1 /* 2 * kexec.c - kexec system call core code. 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/capability.h> 12 #include <linux/mm.h> 13 #include <linux/file.h> 14 #include <linux/slab.h> 15 #include <linux/fs.h> 16 #include <linux/kexec.h> 17 #include <linux/mutex.h> 18 #include <linux/list.h> 19 #include <linux/highmem.h> 20 #include <linux/syscalls.h> 21 #include <linux/reboot.h> 22 #include <linux/ioport.h> 23 #include <linux/hardirq.h> 24 #include <linux/elf.h> 25 #include <linux/elfcore.h> 26 #include <linux/utsname.h> 27 #include <linux/numa.h> 28 #include <linux/suspend.h> 29 #include <linux/device.h> 30 #include <linux/freezer.h> 31 #include <linux/pm.h> 32 #include <linux/cpu.h> 33 #include <linux/uaccess.h> 34 #include <linux/io.h> 35 #include <linux/console.h> 36 #include <linux/vmalloc.h> 37 #include <linux/swap.h> 38 #include <linux/syscore_ops.h> 39 #include <linux/compiler.h> 40 #include <linux/hugetlb.h> 41 #include <linux/frame.h> 42 43 #include <asm/page.h> 44 #include <asm/sections.h> 45 46 #include <crypto/hash.h> 47 #include <crypto/sha.h> 48 #include "kexec_internal.h" 49 50 DEFINE_MUTEX(kexec_mutex); 51 52 /* Per cpu memory for storing cpu states in case of system crash. */ 53 note_buf_t __percpu *crash_notes; 54 55 /* Flag to indicate we are going to kexec a new kernel */ 56 bool kexec_in_progress = false; 57 58 59 /* Location of the reserved area for the crash kernel */ 60 struct resource crashk_res = { 61 .name = "Crash kernel", 62 .start = 0, 63 .end = 0, 64 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 65 .desc = IORES_DESC_CRASH_KERNEL 66 }; 67 struct resource crashk_low_res = { 68 .name = "Crash kernel", 69 .start = 0, 70 .end = 0, 71 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 72 .desc = IORES_DESC_CRASH_KERNEL 73 }; 74 75 int kexec_should_crash(struct task_struct *p) 76 { 77 /* 78 * If crash_kexec_post_notifiers is enabled, don't run 79 * crash_kexec() here yet, which must be run after panic 80 * notifiers in panic(). 81 */ 82 if (crash_kexec_post_notifiers) 83 return 0; 84 /* 85 * There are 4 panic() calls in do_exit() path, each of which 86 * corresponds to each of these 4 conditions. 87 */ 88 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 89 return 1; 90 return 0; 91 } 92 93 int kexec_crash_loaded(void) 94 { 95 return !!kexec_crash_image; 96 } 97 EXPORT_SYMBOL_GPL(kexec_crash_loaded); 98 99 /* 100 * When kexec transitions to the new kernel there is a one-to-one 101 * mapping between physical and virtual addresses. On processors 102 * where you can disable the MMU this is trivial, and easy. For 103 * others it is still a simple predictable page table to setup. 104 * 105 * In that environment kexec copies the new kernel to its final 106 * resting place. This means I can only support memory whose 107 * physical address can fit in an unsigned long. In particular 108 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 109 * If the assembly stub has more restrictive requirements 110 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 111 * defined more restrictively in <asm/kexec.h>. 112 * 113 * The code for the transition from the current kernel to the 114 * the new kernel is placed in the control_code_buffer, whose size 115 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 116 * page of memory is necessary, but some architectures require more. 117 * Because this memory must be identity mapped in the transition from 118 * virtual to physical addresses it must live in the range 119 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 120 * modifiable. 121 * 122 * The assembly stub in the control code buffer is passed a linked list 123 * of descriptor pages detailing the source pages of the new kernel, 124 * and the destination addresses of those source pages. As this data 125 * structure is not used in the context of the current OS, it must 126 * be self-contained. 127 * 128 * The code has been made to work with highmem pages and will use a 129 * destination page in its final resting place (if it happens 130 * to allocate it). The end product of this is that most of the 131 * physical address space, and most of RAM can be used. 132 * 133 * Future directions include: 134 * - allocating a page table with the control code buffer identity 135 * mapped, to simplify machine_kexec and make kexec_on_panic more 136 * reliable. 