1 /* 2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com 3 * Copyright (C) 2002 by Concurrent Computer Corporation 4 * Distributed under the GNU GPL license version 2. 5 * 6 * Modified by George Anzinger to reuse immediately and to use 7 * find bit instructions. Also removed _irq on spinlocks. 8 * 9 * Modified by Nadia Derbey to make it RCU safe. 10 * 11 * Small id to pointer translation service. 12 * 13 * It uses a radix tree like structure as a sparse array indexed 14 * by the id to obtain the pointer. The bitmap makes allocating 15 * a new id quick. 16 * 17 * You call it to allocate an id (an int) an associate with that id a 18 * pointer or what ever, we treat it as a (void *). You can pass this 19 * id to a user for him to pass back at a later time. You then pass 20 * that id to this code and it returns your pointer. 21 22 * You can release ids at any time. When all ids are released, most of 23 * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we 24 * don't need to go to the memory "store" during an id allocate, just 25 * so you don't need to be too concerned about locking and conflicts 26 * with the slab allocator. 27 */ 28 29 #ifndef TEST // to test in user space... 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/export.h> 33 #endif 34 #include <linux/err.h> 35 #include <linux/string.h> 36 #include <linux/idr.h> 37 #include <linux/spinlock.h> 38 #include <linux/percpu.h> 39 #include <linux/hardirq.h> 40 41 #define MAX_IDR_SHIFT (sizeof(int) * 8 - 1) 42 #define MAX_IDR_BIT (1U << MAX_IDR_SHIFT) 43 44 /* Leave the possibility of an incomplete final layer */ 45 #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS) 46 47 /* Number of id_layer structs to leave in free list */ 48 #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2) 49 50 static struct kmem_cache *idr_layer_cache; 51 static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head); 52 static DEFINE_PER_CPU(int, idr_preload_cnt); 53 static DEFINE_SPINLOCK(simple_ida_lock); 54 55 /* the maximum ID which can be allocated given idr->layers */ 56 static int idr_max(int layers) 57 { 58 int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT); 59 60 return (1 << bits) - 1; 61 } 62 63 /* 64 * Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is 65 * all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and 66 * so on. 67 */ 68 static int idr_layer_prefix_mask(int layer) 69 { 70 return ~idr_max(layer + 1); 71 } 72 73 static struct idr_layer *get_from_free_list(struct idr *idp) 74 { 75 struct idr_layer *p; 76 unsigned long flags; 77 78 spin_lock_irqsave(&idp->lock, flags); 79 if ((p = idp->id_free)) { 80 idp->id_free = p->ary[0]; 81 idp->id_free_cnt--; 82 p->ary[0] = NULL; 83 } 84 spin_unlock_irqrestore(&idp->lock, flags); 85 return(p); 86 } 87 88 /** 89 * idr_layer_alloc - allocate a new idr_layer 90 * @gfp_mask: allocation mask 91 * @layer_idr: optional idr to allocate from 92 * 93 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch 94 * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch 95 * an idr_layer from @idr->id_free. 96 * 97 * @layer_idr is to maintain backward compatibility with the old alloc 98 * interface - idr_pre_get() and idr_get_new*() - and will be removed 99 * together with per-pool preload buffer. 100 */ 101 static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr) 102 { 103 struct idr_layer *new; 104 105 /* this is the old path, bypass to get_from_free_list() */ 106 if (layer_idr) 107 return get_from_free_list(layer_idr); 108 109 /* 110 * Try to allocate directly from kmem_cache. We want to try this 111 * before preload buffer; otherwise, non-preloading idr_alloc() 112 * users will end up taking advantage of preloading ones. As the 113 * following is allowed to fail for preloaded cases, suppress 114 * warning this time. 115 */ 116 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN); 117 if (new) 118 return new; 119 120 /* 121 * Try to fetch one from the per-cpu preload buffer if in process 122 * context. See idr_preload() for details. 