestore(&idp->lock, flags); 177 } 178 179 static void idr_mark_full(struct idr_layer **pa, int id) 180 { 181 struct idr_layer *p = pa[0]; 182 int l = 0; 183 184 __set_bit(id & IDR_MASK, p->bitmap); 185 /* 186 * If this layer is full mark the bit in the layer above to 187 * show that this part of the radix tree is full. This may 188 * complete the layer above and require walking up the radix 189 * tree. 190 */ 191 while (bitmap_full(p->bitmap, IDR_SIZE)) { 192 if (!(p = pa[++l])) 193 break; 194 id = id >> IDR_BITS; 195 __set_bit((id & IDR_MASK), p->bitmap); 196 } 197 } 198 199 static int __idr_pre_get(struct idr *idp, gfp_t gfp_mask) 200 { 201 while (idp->id_free_cnt < MAX_IDR_FREE) { 202 struct idr_layer *new; 203 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); 204 if (new == NULL) 205 return (0); 206 move_to_free_list(idp, new); 207 } 208 return 1; 209 } 210 211 /** 212 * sub_alloc - try to allocate an id without growing the tree depth 213 * @idp: idr handle 214 * @starting_id: id to start search at 215 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer 216 * @gfp_mask: allocation mask for idr_layer_alloc() 217 * @layer_idr: optional idr passed to idr_layer_alloc() 218 * 219 * Allocate an id in range [@starting_id, INT_MAX] from @idp without 220 * growing its depth. Returns 221 * 222 * the allocated id >= 0 if successful, 223 * -EAGAIN if the tree needs to grow for allocation to succeed, 224 * -ENOSPC if the id space is exhausted, 225 * -ENOMEM if more idr_layers need to be allocated. 226 */ 227 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa, 228 gfp_t gfp_mask, struct idr *layer_idr) 229 { 230 int n, m, sh; 231 struct idr_layer *p, *new; 232 int l, id, oid; 233 234 id = *starting_id; 235 restart: 236 p = idp->top; 237 l = idp->layers; 238 pa[l--] = NULL; 239 while (1) { 240 /* 241 * We run around this while until we reach the leaf node... 242 */ 243 n = (id >> (IDR_BITS*l)) & IDR_MASK; 244 m = find_next_zero_bit(p->bitmap, IDR_SIZE, n); 245 if (m == IDR_SIZE) { 246 /* no space available go back to previous layer. */ 247 l++; 248 oid = id; 249 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1; 250 251 /* if already at the top layer, we need to grow */ 252 if (id >= 1 << (idp->layers * IDR_BITS)) { 253 *starting_id = id; 254 return -EAGAIN; 255 } 256 p = pa[l]; 257 BUG_ON(!p); 258 259 /* If we need to go up one layer, continue the 260 * loop; otherwise, restart from the top. 261 */ 262 sh = IDR_BITS * (l + 1); 263 if (oid >> sh == id >> sh) 264 continue; 265 else 266 goto restart; 267 } 268 if (m != n) { 269 sh = IDR_BITS*l; 270 id = ((id >> sh) ^ n ^ m) << sh; 271 } 272 if ((id >= MAX_IDR_BIT) || (id < 0)) 273 return -ENOSPC; 274 if (l == 0) 275 break; 276 /* 277 * Create the layer below if it is missing. 278 */ 279 if (!p->ary[m]) { 280 new = idr_layer_alloc(gfp_mask, layer_idr); 281 if (!new) 282 return -ENOMEM; 283 new->layer = l-1; 284 new->prefix = id & idr_layer_prefix_mask(new->layer); 285 rcu_assign_pointer(p->ary[m], new); 286 p->count++; 287 } 288 pa[l--] = p; 289 p = p->ary[m]; 290 } 291 292 pa[l] = p; 293 return id; 294 } 295 296 static int idr_get_empty_slot(struct idr *idp, int starting_id, 297 struct idr_layer **pa, gfp_t gfp_mask, 298 struct idr *layer_idr) 299 { 300 struct idr_layer *p, *new; 301 int layers, v, id; 302 unsigned long flags; 303 304 id = starting_id; 305 build_up: 306 p = idp->top; 307 layers = idp->layers; 308 if (unlikely(!p)) { 309 if (!