1 /* 2 * kexec.c - kexec system call core code. 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/capability.h> 12 #include <linux/mm.h> 13 #include <linux/file.h> 14 #include <linux/slab.h> 15 #include <linux/fs.h> 16 #include <linux/kexec.h> 17 #include <linux/mutex.h> 18 #include <linux/list.h> 19 #include <linux/highmem.h> 20 #include <linux/syscalls.h> 21 #include <linux/reboot.h> 22 #include <linux/ioport.h> 23 #include <linux/hardirq.h> 24 #include <linux/elf.h> 25 #include <linux/elfcore.h> 26 #include <linux/utsname.h> 27 #include <linux/numa.h> 28 #include <linux/suspend.h> 29 #include <linux/device.h> 30 #include <linux/freezer.h> 31 #include <linux/pm.h> 32 #include <linux/cpu.h> 33 #include <linux/uaccess.h> 34 #include <linux/io.h> 35 #include <linux/console.h> 36 #include <linux/vmalloc.h> 37 #include <linux/swap.h> 38 #include <linux/syscore_ops.h> 39 #include <linux/compiler.h> 40 #include <linux/hugetlb.h> 41 #include <linux/frame.h> 42 43 #include <asm/page.h> 44 #include <asm/sections.h> 45 46 #include <crypto/hash.h> 47 #include <crypto/sha.h> 48 #include "kexec_internal.h" 49 50 DEFINE_MUTEX(kexec_mutex); 51 52 /* Per cpu memory for storing cpu states in case of system crash. */ 53 note_buf_t __percpu *crash_notes; 54 55 /* Flag to indicate we are going to kexec a new kernel */ 56 bool kexec_in_progress = false; 57 58 59 /* Location of the reserved area for the crash kernel */ 60 struct resource crashk_res = { 61 .name = "Crash kernel", 62 .start = 0, 63 .end = 0, 64 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 65 .desc = IORES_DESC_CRASH_KERNEL 66 }; 67 struct resource crashk_low_res = { 68 .name = "Crash kernel", 69 .start = 0, 70 .end = 0, 71 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 72 .desc = IORES_DESC_CRASH_KERNEL 73 }; 74 75 int kexec_should_crash(struct task_struct *p) 76 { 77 /* 78 * If crash_kexec_post_notifiers is enabled, don't run 79 * crash_kexec() here yet, which must be run after panic 80 * notifiers in panic(). 81 */ 82 if (crash_kexec_post_notifiers) 83 return 0; 84 /* 85 * There are 4 panic() calls in do_exit() path, each of which 86 * corresponds to each of these 4 conditions. 87 */ 88 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 89 return 1; 90 return 0; 91 } 92 93 int kexec_crash_loaded(void) 94 { 95 return !!kexec_crash_image; 96 } 97 EXPORT_SYMBOL_GPL(kexec_crash_loaded); 98 99 /* 100 * When kexec transitions to the new kernel there is a one-to-one 101 * mapping between physical and virtual addresses. On processors 102 * where you can disable the MMU this is trivial, and easy. For 103 * others it is still a simple predictable page table to setup. 104 * 105 * In that environment kexec copies the new kernel to its final 106 * resting place. This means I can only support memory whose 107 * physical address can fit in an unsigned long. In particular 108 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 109 * If the assembly stub has more restrictive requirements 110 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 111 * defined more restrictively in <asm/kexec.h>. 112 * 113 * The code for the transition from the current kernel to the 114 * the new kernel is placed in the control_code_buffer, whose size 115 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 116 * page of memory is necessary, but some architectures require more. 117 * Because this memory must be identity mapped in the transition from 118 * virtual to physical addresses it must live in the range 119 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 120 * modifiable. 121 * 122 * The assembly stub in the control code buffer is passed a linked list 123 * of descriptor pages detailing the source pages of the new kernel, 124 * and the destination addresses of those source pages. As this data 125 * structure is not used in the context of the current OS, it must 126 * be self-contained. 127 * 128 * The code has been made to work with highmem pages and will use a 129 * destination page in its final resting place (if it happens 130 * to allocate it). The end product of this is that most of the 131 * physical address space, and most of RAM can be used. 132 * 133 * Future directions include: 134 * - allocating a page table with the control code buffer identity 135 * mapped, to simplify machine_kexec and make kexec_on_panic more 136 * reliable. 