123 */ 124 if (!in_interrupt()) { 125 preempt_disable(); 126 new = __this_cpu_read(idr_preload_head); 127 if (new) { 128 __this_cpu_write(idr_preload_head, new->ary[0]); 129 __this_cpu_dec(idr_preload_cnt); 130 new->ary[0] = NULL; 131 } 132 preempt_enable(); 133 if (new) 134 return new; 135 } 136 137 /* 138 * Both failed. Try kmem_cache again w/o adding __GFP_NOWARN so 139 * that memory allocation failure warning is printed as intended. 140 */ 141 return kmem_cache_zalloc(idr_layer_cache, gfp_mask); 142 } 143 144 static void idr_layer_rcu_free(struct rcu_head *head) 145 { 146 struct idr_layer *layer; 147 148 layer = container_of(head, struct idr_layer, rcu_head); 149 kmem_cache_free(idr_layer_cache, layer); 150 } 151 152 static inline void free_layer(struct idr *idr, struct idr_layer *p) 153 { 154 if (idr->hint && idr->hint == p) 155 RCU_INIT_POINTER(idr->hint, NULL); 156 call_rcu(&p->rcu_head, idr_layer_rcu_free); 157 } 158 159 /* only called when idp->lock is held */ 160 static void __move_to_free_list(struct idr *idp, struct idr_layer *p) 161 { 162 p->ary[0] = idp->id_free; 163 idp->id_free = p; 164 idp->id_free_cnt++; 165 } 166 167 static void move_to_free_list(struct idr *idp, struct idr_layer *p) 168 { 169 unsigned long flags; 170 171 /* 172 * Depends on the return element being zeroed. 173 */ 174 spin_lock_irqsave(&idp->lock, flags); 175 __move_to_free_list(idp, p); 176 spin_unlock_irqrestore(&idp->lock, flags); 177 } 178 179 static void idr_mark_full(struct idr_layer **pa, int id) 180 { 181 struct idr_layer *p = pa[0]; 182 int l = 0; 183 184 __set_bit(id & IDR_MASK, p->bitmap); 185 /* 186 * If this layer is full mark the bit in the layer above to 187 * show that this part of the radix tree is full. This may 188 * complete the layer above and require walking up the radix 189 * tree. 190 */ 191 while (bitmap_full(p->bitmap, IDR_SIZE)) { 192 if (!(p = pa[++l])) 193 break; 194 id = id >> IDR_BITS; 195 __set_bit((id & IDR_MASK), p->bitmap); 196 } 197 } 198 199 int __idr_pre_get(struct idr *idp, gfp_t gfp_mask) 200 { 201 while (idp->id_free_cnt < MAX_IDR_FREE) { 202 struct idr_layer *new; 203 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); 204 if (new == NULL) 205 return (0); 206 move_to_free_list(idp, new); 207 } 208 return 1; 209 } 210 EXPORT_SYMBOL(__idr_pre_get); 211 212 /** 213 * sub_alloc - try to allocate an id without growing the tree depth 214 * @idp: idr handle 215 * @starting_id: id to start search at 216 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer 217 * @gfp_mask: allocation mask for idr_layer_alloc() 218 * @layer_idr: optional idr passed to idr_layer_alloc() 219 * 220 * Allocate an id in range [@starting_id, INT_MAX] from @idp without 221 * growing its depth. Returns 222 * 223 * the allocated id >= 0 if successful, 224 * -EAGAIN if the tree needs to grow for allocation to succeed, 225 * -ENOSPC if the id space is exhausted, 226 * -ENOMEM if more idr_layers need to be allocated. 227 */ 228 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa, 229 gfp_t gfp_mask, struct idr *layer_idr) 230 { 231 int n, m, sh; 232 struct idr_layer *p, *new; 233 int l, id, oid; 234 235 id = *starting_id; 236 restart: 237 p = idp->top; 238 l = idp->layers; 239 pa[l--] = NULL; 240 while (1) { 241 /* 242 * We run around this while until we reach the leaf node... 243 */ 244 n = (id >> (IDR_BITS*l)) & IDR_MASK; 245 m = find_next_zero_bit(p->bitmap, IDR_SIZE, n); 246 if (m == IDR_SIZE) { 247 /* no space available go back to previous layer. */ 248 l++; 249 oid = id; 250 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1; 251 252 /* if already at the top layer, we need to grow */ 253 if (id >= 1 << (idp->layers * IDR_BITS)) { 254 *starting_id = id; 255 return -EAGAIN; 256 } 257 p = pa[l]; 258 BUG_ON(!p); 259 260 /* If we need to go up one layer, continue the 261 * loop; otherwise, restart from the top. 262 */ 263 sh = IDR_BITS * (l + 1); 264 if (oid >> sh == id >> sh) 265 continue; 266 else 267 goto restart; 268 } 269 if (m != n) { 270 sh = IDR_BITS*l; 271 id = ((id >> sh) ^ n ^ m) << sh; 272 } 273 if ((id >= MAX_IDR_BIT) || (id < 0)) 274 return -ENOSPC; 275 if (l == 0) 276 break; 277 /* 278 * Create the layer below if it is missing. 