137 */ 138 139 /* 140 * KIMAGE_NO_DEST is an impossible destination address..., for 141 * allocating pages whose destination address we do not care about. 142 */ 143 #define KIMAGE_NO_DEST (-1UL) 144 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) 145 146 static struct page *kimage_alloc_page(struct kimage *image, 147 gfp_t gfp_mask, 148 unsigned long dest); 149 150 int sanity_check_segment_list(struct kimage *image) 151 { 152 int i; 153 unsigned long nr_segments = image->nr_segments; 154 unsigned long total_pages = 0; 155 unsigned long nr_pages = totalram_pages(); 156 157 /* 158 * Verify we have good destination addresses. The caller is 159 * responsible for making certain we don't attempt to load 160 * the new image into invalid or reserved areas of RAM. This 161 * just verifies it is an address we can use. 162 * 163 * Since the kernel does everything in page size chunks ensure 164 * the destination addresses are page aligned. Too many 165 * special cases crop of when we don't do this. The most 166 * insidious is getting overlapping destination addresses 167 * simply because addresses are changed to page size 168 * granularity. 169 */ 170 for (i = 0; i < nr_segments; i++) { 171 unsigned long mstart, mend; 172 173 mstart = image->segment[i].mem; 174 mend = mstart + image->segment[i].memsz; 175 if (mstart > mend) 176 return -EADDRNOTAVAIL; 177 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 178 return -EADDRNOTAVAIL; 179 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 180 return -EADDRNOTAVAIL; 181 } 182 183 /* Verify our destination addresses do not overlap. 184 * If we alloed overlapping destination addresses 185 * through very weird things can happen with no 186 * easy explanation as one segment stops on another. 187 */ 188 for (i = 0; i < nr_segments; i++) { 189 unsigned long mstart, mend; 190 unsigned long j; 191 192 mstart = image->segment[i].mem; 193 mend = mstart + image->segment[i].memsz; 194 for (j = 0; j < i; j++) { 195 unsigned long pstart, pend; 196 197 pstart = image->segment[j].mem; 198 pend = pstart + image->segment[j].memsz; 199 /* Do the segments overlap ? */ 200 if ((mend > pstart) && (mstart < pend)) 201 return -EINVAL; 202 } 203 } 204 205 /* Ensure our buffer sizes are strictly less than 206 * our memory sizes. This should always be the case, 207 * and it is easier to check up front than to be surprised 208 * later on. 209 */ 210 for (i = 0; i < nr_segments; i++) { 211 if (image->segment[i].bufsz > image->segment[i].memsz) 212 return -EINVAL; 213 } 214 215 /* 216 * Verify that no more than half of memory will be consumed. If the 217 * request from userspace is too large, a large amount of time will be 218 * wasted allocating pages, which can cause a soft lockup. 219 */ 220 for (i = 0; i < nr_segments; i++) { 221 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2) 222 return -EINVAL; 223 224 total_pages += PAGE_COUNT(image->segment[i].memsz); 225 } 226 227 if (total_pages > nr_pages / 2) 228 return -EINVAL; 229 230 /* 231 * Verify we have good destination addresses. Normally 232 * the caller is responsible for making certain we don't 233 * attempt to load the new image into invalid or reserved 234 * areas of RAM. But crash kernels are preloaded into a 235 * reserved area of ram. We must ensure the addresses 236 * are in the reserved area otherwise preloading the 237 * kernel could corrupt things. 238 */ 239 240 if (image->type == KEXEC_TYPE_CRASH) { 241 for (i = 0; i < nr_segments; i++) { 242 unsigned long mstart, mend; 243 244 mstart = image->segment[i].mem; 245 mend = mstart + image->segment[i].memsz - 1; 246 /* Ensure we are within the crash kernel limits */ 247 if ((mstart < phys_to_boot_phys(crashk_res.start)) || 248 (mend > phys_to_boot_phys(crashk_res.end))) 249 return -EADDRNOTAVAIL; 250 } 251 } 252 253 return 0; 254 } 255 256 struct kimage *do_kimage_alloc_init(void) 257 { 258 struct kimage *image; 259 260 /* Allocate a controlling structure */ 261 image = kzalloc(sizeof(*image), GFP_KERNEL); 262 if (!image) 263 return NULL; 264 265 image->head = 0; 266 image->entry = &image->head; 267 image->last_entry = &image->head; 268 image->control_page = ~0; /* By default this does not apply */ 269 image->type = KEXEC_TYPE_DEFAULT; 270 271 /* Initialize the list of