xref: /openbmc/linux/kernel/kexec_core.c (revision d3741027)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec.c - kexec system call core code.
4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsname.h>
25 #include <linux/numa.h>
26 #include <linux/suspend.h>
27 #include <linux/device.h>
28 #include <linux/freezer.h>
29 #include <linux/panic_notifier.h>
30 #include <linux/pm.h>
31 #include <linux/cpu.h>
32 #include <linux/uaccess.h>
33 #include <linux/io.h>
34 #include <linux/console.h>
35 #include <linux/vmalloc.h>
36 #include <linux/swap.h>
37 #include <linux/syscore_ops.h>
38 #include <linux/compiler.h>
39 #include <linux/hugetlb.h>
40 #include <linux/objtool.h>
41 #include <linux/kmsg_dump.h>
42 
43 #include <asm/page.h>
44 #include <asm/sections.h>
45 
46 #include <crypto/hash.h>
47 #include "kexec_internal.h"
48 
49 DEFINE_MUTEX(kexec_mutex);
50 
51 /* Per cpu memory for storing cpu states in case of system crash. */
52 note_buf_t __percpu *crash_notes;
53 
54 /* Flag to indicate we are going to kexec a new kernel */
55 bool kexec_in_progress = false;
56 
57 
58 /* Location of the reserved area for the crash kernel */
59 struct resource crashk_res = {
60 	.name  = "Crash kernel",
61 	.start = 0,
62 	.end   = 0,
63 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
64 	.desc  = IORES_DESC_CRASH_KERNEL
65 };
66 struct resource crashk_low_res = {
67 	.name  = "Crash kernel",
68 	.start = 0,
69 	.end   = 0,
70 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
71 	.desc  = IORES_DESC_CRASH_KERNEL
72 };
73 
74 int kexec_should_crash(struct task_struct *p)
75 {
76 	/*
77 	 * If crash_kexec_post_notifiers is enabled, don't run
78 	 * crash_kexec() here yet, which must be run after panic
79 	 * notifiers in panic().
80 	 */
81 	if (crash_kexec_post_notifiers)
82 		return 0;
83 	/*
84 	 * There are 4 panic() calls in make_task_dead() path, each of which
85 	 * corresponds to each of these 4 conditions.
86 	 */
87 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
88 		return 1;
89 	return 0;
90 }
91 
92 int kexec_crash_loaded(void)
93 {
94 	return !!kexec_crash_image;
95 }
96 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
97 
98 /*
99  * When kexec transitions to the new kernel there is a one-to-one
100  * mapping between physical and virtual addresses.  On processors
101  * where you can disable the MMU this is trivial, and easy.  For
102  * others it is still a simple predictable page table to setup.
103  *
104  * In that environment kexec copies the new kernel to its final
105  * resting place.  This means I can only support memory whose
106  * physical address can fit in an unsigned long.  In particular
107  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
108  * If the assembly stub has more restrictive requirements
109  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
110  * defined more restrictively in <asm/kexec.h>.
111  *
112  * The code for the transition from the current kernel to the
113  * new kernel is placed in the control_code_buffer, whose size
114  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
115  * page of memory is necessary, but some architectures require more.
116  * Because this memory must be identity mapped in the transition from
117  * virtual to physical addresses it must live in the range
118  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
119  * modifiable.
120  *
121  * The assembly stub in the control code buffer is passed a linked list
122  * of descriptor pages detailing the source pages of the new kernel,
123  * and the destination addresses of those source pages.  As this data
124  * structure is not used in the context of the current OS, it must
125  * be self-contained.
126  *
127  * The code has been made to work with highmem pages and will use a
128  * destination page in its final resting place (if it happens
129  * to allocate it).  The end product of this is that most of the
130  * physical address space, and most of RAM can be used.
131  *
132  * Future directions include:
133  *  - allocating a page table with the control code buffer identity
134  *    mapped, to simplify machine_kexec and make kexec_on_panic more
135  *    reliable.
136  */
137 
138 /*
139  * KIMAGE_NO_DEST is an impossible destination address..., for
140  * allocating pages whose destination address we do not care about.
141  */
142 #define KIMAGE_NO_DEST (-1UL)
143 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
144 
145 static struct page *kimage_alloc_page(struct kimage *image,
146 				       gfp_t gfp_mask,
147 				       unsigned long dest);
148 
149 int sanity_check_segment_list(struct kimage *image)
150 {
151 	int i;
152 	unsigned long nr_segments = image->nr_segments;
153 	unsigned long total_pages = 0;
154 	unsigned long nr_pages = totalram_pages();
155 
156 	/*
157 	 * Verify we have good destination addresses.  The caller is
158 	 * responsible for making certain we don't attempt to load
159 	 * the new image into invalid or reserved areas of RAM.  This
160 	 * just verifies it is an address we can use.
161 	 *
162 	 * Since the kernel does everything in page size chunks ensure
163 	 * the destination addresses are page aligned.  Too many
164 	 * special cases crop of when we don't do this.  The most
165 	 * insidious is getting overlapping destination addresses
166 	 * simply because addresses are changed to page size
167 	 * granularity.