279 */ 280 if (!p->ary[m]) { 281 new = idr_layer_alloc(gfp_mask, layer_idr); 282 if (!new) 283 return -ENOMEM; 284 new->layer = l-1; 285 new->prefix = id & idr_layer_prefix_mask(new->layer); 286 rcu_assign_pointer(p->ary[m], new); 287 p->count++; 288 } 289 pa[l--] = p; 290 p = p->ary[m]; 291 } 292 293 pa[l] = p; 294 return id; 295 } 296 297 static int idr_get_empty_slot(struct idr *idp, int starting_id, 298 struct idr_layer **pa, gfp_t gfp_mask, 299 struct idr *layer_idr) 300 { 301 struct idr_layer *p, *new; 302 int layers, v, id; 303 unsigned long flags; 304 305 id = starting_id; 306 build_up: 307 p = idp->top; 308 layers = idp->layers; 309 if (unlikely(!p)) { 310 if (!(p = idr_layer_alloc(gfp_mask, layer_idr))) 311 return -ENOMEM; 312 p->layer = 0; 313 layers = 1; 314 } 315 /* 316 * Add a new layer to the top of the tree if the requested 317 * id is larger than the currently allocated space. 318 */ 319 while (id > idr_max(layers)) { 320 layers++; 321 if (!p->count) { 322 /* special case: if the tree is currently empty, 323 * then we grow the tree by moving the top node 324 * upwards. 325 */ 326 p->layer++; 327 WARN_ON_ONCE(p->prefix); 328 continue; 329 } 330 if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) { 331 /* 332 * The allocation failed. If we built part of 333 * the structure tear it down. 334 */ 335 spin_lock_irqsave(&idp->lock, flags); 336 for (new = p; p && p != idp->top; new = p) { 337 p = p->ary[0]; 338 new->ary[0] = NULL; 339 new->count = 0; 340 bitmap_clear(new->bitmap, 0, IDR_SIZE); 341 __move_to_free_list(idp, new); 342 } 343 spin_unlock_irqrestore(&idp->lock, flags); 344 return -ENOMEM; 345 } 346 new->ary[0] = p; 347 new->count = 1; 348 new->layer = layers-1; 349 new->prefix = id & idr_layer_prefix_mask(new->layer); 350 if (bitmap_full(p->bitmap, IDR_SIZE)) 351 __set_bit(0, new->bitmap); 352 p = new; 353 } 354 rcu_assign_pointer(idp->top, p); 355 idp->layers = layers; 356 v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr); 357 if (v == -EAGAIN) 358 goto build_up; 359 return(v); 360 } 361 362 /* 363 * @id and @pa are from a successful allocation from idr_get_empty_slot(). 364 * Install the user pointer @ptr and mark the slot full. 365 */ 366 static void idr_fill_slot(struct idr *idr, void *ptr, int id, 367 struct idr_layer **pa) 368 { 369 /* update hint used for lookup, cleared from free_layer() */ 370 rcu_assign_pointer(idr->hint, pa[0]); 371 372 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr); 373 pa[0]->count++; 374 idr_mark_full(pa, id); 375 } 376 377 int __idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id) 378 { 379 struct idr_layer *pa[MAX_IDR_LEVEL + 1]; 380 int rv; 381 382 rv = idr_get_empty_slot(idp, starting_id, pa, 0, idp); 383 if (rv < 0) 384 return rv == -ENOMEM ? -EAGAIN : rv; 385 386 idr_fill_slot(idp, ptr, rv, pa); 387 *id = rv; 388 return 0; 389 } 390 EXPORT_SYMBOL(__idr_get_new_above); 391 392 /** 393 * idr_preload - preload for idr_alloc() 394 * @gfp_mask: allocation mask to use for preloading 395 * 396 * Preload per-cpu layer buffer for idr_alloc(). Can only be used from 397 * process context and each idr_preload() invocation should be matched with 398 * idr_preload_end(). Note that preemption is disabled while preloaded. 399 * 400 * The first idr_alloc() in the preloaded section can be treated as if it 401 * were invoked with @gfp_mask used for preloading. This allows using more 402 * permissive allocation masks for idrs protected by spinlocks. 403 * 404 * For example, if idr_alloc() below fails, the failure can be treated as 405 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT. 406 * 407 * idr_preload(GFP_KERNEL); 408 * spin_lock(lock); 409 * 410 * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT); 411 * 412 * spin_unlock(lock); 413 * idr_preload_end(); 414 * if (id < 0) 415 * error; 416 */ 417 void idr_preload(gfp_t gfp_mask) 418 { 419 /* 420 * Consuming preload buffer from non-process context breaks preload 421 * allocation guarantee. Disallow usage from those contexts. 