(p = idr_layer_alloc(gfp_mask, layer_idr))) 310 return -ENOMEM; 311 p->layer = 0; 312 layers = 1; 313 } 314 /* 315 * Add a new layer to the top of the tree if the requested 316 * id is larger than the currently allocated space. 317 */ 318 while (id > idr_max(layers)) { 319 layers++; 320 if (!p->count) { 321 /* special case: if the tree is currently empty, 322 * then we grow the tree by moving the top node 323 * upwards. 324 */ 325 p->layer++; 326 WARN_ON_ONCE(p->prefix); 327 continue; 328 } 329 if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) { 330 /* 331 * The allocation failed. If we built part of 332 * the structure tear it down. 333 */ 334 spin_lock_irqsave(&idp->lock, flags); 335 for (new = p; p && p != idp->top; new = p) { 336 p = p->ary[0]; 337 new->ary[0] = NULL; 338 new->count = 0; 339 bitmap_clear(new->bitmap, 0, IDR_SIZE); 340 __move_to_free_list(idp, new); 341 } 342 spin_unlock_irqrestore(&idp->lock, flags); 343 return -ENOMEM; 344 } 345 new->ary[0] = p; 346 new->count = 1; 347 new->layer = layers-1; 348 new->prefix = id & idr_layer_prefix_mask(new->layer); 349 if (bitmap_full(p->bitmap, IDR_SIZE)) 350 __set_bit(0, new->bitmap); 351 p = new; 352 } 353 rcu_assign_pointer(idp->top, p); 354 idp->layers = layers; 355 v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr); 356 if (v == -EAGAIN) 357 goto build_up; 358 return(v); 359 } 360 361 /* 362 * @id and @pa are from a successful allocation from idr_get_empty_slot(). 363 * Install the user pointer @ptr and mark the slot full. 364 */ 365 static void idr_fill_slot(struct idr *idr, void *ptr, int id, 366 struct idr_layer **pa) 367 { 368 /* update hint used for lookup, cleared from free_layer() */ 369 rcu_assign_pointer(idr->hint, pa[0]); 370 371 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr); 372 pa[0]->count++; 373 idr_mark_full(pa, id); 374 } 375 376 377 /** 378 * idr_preload - preload for idr_alloc() 379 * @gfp_mask: allocation mask to use for preloading 380 * 381 * Preload per-cpu layer buffer for idr_alloc(). Can only be used from 382 * process context and each idr_preload() invocation should be matched with 383 * idr_preload_end(). Note that preemption is disabled while preloaded. 384 * 385 * The first idr_alloc() in the preloaded section can be treated as if it 386 * were invoked with @gfp_mask used for preloading. This allows using more 387 * permissive allocation masks for idrs protected by spinlocks. 388 * 389 * For example, if idr_alloc() below fails, the failure can be treated as 390 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT. 391 * 392 * idr_preload(GFP_KERNEL); 393 * spin_lock(lock); 394 * 395 * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT); 396 * 397 * spin_unlock(lock); 398 * idr_preload_end(); 399 * if (id < 0) 400 * error; 401 */ 402 void idr_preload(gfp_t gfp_mask) 403 { 404 /* 405 * Consuming preload buffer from non-process context breaks preload 406 * allocation guarantee. Disallow usage from those contexts. 407 */ 408 WARN_ON_ONCE(in_interrupt()); 409 might_sleep_if(gfp_mask & __GFP_WAIT); 410 411 preempt_disable(); 412 413 /* 414 * idr_alloc() is likely to succeed w/o full idr_layer buffer and 415 * return value from idr_alloc() needs to be checked for failure 416 * anyway. Silently give up if allocation fails. The caller can 417 * treat failures from idr_alloc() as if idr_alloc() were called 418 * with @gfp_mask which should be enough. 