137 */ 138 139 /* 140 * KIMAGE_NO_DEST is an impossible destination address..., for 141 * allocating pages whose destination address we do not care about. 142 */ 143 #define KIMAGE_NO_DEST (-1UL) 144 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) 145 146 static struct page *kimage_alloc_page(struct kimage *image, 147 gfp_t gfp_mask, 148 unsigned long dest); 149 150 int sanity_check_segment_list(struct kimage *image) 151 { 152 int i; 153 unsigned long nr_segments = image->nr_segments; 154 unsigned long total_pages = 0; 155 156 /* 157 * Verify we have good destination addresses. The caller is 158 * responsible for making certain we don't attempt to load 159 * the new image into invalid or reserved areas of RAM. This 160 * just verifies it is an address we can use. 161 * 162 * Since the kernel does everything in page size chunks ensure 163 * the destination addresses are page aligned. Too many 164 * special cases crop of when we don't do this. The most 165 * insidious is getting overlapping destination addresses 166 * simply because addresses are changed to page size 167 * granularity. 168 */ 169 for (i = 0; i < nr_segments; i++) { 170 unsigned long mstart, mend; 171 172 mstart = image->segment[i].mem; 173 mend = mstart + image->segment[i].memsz; 174 if (mstart > mend) 175 return -EADDRNOTAVAIL; 176 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 177 return -EADDRNOTAVAIL; 178 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 179 return -EADDRNOTAVAIL; 180 } 181 182 /* Verify our destination addresses do not overlap. 183 * If we alloed overlapping destination addresses 184 * through very weird things can happen with no 185 * easy explanation as one segment stops on another. 186 */ 187 for (i = 0; i < nr_segments; i++) { 188 unsigned long mstart, mend; 189 unsigned long j; 190 191 mstart = image->segment[i].mem; 192 mend = mstart + image->segment[i].memsz; 193 for (j = 0; j < i; j++) { 194 unsigned long pstart, pend; 195 196 pstart = image->segment[j].mem; 197 pend = pstart + image->segment[j].memsz; 198 /* Do the segments overlap ? */ 199 if ((mend > pstart) && (mstart < pend)) 200 return -EINVAL; 201 } 202 } 203 204 /* Ensure our buffer sizes are strictly less than 205 * our memory sizes. This should always be the case, 206 * and it is easier to check up front than to be surprised 207 * later on. 208 */ 209 for (i = 0; i < nr_segments; i++) { 210 if (image->segment[i].bufsz > image->segment[i].memsz) 211 return -EINVAL; 212 } 213 214 /* 215 * Verify that no more than half of memory will be consumed. If the 216 * request from userspace is too large, a large amount of time will be 217 * wasted allocating pages, which can cause a soft lockup. 218 */ 219 for (i = 0; i < nr_segments; i++) { 220 if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2) 221 return -EINVAL; 222 223 total_pages += PAGE_COUNT(image->segment[i].memsz); 224 } 225 226 if (total_pages > totalram_pages / 2) 227 return -EINVAL; 228 229 /* 230 * Verify we have good destination addresses. Normally 231 * the caller is responsible for making certain we don't 232 * attempt to load the new image into invalid or reserved 233 * areas of RAM. But crash kernels are preloaded into a 234 * reserved area of ram. We must ensure the addresses 235 * are in the reserved area otherwise preloading the 236 * kernel could corrupt things. 237 */ 238 239 if (image->type == KEXEC_TYPE_CRASH) { 240 for (i = 0; i < nr_segments; i++) { 241 unsigned long mstart, mend; 242 243 mstart = image->segment[i].mem; 244 mend = mstart + image->segment[i].memsz - 1; 245 /* Ensure we are within the crash kernel limits */ 246 if ((mstart < phys_to_boot_phys(crashk_res.start)) || 247 (mend > phys_to_boot_phys(crashk_res.end))) 248 return -EADDRNOTAVAIL; 249 } 250 } 251 252 return 0; 253 } 254 255 struct kimage *do_kimage_alloc_init(void) 256 { 257 struct kimage *image; 258 259 /* Allocate a controlling structure */ 260 image = kzalloc(sizeof(*image), GFP_KERNEL); 261 if (!image) 262 return NULL; 263 264 image->head = 0; 265 image->entry = &image->head; 266 image->last_entry = &image->head; 267 image->control_page = ~0; /* By default this does not apply */ 268 image->type = KEXEC_TYPE_DEFAULT; 269 270 /* Initialize the list of control pages */ 271 INIT_LIST_HEAD(&image->control_pages); 272 273 /* Initialize the list of destination pages */ 274 INIT_LIST_HEAD(&image->dest_pages); 275 276 /* Initialize the list of unusable pages */ 277 INIT_LIST_HEAD(&image->unusable_pages); 278 279 return image; 280 } 281 282 int kimage_is_destination_range(struct kimage *image, 283 unsigned long start, 284 unsigned long end) 285 { 286 unsigned long i; 287 288 for (i = 0; i < image->nr_segments; i++) { 289 unsigned long mstart, mend; 290 291 mstart = image->segment[i].mem; 292 mend = mstart + image->segment[i].memsz; 293 if ((end > mstart) && (start < mend)) 294 return 1; 295 } 296 297 return 0; 298 } 299 300 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 301 { 302 struct page *pages; 303 304 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order); 305 if (pages) { 306 unsigned int count, i; 307 308 pages->mapping = NULL; 309 set_page_private(pages, order); 310 count = 1 << order; 311 for (i = 0; i < count; i++) 312 SetPageReserved(pages + i); 313 314 arch_kexec_post_alloc_pages(page_address(pages), count, 315 gfp_mask); 316 317 if (gfp_mask & __GFP_ZERO) 318 for (i = 0; i < count; i++) 319 clear_highpage(pages + i); 320 } 321 322 return pages; 323 } 324 325 static void kimage_free_pages(struct page *page) 326 { 327 unsigned int order, count, i; 328 329 order = page_private(page); 330 count = 1 << order; 331 332 arch_kexec_pre_free_pages(page_address(page), count); 333 334 for (i = 0; i < count; i++) 335 ClearPageReserved(page + i); 336 __free_pages(page, order); 337 } 338 339 void kimage_free_page_list(struct list_head *list) 340 { 341 struct page *page, *next; 342 343 list_for_each_entry_safe(page, next, list, lru) { 344 list_del(&page->lru); 345 kimage_free_pages(page); 346 } 347 } 348 349 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 350 unsigned int order) 351 { 352 /* Control pages are special, they are the intermediaries 353 * that are needed while we copy the rest of the pages 354 * to their final resting place. As such they must 355 * not conflict with either the destination addresses 356 * or memory the kernel is already using. 357 * 358 * The only case where we really need more than one of 359 * these are for architectures where we cannot disable 360 * the MMU and must instead generate an identity mapped 361 * page table for all of the memory. 362 * 363 * At worst this runs in O(N) of the image size. 364 */ 365 struct list_head extra_pages; 366 struct page *pages; 367 unsigned int count; 368 369 count = 1 << order; 370 INIT_LIST_HEAD(&extra_pages); 371 372 /* Loop while I can allocate a page and the page allocated 373 * is a destination page. 374 */ 375 do { 376 unsigned long pfn, epfn, addr, eaddr; 377 378 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); 379 if (!pages) 380 break; 381 pfn = page_to_boot_pfn(pages); 382 epfn = pfn + count; 383 addr = pfn << PAGE_SHIFT; 384 eaddr = epfn << PAGE_SHIFT; 385 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 386 kimage_is_destination_range(image, addr, eaddr)) { 387 list_add(&pages->lru, &extra_pages); 388 pages = NULL; 389 } 390 } while (!pages); 391 392 if (pages) { 393 /* Remember the allocated page... */ 394 list_add(&pages->lru, &image->control_pages); 395 396 /* Because the page is already in it's destination 397 * location we will never allocate another page at 398 * that address. Therefore kimage_alloc_pages 399 * will not return it (again) and we don't need 400 * to give it an entry in image->segment[]. 401 */ 402 } 403 /* Deal with the destination pages I have inadvertently allocated. 404 * 405 * Ideally I would convert multi-page allocations into single 406 * page allocations, and add everything to image->dest_pages. 407 * 408 * For now it is simpler to just free the pages. 409 */ 410 kimage_free_page_list(&extra_pages); 411 412 return pages; 413 } 414 415 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 416 unsigned int order) 417 { 418 /* Control pages are special, they are the intermediaries 419 * that are needed while we copy the rest of the pages 420 * to their final resting place. As such they must 421 * not conflict with either the destination addresses 422 * or memory the kernel is already using. 