168 	 */
169 	for (i = 0; i < nr_segments; i++) {
170 		unsigned long mstart, mend;
171 
172 		mstart = image->segment[i].mem;
173 		mend   = mstart + image->segment[i].memsz;
174 		if (mstart > mend)
175 			return -EADDRNOTAVAIL;
176 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
177 			return -EADDRNOTAVAIL;
178 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
179 			return -EADDRNOTAVAIL;
180 	}
181 
182 	/* Verify our destination addresses do not overlap.
183 	 * If we alloed overlapping destination addresses
184 	 * through very weird things can happen with no
185 	 * easy explanation as one segment stops on another.
186 	 */
187 	for (i = 0; i < nr_segments; i++) {
188 		unsigned long mstart, mend;
189 		unsigned long j;
190 
191 		mstart = image->segment[i].mem;
192 		mend   = mstart + image->segment[i].memsz;
193 		for (j = 0; j < i; j++) {
194 			unsigned long pstart, pend;
195 
196 			pstart = image->segment[j].mem;
197 			pend   = pstart + image->segment[j].memsz;
198 			/* Do the segments overlap ? */
199 			if ((mend > pstart) && (mstart < pend))
200 				return -EINVAL;
201 		}
202 	}
203 
204 	/* Ensure our buffer sizes are strictly less than
205 	 * our memory sizes.  This should always be the case,
206 	 * and it is easier to check up front than to be surprised
207 	 * later on.
208 	 */
209 	for (i = 0; i < nr_segments; i++) {
210 		if (image->segment[i].bufsz > image->segment[i].memsz)
211 			return -EINVAL;
212 	}
213 
214 	/*
215 	 * Verify that no more than half of memory will be consumed. If the
216 	 * request from userspace is too large, a large amount of time will be
217 	 * wasted allocating pages, which can cause a soft lockup.
218 	 */
219 	for (i = 0; i < nr_segments; i++) {
220 		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
221 			return -EINVAL;
222 
223 		total_pages += PAGE_COUNT(image->segment[i].memsz);
224 	}
225 
226 	if (total_pages > nr_pages / 2)
227 		return -EINVAL;
228 
229 	/*
230 	 * Verify we have good destination addresses.  Normally
231 	 * the caller is responsible for making certain we don't
232 	 * attempt to load the new image into invalid or reserved
233 	 * areas of RAM.  But crash kernels are preloaded into a
234 	 * reserved area of ram.  We must ensure the addresses
235 	 * are in the reserved area otherwise preloading the
236 	 * kernel could corrupt things.
237 	 */
238 
239 	if (image->type == KEXEC_TYPE_CRASH) {
240 		for (i = 0; i < nr_segments; i++) {
241 			unsigned long mstart, mend;
242 
243 			mstart = image->segment[i].mem;
244 			mend = mstart + image->segment[i].memsz - 1;
245 			/* Ensure we are within the crash kernel limits */
246 			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
247 			    (mend > phys_to_boot_phys(crashk_res.end)))
248 				return -EADDRNOTAVAIL;
249 		}
250 	}
251 
252 	return 0;
253 }
254 
255 struct kimage *do_kimage_alloc_init(void)
256 {
257 	struct kimage *image;
258 
259 	/* Allocate a controlling structure */
260 	image = kzalloc(sizeof(*image), GFP_KERNEL);
261 	if (!image)
262 		return NULL;
263 
264 	image->head = 0;
265 	image->entry = &image->head;
266 	image->last_entry = &image->head;
267 	image->control_page = ~0; /* By default this does not apply */
268 	image->type = KEXEC_TYPE_DEFAULT;
269 
270 	/* Initialize the list of control pages */
271 	INIT_LIST_HEAD(&image->control_pages);
272 
273 	/* Initialize the list of destination pages */
274 	INIT_LIST_HEAD(&image->dest_pages);
275 
276 	/* Initialize the list of unusable pages */
277 	INIT_LIST_HEAD(&image->unusable_pages);
278 
279 	return image;
280 }
281 
282 int kimage_is_destination_range(struct kimage *image,
283 					unsigned long start,
284 					unsigned long end)
285 {
286 	unsigned long i;
287 
288 	for (i = 0; i < image->nr_segments; i++) {
289 		unsigned long mstart, mend;
290 
291 		mstart = image->segment[i].mem;
292 		mend = mstart + image->segment[i].memsz;
293 		if ((end > mstart) && (start < mend))
294 			return 1;
295 	}
296 
297 	return 0;
298 }
299 
300 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
301 {
302 	struct page *pages;
303 
304 	if (fatal_signal_pending(current))
305 		return NULL;
306 	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
307 	if (pages) {
308 		unsigned int count, i;
309 
310 		pages->mapping = NULL;
311 		set_page_private(pages, order);
312 		count = 1 << order;
313 		for (i = 0; i < count; i++)
314 			SetPageReserved(pages + i);
315 
316 		arch_kexec_post_alloc_pages(page_address(pages), count,
317 					    gfp_mask);
318 
319 		if (gfp_mask & __GFP_ZERO)
320 			for (i = 0; i < count; i++)
321 				clear_highpage(pages + i);
322 	}
323 
324 	return pages;
325 }
326 
327 static void kimage_free_pages(struct page *page)
328 {
329 	unsigned int order, count, i;
330 
331 	order = page_private(page);
332 	count = 1 << order;
333 
334 	arch_kexec_pre_free_pages(page_address(page), count);
335 
336 	for (i = 0; i < count; i++)
337 		ClearPageReserved(page + i);
338 	__free_pages(page, order);
339 }
340 
341 void kimage_free_page_list(struct list_head *list)
342 {
343 	struct page *page, *next;
344 
345 	list_for_each_entry_safe(page, next, list, lru) {
346 		list_del(&page->lru);
347 		kimage_free_pages(page);
348 	}
349 }
350 
351 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
352 							unsigned int order)
353 {
354 	/* Control pages are special, they are the intermediaries
355 	 * that are needed while we copy the rest of the pages
356 	 * to their final resting place.  As such they must
357 	 * not conflict with either the destination addresses
358 	 * or memory the kernel is already using.