control pages */ 272 INIT_LIST_HEAD(&image->control_pages); 273 274 /* Initialize the list of destination pages */ 275 INIT_LIST_HEAD(&image->dest_pages); 276 277 /* Initialize the list of unusable pages */ 278 INIT_LIST_HEAD(&image->unusable_pages); 279 280 return image; 281 } 282 283 int kimage_is_destination_range(struct kimage *image, 284 unsigned long start, 285 unsigned long end) 286 { 287 unsigned long i; 288 289 for (i = 0; i < image->nr_segments; i++) { 290 unsigned long mstart, mend; 291 292 mstart = image->segment[i].mem; 293 mend = mstart + image->segment[i].memsz; 294 if ((end > mstart) && (start < mend)) 295 return 1; 296 } 297 298 return 0; 299 } 300 301 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 302 { 303 struct page *pages; 304 305 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order); 306 if (pages) { 307 unsigned int count, i; 308 309 pages->mapping = NULL; 310 set_page_private(pages, order); 311 count = 1 << order; 312 for (i = 0; i < count; i++) 313 SetPageReserved(pages + i); 314 315 arch_kexec_post_alloc_pages(page_address(pages), count, 316 gfp_mask); 317 318 if (gfp_mask & __GFP_ZERO) 319 for (i = 0; i < count; i++) 320 clear_highpage(pages + i); 321 } 322 323 return pages; 324 } 325 326 static void kimage_free_pages(struct page *page) 327 { 328 unsigned int order, count, i; 329 330 order = page_private(page); 331 count = 1 << order; 332 333 arch_kexec_pre_free_pages(page_address(page), count); 334 335 for (i = 0; i < count; i++) 336 ClearPageReserved(page + i); 337 __free_pages(page, order); 338 } 339 340 void kimage_free_page_list(struct list_head *list) 341 { 342 struct page *page, *next; 343 344 list_for_each_entry_safe(page, next, list, lru) { 345 list_del(&page->lru); 346 kimage_free_pages(page); 347 } 348 } 349 350 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 351 unsigned int order) 352 { 353 /* Control pages are special, they are the intermediaries 354 * that are needed while we copy the rest of the pages 355 * to their final resting place. As such they must 356 * not conflict with either the destination addresses 357 * or memory the kernel is already using. 358 * 359 * The only case where we really need more than one of 360 * these are for architectures where we cannot disable 361 * the MMU and must instead generate an identity mapped 362 * page table for all of the memory. 363 * 364 * At worst this runs in O(N) of the image size. 365 */ 366 struct list_head extra_pages; 367 struct page *pages; 368 unsigned int count; 369 370 count = 1 << order; 371 INIT_LIST_HEAD(&extra_pages); 372 373 /* Loop while I can allocate a page and the page allocated 374 * is a destination page. 375 */ 376 do { 377 unsigned long pfn, epfn, addr, eaddr; 378 379 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); 380 if (!pages) 381 break; 382 pfn = page_to_boot_pfn(pages); 383 epfn = pfn + count; 384 addr = pfn << PAGE_SHIFT; 385 eaddr = epfn << PAGE_SHIFT; 386 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 387 kimage_is_destination_range(image, addr, eaddr)) { 388 list_add(&pages->lru, &extra_pages); 389 pages = NULL; 390 } 391 } while (!pages); 392 393 if (pages) { 394 /* Remember the allocated page... */ 395 list_add(&pages->lru, &image->control_pages); 396 397 /* Because the page is already in it's destination 398 * location we will never allocate another page at 399 * that address. Therefore kimage_alloc_pages 400 * will not return it (again) and we don't need 401 * to give it an entry in image->segment[]. 402 */ 403 } 404 /* Deal with the destination pages I have inadvertently allocated. 405 * 406 * Ideally I would convert multi-page allocations into single 407 * page allocations, and add everything to image->dest_pages. 408 * 409 * For now it is simpler to just free the pages. 410 */ 411 kimage_free_page_list(&extra_pages); 412 413 return pages; 414 } 415 416 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 417 unsigned int order) 418 { 419 /* Control pages are special, they are the intermediaries 420 * that are needed while we copy the rest of the pages 421 * to their final resting place. As such they must 422 * not conflict with either the destination addresses 423 * or memory the kernel is already using. 