419 */ 420 while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) { 421 struct idr_layer *new; 422 423 preempt_enable(); 424 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); 425 preempt_disable(); 426 if (!new) 427 break; 428 429 /* link the new one to per-cpu preload list */ 430 new->ary[0] = __this_cpu_read(idr_preload_head); 431 __this_cpu_write(idr_preload_head, new); 432 __this_cpu_inc(idr_preload_cnt); 433 } 434 } 435 EXPORT_SYMBOL(idr_preload); 436 437 /** 438 * idr_alloc - allocate new idr entry 439 * @idr: the (initialized) idr 440 * @ptr: pointer to be associated with the new id 441 * @start: the minimum id (inclusive) 442 * @end: the maximum id (exclusive, <= 0 for max) 443 * @gfp_mask: memory allocation flags 444 * 445 * Allocate an id in [start, end) and associate it with @ptr. If no ID is 446 * available in the specified range, returns -ENOSPC. On memory allocation 447 * failure, returns -ENOMEM. 448 * 449 * Note that @end is treated as max when <= 0. This is to always allow 450 * using @start + N as @end as long as N is inside integer range. 451 * 452 * The user is responsible for exclusively synchronizing all operations 453 * which may modify @idr. However, read-only accesses such as idr_find() 454 * or iteration can be performed under RCU read lock provided the user 455 * destroys @ptr in RCU-safe way after removal from idr. 456 */ 457 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask) 458 { 459 int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */ 460 struct idr_layer *pa[MAX_IDR_LEVEL + 1]; 461 int id; 462 463 might_sleep_if(gfp_mask & __GFP_WAIT); 464 465 /* sanity checks */ 466 if (WARN_ON_ONCE(start < 0)) 467 return -EINVAL; 468 if (unlikely(max < start)) 469 return -ENOSPC; 470 471 /* allocate id */ 472 id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL); 473 if (unlikely(id < 0)) 474 return id; 475 if (unlikely(id > max)) 476 return -ENOSPC; 477 478 idr_fill_slot(idr, ptr, id, pa); 479 return id; 480 } 481 EXPORT_SYMBOL_GPL(idr_alloc); 482 483 /** 484 * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion 485 * @idr: the (initialized) idr 486 * @ptr: pointer to be associated with the new id 487 * @start: the minimum id (inclusive) 488 * @end: the maximum id (exclusive, <= 0 for max) 489 * @gfp_mask: memory allocation flags 490 * 491 * Essentially the same as idr_alloc, but prefers to allocate progressively 492 * higher ids if it can. If the "cur" counter wraps, then it will start again 493 * at the "start" end of the range and allocate one that has already been used. 494 */ 495 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, 496 gfp_t gfp_mask) 497 { 498 int id; 499 500 id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask); 501 if (id == -ENOSPC) 502 id = idr_alloc(idr, ptr, start, end, gfp_mask); 503 504 if (likely(id >= 0)) 505 idr->cur = id + 1; 506 return id; 507 } 508 EXPORT_SYMBOL(idr_alloc_cyclic); 509 510 static void idr_remove_warning(int id) 511 { 512 WARN(1, "idr_remove called for id=%d which is not allocated.