422 */ 423 WARN_ON_ONCE(in_interrupt()); 424 might_sleep_if(gfp_mask & __GFP_WAIT); 425 426 preempt_disable(); 427 428 /* 429 * idr_alloc() is likely to succeed w/o full idr_layer buffer and 430 * return value from idr_alloc() needs to be checked for failure 431 * anyway. Silently give up if allocation fails. The caller can 432 * treat failures from idr_alloc() as if idr_alloc() were called 433 * with @gfp_mask which should be enough. 434 */ 435 while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) { 436 struct idr_layer *new; 437 438 preempt_enable(); 439 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); 440 preempt_disable(); 441 if (!new) 442 break; 443 444 /* link the new one to per-cpu preload list */ 445 new->ary[0] = __this_cpu_read(idr_preload_head); 446 __this_cpu_write(idr_preload_head, new); 447 __this_cpu_inc(idr_preload_cnt); 448 } 449 } 450 EXPORT_SYMBOL(idr_preload); 451 452 /** 453 * idr_alloc - allocate new idr entry 454 * @idr: the (initialized) idr 455 * @ptr: pointer to be associated with the new id 456 * @start: the minimum id (inclusive) 457 * @end: the maximum id (exclusive, <= 0 for max) 458 * @gfp_mask: memory allocation flags 459 * 460 * Allocate an id in [start, end) and associate it with @ptr. If no ID is 461 * available in the specified range, returns -ENOSPC. On memory allocation 462 * failure, returns -ENOMEM. 463 * 464 * Note that @end is treated as max when <= 0. This is to always allow 465 * using @start + N as @end as long as N is inside integer range. 466 * 467 * The user is responsible for exclusively synchronizing all operations 468 * which may modify @idr. However, read-only accesses such as idr_find() 469 * or iteration can be performed under RCU read lock provided the user 470 * destroys @ptr in RCU-safe way after removal from idr. 471 */ 472 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask) 473 { 474 int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */ 475 struct idr_layer *pa[MAX_IDR_LEVEL + 1]; 476 int id; 477 478 might_sleep_if(gfp_mask & __GFP_WAIT); 479 480 /* sanity checks */ 481 if (WARN_ON_ONCE(start < 0)) 482 return -EINVAL; 483 if (unlikely(max < start)) 484 return -ENOSPC; 485 486 /* allocate id */ 487 id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL); 488 if (unlikely(id < 0)) 489 return id; 490 if (unlikely(id > max)) 491 return -ENOSPC; 492 493 idr_fill_slot(idr, ptr, id, pa); 494 return id; 495 } 496 EXPORT_SYMBOL_GPL(idr_alloc); 497 498 /** 499 * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion 500 * @idr: the (initialized) idr 501 * @ptr: pointer to be associated with the new id 502 * @start: the minimum id (inclusive) 503 * @end: the maximum id (exclusive, <= 0 for max) 504 * @gfp_mask: memory allocation flags 505 * 506 * Essentially the same as idr_alloc, but prefers to allocate progressively 507 * higher ids if it can. If the "cur" counter wraps, then it will start again 508 * at the "start" end of the range and allocate one that has already been used. 509 */ 510 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, 511 gfp_t gfp_mask) 512 { 513 int id; 514 515 id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask); 516 if (id == -ENOSPC) 517 id = idr_alloc(idr, ptr, start, end, gfp_mask); 518 519 if (likely(id >= 0)) 520 idr->cur = id + 1; 521 return id; 522 } 523 EXPORT_SYMBOL(idr_alloc_cyclic); 524 525 static void idr_remove_warning(int id) 526 { 527 printk(KERN_WARNING 528 "idr_remove called for id=%d which is not allocated.\n", id); 529 dump_stack(); 530 } 531 532 static void sub_remove(struct idr *idp, int shift, int id) 533 { 534 struct idr_layer *p = idp->top; 535 struct idr_layer **pa[MAX_IDR_LEVEL + 1]; 536 struct idr_layer ***paa = &pa[0]; 537 struct idr_layer *to_free; 538 int n; 539 540 *paa = NULL; 541 *++paa = &idp->top; 542 543 while ((shift > 0) && p) { 544 n = (id >> shift) & IDR_MASK; 545 __clear_bit(n, p->bitmap); 546 *++paa = &p->ary[n]; 547 p = p->ary[n]; 548 shift -= IDR_BITS; 549 } 550 n = id & IDR_MASK; 551 if (likely(p != NULL && test_bit(n, p->bitmap))) { 552 __clear_bit(n, p->bitmap); 553 rcu_assign_pointer(p->ary[n], NULL); 554 to_free = NULL; 555 while(*paa && ! --((**paa)->count)){ 556 if (to_free) 557 free_layer(idp, to_free); 558 to_free = **paa; 559 **paa-- = NULL; 560 } 561 if (!