359 	 *
360 	 * The only case where we really need more than one of
361 	 * these are for architectures where we cannot disable
362 	 * the MMU and must instead generate an identity mapped
363 	 * page table for all of the memory.
364 	 *
365 	 * At worst this runs in O(N) of the image size.
366 	 */
367 	struct list_head extra_pages;
368 	struct page *pages;
369 	unsigned int count;
370 
371 	count = 1 << order;
372 	INIT_LIST_HEAD(&extra_pages);
373 
374 	/* Loop while I can allocate a page and the page allocated
375 	 * is a destination page.
376 	 */
377 	do {
378 		unsigned long pfn, epfn, addr, eaddr;
379 
380 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
381 		if (!pages)
382 			break;
383 		pfn   = page_to_boot_pfn(pages);
384 		epfn  = pfn + count;
385 		addr  = pfn << PAGE_SHIFT;
386 		eaddr = epfn << PAGE_SHIFT;
387 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
388 			      kimage_is_destination_range(image, addr, eaddr)) {
389 			list_add(&pages->lru, &extra_pages);
390 			pages = NULL;
391 		}
392 	} while (!pages);
393 
394 	if (pages) {
395 		/* Remember the allocated page... */
396 		list_add(&pages->lru, &image->control_pages);
397 
398 		/* Because the page is already in it's destination
399 		 * location we will never allocate another page at
400 		 * that address.  Therefore kimage_alloc_pages
401 		 * will not return it (again) and we don't need
402 		 * to give it an entry in image->segment[].
403 		 */
404 	}
405 	/* Deal with the destination pages I have inadvertently allocated.
406 	 *
407 	 * Ideally I would convert multi-page allocations into single
408 	 * page allocations, and add everything to image->dest_pages.
409 	 *
410 	 * For now it is simpler to just free the pages.
411 	 */
412 	kimage_free_page_list(&extra_pages);
413 
414 	return pages;
415 }
416 
417 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
418 						      unsigned int order)
419 {
420 	/* Control pages are special, they are the intermediaries
421 	 * that are needed while we copy the rest of the pages
422 	 * to their final resting place.  As such they must
423 	 * not conflict with either the destination addresses
424 	 * or memory the kernel is already using.
425 	 *
426 	 * Control pages are also the only pags we must allocate
427 	 * when loading a crash kernel.  All of the other pages
428 	 * are specified by the segments and we just memcpy
429 	 * into them directly.
430 	 *
431 	 * The only case where we really need more than one of
432 	 * these are for architectures where we cannot disable
433 	 * the MMU and must instead generate an identity mapped
434 	 * page table for all of the memory.
435 	 *
436 	 * Given the low demand this implements a very simple
437 	 * allocator that finds the first hole of the appropriate
438 	 * size in the reserved memory region, and allocates all
439 	 * of the memory up to and including the hole.