\n", id); 513 } 514 515 static void sub_remove(struct idr *idp, int shift, int id) 516 { 517 struct idr_layer *p = idp->top; 518 struct idr_layer **pa[MAX_IDR_LEVEL + 1]; 519 struct idr_layer ***paa = &pa[0]; 520 struct idr_layer *to_free; 521 int n; 522 523 *paa = NULL; 524 *++paa = &idp->top; 525 526 while ((shift > 0) && p) { 527 n = (id >> shift) & IDR_MASK; 528 __clear_bit(n, p->bitmap); 529 *++paa = &p->ary[n]; 530 p = p->ary[n]; 531 shift -= IDR_BITS; 532 } 533 n = id & IDR_MASK; 534 if (likely(p != NULL && test_bit(n, p->bitmap))) { 535 __clear_bit(n, p->bitmap); 536 RCU_INIT_POINTER(p->ary[n], NULL); 537 to_free = NULL; 538 while(*paa && ! --((**paa)->count)){ 539 if (to_free) 540 free_layer(idp, to_free); 541 to_free = **paa; 542 **paa-- = NULL; 543 } 544 if (!*paa) 545 idp->layers = 0; 546 if (to_free) 547 free_layer(idp, to_free); 548 } else 549 idr_remove_warning(id); 550 } 551 552 /** 553 * idr_remove - remove the given id and free its slot 554 * @idp: idr handle 555 * @id: unique key 556 */ 557 void idr_remove(struct idr *idp, int id) 558 { 559 struct idr_layer *p; 560 struct idr_layer *to_free; 561 562 if (id < 0) 563 return; 564 565 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); 566 if (idp->top && idp->top->count == 1 && (idp->layers > 1) && 567 idp->top->ary[0]) { 568 /* 569 * Single child at leftmost slot: we can shrink the tree. 570 * This level is not needed anymore since when layers are 571 * inserted, they are inserted at the top of the existing 572 * tree. 573 */ 574 to_free = idp->top; 575 p = idp->top->ary[0]; 576 rcu_assign_pointer(idp->top, p); 577 --idp->layers; 578 to_free->count = 0; 579 bitmap_clear(to_free->bitmap, 0, IDR_SIZE); 580 free_layer(idp, to_free); 581 } 582 while (idp->id_free_cnt >= MAX_IDR_FREE) { 583 p = get_from_free_list(idp); 584 /* 585 * Note: we don't call the rcu callback here, since the only 586 * layers that fall into the freelist are those that have been 587 * preallocated. 588 */ 589 kmem_cache_free(idr_layer_cache, p); 590 } 591 return; 592 } 593 EXPORT_SYMBOL(idr_remove); 594 595 static void __idr_remove_all(struct idr *idp) 596 { 597 int n, id, max; 598 int bt_mask; 599 struct idr_layer *p; 600 struct idr_layer *pa[MAX_IDR_LEVEL + 1]; 601 struct idr_layer **paa = &pa[0]; 602 603 n = idp->layers * IDR_BITS; 604 p = idp->top; 605 RCU_INIT_POINTER(idp->top, NULL); 606 max = idr_max(idp->layers); 607 608 id = 0; 609 while (id >= 0 && id <= max) { 610 while (n > IDR_BITS && p) { 611 n -= IDR_BITS; 612 *paa++ = p; 613 p = p->ary[(id >> n) & IDR_MASK]; 614 } 615 616 bt_mask = id; 617 id += 1 << n; 618 /* Get the highest bit that the above add changed from 0->1. */ 619 while (n < fls(id ^ bt_mask)) { 620 if (p) 621 free_layer(idp, p); 622 n += IDR_BITS; 623 p = *--paa; 624 } 625 } 626 idp->layers = 0; 627 } 628 629 /** 630 * idr_destroy - release all cached layers within an idr tree 631 * @idp: idr handle 632 * 633 * Free all id mappings and all idp_layers. After this function, @idp is 634 * completely unused and can be freed / recycled. The caller is 635 * responsible for ensuring that no one else accesses @idp during or after 636 * idr_destroy(). 637 * 638 * A typical clean-up sequence for objects stored in an idr tree will use 639 * idr_for_each() to free all objects, if necessay, then idr_destroy() to 640 * free up the id mappings and cached idr_layers. 