423 * 424 * Control pages are also the only pags we must allocate 425 * when loading a crash kernel. All of the other pages 426 * are specified by the segments and we just memcpy 427 * into them directly. 428 * 429 * The only case where we really need more than one of 430 * these are for architectures where we cannot disable 431 * the MMU and must instead generate an identity mapped 432 * page table for all of the memory. 433 * 434 * Given the low demand this implements a very simple 435 * allocator that finds the first hole of the appropriate 436 * size in the reserved memory region, and allocates all 437 * of the memory up to and including the hole. 438 */ 439 unsigned long hole_start, hole_end, size; 440 struct page *pages; 441 442 pages = NULL; 443 size = (1 << order) << PAGE_SHIFT; 444 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 445 hole_end = hole_start + size - 1; 446 while (hole_end <= crashk_res.end) { 447 unsigned long i; 448 449 cond_resched(); 450 451 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 452 break; 453 /* See if I overlap any of the segments */ 454 for (i = 0; i < image->nr_segments; i++) { 455 unsigned long mstart, mend; 456 457 mstart = image->segment[i].mem; 458 mend = mstart + image->segment[i].memsz - 1; 459 if ((hole_end >= mstart) && (hole_start <= mend)) { 460 /* Advance the hole to the end of the segment */ 461 hole_start = (mend + (size - 1)) & ~(size - 1); 462 hole_end = hole_start + size - 1; 463 break; 464 } 465 } 466 /* If I don't overlap any segments I have found my hole! */ 467 if (i == image->nr_segments) { 468 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 469 image->control_page = hole_end; 470 break; 471 } 472 } 473 474 return pages; 475 } 476 477 478 struct page *kimage_alloc_control_pages(struct kimage *image, 479 unsigned int order) 480 { 481 struct page *pages = NULL; 482 483 switch (image->type) { 484 case KEXEC_TYPE_DEFAULT: 485 pages = kimage_alloc_normal_control_pages(image, order); 486 break; 487 case KEXEC_TYPE_CRASH: 488 pages = kimage_alloc_crash_control_pages(image, order); 489 break; 490 } 491 492 return pages; 493 } 494 495 int kimage_crash_copy_vmcoreinfo(struct kimage *image) 496 { 497 struct page *vmcoreinfo_page; 498 void *safecopy; 499 500 if (image->type != KEXEC_TYPE_CRASH) 501 return 0; 502 503 /* 504 * For kdump, allocate one vmcoreinfo safe copy from the 505 * crash memory. as we have arch_kexec_protect_crashkres() 506 * after kexec syscall, we naturally protect it from write 507 * (even read) access under kernel direct mapping. But on 508 * the other hand, we still need to operate it when crash 509 * happens to generate vmcoreinfo note, hereby we rely on 510 * vmap for this purpose. 511 */ 512 vmcoreinfo_page = kimage_alloc_control_pages(image, 0); 513 if (!vmcoreinfo_page) { 514 pr_warn("Could not allocate vmcoreinfo buffer\n"); 515 return -ENOMEM; 516 } 517 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); 518 if (!safecopy) { 519 pr_warn("Could not vmap vmcoreinfo buffer\n"); 520 return -ENOMEM; 521 } 522 523 image->vmcoreinfo_data_copy = safecopy; 524 crash_update_vmcoreinfo_safecopy(safecopy); 525 526 return 0; 527 } 528 529 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 530 { 531 if (*image->entry != 0) 532 image->entry++; 533 534 if (image->entry == image->last_entry) { 535 kimage_entry_t *ind_page; 536 struct page *page; 537 538 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 539 if (!page) 540 return -ENOMEM; 541 542 ind_page = page_address(page); 543 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; 544 image->entry = ind_page; 545 image->last_entry = ind_page + 546 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 547 } 548 *image->entry = entry; 549 image->entry++; 550 *image->entry = 0; 551 552 return 0; 553 } 554 555 static int kimage_set_destination(struct kimage *image, 556 unsigned long destination) 557 { 558 int result; 559 560 destination &= PAGE_MASK; 561 result = kimage_add_entry(image, destination | IND_DESTINATION); 562 563 return result; 564 } 565 566 567 static int kimage_add_page(struct kimage *image, unsigned long page) 568 { 569 int result; 570 571 page &= PAGE_MASK; 572 result = kimage_add_entry(image, page | IND_SOURCE); 573 574 return