*paa) 562 idp->layers = 0; 563 if (to_free) 564 free_layer(idp, to_free); 565 } else 566 idr_remove_warning(id); 567 } 568 569 /** 570 * idr_remove - remove the given id and free its slot 571 * @idp: idr handle 572 * @id: unique key 573 */ 574 void idr_remove(struct idr *idp, int id) 575 { 576 struct idr_layer *p; 577 struct idr_layer *to_free; 578 579 if (id < 0) 580 return; 581 582 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); 583 if (idp->top && idp->top->count == 1 && (idp->layers > 1) && 584 idp->top->ary[0]) { 585 /* 586 * Single child at leftmost slot: we can shrink the tree. 587 * This level is not needed anymore since when layers are 588 * inserted, they are inserted at the top of the existing 589 * tree. 590 */ 591 to_free = idp->top; 592 p = idp->top->ary[0]; 593 rcu_assign_pointer(idp->top, p); 594 --idp->layers; 595 to_free->count = 0; 596 bitmap_clear(to_free->bitmap, 0, IDR_SIZE); 597 free_layer(idp, to_free); 598 } 599 while (idp->id_free_cnt >= MAX_IDR_FREE) { 600 p = get_from_free_list(idp); 601 /* 602 * Note: we don't call the rcu callback here, since the only 603 * layers that fall into the freelist are those that have been 604 * preallocated. 605 */ 606 kmem_cache_free(idr_layer_cache, p); 607 } 608 return; 609 } 610 EXPORT_SYMBOL(idr_remove); 611 612 void __idr_remove_all(struct idr *idp) 613 { 614 int n, id, max; 615 int bt_mask; 616 struct idr_layer *p; 617 struct idr_layer *pa[MAX_IDR_LEVEL + 1]; 618 struct idr_layer **paa = &pa[0]; 619 620 n = idp->layers * IDR_BITS; 621 p = idp->top; 622 rcu_assign_pointer(idp->top, NULL); 623 max = idr_max(idp->layers); 624 625 id = 0; 626 while (id >= 0 && id <= max) { 627 while (n > IDR_BITS && p) { 628 n -= IDR_BITS; 629 *paa++ = p; 630 p = p->ary[(id >> n) & IDR_MASK]; 631 } 632 633 bt_mask = id; 634 id += 1 << n; 635 /* Get the highest bit that the above add changed from 0->1. */ 636 while (n < fls(id ^ bt_mask)) { 637 if (p) 638 free_layer(idp, p); 639 n += IDR_BITS; 640 p = *--paa; 641 } 642 } 643 idp->layers = 0; 644 } 645 EXPORT_SYMBOL(__idr_remove_all); 646 647 /** 648 * idr_destroy - release all cached layers within an idr tree 649 * @idp: idr handle 650 * 651 * Free all id mappings and all idp_layers. After this function, @idp is 652 * completely unused and can be freed / recycled. The caller is 653 * responsible for ensuring that no one else accesses @idp during or after 654 * idr_destroy(). 655 * 656 * A typical clean-up sequence for objects stored in an idr tree will use 657 * idr_for_each() to free all objects, if necessay, then idr_destroy() to 658 * free up the id mappings and cached idr_layers. 659 */ 660 void idr_destroy(struct idr *idp) 661 { 662 __idr_remove_all(idp); 663 664 while (idp->id_free_cnt) { 665 struct idr_layer *p = get_from_free_list(idp); 666 kmem_cache_free(idr_layer_cache, p); 667 } 668 } 669 EXPORT_SYMBOL(idr_destroy); 670 671 void *idr_find_slowpath(struct idr *idp, int id) 672 { 673 int n; 674 struct idr_layer *p; 675 676 if (id < 0) 677 return NULL; 678 679 p = rcu_dereference_raw(idp->top); 680 if (!p) 681 return NULL; 682 n = (p->layer+1) * IDR_BITS; 683 684 if (id > idr_max(p->layer + 1)) 685 return NULL; 686 BUG_ON(n == 0); 687 688 while (n > 0 && p) { 689 n -= IDR_BITS; 690 BUG_ON(n != p->layer*IDR_BITS); 691 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); 692 } 693 return((void *)p); 694 } 695 EXPORT_SYMBOL(idr_find_slowpath); 696 697 /** 698 * idr_for_each - iterate through all stored pointers 699 * @idp: idr handle 700 * @fn: function to be called for each pointer 701 * @data: data passed back to callback function 702 * 703 * Iterate over the pointers registered with the given idr. The 704 * callback function will be called for each pointer currently 705 * registered, passing the id, the pointer and the data pointer passed 706 * to this function. It is not safe to modify the idr tree while in 707 * the callback, so functions such as idr_get_new and idr_remove are 708 * not allowed. 