440 	 */
441 	unsigned long hole_start, hole_end, size;
442 	struct page *pages;
443 
444 	pages = NULL;
445 	size = (1 << order) << PAGE_SHIFT;
446 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
447 	hole_end   = hole_start + size - 1;
448 	while (hole_end <= crashk_res.end) {
449 		unsigned long i;
450 
451 		cond_resched();
452 
453 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
454 			break;
455 		/* See if I overlap any of the segments */
456 		for (i = 0; i < image->nr_segments; i++) {
457 			unsigned long mstart, mend;
458 
459 			mstart = image->segment[i].mem;
460 			mend   = mstart + image->segment[i].memsz - 1;
461 			if ((hole_end >= mstart) && (hole_start <= mend)) {
462 				/* Advance the hole to the end of the segment */
463 				hole_start = (mend + (size - 1)) & ~(size - 1);
464 				hole_end   = hole_start + size - 1;
465 				break;
466 			}
467 		}
468 		/* If I don't overlap any segments I have found my hole! */
469 		if (i == image->nr_segments) {
470 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
471 			image->control_page = hole_end;
472 			break;
473 		}
474 	}
475 
476 	/* Ensure that these pages are decrypted if SME is enabled. */
477 	if (pages)
478 		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
479 
480 	return pages;
481 }
482 
483 
484 struct page *kimage_alloc_control_pages(struct kimage *image,
485 					 unsigned int order)
486 {
487 	struct page *pages = NULL;
488 
489 	switch (image->type) {
490 	case KEXEC_TYPE_DEFAULT:
491 		pages = kimage_alloc_normal_control_pages(image, order);
492 		break;
493 	case KEXEC_TYPE_CRASH:
494 		pages = kimage_alloc_crash_control_pages(image, order);
495 		break;
496 	}
497 
498 	return pages;
499 }
500 
501 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
502 {
503 	struct page *vmcoreinfo_page;
504 	void *safecopy;
505 
506 	if (image->type != KEXEC_TYPE_CRASH)
507 		return 0;
508 
509 	/*
510 	 * For kdump, allocate one vmcoreinfo safe copy from the
511 	 * crash memory. as we have arch_kexec_protect_crashkres()
512 	 * after kexec syscall, we naturally protect it from write
513 	 * (even read) access under kernel direct mapping. But on
514 	 * the other hand, we still need to operate it when crash
515 	 * happens to generate vmcoreinfo note, hereby we rely on
516 	 * vmap for this purpose.
517 	 */
518 	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
519 	if (!vmcoreinfo_page) {
520 		pr_warn("Could not allocate vmcoreinfo buffer\n");
521 		return -ENOMEM;
522 	}
523 	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
524 	if (!safecopy) {
525 		pr_warn("Could not vmap vmcoreinfo buffer\n");
526 		return -ENOMEM;
527 	}
528 
529 	image->vmcoreinfo_data_copy = safecopy;
530 	crash_update_vmcoreinfo_safecopy(safecopy);
531 
532 	return 0;
533 }
534 
535 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
536 {
537 	if (*image->entry != 0)
538 		image->entry++;
539 
540 	if (image->entry == image->last_entry) {
541 		kimage_entry_t *ind_page;
542 		struct page *page;
543 
544 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
545 		if (!page)
546 			return -ENOMEM;
547 
548 		ind_page = page_address(page);
549 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
550 		image->entry = ind_page;
551 		image->last_entry = ind_page +
552 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
553 	}
554 	*image->entry = entry;
555 	image->entry++;
556 	*image->entry = 0;
557 
558 	return 0;
559 }
560 
561 static int kimage_set_destination(struct kimage *image,
562 				   unsigned long destination)
563 {
564 	int result;
565 
566 	destination &= PAGE_MASK;
567 	result = kimage_add_entry(image, destination | IND_DESTINATION);
568 
569 	return result;
570 }
571 
572 
573 static int kimage_add_page(struct kimage *image, unsigned long page)
574 {
575 	int result;
576 
577 	page &= PAGE_MASK;
578 	result = kimage_add_entry(image, page | IND_SOURCE);
579 
580 	return result;
581 }
582 
583 
584 static void kimage_free_extra_pages(struct kimage *image)
585 {
586 	/* Walk through and free any extra destination pages I may have */
587 	kimage_free_page_list(&image->dest_pages);
588 
589 	/* Walk through and free any unusable pages I have cached */
590 	kimage_free_page_list(&image->unusable_pages);
591 
592 }
593 
594 int __weak machine_kexec_post_load(struct kimage *image)
595 {
596 	return 0;
597 }
598 
599 void kimage_terminate(struct kimage *image)
600 {
601 	if (*image->entry != 0)
602 		image->entry++;
603 
604 	*image->entry = IND_DONE;
605 }
606 
607 #define for_each_kimage_entry(image, ptr, entry) \
608 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
609 		ptr = (entry & IND_INDIRECTION) ? \
610 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
611 
612 static void kimage_free_entry(kimage_entry_t entry)
613 {
614 	struct page *page;
615 
616 	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
617 	kimage_free_pages(page);
618 }
619 
620 void kimage_free(struct kimage *image)
621 {
622 	kimage_entry_t *ptr, entry;
623 	kimage_entry_t ind = 0;
624 
625 	if (!image)
626 		return;
627 
628 	if (image->vmcoreinfo_data_copy) {
629 		crash_update_vmcoreinfo_safecopy(NULL);
630 		vunmap(image->vmcoreinfo_data_copy);
631 	}
632 
633 	kimage_free_extra_pages(image);
634 	for_each_kimage_entry(image, ptr, entry) {
635 		if (entry & IND_INDIRECTION) {
636 			/* Free the previous indirection page */
637 			if (ind & IND_INDIRECTION)
638 				kimage_free_entry(ind);
639 			/* Save this indirection page until we are
640 			 * done with it.