424 * 425 * Control pages are also the only pags we must allocate 426 * when loading a crash kernel. All of the other pages 427 * are specified by the segments and we just memcpy 428 * into them directly. 429 * 430 * The only case where we really need more than one of 431 * these are for architectures where we cannot disable 432 * the MMU and must instead generate an identity mapped 433 * page table for all of the memory. 434 * 435 * Given the low demand this implements a very simple 436 * allocator that finds the first hole of the appropriate 437 * size in the reserved memory region, and allocates all 438 * of the memory up to and including the hole. 439 */ 440 unsigned long hole_start, hole_end, size; 441 struct page *pages; 442 443 pages = NULL; 444 size = (1 << order) << PAGE_SHIFT; 445 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 446 hole_end = hole_start + size - 1; 447 while (hole_end <= crashk_res.end) { 448 unsigned long i; 449 450 cond_resched(); 451 452 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 453 break; 454 /* See if I overlap any of the segments */ 455 for (i = 0; i < image->nr_segments; i++) { 456 unsigned long mstart, mend; 457 458 mstart = image->segment[i].mem; 459 mend = mstart + image->segment[i].memsz - 1; 460 if ((hole_end >= mstart) && (hole_start <= mend)) { 461 /* Advance the hole to the end of the segment */ 462 hole_start = (mend + (size - 1)) & ~(size - 1); 463 hole_end = hole_start + size - 1; 464 break; 465 } 466 } 467 /* If I don't overlap any segments I have found my hole! */ 468 if (i == image->nr_segments) { 469 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 470 image->control_page = hole_end; 471 break; 472 } 473 } 474 475 /* Ensure that these pages are decrypted if SME is enabled. */ 476 if (pages) 477 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0); 478 479 return pages; 480 } 481 482 483 struct page *kimage_alloc_control_pages(struct kimage *image, 484 unsigned int order) 485 { 486 struct page *pages = NULL; 487 488 switch (image->type) { 489 case KEXEC_TYPE_DEFAULT: 490 pages = kimage_alloc_normal_control_pages(image, order); 491 break; 492 case KEXEC_TYPE_CRASH: 493 pages = kimage_alloc_crash_control_pages(image, order); 494 break; 495 } 496 497 return pages; 498 } 499 500 int kimage_crash_copy_vmcoreinfo(struct kimage *image) 501 { 502 struct page *vmcoreinfo_page; 503 void *safecopy; 504 505 if (image->type != KEXEC_TYPE_CRASH) 506 return 0; 507 508 /* 509 * For kdump, allocate one vmcoreinfo safe copy from the 510 * crash memory. as we have arch_kexec_protect_crashkres() 511 * after kexec syscall, we naturally protect it from write 512 * (even read) access under kernel direct mapping. But on 513 * the other hand, we still need to operate it when crash 514 * happens to generate vmcoreinfo note, hereby we rely on 515 * vmap for this purpose. 516 */ 517 vmcoreinfo_page = kimage_alloc_control_pages(image, 0); 518 if (!vmcoreinfo_page) { 519 pr_warn("Could not allocate vmcoreinfo buffer\n"); 520 return -ENOMEM; 521 } 522 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); 523 if (!safecopy) { 524 pr_warn("Could not vmap vmcoreinfo buffer\n"); 525 return -ENOMEM; 526 } 527 528 image->vmcoreinfo_data_copy = safecopy; 529 crash_update_vmcoreinfo_safecopy(safecopy); 530 531 return 0; 532 } 533 534 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 535 { 536 if (*image->entry != 0) 537 image->entry++; 538 539 if (image->entry == image->last_entry) { 540 kimage_entry_t *ind_page; 541 struct page *page; 542 543 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 544 if (!page) 545 return -ENOMEM; 546 547 ind_page = page_address(page); 548 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; 549 image->entry = ind_page; 550 image->last_entry = ind_page + 551 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 552 } 553 *image->entry = entry; 554 image->entry++; 555 *image->entry = 0; 556 557 return 0; 558 } 559 560 static int kimage_set_destination(struct kimage *image, 561 unsigned long destination) 562 { 563 int result; 564 565 destination &= PAGE_MASK; 566 result = kimage_add_entry(image, destination | IND_DESTINATION); 567 568 return result; 569 } 570 571 572 static int kimage_add_page(struct kimage *image, unsigned long page) 573 { 574 int result; 575 576 page &= PAGE_MASK; 577 result = kimage_add_entry(image, page | IND_SOURCE); 578 579 return