641 */ 642 void idr_destroy(struct idr *idp) 643 { 644 __idr_remove_all(idp); 645 646 while (idp->id_free_cnt) { 647 struct idr_layer *p = get_from_free_list(idp); 648 kmem_cache_free(idr_layer_cache, p); 649 } 650 } 651 EXPORT_SYMBOL(idr_destroy); 652 653 void *idr_find_slowpath(struct idr *idp, int id) 654 { 655 int n; 656 struct idr_layer *p; 657 658 if (id < 0) 659 return NULL; 660 661 p = rcu_dereference_raw(idp->top); 662 if (!p) 663 return NULL; 664 n = (p->layer+1) * IDR_BITS; 665 666 if (id > idr_max(p->layer + 1)) 667 return NULL; 668 BUG_ON(n == 0); 669 670 while (n > 0 && p) { 671 n -= IDR_BITS; 672 BUG_ON(n != p->layer*IDR_BITS); 673 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); 674 } 675 return((void *)p); 676 } 677 EXPORT_SYMBOL(idr_find_slowpath); 678 679 /** 680 * idr_for_each - iterate through all stored pointers 681 * @idp: idr handle 682 * @fn: function to be called for each pointer 683 * @data: data passed back to callback function 684 * 685 * Iterate over the pointers registered with the given idr. The 686 * callback function will be called for each pointer currently 687 * registered, passing the id, the pointer and the data pointer passed 688 * to this function. It is not safe to modify the idr tree while in 689 * the callback, so functions such as idr_get_new and idr_remove are 690 * not allowed. 691 * 692 * We check the return of @fn each time. If it returns anything other 693 * than %0, we break out and return that value. 694 * 695 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove(). 696 */ 697 int idr_for_each(struct idr *idp, 698 int (*fn)(int id, void *p, void *data), void *data) 699 { 700 int n, id, max, error = 0; 701 struct idr_layer *p; 702 struct idr_layer *pa[MAX_IDR_LEVEL + 1]; 703 struct idr_layer **paa = &pa[0]; 704 705 n = idp->layers * IDR_BITS; 706 p = rcu_dereference_raw(idp->top); 707 max = idr_max(idp->layers); 708 709 id = 0; 710 while (id >= 0 && id <= max) { 711 while (n > 0 && p) { 712 n -= IDR_BITS; 713 *paa++ = p; 714 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); 715 } 716 717 if (p) { 718 error = fn(id, (void *)p, data); 719 if (error) 720 break; 721 } 722 723 id += 1 << n; 724 while (n < fls(id)) { 725 n += IDR_BITS; 726 p = *--paa; 727 } 728 } 729 730 return error; 731 } 732 EXPORT_SYMBOL(idr_for_each); 733 734 /** 735 * idr_get_next - lookup next object of id to given id. 736 * @idp: idr handle 737 * @nextidp: pointer to lookup key 738 * 739 * Returns pointer to registered object with id, which is next number to 740 * given id. After being looked up, *@nextidp will be updated for the next 741 * iteration. 742 * 743 * This function can be called under rcu_read_lock(), given that the leaf 744 * pointers lifetimes are correctly managed. 745 */ 746 void *idr_get_next(struct idr *idp, int *nextidp) 747 { 748 struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1]; 749 struct idr_layer **paa = &pa[0]; 750 int id = *nextidp; 751 int n, max; 752 753 /* find first ent */ 754 p = rcu_dereference_raw(idp->top); 755 if (!p) 756 return NULL; 757 n = (p->layer + 1) * IDR_BITS; 758 max = idr_max(p->layer + 1); 759 760 while (id >= 0 && id <= max) { 761 while (n > 0 && p) { 762 n -= IDR_BITS; 763 *paa++ = p; 764 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); 765 } 766 767 if (p) { 768 *nextidp = id; 769 return p; 770 } 771 772 /* 773 * Proceed to the next layer at the current level. Unlike 774 * idr_for_each(), @id isn't guaranteed to be aligned to 775 * layer boundary at this point and adding 1 << n may 776 * incorrectly skip IDs. Make sure we jump to the 777 * beginning of the next layer using round_up(). 