709 * 710 * We check the return of @fn each time. If it returns anything other 711 * than %0, we break out and return that value. 712 * 713 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove(). 714 */ 715 int idr_for_each(struct idr *idp, 716 int (*fn)(int id, void *p, void *data), void *data) 717 { 718 int n, id, max, error = 0; 719 struct idr_layer *p; 720 struct idr_layer *pa[MAX_IDR_LEVEL + 1]; 721 struct idr_layer **paa = &pa[0]; 722 723 n = idp->layers * IDR_BITS; 724 p = rcu_dereference_raw(idp->top); 725 max = idr_max(idp->layers); 726 727 id = 0; 728 while (id >= 0 && id <= max) { 729 while (n > 0 && p) { 730 n -= IDR_BITS; 731 *paa++ = p; 732 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); 733 } 734 735 if (p) { 736 error = fn(id, (void *)p, data); 737 if (error) 738 break; 739 } 740 741 id += 1 << n; 742 while (n < fls(id)) { 743 n += IDR_BITS; 744 p = *--paa; 745 } 746 } 747 748 return error; 749 } 750 EXPORT_SYMBOL(idr_for_each); 751 752 /** 753 * idr_get_next - lookup next object of id to given id. 754 * @idp: idr handle 755 * @nextidp: pointer to lookup key 756 * 757 * Returns pointer to registered object with id, which is next number to 758 * given id. After being looked up, *@nextidp will be updated for the next 759 * iteration. 760 * 761 * This function can be called under rcu_read_lock(), given that the leaf 762 * pointers lifetimes are correctly managed. 763 */ 764 void *idr_get_next(struct idr *idp, int *nextidp) 765 { 766 struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1]; 767 struct idr_layer **paa = &pa[0]; 768 int id = *nextidp; 769 int n, max; 770 771 /* find first ent */ 772 p = rcu_dereference_raw(idp->top); 773 if (!p) 774 return NULL; 775 n = (p->layer + 1) * IDR_BITS; 776 max = idr_max(p->layer + 1); 777 778 while (id >= 0 && id <= max) { 779 while (n > 0 && p) { 780 n -= IDR_BITS; 781 *paa++ = p; 782 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); 783 } 784 785 if (p) { 786 *nextidp = id; 787 return p; 788 } 789 790 /* 791 * Proceed to the next layer at the current level. Unlike 792 * idr_for_each(), @id isn't guaranteed to be aligned to 793 * layer boundary at this point and adding 1 << n may 794 * incorrectly skip IDs. Make sure we jump to the 795 * beginning of the next layer using round_up(). 796 */ 797 id = round_up(id + 1, 1 << n); 798 while (n < fls(id)) { 799 n += IDR_BITS; 800 p = *--paa; 801 } 802 } 803 return NULL; 804 } 805 EXPORT_SYMBOL(idr_get_next); 806 807 808 /** 809 * idr_replace - replace pointer for given id 810 * @idp: idr handle 811 * @ptr: pointer you want associated with the id 812 * @id: lookup key 813 * 814 * Replace the pointer registered with an id and return the old value. 815 * A %-ENOENT return indicates that @id was not found. 816 * A %-EINVAL return indicates that @id was not within valid constraints. 817 * 818 * The caller must serialize with writers. 819 */ 820 void *idr_replace(struct idr *idp, void *ptr, int id) 821 { 822 int n; 823 struct idr_layer *p, *old_p; 824 825 if (id < 0) 826 return ERR_PTR(-EINVAL); 827 828 p = idp->top; 829 if (!p) 830 return ERR_PTR(-EINVAL); 831 832 n = (p->layer+1) * IDR_BITS; 833 834 if (id >= (1 << n)) 835 return ERR_PTR(-EINVAL); 836 837 n -= IDR_BITS; 838 while ((n > 0) && p) { 839 p = p->ary[(id >> n) & IDR_MASK]; 840 n -= IDR_BITS; 841 } 842 843 n = id & IDR_MASK; 844 if (unlikely(p == NULL || !test_bit(n, p->bitmap))) 845 return ERR_PTR(-ENOENT); 846 847 old_p = p->ary[n]; 848 rcu_assign_pointer(p->ary[n], ptr); 849 850 return old_p; 851 } 852 EXPORT_SYMBOL(idr_replace); 853 854 void __init idr_init_cache(void) 855 { 856 idr_layer_cache = kmem_cache_create("idr_layer_cache", 857 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL); 858 } 859 860 /** 861 * idr_init - initialize idr handle 862 * @idp: idr handle 863 * 864 * This function is use to set up the handle (@idp) that you will pass 865 * to the rest of the functions. 