641 			 */
642 			ind = entry;
643 		} else if (entry & IND_SOURCE)
644 			kimage_free_entry(entry);
645 	}
646 	/* Free the final indirection page */
647 	if (ind & IND_INDIRECTION)
648 		kimage_free_entry(ind);
649 
650 	/* Handle any machine specific cleanup */
651 	machine_kexec_cleanup(image);
652 
653 	/* Free the kexec control pages... */
654 	kimage_free_page_list(&image->control_pages);
655 
656 	/*
657 	 * Free up any temporary buffers allocated. This might hit if
658 	 * error occurred much later after buffer allocation.
659 	 */
660 	if (image->file_mode)
661 		kimage_file_post_load_cleanup(image);
662 
663 	kfree(image);
664 }
665 
666 static kimage_entry_t *kimage_dst_used(struct kimage *image,
667 					unsigned long page)
668 {
669 	kimage_entry_t *ptr, entry;
670 	unsigned long destination = 0;
671 
672 	for_each_kimage_entry(image, ptr, entry) {
673 		if (entry & IND_DESTINATION)
674 			destination = entry & PAGE_MASK;
675 		else if (entry & IND_SOURCE) {
676 			if (page == destination)
677 				return ptr;
678 			destination += PAGE_SIZE;
679 		}
680 	}
681 
682 	return NULL;
683 }
684 
685 static struct page *kimage_alloc_page(struct kimage *image,
686 					gfp_t gfp_mask,
687 					unsigned long destination)
688 {
689 	/*
690 	 * Here we implement safeguards to ensure that a source page
691 	 * is not copied to its destination page before the data on
692 	 * the destination page is no longer useful.
693 	 *
694 	 * To do this we maintain the invariant that a source page is
695 	 * either its own destination page, or it is not a
696 	 * destination page at all.
697 	 *
698 	 * That is slightly stronger than required, but the proof
699 	 * that no problems will not occur is trivial, and the
700 	 * implementation is simply to verify.
701 	 *
702 	 * When allocating all pages normally this algorithm will run
703 	 * in O(N) time, but in the worst case it will run in O(N^2)
704 	 * time.   If the runtime is a problem the data structures can
705 	 * be fixed.
706 	 */
707 	struct page *page;
708 	unsigned long addr;
709 
710 	/*
711 	 * Walk through the list of destination pages, and see if I
712 	 * have a match.
713 	 */
714 	list_for_each_entry(page, &image->dest_pages, lru) {
715 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
716 		if (addr == destination) {
717 			list_del(&page->lru);
718 			return page;
719 		}
720 	}
721 	page = NULL;
722 	while (1) {
723 		kimage_entry_t *old;
724 
725 		/* Allocate a page, if we run out of memory give up */
726 		page = kimage_alloc_pages(gfp_mask, 0);
727 		if (!page)
728 			return NULL;
729 		/* If the page cannot be used file it away */
730 		if (page_to_boot_pfn(page) >
731 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
732 			list_add(&page->lru, &image->unusable_pages);
733 			continue;
734 		}
735 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
736 
737 		/* If it is the destination page we want use it */
738 		if (addr == destination)
739 			break;
740 
741 		/* If the page is not a destination page use it */
742 		if (!kimage_is_destination_range(image, addr,
743 						  addr + PAGE_SIZE))
744 			break;
745 
746 		/*
747 		 * I know that the page is someones destination page.
748 		 * See if there is already a source page for this
749 		 * destination page.  And if so swap the source pages.
750 		 */
751 		old = kimage_dst_used(image, addr);
752 		if (old) {
753 			/* If so move it */
754 			unsigned long old_addr;
755 			struct page *old_page;
756 
757 			old_addr = *old & PAGE_MASK;
758 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
759 			copy_highpage(page, old_page);
760 			*old = addr | (*old & ~PAGE_MASK);
761 
762 			/* The old page I have found cannot be a
763 			 * destination page, so return it if it's
764 			 * gfp_flags honor the ones passed in.