result; 580 } 581 582 583 static void kimage_free_extra_pages(struct kimage *image) 584 { 585 /* Walk through and free any extra destination pages I may have */ 586 kimage_free_page_list(&image->dest_pages); 587 588 /* Walk through and free any unusable pages I have cached */ 589 kimage_free_page_list(&image->unusable_pages); 590 591 } 592 void kimage_terminate(struct kimage *image) 593 { 594 if (*image->entry != 0) 595 image->entry++; 596 597 *image->entry = IND_DONE; 598 } 599 600 #define for_each_kimage_entry(image, ptr, entry) \ 601 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 602 ptr = (entry & IND_INDIRECTION) ? \ 603 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 604 605 static void kimage_free_entry(kimage_entry_t entry) 606 { 607 struct page *page; 608 609 page = boot_pfn_to_page(entry >> PAGE_SHIFT); 610 kimage_free_pages(page); 611 } 612 613 void kimage_free(struct kimage *image) 614 { 615 kimage_entry_t *ptr, entry; 616 kimage_entry_t ind = 0; 617 618 if (!image) 619 return; 620 621 if (image->vmcoreinfo_data_copy) { 622 crash_update_vmcoreinfo_safecopy(NULL); 623 vunmap(image->vmcoreinfo_data_copy); 624 } 625 626 kimage_free_extra_pages(image); 627 for_each_kimage_entry(image, ptr, entry) { 628 if (entry & IND_INDIRECTION) { 629 /* Free the previous indirection page */ 630 if (ind & IND_INDIRECTION) 631 kimage_free_entry(ind); 632 /* Save this indirection page until we are 633 * done with it. 634 */ 635 ind = entry; 636 } else if (entry & IND_SOURCE) 637 kimage_free_entry(entry); 638 } 639 /* Free the final indirection page */ 640 if (ind & IND_INDIRECTION) 641 kimage_free_entry(ind); 642 643 /* Handle any machine specific cleanup */ 644 machine_kexec_cleanup(image); 645 646 /* Free the kexec control pages... */ 647 kimage_free_page_list(&image->control_pages); 648 649 /* 650 * Free up any temporary buffers allocated. This might hit if 651 * error occurred much later after buffer allocation. 652 */ 653 if (image->file_mode) 654 kimage_file_post_load_cleanup(image); 655 656 kfree(image); 657 } 658 659 static kimage_entry_t *kimage_dst_used(struct kimage *image, 660 unsigned long page) 661 { 662 kimage_entry_t *ptr, entry; 663 unsigned long destination = 0; 664 665 for_each_kimage_entry(image, ptr, entry) { 666 if (entry & IND_DESTINATION) 667 destination = entry & PAGE_MASK; 668 else if (entry & IND_SOURCE) { 669 if (page == destination) 670 return ptr; 671 destination += PAGE_SIZE; 672 } 673 } 674 675 return NULL; 676 } 677 678 static struct page *kimage_alloc_page(struct kimage *image, 679 gfp_t gfp_mask, 680 unsigned long destination) 681 { 682 /* 683 * Here we implement safeguards to ensure that a source page 684 * is not copied to its destination page before the data on 685 * the destination page is no longer useful. 686 * 687 * To do this we maintain the invariant that a source page is 688 * either its own destination page, or it is not a 689 * destination page at all. 690 * 691 * That is slightly stronger than required, but the proof 692 * that no problems will not occur is trivial, and the 693 * implementation is simply to verify. 694 * 695 * When allocating all pages normally this algorithm will run 696 * in O(N) time, but in the worst case it will run in O(N^2) 697 * time. If the runtime is a problem the data structures can 698 * be fixed. 699 */ 700 struct page *page; 701 unsigned long addr; 702 703 /* 704 * Walk through the list of destination pages, and see if I 705 * have a match. 706 */ 707 list_for_each_entry(page, &image->dest_pages, lru) { 708 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 709 if (addr == destination) { 710 list_del(&page->lru); 711 return page; 712 } 713 } 714 page = NULL; 715 while (1) { 716 kimage_entry_t *old; 717 718 /* Allocate a page, if we run out of memory give up */ 719 page = kimage_alloc_pages(gfp_mask, 0); 720 if (!page) 721 return NULL; 722 /* If the page cannot be used file it away */ 723 if (page_to_boot_pfn(page) > 724 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 725 list_add(&page->lru, &image->unusable_pages); 726 continue; 727 } 728 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 729 730 /* If it is the destination page we want use it */ 731 if (addr == destination) 732 break; 733 734 /* If the page is not a destination page use it */ 735 if (!kimage_is_destination_range(image, addr, 736 addr + PAGE_SIZE)) 737 break; 738 739 /* 740 * I know that the page is someones destination page. 741 * See if there is already a source page for this 742 * destination page. And if so swap the source pages. 