866 */ 867 void idr_init(struct idr *idp) 868 { 869 memset(idp, 0, sizeof(struct idr)); 870 spin_lock_init(&idp->lock); 871 } 872 EXPORT_SYMBOL(idr_init); 873 874 875 /** 876 * DOC: IDA description 877 * IDA - IDR based ID allocator 878 * 879 * This is id allocator without id -> pointer translation. Memory 880 * usage is much lower than full blown idr because each id only 881 * occupies a bit. ida uses a custom leaf node which contains 882 * IDA_BITMAP_BITS slots. 883 * 884 * 2007-04-25 written by Tejun Heo <htejun@gmail.com> 885 */ 886 887 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap) 888 { 889 unsigned long flags; 890 891 if (!ida->free_bitmap) { 892 spin_lock_irqsave(&ida->idr.lock, flags); 893 if (!ida->free_bitmap) { 894 ida->free_bitmap = bitmap; 895 bitmap = NULL; 896 } 897 spin_unlock_irqrestore(&ida->idr.lock, flags); 898 } 899 900 kfree(bitmap); 901 } 902 903 /** 904 * ida_pre_get - reserve resources for ida allocation 905 * @ida: ida handle 906 * @gfp_mask: memory allocation flag 907 * 908 * This function should be called prior to locking and calling the 909 * following function. It preallocates enough memory to satisfy the 910 * worst possible allocation. 911 * 912 * If the system is REALLY out of memory this function returns %0, 913 * otherwise %1. 914 */ 915 int ida_pre_get(struct ida *ida, gfp_t gfp_mask) 916 { 917 /* allocate idr_layers */ 918 if (!__idr_pre_get(&ida->idr, gfp_mask)) 919 return 0; 920 921 /* allocate free_bitmap */ 922 if (!ida->free_bitmap) { 923 struct ida_bitmap *bitmap; 924 925 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask); 926 if (!bitmap) 927 return 0; 928 929 free_bitmap(ida, bitmap); 930 } 931 932 return 1; 933 } 934 EXPORT_SYMBOL(ida_pre_get); 935 936 /** 937 * ida_get_new_above - allocate new ID above or equal to a start id 938 * @ida: ida handle 939 * @starting_id: id to start search at 940 * @p_id: pointer to the allocated handle 941 * 942 * Allocate new ID above or equal to @starting_id. It should be called 943 * with any required locks. 944 * 945 * If memory is required, it will return %-EAGAIN, you should unlock 946 * and go back to the ida_pre_get() call. If the ida is full, it will 947 * return %-ENOSPC. 948 * 949 * @p_id returns a value in the range @starting_id ... %0x7fffffff. 950 */ 951 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id) 952 { 953 struct idr_layer *pa[MAX_IDR_LEVEL + 1]; 954 struct ida_bitmap *bitmap; 955 unsigned long flags; 956 int idr_id = starting_id / IDA_BITMAP_BITS; 957 int offset = starting_id % IDA_BITMAP_BITS; 958 int t, id; 959 960 restart: 961 /* get vacant slot */ 962 t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr); 963 if (t < 0) 964 return t == -ENOMEM ? -EAGAIN : t; 965 966 if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT) 967 return -ENOSPC; 968 969 if (t != idr_id) 970 offset = 0; 971 idr_id = t; 972 973 /* if bitmap isn't there, create a new one */ 974 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK]; 975 if (!bitmap) { 976 spin_lock_irqsave(&ida->idr.lock, flags); 977 bitmap = ida->free_bitmap; 978 ida->free_bitmap = NULL; 979 spin_unlock_irqrestore(&ida->idr.lock, flags); 980 981 if (!bitmap) 982 return -EAGAIN; 983 984 memset(bitmap, 0, sizeof(struct ida_bitmap)); 985 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK], 986 (void *)bitmap); 987 pa[0]->count++; 988 } 989 990 /* lookup for empty slot */ 991 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset); 992 if (t == IDA_BITMAP_BITS) { 993 /* no empty slot after offset, continue to the next chunk */ 994 idr_id++; 995 offset = 0; 996 goto restart; 997 } 998 999 id = idr_id * IDA_BITMAP_BITS + t; 1000 if (id >= MAX_IDR_BIT) 1001 return -ENOSPC; 1002 1003 __set_bit(t, bitmap->bitmap); 1004 if (++bitmap->nr_busy == IDA_BITMAP_BITS) 1005 idr_mark_full(pa, idr_id); 1006 1007 *p_id = id; 1008 1009 /* Each leaf node can handle nearly a thousand slots and the 1010 * whole idea of ida is to have small memory foot print. 