765 			 */
766 			if (!(gfp_mask & __GFP_HIGHMEM) &&
767 			    PageHighMem(old_page)) {
768 				kimage_free_pages(old_page);
769 				continue;
770 			}
771 			page = old_page;
772 			break;
773 		}
774 		/* Place the page on the destination list, to be used later */
775 		list_add(&page->lru, &image->dest_pages);
776 	}
777 
778 	return page;
779 }
780 
781 static int kimage_load_normal_segment(struct kimage *image,
782 					 struct kexec_segment *segment)
783 {
784 	unsigned long maddr;
785 	size_t ubytes, mbytes;
786 	int result;
787 	unsigned char __user *buf = NULL;
788 	unsigned char *kbuf = NULL;
789 
790 	if (image->file_mode)
791 		kbuf = segment->kbuf;
792 	else
793 		buf = segment->buf;
794 	ubytes = segment->bufsz;
795 	mbytes = segment->memsz;
796 	maddr = segment->mem;
797 
798 	result = kimage_set_destination(image, maddr);
799 	if (result < 0)
800 		goto out;
801 
802 	while (mbytes) {
803 		struct page *page;
804 		char *ptr;
805 		size_t uchunk, mchunk;
806 
807 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
808 		if (!page) {
809 			result  = -ENOMEM;
810 			goto out;
811 		}
812 		result = kimage_add_page(image, page_to_boot_pfn(page)
813 								<< PAGE_SHIFT);
814 		if (result < 0)
815 			goto out;
816 
817 		ptr = kmap(page);
818 		/* Start with a clear page */
819 		clear_page(ptr);
820 		ptr += maddr & ~PAGE_MASK;
821 		mchunk = min_t(size_t, mbytes,
822 				PAGE_SIZE - (maddr & ~PAGE_MASK));
823 		uchunk = min(ubytes, mchunk);
824 
825 		/* For file based kexec, source pages are in kernel memory */
826 		if (image->file_mode)
827 			memcpy(ptr, kbuf, uchunk);
828 		else
829 			result = copy_from_user(ptr, buf, uchunk);
830 		kunmap(page);
831 		if (result) {
832 			result = -EFAULT;
833 			goto out;
834 		}
835 		ubytes -= uchunk;
836 		maddr  += mchunk;
837 		if (image->file_mode)
838 			kbuf += mchunk;
839 		else
840 			buf += mchunk;
841 		mbytes -= mchunk;
842 
843 		cond_resched();
844 	}
845 out:
846 	return result;
847 }
848 
849 static int kimage_load_crash_segment(struct kimage *image,
850 					struct kexec_segment *segment)
851 {
852 	/* For crash dumps kernels we simply copy the data from
853 	 * user space to it's destination.
854 	 * We do things a page at a time for the sake of kmap.
855 	 */
856 	unsigned long maddr;
857 	size_t ubytes, mbytes;
858 	int result;
859 	unsigned char __user *buf = NULL;
860 	unsigned char *kbuf = NULL;
861 
862 	result = 0;
863 	if (image->file_mode)
864 		kbuf = segment->kbuf;
865 	else
866 		buf = segment->buf;
867 	ubytes = segment->bufsz;
868 	mbytes = segment->memsz;
869 	maddr = segment->mem;
870 	while (mbytes) {
871 		struct page *page;
872 		char *ptr;
873 		size_t uchunk, mchunk;
874 
875 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
876 		if (!page) {
877 			result  = -ENOMEM;
878 			goto out;
879 		}
880 		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
881 		ptr = kmap(page);
882 		ptr += maddr & ~PAGE_MASK;
883 		mchunk = min_t(size_t, mbytes,
884 				PAGE_SIZE - (maddr & ~PAGE_MASK));
885 		uchunk = min(ubytes, mchunk);
886 		if (mchunk > uchunk) {
887 			/* Zero the trailing part of the page */
888 			memset(ptr + uchunk, 0, mchunk - uchunk);
889 		}
890 
891 		/* For file based kexec, source pages are in kernel memory */
892 		if (image->file_mode)
893 			memcpy(ptr, kbuf, uchunk);
894 		else
895 			result = copy_from_user(ptr, buf, uchunk);
896 		kexec_flush_icache_page(page);
897 		kunmap(page);
898 		arch_kexec_pre_free_pages(page_address(page), 1);
899 		if (result) {
900 			result = -EFAULT;
901 			goto out;
902 		}
903 		ubytes -= uchunk;
904 		maddr  += mchunk;
905 		if (image->file_mode)
906 			kbuf += mchunk;
907 		else
908 			buf += mchunk;
909 		mbytes -= mchunk;
910 
911 		cond_resched();
912 	}
913 out:
914 	return result;
915 }
916 
917 int kimage_load_segment(struct kimage *image,
918 				struct kexec_segment *segment)
919 {
920 	int result = -ENOMEM;
921 
922 	switch (image->type) {
923 	case KEXEC_TYPE_DEFAULT:
924 		result = kimage_load_normal_segment(image, segment);
925 		break;
926 	case KEXEC_TYPE_CRASH:
927 		result = kimage_load_crash_segment(image, segment);
928 		break;
929 	}
930 
931 	return result;
932 }
933 
934 struct kimage *kexec_image;
935 struct kimage *kexec_crash_image;
936 int kexec_load_disabled;
937 #ifdef CONFIG_SYSCTL
938 static struct ctl_table kexec_core_sysctls[] = {
939 	{
940 		.procname	= "kexec_load_disabled",
941 		.data		= &kexec_load_disabled,
942 		.maxlen		= sizeof(int),
943 		.mode		= 0644,
944 		/* only handle a transition from default "0" to "1" */
945 		.proc_handler	= proc_dointvec_minmax,
946 		.extra1		= SYSCTL_ONE,
947 		.extra2		= SYSCTL_ONE,
948 	},
949 	{ }
950 };
951 
952 static int __init kexec_core_sysctl_init(void)
953 {
954 	register_sysctl_init("kernel", kexec_core_sysctls);
955 	return 0;
956 }
957 late_initcall(kexec_core_sysctl_init);
958 #endif
959 
960 /*
961  * No panic_cpu check version of crash_kexec().  This function is called
962  * only when panic_cpu holds the current CPU number; this is the only CPU
963  * which processes crash_kexec routines.