743 */ 744 old = kimage_dst_used(image, addr); 745 if (old) { 746 /* If so move it */ 747 unsigned long old_addr; 748 struct page *old_page; 749 750 old_addr = *old & PAGE_MASK; 751 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); 752 copy_highpage(page, old_page); 753 *old = addr | (*old & ~PAGE_MASK); 754 755 /* The old page I have found cannot be a 756 * destination page, so return it if it's 757 * gfp_flags honor the ones passed in. 758 */ 759 if (!(gfp_mask & __GFP_HIGHMEM) && 760 PageHighMem(old_page)) { 761 kimage_free_pages(old_page); 762 continue; 763 } 764 addr = old_addr; 765 page = old_page; 766 break; 767 } 768 /* Place the page on the destination list, to be used later */ 769 list_add(&page->lru, &image->dest_pages); 770 } 771 772 return page; 773 } 774 775 static int kimage_load_normal_segment(struct kimage *image, 776 struct kexec_segment *segment) 777 { 778 unsigned long maddr; 779 size_t ubytes, mbytes; 780 int result; 781 unsigned char __user *buf = NULL; 782 unsigned char *kbuf = NULL; 783 784 result = 0; 785 if (image->file_mode) 786 kbuf = segment->kbuf; 787 else 788 buf = segment->buf; 789 ubytes = segment->bufsz; 790 mbytes = segment->memsz; 791 maddr = segment->mem; 792 793 result = kimage_set_destination(image, maddr); 794 if (result < 0) 795 goto out; 796 797 while (mbytes) { 798 struct page *page; 799 char *ptr; 800 size_t uchunk, mchunk; 801 802 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 803 if (!page) { 804 result = -ENOMEM; 805 goto out; 806 } 807 result = kimage_add_page(image, page_to_boot_pfn(page) 808 << PAGE_SHIFT); 809 if (result < 0) 810 goto out; 811 812 ptr = kmap(page); 813 /* Start with a clear page */ 814 clear_page(ptr); 815 ptr += maddr & ~PAGE_MASK; 816 mchunk = min_t(size_t, mbytes, 817 PAGE_SIZE - (maddr & ~PAGE_MASK)); 818 uchunk = min(ubytes, mchunk); 819 820 /* For file based kexec, source pages are in kernel memory */ 821 if (image->file_mode) 822 memcpy(ptr, kbuf, uchunk); 823 else 824 result = copy_from_user(ptr, buf, uchunk); 825 kunmap(page); 826 if (result) { 827 result = -EFAULT; 828 goto out; 829 } 830 ubytes -= uchunk; 831 maddr += mchunk; 832 if (image->file_mode) 833 kbuf += mchunk; 834 else 835 buf += mchunk; 836 mbytes -= mchunk; 837 838 cond_resched(); 839 } 840 out: 841 return result; 842 } 843 844 static int kimage_load_crash_segment(struct kimage *image, 845 struct kexec_segment *segment) 846 { 847 /* For crash dumps kernels we simply copy the data from 848 * user space to it's destination. 849 * We do things a page at a time for the sake of kmap. 850 */ 851 unsigned long maddr; 852 size_t ubytes, mbytes; 853 int result; 854 unsigned char __user *buf = NULL; 855 unsigned char *kbuf = NULL; 856 857 result = 0; 858 if (image->file_mode) 859 kbuf = segment->kbuf; 860 else 861 buf = segment->buf; 862 ubytes = segment->bufsz; 863 mbytes = segment->memsz; 864 maddr = segment->mem; 865 while (mbytes) { 866 struct page *page; 867 char *ptr; 868 size_t uchunk, mchunk; 869 870 page = boot_pfn_to_page(maddr >> PAGE_SHIFT); 871 if (!page) { 872 result = -ENOMEM; 873 goto out; 874 } 875 arch_kexec_post_alloc_pages(page_address(page), 1, 0); 876 ptr = kmap(page); 877 ptr += maddr & ~PAGE_MASK; 878 mchunk = min_t(size_t, mbytes, 879 PAGE_SIZE - (maddr & ~PAGE_MASK)); 880 uchunk = min(ubytes, mchunk); 881 if (mchunk > uchunk) { 882 /* Zero the trailing part of the page */ 883 memset(ptr + uchunk, 0, mchunk - uchunk); 884 } 885 886 /* For file based kexec, source pages are in kernel memory */ 887 if (image->file_mode) 888 memcpy(ptr, kbuf, uchunk); 889 else 890 result = copy_from_user(ptr, buf, uchunk); 891 kexec_flush_icache_page(page); 892 kunmap(page); 893 arch_kexec_pre_free_pages(page_address(page), 1); 894 if (result) { 895 result = -EFAULT; 896 goto out; 897 } 898 ubytes -= uchunk; 899 maddr += mchunk; 900 if (image->file_mode) 901 kbuf += mchunk; 902 else 903 buf += mchunk; 904 mbytes -= mchunk; 905 906 cond_resched(); 907 } 908 out: 909 return result; 910 } 911 912 int kimage_load_segment(struct kimage *image, 913 struct kexec_segment *segment) 914 { 915 int result = -ENOMEM; 916 917 switch (image->type) { 918 case KEXEC_TYPE_DEFAULT: 919 result = kimage_load_normal_segment(image, segment); 920 break; 921 case KEXEC_TYPE_CRASH: 922 result = kimage_load_crash_segment(image, segment); 923 break; 924 } 925 926 return result; 927 } 928 929 struct kimage *kexec_image; 930 struct kimage *kexec_crash_image; 931 int kexec_load_disabled; 932 933 /* 934 * No panic_cpu check version of crash_kexec(). This function is called 935 * only when panic_cpu holds the current CPU number; this is the only CPU 936 * which processes crash_kexec routines. 