1011 * Throw away extra resources one by one after each successful 1012 * allocation. 1013 */ 1014 if (ida->idr.id_free_cnt || ida->free_bitmap) { 1015 struct idr_layer *p = get_from_free_list(&ida->idr); 1016 if (p) 1017 kmem_cache_free(idr_layer_cache, p); 1018 } 1019 1020 return 0; 1021 } 1022 EXPORT_SYMBOL(ida_get_new_above); 1023 1024 /** 1025 * ida_remove - remove the given ID 1026 * @ida: ida handle 1027 * @id: ID to free 1028 */ 1029 void ida_remove(struct ida *ida, int id) 1030 { 1031 struct idr_layer *p = ida->idr.top; 1032 int shift = (ida->idr.layers - 1) * IDR_BITS; 1033 int idr_id = id / IDA_BITMAP_BITS; 1034 int offset = id % IDA_BITMAP_BITS; 1035 int n; 1036 struct ida_bitmap *bitmap; 1037 1038 /* clear full bits while looking up the leaf idr_layer */ 1039 while ((shift > 0) && p) { 1040 n = (idr_id >> shift) & IDR_MASK; 1041 __clear_bit(n, p->bitmap); 1042 p = p->ary[n]; 1043 shift -= IDR_BITS; 1044 } 1045 1046 if (p == NULL) 1047 goto err; 1048 1049 n = idr_id & IDR_MASK; 1050 __clear_bit(n, p->bitmap); 1051 1052 bitmap = (void *)p->ary[n]; 1053 if (!test_bit(offset, bitmap->bitmap)) 1054 goto err; 1055 1056 /* update bitmap and remove it if empty */ 1057 __clear_bit(offset, bitmap->bitmap); 1058 if (--bitmap->nr_busy == 0) { 1059 __set_bit(n, p->bitmap); /* to please idr_remove() */ 1060 idr_remove(&ida->idr, idr_id); 1061 free_bitmap(ida, bitmap); 1062 } 1063 1064 return; 1065 1066 err: 1067 printk(KERN_WARNING 1068 "ida_remove called for id=%d which is not allocated.\n", id); 1069 } 1070 EXPORT_SYMBOL(ida_remove); 1071 1072 /** 1073 * ida_destroy - release all cached layers within an ida tree 1074 * @ida: ida handle 1075 */ 1076 void ida_destroy(struct ida *ida) 1077 { 1078 idr_destroy(&ida->idr); 1079 kfree(ida->free_bitmap); 1080 } 1081 EXPORT_SYMBOL(ida_destroy); 1082 1083 /** 1084 * ida_simple_get - get a new id. 1085 * @ida: the (initialized) ida. 1086 * @start: the minimum id (inclusive, < 0x8000000) 1087 * @end: the maximum id (exclusive, < 0x8000000 or 0) 1088 * @gfp_mask: memory allocation flags 1089 * 1090 * Allocates an id in the range start <= id < end, or returns -ENOSPC. 1091 * On memory allocation failure, returns -ENOMEM. 1092 * 1093 * Use ida_simple_remove() to get rid of an id. 1094 */ 1095 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end, 1096 gfp_t gfp_mask) 1097 { 1098 int ret, id; 1099 unsigned int max; 1100 unsigned long flags; 1101 1102 BUG_ON((int)start < 0); 1103 BUG_ON((int)end < 0); 1104 1105 if (end == 0) 1106 max = 0x80000000; 1107 else { 1108 BUG_ON(end < start); 1109 max = end - 1; 1110 } 1111 1112 again: 1113 if (!ida_pre_get(ida, gfp_mask)) 1114 return -ENOMEM; 1115 1116 spin_lock_irqsave(&simple_ida_lock, flags); 1117 ret = ida_get_new_above(ida, start, &id); 1118 if (!ret) { 1119 if (id > max) { 1120 ida_remove(ida, id); 1121 ret = -ENOSPC; 1122 } else { 1123 ret = id; 1124 } 1125 } 1126 spin_unlock_irqrestore(&simple_ida_lock, flags); 1127 1128 if (unlikely(ret == -EAGAIN)) 1129 goto again; 1130 1131 return ret; 1132 } 1133 EXPORT_SYMBOL(ida_simple_get); 1134 1135 /** 1136 * ida_simple_remove - remove an allocated id. 1137 * @ida: the (initialized) ida. 1138 * @id: the id returned by ida_simple_get. 1139 */ 1140 void ida_simple_remove(struct ida *ida, unsigned int id) 1141 { 1142 unsigned long flags; 1143 1144 BUG_ON((int)id < 0); 1145 spin_lock_irqsave(&simple_ida_lock, flags); 1146 ida_remove(ida, id); 1147 spin_unlock_irqrestore(&simple_ida_lock, flags); 1148 } 1149 EXPORT_SYMBOL(ida_simple_remove); 1150 1151 /** 1152 * ida_init - initialize ida handle 1153 * @ida: ida handle 1154 * 1155 * This function is use to set up the handle (@ida) that you will pass 1156 * to the rest of the functions. 1157 */ 1158 void ida_init(struct ida *ida) 1159 { 1160 memset(ida, 0, sizeof(struct ida)); 1161 idr_init(&ida->idr); 1162 1163 } 1164 EXPORT_SYMBOL(ida_init); 1165