778 */ 779 id = round_up(id + 1, 1 << n); 780 while (n < fls(id)) { 781 n += IDR_BITS; 782 p = *--paa; 783 } 784 } 785 return NULL; 786 } 787 EXPORT_SYMBOL(idr_get_next); 788 789 790 /** 791 * idr_replace - replace pointer for given id 792 * @idp: idr handle 793 * @ptr: pointer you want associated with the id 794 * @id: lookup key 795 * 796 * Replace the pointer registered with an id and return the old value. 797 * A %-ENOENT return indicates that @id was not found. 798 * A %-EINVAL return indicates that @id was not within valid constraints. 799 * 800 * The caller must serialize with writers. 801 */ 802 void *idr_replace(struct idr *idp, void *ptr, int id) 803 { 804 int n; 805 struct idr_layer *p, *old_p; 806 807 if (id < 0) 808 return ERR_PTR(-EINVAL); 809 810 p = idp->top; 811 if (!p) 812 return ERR_PTR(-EINVAL); 813 814 n = (p->layer+1) * IDR_BITS; 815 816 if (id >= (1 << n)) 817 return ERR_PTR(-EINVAL); 818 819 n -= IDR_BITS; 820 while ((n > 0) && p) { 821 p = p->ary[(id >> n) & IDR_MASK]; 822 n -= IDR_BITS; 823 } 824 825 n = id & IDR_MASK; 826 if (unlikely(p == NULL || !test_bit(n, p->bitmap))) 827 return ERR_PTR(-ENOENT); 828 829 old_p = p->ary[n]; 830 rcu_assign_pointer(p->ary[n], ptr); 831 832 return old_p; 833 } 834 EXPORT_SYMBOL(idr_replace); 835 836 void __init idr_init_cache(void) 837 { 838 idr_layer_cache = kmem_cache_create("idr_layer_cache", 839 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL); 840 } 841 842 /** 843 * idr_init - initialize idr handle 844 * @idp: idr handle 845 * 846 * This function is use to set up the handle (@idp) that you will pass 847 * to the rest of the functions. 848 */ 849 void idr_init(struct idr *idp) 850 { 851 memset(idp, 0, sizeof(struct idr)); 852 spin_lock_init(&idp->lock); 853 } 854 EXPORT_SYMBOL(idr_init); 855 856 static int idr_has_entry(int id, void *p, void *data) 857 { 858 return 1; 859 } 860 861 bool idr_is_empty(struct idr *idp) 862 { 863 return !idr_for_each(idp, idr_has_entry, NULL); 864 } 865 EXPORT_SYMBOL(idr_is_empty); 866 867 /** 868 * DOC: IDA description 869 * IDA - IDR based ID allocator 870 * 871 * This is id allocator without id -> pointer translation. Memory 872 * usage is much lower than full blown idr because each id only 873 * occupies a bit. ida uses a custom leaf node which contains 874 * IDA_BITMAP_BITS slots. 875 * 876 * 2007-04-25 written by Tejun Heo <htejun@gmail.com> 877 */ 878 879 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap) 880 { 881 unsigned long flags; 882 883 if (!ida->free_bitmap) { 884 spin_lock_irqsave(&ida->idr.lock, flags); 885 if (!ida->free_bitmap) { 886 ida->free_bitmap = bitmap; 887 bitmap = NULL; 888 } 889 spin_unlock_irqrestore(&ida->idr.lock, flags); 890 } 891 892 kfree(bitmap); 893 } 894 895 /** 896 * ida_pre_get - reserve resources for ida allocation 897 * @ida: ida handle 898 * @gfp_mask: memory allocation flag 899 * 900 * This function should be called prior to locking and calling the 901 * following function. It preallocates enough memory to satisfy the 902 * worst possible allocation. 