937 */ 938 void __noclone __crash_kexec(struct pt_regs *regs) 939 { 940 /* Take the kexec_mutex here to prevent sys_kexec_load 941 * running on one cpu from replacing the crash kernel 942 * we are using after a panic on a different cpu. 943 * 944 * If the crash kernel was not located in a fixed area 945 * of memory the xchg(&kexec_crash_image) would be 946 * sufficient. But since I reuse the memory... 947 */ 948 if (mutex_trylock(&kexec_mutex)) { 949 if (kexec_crash_image) { 950 struct pt_regs fixed_regs; 951 952 crash_setup_regs(&fixed_regs, regs); 953 crash_save_vmcoreinfo(); 954 machine_crash_shutdown(&fixed_regs); 955 machine_kexec(kexec_crash_image); 956 } 957 mutex_unlock(&kexec_mutex); 958 } 959 } 960 STACK_FRAME_NON_STANDARD(__crash_kexec); 961 962 void crash_kexec(struct pt_regs *regs) 963 { 964 int old_cpu, this_cpu; 965 966 /* 967 * Only one CPU is allowed to execute the crash_kexec() code as with 968 * panic(). Otherwise parallel calls of panic() and crash_kexec() 969 * may stop each other. To exclude them, we use panic_cpu here too. 970 */ 971 this_cpu = raw_smp_processor_id(); 972 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 973 if (old_cpu == PANIC_CPU_INVALID) { 974 /* This is the 1st CPU which comes here, so go ahead. */ 975 printk_safe_flush_on_panic(); 976 __crash_kexec(regs); 977 978 /* 979 * Reset panic_cpu to allow another panic()/crash_kexec() 980 * call. 981 */ 982 atomic_set(&panic_cpu, PANIC_CPU_INVALID); 983 } 984 } 985 986 size_t crash_get_memory_size(void) 987 { 988 size_t size = 0; 989 990 mutex_lock(&kexec_mutex); 991 if (crashk_res.end != crashk_res.start) 992 size = resource_size(&crashk_res); 993 mutex_unlock(&kexec_mutex); 994 return size; 995 } 996 997 void __weak crash_free_reserved_phys_range(unsigned long begin, 998 unsigned long end) 999 { 1000 unsigned long addr; 1001 1002 for (addr = begin; addr < end; addr += PAGE_SIZE) 1003 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT)); 1004 } 1005 1006 int crash_shrink_memory(unsigned long new_size) 1007 { 1008 int ret = 0; 1009 unsigned long start, end; 1010 unsigned long old_size; 1011 struct resource *ram_res; 1012 1013 mutex_lock(&kexec_mutex); 1014 1015 if (kexec_crash_image) { 1016 ret = -ENOENT; 1017 goto unlock; 1018 } 1019 start = crashk_res.start; 1020 end = crashk_res.end; 1021 old_size = (end == 0) ? 0 : end - start + 1; 1022 if (new_size >= old_size) { 1023 ret = (new_size == old_size) ? 0 : -EINVAL; 1024 goto unlock; 1025 } 1026 1027 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 1028 if (!ram_res) { 1029 ret = -ENOMEM; 1030 goto unlock; 1031 } 1032 1033 start = roundup(start, KEXEC_CRASH_MEM_ALIGN); 1034 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); 1035 1036 crash_free_reserved_phys_range(end, crashk_res.end); 1037 1038 if ((start == end) && (crashk_res.parent != NULL)) 1039 release_resource(&crashk_res); 1040 1041 ram_res->start = end; 1042 ram_res->end = crashk_res.end; 1043 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; 1044 ram_res->name = "System RAM"; 1045 1046 crashk_res.end = end - 1; 1047 1048 insert_resource(&iomem_resource, ram_res); 1049 1050 unlock: 1051 mutex_unlock(&kexec_mutex); 1052 return ret; 1053 } 1054 1055 void crash_save_cpu(struct pt_regs *regs, int cpu) 1056 { 1057 struct elf_prstatus prstatus; 1058 u32 *buf; 1059 1060 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 1061 return; 1062 1063 /* Using ELF notes here is opportunistic. 