result; 575 } 576 577 578 static void kimage_free_extra_pages(struct kimage *image) 579 { 580 /* Walk through and free any extra destination pages I may have */ 581 kimage_free_page_list(&image->dest_pages); 582 583 /* Walk through and free any unusable pages I have cached */ 584 kimage_free_page_list(&image->unusable_pages); 585 586 } 587 void kimage_terminate(struct kimage *image) 588 { 589 if (*image->entry != 0) 590 image->entry++; 591 592 *image->entry = IND_DONE; 593 } 594 595 #define for_each_kimage_entry(image, ptr, entry) \ 596 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 597 ptr = (entry & IND_INDIRECTION) ? \ 598 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 599 600 static void kimage_free_entry(kimage_entry_t entry) 601 { 602 struct page *page; 603 604 page = boot_pfn_to_page(entry >> PAGE_SHIFT); 605 kimage_free_pages(page); 606 } 607 608 void kimage_free(struct kimage *image) 609 { 610 kimage_entry_t *ptr, entry; 611 kimage_entry_t ind = 0; 612 613 if (!image) 614 return; 615 616 if (image->vmcoreinfo_data_copy) { 617 crash_update_vmcoreinfo_safecopy(NULL); 618 vunmap(image->vmcoreinfo_data_copy); 619 } 620 621 kimage_free_extra_pages(image); 622 for_each_kimage_entry(image, ptr, entry) { 623 if (entry & IND_INDIRECTION) { 624 /* Free the previous indirection page */ 625 if (ind & IND_INDIRECTION) 626 kimage_free_entry(ind); 627 /* Save this indirection page until we are 628 * done with it. 629 */ 630 ind = entry; 631 } else if (entry & IND_SOURCE) 632 kimage_free_entry(entry); 633 } 634 /* Free the final indirection page */ 635 if (ind & IND_INDIRECTION) 636 kimage_free_entry(ind); 637 638 /* Handle any machine specific cleanup */ 639 machine_kexec_cleanup(image); 640 641 /* Free the kexec control pages... */ 642 kimage_free_page_list(&image->control_pages); 643 644 /* 645 * Free up any temporary buffers allocated. This might hit if 646 * error occurred much later after buffer allocation. 647 */ 648 if (image->file_mode) 649 kimage_file_post_load_cleanup(image); 650 651 kfree(image); 652 } 653 654 static kimage_entry_t *kimage_dst_used(struct kimage *image, 655 unsigned long page) 656 { 657 kimage_entry_t *ptr, entry; 658 unsigned long destination = 0; 659 660 for_each_kimage_entry(image, ptr, entry) { 661 if (entry & IND_DESTINATION) 662 destination = entry & PAGE_MASK; 663 else if (entry & IND_SOURCE) { 664 if (page == destination) 665 return ptr; 666 destination += PAGE_SIZE; 667 } 668 } 669 670 return NULL; 671 } 672 673 static struct page *kimage_alloc_page(struct kimage *image, 674 gfp_t gfp_mask, 675 unsigned long destination) 676 { 677 /* 678 * Here we implement safeguards to ensure that a source page 679 * is not copied to its destination page before the data on 680 * the destination page is no longer useful. 681 * 682 * To do this we maintain the invariant that a source page is 683 * either its own destination page, or it is not a 684 * destination page at all. 685 * 686 * That is slightly stronger than required, but the proof 687 * that no problems will not occur is trivial, and the 688 * implementation is simply to verify. 689 * 690 * When allocating all pages normally this algorithm will run 691 * in O(N) time, but in the worst case it will run in O(N^2) 692 * time. If the runtime is a problem the data structures can 693 * be fixed. 694 */ 695 struct page *page; 696 unsigned long addr; 697 698 /* 699 * Walk through the list of destination pages, and see if I 700 * have a match. 701 */ 702 list_for_each_entry(page, &image->dest_pages, lru) { 703 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 704 if (addr == destination) { 705 list_del(&page->lru); 706 return page; 707 } 708 } 709 page = NULL; 710 while (1) { 711 kimage_entry_t *old; 712 713 /* Allocate a page, if we run out of memory give up */ 714 page = kimage_alloc_pages(gfp_mask, 0); 715 if (!page) 716 return NULL; 717 /* If the page cannot be used file it away */ 718 if (page_to_boot_pfn(page) > 719 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 720 list_add(&page->lru, &image->unusable_pages); 721 continue; 722 } 723 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 724 725 /* If it is the destination page we want use it */ 726 if (addr == destination) 727 break; 728 729 /* If the page is not a destination page use it */ 730 if (!kimage_is_destination_range(image, addr, 731 addr + PAGE_SIZE)) 732 break; 733 734 /* 735 * I know that the page is someones destination page. 736 * See if there is already a source page for this 737 * destination page. And if so swap the source pages. 