903 * 904 * If the system is REALLY out of memory this function returns %0, 905 * otherwise %1. 906 */ 907 int ida_pre_get(struct ida *ida, gfp_t gfp_mask) 908 { 909 /* allocate idr_layers */ 910 if (!__idr_pre_get(&ida->idr, gfp_mask)) 911 return 0; 912 913 /* allocate free_bitmap */ 914 if (!ida->free_bitmap) { 915 struct ida_bitmap *bitmap; 916 917 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask); 918 if (!bitmap) 919 return 0; 920 921 free_bitmap(ida, bitmap); 922 } 923 924 return 1; 925 } 926 EXPORT_SYMBOL(ida_pre_get); 927 928 /** 929 * ida_get_new_above - allocate new ID above or equal to a start id 930 * @ida: ida handle 931 * @starting_id: id to start search at 932 * @p_id: pointer to the allocated handle 933 * 934 * Allocate new ID above or equal to @starting_id. It should be called 935 * with any required locks. 936 * 937 * If memory is required, it will return %-EAGAIN, you should unlock 938 * and go back to the ida_pre_get() call. If the ida is full, it will 939 * return %-ENOSPC. 940 * 941 * @p_id returns a value in the range @starting_id ... %0x7fffffff. 942 */ 943 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id) 944 { 945 struct idr_layer *pa[MAX_IDR_LEVEL + 1]; 946 struct ida_bitmap *bitmap; 947 unsigned long flags; 948 int idr_id = starting_id / IDA_BITMAP_BITS; 949 int offset = starting_id % IDA_BITMAP_BITS; 950 int t, id; 951 952 restart: 953 /* get vacant slot */ 954 t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr); 955 if (t < 0) 956 return t == -ENOMEM ? -EAGAIN : t; 957 958 if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT) 959 return -ENOSPC; 960 961 if (t != idr_id) 962 offset = 0; 963 idr_id = t; 964 965 /* if bitmap isn't there, create a new one */ 966 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK]; 967 if (!bitmap) { 968 spin_lock_irqsave(&ida->idr.lock, flags); 969 bitmap = ida->free_bitmap; 970 ida->free_bitmap = NULL; 971 spin_unlock_irqrestore(&ida->idr.lock, flags); 972 973 if (!bitmap) 974 return -EAGAIN; 975 976 memset(bitmap, 0, sizeof(struct ida_bitmap)); 977 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK], 978 (void *)bitmap); 979 pa[0]->count++; 980 } 981 982 /* lookup for empty slot */ 983 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset); 984 if (t == IDA_BITMAP_BITS) { 985 /* no empty slot after offset, continue to the next chunk */ 986 idr_id++; 987 offset = 0; 988 goto restart; 989 } 990 991 id = idr_id * IDA_BITMAP_BITS + t; 992 if (id >= MAX_IDR_BIT) 993 return -ENOSPC; 994 995 __set_bit(t, bitmap->bitmap); 996 if (++bitmap->nr_busy == IDA_BITMAP_BITS) 997 idr_mark_full(pa, idr_id); 998 999 *p_id = id; 1000 1001 /* Each leaf node can handle nearly a thousand slots and the 1002 * whole idea of ida is to have small memory foot print. 1003 * Throw away extra resources one by one after each successful 1004 * allocation. 