964  */
965 void __noclone __crash_kexec(struct pt_regs *regs)
966 {
967 	/* Take the kexec_mutex here to prevent sys_kexec_load
968 	 * running on one cpu from replacing the crash kernel
969 	 * we are using after a panic on a different cpu.
970 	 *
971 	 * If the crash kernel was not located in a fixed area
972 	 * of memory the xchg(&kexec_crash_image) would be
973 	 * sufficient.  But since I reuse the memory...
974 	 */
975 	if (mutex_trylock(&kexec_mutex)) {
976 		if (kexec_crash_image) {
977 			struct pt_regs fixed_regs;
978 
979 			crash_setup_regs(&fixed_regs, regs);
980 			crash_save_vmcoreinfo();
981 			machine_crash_shutdown(&fixed_regs);
982 			machine_kexec(kexec_crash_image);
983 		}
984 		mutex_unlock(&kexec_mutex);
985 	}
986 }
987 STACK_FRAME_NON_STANDARD(__crash_kexec);
988 
989 void crash_kexec(struct pt_regs *regs)
990 {
991 	int old_cpu, this_cpu;
992 
993 	/*
994 	 * Only one CPU is allowed to execute the crash_kexec() code as with
995 	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
996 	 * may stop each other.  To exclude them, we use panic_cpu here too.
997 	 */
998 	this_cpu = raw_smp_processor_id();
999 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
1000 	if (old_cpu == PANIC_CPU_INVALID) {
1001 		/* This is the 1st CPU which comes here, so go ahead. */
1002 		__crash_kexec(regs);
1003 
1004 		/*
1005 		 * Reset panic_cpu to allow another panic()/crash_kexec()
1006 		 * call.
1007 		 */
1008 		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
1009 	}
1010 }
1011 
1012 size_t crash_get_memory_size(void)
1013 {
1014 	size_t size = 0;
1015 
1016 	mutex_lock(&kexec_mutex);
1017 	if (crashk_res.end != crashk_res.start)
1018 		size = resource_size(&crashk_res);
1019 	mutex_unlock(&kexec_mutex);
1020 	return size;
1021 }
1022 
1023 void __weak crash_free_reserved_phys_range(unsigned long begin,
1024 					   unsigned long end)
1025 {
1026 	unsigned long addr;
1027 
1028 	for (addr = begin; addr < end; addr += PAGE_SIZE)
1029 		free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
1030 }
1031 
1032 int crash_shrink_memory(unsigned long new_size)
1033 {
1034 	int ret = 0;
1035 	unsigned long start, end;
1036 	unsigned long old_size;
1037 	struct resource *ram_res;
1038 
1039 	mutex_lock(&kexec_mutex);
1040 
1041 	if (kexec_crash_image) {
1042 		ret = -ENOENT;
1043 		goto unlock;
1044 	}
1045 	start = crashk_res.start;
1046 	end = crashk_res.end;
1047 	old_size = (end == 0) ? 0 : end - start + 1;
1048 	if (new_size >= old_size) {
1049 		ret = (new_size == old_size) ? 0 : -EINVAL;
1050 		goto unlock;
1051 	}
1052 
1053 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1054 	if (!ram_res) {
1055 		ret = -ENOMEM;
1056 		goto unlock;
1057 	}
1058 
1059 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1060 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1061 
1062 	crash_free_reserved_phys_range(end, crashk_res.end);
1063 
1064 	if ((start == end) && (crashk_res.parent != NULL))
1065 		release_resource(&crashk_res);
1066 
1067 	ram_res->start = end;
1068 	ram_res->end = crashk_res.end;
1069 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1070 	ram_res->name = "System RAM";
1071 
1072 	crashk_res.end = end - 1;
1073 
1074 	insert_resource(&iomem_resource, ram_res);
1075 
1076 unlock:
1077 	mutex_unlock(&kexec_mutex);
1078 	return ret;
1079 }
1080 
1081 void crash_save_cpu(struct pt_regs *regs, int cpu)
1082 {
1083 	struct elf_prstatus prstatus;
1084 	u32 *buf;
1085 
1086 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1087 		return;
1088 
1089 	/* Using ELF notes here is opportunistic.
1090 	 * I need a well defined structure format
1091 	 * for the data I pass, and I need tags
1092 	 * on the data to indicate what information I have
1093 	 * squirrelled away.  ELF notes happen to provide
1094 	 * all of that, so there is no need to invent something new.