738 */ 739 old = kimage_dst_used(image, addr); 740 if (old) { 741 /* If so move it */ 742 unsigned long old_addr; 743 struct page *old_page; 744 745 old_addr = *old & PAGE_MASK; 746 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); 747 copy_highpage(page, old_page); 748 *old = addr | (*old & ~PAGE_MASK); 749 750 /* The old page I have found cannot be a 751 * destination page, so return it if it's 752 * gfp_flags honor the ones passed in. 753 */ 754 if (!(gfp_mask & __GFP_HIGHMEM) && 755 PageHighMem(old_page)) { 756 kimage_free_pages(old_page); 757 continue; 758 } 759 addr = old_addr; 760 page = old_page; 761 break; 762 } 763 /* Place the page on the destination list, to be used later */ 764 list_add(&page->lru, &image->dest_pages); 765 } 766 767 return page; 768 } 769 770 static int kimage_load_normal_segment(struct kimage *image, 771 struct kexec_segment *segment) 772 { 773 unsigned long maddr; 774 size_t ubytes, mbytes; 775 int result; 776 unsigned char __user *buf = NULL; 777 unsigned char *kbuf = NULL; 778 779 result = 0; 780 if (image->file_mode) 781 kbuf = segment->kbuf; 782 else 783 buf = segment->buf; 784 ubytes = segment->bufsz; 785 mbytes = segment->memsz; 786 maddr = segment->mem; 787 788 result = kimage_set_destination(image, maddr); 789 if (result < 0) 790 goto out; 791 792 while (mbytes) { 793 struct page *page; 794 char *ptr; 795 size_t uchunk, mchunk; 796 797 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 798 if (!page) { 799 result = -ENOMEM; 800 goto out; 801 } 802 result = kimage_add_page(image, page_to_boot_pfn(page) 803 << PAGE_SHIFT); 804 if (result < 0) 805 goto out; 806 807 ptr = kmap(page); 808 /* Start with a clear page */ 809 clear_page(ptr); 810 ptr += maddr & ~PAGE_MASK; 811 mchunk = min_t(size_t, mbytes, 812 PAGE_SIZE - (maddr & ~PAGE_MASK)); 813 uchunk = min(ubytes, mchunk); 814 815 /* For file based kexec, source pages are in kernel memory */ 816 if (image->file_mode) 817 memcpy(ptr, kbuf, uchunk); 818 else 819 result = copy_from_user(ptr, buf, uchunk); 820 kunmap(page); 821 if (result) { 822 result = -EFAULT; 823 goto out; 824 } 825 ubytes -= uchunk; 826 maddr += mchunk; 827 if (image->file_mode) 828 kbuf += mchunk; 829 else 830 buf += mchunk; 831 mbytes -= mchunk; 832 } 833 out: 834 return result; 835 } 836 837 static int kimage_load_crash_segment(struct kimage *image, 838 struct kexec_segment *segment) 839 { 840 /* For crash dumps kernels we simply copy the data from 841 * user space to it's destination. 842 * We do things a page at a time for the sake of kmap. 843 */ 844 unsigned long maddr; 845 size_t ubytes, mbytes; 846 int result; 847 unsigned char __user *buf = NULL; 848 unsigned char *kbuf = NULL; 849 850 result = 0; 851 if (image->file_mode) 852 kbuf = segment->kbuf; 853 else 854 buf = segment->buf; 855 ubytes = segment->bufsz; 856 mbytes = segment->memsz; 857 maddr = segment->mem; 858 while (mbytes) { 859 struct page *page; 860 char *ptr; 861 size_t uchunk, mchunk; 862 863 page = boot_pfn_to_page(maddr >> PAGE_SHIFT); 864 if (!page) { 865 result = -ENOMEM; 866 goto out; 867 } 868 ptr = kmap(page); 869 ptr += maddr & ~PAGE_MASK; 870 mchunk = min_t(size_t, mbytes, 871 PAGE_SIZE - (maddr & ~PAGE_MASK)); 872 uchunk = min(ubytes, mchunk); 873 if (mchunk > uchunk) { 874 /* Zero the trailing part of the page */ 875 memset(ptr + uchunk, 0, mchunk - uchunk); 876 } 877 878 /* For file based kexec, source pages are in kernel memory */ 879 if (image->file_mode) 880 memcpy(ptr, kbuf, uchunk); 881 else 882 result = copy_from_user(ptr, buf, uchunk); 883 kexec_flush_icache_page(page); 884 kunmap(page); 885 if (result) { 886 result = -EFAULT; 887 goto out; 888 } 889 ubytes -= uchunk; 890 maddr += mchunk; 891 if (image->file_mode) 892 kbuf += mchunk; 893 else 894 buf += mchunk; 895 mbytes -= mchunk; 896 } 897 out: 898 return result; 899 } 900 901 int kimage_load_segment(struct kimage *image, 902 struct kexec_segment *segment) 903 { 904 int result = -ENOMEM; 905 906 switch (image->type) { 907 case KEXEC_TYPE_DEFAULT: 908 result = kimage_load_normal_segment(image, segment); 909 break; 910 case KEXEC_TYPE_CRASH: 911 result = kimage_load_crash_segment(image, segment); 912 break; 913 } 914 915 return result; 916 } 917 918 struct kimage *kexec_image; 919 struct kimage *kexec_crash_image; 920 int kexec_load_disabled; 921 922 /* 923 * No panic_cpu check version of crash_kexec(). This function is called 924 * only when panic_cpu holds the current CPU number; this is the only CPU 925 * which processes crash_kexec routines. 