1064 * I need a well defined structure format 1065 * for the data I pass, and I need tags 1066 * on the data to indicate what information I have 1067 * squirrelled away. ELF notes happen to provide 1068 * all of that, so there is no need to invent something new. 1069 */ 1070 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); 1071 if (!buf) 1072 return; 1073 memset(&prstatus, 0, sizeof(prstatus)); 1074 prstatus.pr_pid = current->pid; 1075 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 1076 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 1077 &prstatus, sizeof(prstatus)); 1078 final_note(buf); 1079 } 1080 1081 static int __init crash_notes_memory_init(void) 1082 { 1083 /* Allocate memory for saving cpu registers. */ 1084 size_t size, align; 1085 1086 /* 1087 * crash_notes could be allocated across 2 vmalloc pages when percpu 1088 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc 1089 * pages are also on 2 continuous physical pages. In this case the 1090 * 2nd part of crash_notes in 2nd page could be lost since only the 1091 * starting address and size of crash_notes are exported through sysfs. 1092 * Here round up the size of crash_notes to the nearest power of two 1093 * and pass it to __alloc_percpu as align value. This can make sure 1094 * crash_notes is allocated inside one physical page. 1095 */ 1096 size = sizeof(note_buf_t); 1097 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); 1098 1099 /* 1100 * Break compile if size is bigger than PAGE_SIZE since crash_notes 1101 * definitely will be in 2 pages with that. 1102 */ 1103 BUILD_BUG_ON(size > PAGE_SIZE); 1104 1105 crash_notes = __alloc_percpu(size, align); 1106 if (!crash_notes) { 1107 pr_warn("Memory allocation for saving cpu register states failed\n"); 1108 return -ENOMEM; 1109 } 1110 return 0; 1111 } 1112 subsys_initcall(crash_notes_memory_init); 1113 1114 1115 /* 1116 * Move into place and start executing a preloaded standalone 1117 * executable. If nothing was preloaded return an error. 1118 */ 1119 int kernel_kexec(void) 1120 { 1121 int error = 0; 1122 1123 if (!mutex_trylock(&kexec_mutex)) 1124 return -EBUSY; 1125 if (!kexec_image) { 1126 error = -EINVAL; 1127 goto Unlock; 1128 } 1129 1130 #ifdef CONFIG_KEXEC_JUMP 1131 if (kexec_image->preserve_context) { 1132 lock_system_sleep(); 1133 pm_prepare_console(); 1134 error = freeze_processes(); 1135 if (error) { 1136 error = -EBUSY; 1137 goto Restore_console; 1138 } 1139 suspend_console(); 1140 error = dpm_suspend_start(PMSG_FREEZE); 1141 if (error) 1142 goto Resume_console; 1143 /* At this point, dpm_suspend_start() has been called, 1144 * but *not* dpm_suspend_end(). We *must* call 1145 * dpm_suspend_end() now. Otherwise, drivers for 1146 * some devices (e.g. interrupt controllers) become 1147 * desynchronized with the actual state of the 1148 * hardware at resume time, and evil weirdness ensues. 1149 */ 1150 error = dpm_suspend_end(PMSG_FREEZE); 1151 if (error) 1152 goto Resume_devices; 1153 error = suspend_disable_secondary_cpus(); 1154 if (error) 1155 goto Enable_cpus; 1156 local_irq_disable(); 1157 error = syscore_suspend(); 1158 if (error) 1159 goto Enable_irqs; 1160 } else 1161 #endif 1162 { 1163 kexec_in_progress = true; 1164 kernel_restart_prepare(NULL); 1165 migrate_to_reboot_cpu(); 1166 1167 /* 1168 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 1169 * no further code needs to use CPU hotplug (which is true in 1170 * the reboot case). However, the kexec path depends on using 1171 * CPU hotplug again; so re-enable it here. 1172 */ 1173 cpu_hotplug_enable(); 1174 pr_emerg("Starting new kernel\n"); 1175 machine_shutdown(); 1176 } 1177 1178 machine_kexec(kexec_image); 1179 1180 #ifdef CONFIG_KEXEC_JUMP 1181 if (kexec_image->preserve_context) { 1182 syscore_resume(); 1183 Enable_irqs: 1184 local_irq_enable(); 1185 Enable_cpus: 1186 suspend_enable_secondary_cpus(); 1187 dpm_resume_start(PMSG_RESTORE); 1188 Resume_devices: 1189 dpm_resume_end(PMSG_RESTORE); 1190 Resume_console: 1191 resume_console(); 1192 thaw_processes(); 1193 Restore_console: 1194 pm_restore_console(); 1195 unlock_system_sleep(); 1196 } 1197 #endif 1198 1199 Unlock: 1200 mutex_unlock(&kexec_mutex); 1201 return error; 1202 } 1203 1204 /* 1205 * Protection mechanism for crashkernel reserved memory after 1206 * the kdump kernel is loaded. 1207 * 1208 * Provide an empty default implementation here -- architecture 1209 * code may override this 1210 */ 1211 void __weak arch_kexec_protect_crashkres(void) 1212 {} 1213 1214 void __weak arch_kexec_unprotect_crashkres(void) 1215 {} 1216