1095 	 */
1096 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1097 	if (!buf)
1098 		return;
1099 	memset(&prstatus, 0, sizeof(prstatus));
1100 	prstatus.common.pr_pid = current->pid;
1101 	elf_core_copy_regs(&prstatus.pr_reg, regs);
1102 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1103 			      &prstatus, sizeof(prstatus));
1104 	final_note(buf);
1105 }
1106 
1107 static int __init crash_notes_memory_init(void)
1108 {
1109 	/* Allocate memory for saving cpu registers. */
1110 	size_t size, align;
1111 
1112 	/*
1113 	 * crash_notes could be allocated across 2 vmalloc pages when percpu
1114 	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1115 	 * pages are also on 2 continuous physical pages. In this case the
1116 	 * 2nd part of crash_notes in 2nd page could be lost since only the
1117 	 * starting address and size of crash_notes are exported through sysfs.
1118 	 * Here round up the size of crash_notes to the nearest power of two
1119 	 * and pass it to __alloc_percpu as align value. This can make sure
1120 	 * crash_notes is allocated inside one physical page.
1121 	 */
1122 	size = sizeof(note_buf_t);
1123 	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1124 
1125 	/*
1126 	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1127 	 * definitely will be in 2 pages with that.
1128 	 */
1129 	BUILD_BUG_ON(size > PAGE_SIZE);
1130 
1131 	crash_notes = __alloc_percpu(size, align);
1132 	if (!crash_notes) {
1133 		pr_warn("Memory allocation for saving cpu register states failed\n");
1134 		return -ENOMEM;
1135 	}
1136 	return 0;
1137 }
1138 subsys_initcall(crash_notes_memory_init);
1139 
1140 
1141 /*
1142  * Move into place and start executing a preloaded standalone
1143  * executable.  If nothing was preloaded return an error.
1144  */
1145 int kernel_kexec(void)
1146 {
1147 	int error = 0;
1148 
1149 	if (!mutex_trylock(&kexec_mutex))
1150 		return -EBUSY;
1151 	if (!kexec_image) {
1152 		error = -EINVAL;
1153 		goto Unlock;
1154 	}
1155 
1156 #ifdef CONFIG_KEXEC_JUMP
1157 	if (kexec_image->preserve_context) {
1158 		pm_prepare_console();
1159 		error = freeze_processes();
1160 		if (error) {
1161 			error = -EBUSY;
1162 			goto Restore_console;
1163 		}
1164 		suspend_console();
1165 		error = dpm_suspend_start(PMSG_FREEZE);
1166 		if (error)
1167 			goto Resume_console;
1168 		/* At this point, dpm_suspend_start() has been called,
1169 		 * but *not* dpm_suspend_end(). We *must* call
1170 		 * dpm_suspend_end() now.  Otherwise, drivers for
1171 		 * some devices (e.g. interrupt controllers) become
1172 		 * desynchronized with the actual state of the
1173 		 * hardware at resume time, and evil weirdness ensues.
1174 		 */
1175 		error = dpm_suspend_end(PMSG_FREEZE);
1176 		if (error)
1177 			goto Resume_devices;
1178 		error = suspend_disable_secondary_cpus();
1179 		if (error)
1180 			goto Enable_cpus;
1181 		local_irq_disable();
1182 		error = syscore_suspend();
1183 		if (error)
1184 			goto Enable_irqs;
1185 	} else
1186 #endif
1187 	{
1188 		kexec_in_progress = true;
1189 		kernel_restart_prepare("kexec reboot");
1190 		migrate_to_reboot_cpu();
1191 
1192 		/*
1193 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1194 		 * no further code needs to use CPU hotplug (which is true in
1195 		 * the reboot case). However, the kexec path depends on using
1196 		 * CPU hotplug again; so re-enable it here.
1197 		 */
1198 		cpu_hotplug_enable();
1199 		pr_notice("Starting new kernel\n");
1200 		machine_shutdown();
1201 	}
1202 
1203 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
1204 	machine_kexec(kexec_image);
1205 
1206 #ifdef CONFIG_KEXEC_JUMP
1207 	if (kexec_image->preserve_context) {
1208 		syscore_resume();
1209  Enable_irqs:
1210 		local_irq_enable();
1211  Enable_cpus:
1212 		suspend_enable_secondary_cpus();
1213 		dpm_resume_start(PMSG_RESTORE);
1214  Resume_devices:
1215 		dpm_resume_end(PMSG_RESTORE);
1216  Resume_console:
1217 		resume_console();
1218 		thaw_processes();
1219  Restore_console:
1220 		pm_restore_console();
1221 	}
1222 #endif
1223 
1224  Unlock:
1225 	mutex_unlock(&kexec_mutex);
1226 	return error;
1227 }
1228 
1229 /*
1230  * Protection mechanism for crashkernel reserved memory after
1231  * the kdump kernel is loaded.
1232  *
1233  * Provide an empty default implementation here -- architecture
1234  * code may override this
1235  */
1236 void __weak arch_kexec_protect_crashkres(void)
1237 {}
1238 
1239 void __weak arch_kexec_unprotect_crashkres(void)
1240 {}
1241