926 */ 927 void __noclone __crash_kexec(struct pt_regs *regs) 928 { 929 /* Take the kexec_mutex here to prevent sys_kexec_load 930 * running on one cpu from replacing the crash kernel 931 * we are using after a panic on a different cpu. 932 * 933 * If the crash kernel was not located in a fixed area 934 * of memory the xchg(&kexec_crash_image) would be 935 * sufficient. But since I reuse the memory... 936 */ 937 if (mutex_trylock(&kexec_mutex)) { 938 if (kexec_crash_image) { 939 struct pt_regs fixed_regs; 940 941 crash_setup_regs(&fixed_regs, regs); 942 crash_save_vmcoreinfo(); 943 machine_crash_shutdown(&fixed_regs); 944 machine_kexec(kexec_crash_image); 945 } 946 mutex_unlock(&kexec_mutex); 947 } 948 } 949 STACK_FRAME_NON_STANDARD(__crash_kexec); 950 951 void crash_kexec(struct pt_regs *regs) 952 { 953 int old_cpu, this_cpu; 954 955 /* 956 * Only one CPU is allowed to execute the crash_kexec() code as with 957 * panic(). Otherwise parallel calls of panic() and crash_kexec() 958 * may stop each other. To exclude them, we use panic_cpu here too. 959 */ 960 this_cpu = raw_smp_processor_id(); 961 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 962 if (old_cpu == PANIC_CPU_INVALID) { 963 /* This is the 1st CPU which comes here, so go ahead. */ 964 printk_safe_flush_on_panic(); 965 __crash_kexec(regs); 966 967 /* 968 * Reset panic_cpu to allow another panic()/crash_kexec() 969 * call. 970 */ 971 atomic_set(&panic_cpu, PANIC_CPU_INVALID); 972 } 973 } 974 975 size_t crash_get_memory_size(void) 976 { 977 size_t size = 0; 978 979 mutex_lock(&kexec_mutex); 980 if (crashk_res.end != crashk_res.start) 981 size = resource_size(&crashk_res); 982 mutex_unlock(&kexec_mutex); 983 return size; 984 } 985 986 void __weak crash_free_reserved_phys_range(unsigned long begin, 987 unsigned long end) 988 { 989 unsigned long addr; 990 991 for (addr = begin; addr < end; addr += PAGE_SIZE) 992 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT)); 993 } 994 995 int crash_shrink_memory(unsigned long new_size) 996 { 997 int ret = 0; 998 unsigned long start, end; 999 unsigned long old_size; 1000 struct resource *ram_res; 1001 1002 mutex_lock(&kexec_mutex); 1003 1004 if (kexec_crash_image) { 1005 ret = -ENOENT; 1006 goto unlock; 1007 } 1008 start = crashk_res.start; 1009 end = crashk_res.end; 1010 old_size = (end == 0) ? 0 : end - start + 1; 1011 if (new_size >= old_size) { 1012 ret = (new_size == old_size) ? 0 : -EINVAL; 1013 goto unlock; 1014 } 1015 1016 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 1017 if (!ram_res) { 1018 ret = -ENOMEM; 1019 goto unlock; 1020 } 1021 1022 start = roundup(start, KEXEC_CRASH_MEM_ALIGN); 1023 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); 1024 1025 crash_free_reserved_phys_range(end, crashk_res.end); 1026 1027 if ((start == end) && (crashk_res.parent != NULL)) 1028 release_resource(&crashk_res); 1029 1030 ram_res->start = end; 1031 ram_res->end = crashk_res.end; 1032 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; 1033 ram_res->name = "System RAM"; 1034 1035 crashk_res.end = end - 1; 1036 1037 insert_resource(&iomem_resource, ram_res); 1038 1039 unlock: 1040 mutex_unlock(&kexec_mutex); 1041 return ret; 1042 } 1043 1044 void crash_save_cpu(struct pt_regs *regs, int cpu) 1045 { 1046 struct elf_prstatus prstatus; 1047 u32 *buf; 1048 1049 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 1050 return; 1051 1052 /* Using ELF notes here is opportunistic. 