1005 */ 1006 if (ida->idr.id_free_cnt || ida->free_bitmap) { 1007 struct idr_layer *p = get_from_free_list(&ida->idr); 1008 if (p) 1009 kmem_cache_free(idr_layer_cache, p); 1010 } 1011 1012 return 0; 1013 } 1014 EXPORT_SYMBOL(ida_get_new_above); 1015 1016 /** 1017 * ida_remove - remove the given ID 1018 * @ida: ida handle 1019 * @id: ID to free 1020 */ 1021 void ida_remove(struct ida *ida, int id) 1022 { 1023 struct idr_layer *p = ida->idr.top; 1024 int shift = (ida->idr.layers - 1) * IDR_BITS; 1025 int idr_id = id / IDA_BITMAP_BITS; 1026 int offset = id % IDA_BITMAP_BITS; 1027 int n; 1028 struct ida_bitmap *bitmap; 1029 1030 /* clear full bits while looking up the leaf idr_layer */ 1031 while ((shift > 0) && p) { 1032 n = (idr_id >> shift) & IDR_MASK; 1033 __clear_bit(n, p->bitmap); 1034 p = p->ary[n]; 1035 shift -= IDR_BITS; 1036 } 1037 1038 if (p == NULL) 1039 goto err; 1040 1041 n = idr_id & IDR_MASK; 1042 __clear_bit(n, p->bitmap); 1043 1044 bitmap = (void *)p->ary[n]; 1045 if (!test_bit(offset, bitmap->bitmap)) 1046 goto err; 1047 1048 /* update bitmap and remove it if empty */ 1049 __clear_bit(offset, bitmap->bitmap); 1050 if (--bitmap->nr_busy == 0) { 1051 __set_bit(n, p->bitmap); /* to please idr_remove() */ 1052 idr_remove(&ida->idr, idr_id); 1053 free_bitmap(ida, bitmap); 1054 } 1055 1056 return; 1057 1058 err: 1059 WARN(1, "ida_remove called for id=%d which is not allocated.\n", id); 1060 } 1061 EXPORT_SYMBOL(ida_remove); 1062 1063 /** 1064 * ida_destroy - release all cached layers within an ida tree 1065 * @ida: ida handle 1066 */ 1067 void ida_destroy(struct ida *ida) 1068 { 1069 idr_destroy(&ida->idr); 1070 kfree(ida->free_bitmap); 1071 } 1072 EXPORT_SYMBOL(ida_destroy); 1073 1074 /** 1075 * ida_simple_get - get a new id. 1076 * @ida: the (initialized) ida. 1077 * @start: the minimum id (inclusive, < 0x8000000) 1078 * @end: the maximum id (exclusive, < 0x8000000 or 0) 1079 * @gfp_mask: memory allocation flags 1080 * 1081 * Allocates an id in the range start <= id < end, or returns -ENOSPC. 1082 * On memory allocation failure, returns -ENOMEM. 1083 * 1084 * Use ida_simple_remove() to get rid of an id. 1085 */ 1086 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end, 1087 gfp_t gfp_mask) 1088 { 1089 int ret, id; 1090 unsigned int max; 1091 unsigned long flags; 1092 1093 BUG_ON((int)start < 0); 1094 BUG_ON((int)end < 0); 1095 1096 if (end == 0) 1097 max = 0x80000000; 1098 else { 1099 BUG_ON(end < start); 1100 max = end - 1; 1101 } 1102 1103 again: 1104 if (!ida_pre_get(ida, gfp_mask)) 1105 return -ENOMEM; 1106 1107 spin_lock_irqsave(&simple_ida_lock, flags); 1108 ret = ida_get_new_above(ida, start, &id); 1109 if (!ret) { 1110 if (id > max) { 1111 ida_remove(ida, id); 1112 ret = -ENOSPC; 1113 } else { 1114 ret = id; 1115 } 1116 } 1117 spin_unlock_irqrestore(&simple_ida_lock, flags); 1118 1119 if (unlikely(ret == -EAGAIN)) 1120 goto again; 1121 1122 return ret; 1123 } 1124 EXPORT_SYMBOL(ida_simple_get); 1125 1126 /** 1127 * ida_simple_remove - remove an allocated id. 1128 * @ida: the (initialized) ida. 1129 * @id: the id returned by ida_simple_get. 1130 */ 1131 void ida_simple_remove(struct ida *ida, unsigned int id) 1132 { 1133 unsigned long flags; 1134 1135 BUG_ON((int)id < 0); 1136 spin_lock_irqsave(&simple_ida_lock, flags); 1137 ida_remove(ida, id); 1138 spin_unlock_irqrestore(&simple_ida_lock, flags); 1139 } 1140 EXPORT_SYMBOL(ida_simple_remove); 1141 1142 /** 1143 * ida_init - initialize ida handle 1144 * @ida: ida handle 1145 * 1146 * This function is use to set up the handle (@ida) that you will pass 1147 * to the rest of the functions. 1148 */ 1149 void ida_init(struct ida *ida) 1150 { 1151 memset(ida, 0, sizeof(struct ida)); 1152 idr_init(&ida->idr); 1153 1154 } 1155 EXPORT_SYMBOL(ida_init); 1156