1053 * I need a well defined structure format 1054 * for the data I pass, and I need tags 1055 * on the data to indicate what information I have 1056 * squirrelled away. ELF notes happen to provide 1057 * all of that, so there is no need to invent something new. 1058 */ 1059 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); 1060 if (!buf) 1061 return; 1062 memset(&prstatus, 0, sizeof(prstatus)); 1063 prstatus.pr_pid = current->pid; 1064 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 1065 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 1066 &prstatus, sizeof(prstatus)); 1067 final_note(buf); 1068 } 1069 1070 static int __init crash_notes_memory_init(void) 1071 { 1072 /* Allocate memory for saving cpu registers. */ 1073 size_t size, align; 1074 1075 /* 1076 * crash_notes could be allocated across 2 vmalloc pages when percpu 1077 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc 1078 * pages are also on 2 continuous physical pages. In this case the 1079 * 2nd part of crash_notes in 2nd page could be lost since only the 1080 * starting address and size of crash_notes are exported through sysfs. 1081 * Here round up the size of crash_notes to the nearest power of two 1082 * and pass it to __alloc_percpu as align value. This can make sure 1083 * crash_notes is allocated inside one physical page. 1084 */ 1085 size = sizeof(note_buf_t); 1086 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); 1087 1088 /* 1089 * Break compile if size is bigger than PAGE_SIZE since crash_notes 1090 * definitely will be in 2 pages with that. 1091 */ 1092 BUILD_BUG_ON(size > PAGE_SIZE); 1093 1094 crash_notes = __alloc_percpu(size, align); 1095 if (!crash_notes) { 1096 pr_warn("Memory allocation for saving cpu register states failed\n"); 1097 return -ENOMEM; 1098 } 1099 return 0; 1100 } 1101 subsys_initcall(crash_notes_memory_init); 1102 1103 1104 /* 1105 * Move into place and start executing a preloaded standalone 1106 * executable. If nothing was preloaded return an error. 1107 */ 1108 int kernel_kexec(void) 1109 { 1110 int error = 0; 1111 1112 if (!mutex_trylock(&kexec_mutex)) 1113 return -EBUSY; 1114 if (!kexec_image) { 1115 error = -EINVAL; 1116 goto Unlock; 1117 } 1118 1119 #ifdef CONFIG_KEXEC_JUMP 1120 if (kexec_image->preserve_context) { 1121 lock_system_sleep(); 1122 pm_prepare_console(); 1123 error = freeze_processes(); 1124 if (error) { 1125 error = -EBUSY; 1126 goto Restore_console; 1127 } 1128 suspend_console(); 1129 error = dpm_suspend_start(PMSG_FREEZE); 1130 if (error) 1131 goto Resume_console; 1132 /* At this point, dpm_suspend_start() has been called, 1133 * but *not* dpm_suspend_end(). We *must* call 1134 * dpm_suspend_end() now. Otherwise, drivers for 1135 * some devices (e.g. interrupt controllers) become 1136 * desynchronized with the actual state of the 1137 * hardware at resume time, and evil weirdness ensues. 1138 */ 1139 error = dpm_suspend_end(PMSG_FREEZE); 1140 if (error) 1141 goto Resume_devices; 1142 error = disable_nonboot_cpus(); 1143 if (error) 1144 goto Enable_cpus; 1145 local_irq_disable(); 1146 error = syscore_suspend(); 1147 if (error) 1148 goto Enable_irqs; 1149 } else 1150 #endif 1151 { 1152 kexec_in_progress = true; 1153 kernel_restart_prepare(NULL); 1154 migrate_to_reboot_cpu(); 1155 1156 /* 1157 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 1158 * no further code needs to use CPU hotplug (which is true in 1159 * the reboot case). However, the kexec path depends on using 1160 * CPU hotplug again; so re-enable it here. 1161 */ 1162 cpu_hotplug_enable(); 1163 pr_emerg("Starting new kernel\n"); 1164 machine_shutdown(); 1165 } 1166 1167 machine_kexec(kexec_image); 1168 1169 #ifdef CONFIG_KEXEC_JUMP 1170 if (kexec_image->preserve_context) { 1171 syscore_resume(); 1172 Enable_irqs: 1173 local_irq_enable(); 1174 Enable_cpus: 1175 enable_nonboot_cpus(); 1176 dpm_resume_start(PMSG_RESTORE); 1177 Resume_devices: 1178 dpm_resume_end(PMSG_RESTORE); 1179 Resume_console: 1180 resume_console(); 1181 thaw_processes(); 1182 Restore_console: 1183 pm_restore_console(); 1184 unlock_system_sleep(); 1185 } 1186 #endif 1187 1188 Unlock: 1189 mutex_unlock(&kexec_mutex); 1190 return error; 1191 } 1192 1193 /* 1194 * Protection mechanism for crashkernel reserved memory after 1195 * the kdump kernel is loaded. 1196 * 1197 * Provide an empty default implementation here -- architecture 1198 * code may override this 1199 */ 1200 void __weak arch_kexec_protect_crashkres(void) 1201 {} 1202 1203 void __weak arch_kexec_unprotect_crashkres(void) 1204 {} 1205