xref: /openbmc/linux/kernel/kexec_core.c (revision 710b797c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec.c - kexec system call core code.
4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsname.h>
25 #include <linux/numa.h>
26 #include <linux/suspend.h>
27 #include <linux/device.h>
28 #include <linux/freezer.h>
29 #include <linux/pm.h>
30 #include <linux/cpu.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/console.h>
34 #include <linux/vmalloc.h>
35 #include <linux/swap.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/compiler.h>
38 #include <linux/hugetlb.h>
39 #include <linux/objtool.h>
40 #include <linux/kmsg_dump.h>
41 
42 #include <asm/page.h>
43 #include <asm/sections.h>
44 
45 #include <crypto/hash.h>
46 #include "kexec_internal.h"
47 
48 DEFINE_MUTEX(kexec_mutex);
49 
50 /* Per cpu memory for storing cpu states in case of system crash. */
51 note_buf_t __percpu *crash_notes;
52 
53 /* Flag to indicate we are going to kexec a new kernel */
54 bool kexec_in_progress = false;
55 
56 
57 /* Location of the reserved area for the crash kernel */
58 struct resource crashk_res = {
59 	.name  = "Crash kernel",
60 	.start = 0,
61 	.end   = 0,
62 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
63 	.desc  = IORES_DESC_CRASH_KERNEL
64 };
65 struct resource crashk_low_res = {
66 	.name  = "Crash kernel",
67 	.start = 0,
68 	.end   = 0,
69 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
70 	.desc  = IORES_DESC_CRASH_KERNEL
71 };
72 
73 int kexec_should_crash(struct task_struct *p)
74 {
75 	/*
76 	 * If crash_kexec_post_notifiers is enabled, don't run
77 	 * crash_kexec() here yet, which must be run after panic
78 	 * notifiers in panic().
79 	 */
80 	if (crash_kexec_post_notifiers)
81 		return 0;
82 	/*
83 	 * There are 4 panic() calls in do_exit() path, each of which
84 	 * corresponds to each of these 4 conditions.
85 	 */
86 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
87 		return 1;
88 	return 0;
89 }
90 
91 int kexec_crash_loaded(void)
92 {
93 	return !!kexec_crash_image;
94 }
95 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
96 
97 /*
98  * When kexec transitions to the new kernel there is a one-to-one
99  * mapping between physical and virtual addresses.  On processors
100  * where you can disable the MMU this is trivial, and easy.  For
101  * others it is still a simple predictable page table to setup.
102  *
103  * In that environment kexec copies the new kernel to its final
104  * resting place.  This means I can only support memory whose
105  * physical address can fit in an unsigned long.  In particular
106  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
107  * If the assembly stub has more restrictive requirements
108  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
109  * defined more restrictively in <asm/kexec.h>.
110  *
111  * The code for the transition from the current kernel to the
112  * new kernel is placed in the control_code_buffer, whose size
113  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
114  * page of memory is necessary, but some architectures require more.
115  * Because this memory must be identity mapped in the transition from
116  * virtual to physical addresses it must live in the range
117  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
118  * modifiable.
119  *
120  * The assembly stub in the control code buffer is passed a linked list
121  * of descriptor pages detailing the source pages of the new kernel,
122  * and the destination addresses of those source pages.  As this data
123  * structure is not used in the context of the current OS, it must
124  * be self-contained.
125  *
126  * The code has been made to work with highmem pages and will use a
127  * destination page in its final resting place (if it happens
128  * to allocate it).  The end product of this is that most of the
129  * physical address space, and most of RAM can be used.
130  *
131  * Future directions include:
132  *  - allocating a page table with the control code buffer identity
133  *    mapped, to simplify machine_kexec and make kexec_on_panic more
134  *    reliable.
135  */
136 
137 /*
138  * KIMAGE_NO_DEST is an impossible destination address..., for
139  * allocating pages whose destination address we do not care about.
140  */
141 #define KIMAGE_NO_DEST (-1UL)
142 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
143 
144 static struct page *kimage_alloc_page(struct kimage *image,
145 				       gfp_t gfp_mask,
146 				       unsigned long dest);
147 
148 int sanity_check_segment_list(struct kimage *image)
149 {
150 	int i;
151 	unsigned long nr_segments = image->nr_segments;
152 	unsigned long total_pages = 0;
153 	unsigned long nr_pages = totalram_pages();
154 
155 	/*
156 	 * Verify we have good destination addresses.  The caller is
157 	 * responsible for making certain we don't attempt to load
158 	 * the new image into invalid or reserved areas of RAM.  This
159 	 * just verifies it is an address we can use.
160 	 *
161 	 * Since the kernel does everything in page size chunks ensure
162 	 * the destination addresses are page aligned.  Too many
163 	 * special cases crop of when we don't do this.  The most
164 	 * insidious is getting overlapping destination addresses
165 	 * simply because addresses are changed to page size
166 	 * granularity.
167 	 */
168 	for (i = 0; i < nr_segments; i++) {
169 		unsigned long mstart, mend;
170 
171 		mstart = image->segment[i].mem;
172 		mend   = mstart + image->segment[i].memsz;
173 		if (mstart > mend)
174 			return -EADDRNOTAVAIL;
175 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
176 			return -EADDRNOTAVAIL;
177 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
178 			return -EADDRNOTAVAIL;
179 	}
180 
181 	/* Verify our destination addresses do not overlap.
182 	 * If we alloed overlapping destination addresses
183 	 * through very weird things can happen with no
184 	 * easy explanation as one segment stops on another.
185 	 */
186 	for (i = 0; i < nr_segments; i++) {
187 		unsigned long mstart, mend;
188 		unsigned long j;
189 
190 		mstart = image->segment[i].mem;
191 		mend   = mstart + image->segment[i].memsz;
192 		for (j = 0; j < i; j++) {
193 			unsigned long pstart, pend;
194 
195 			pstart = image->segment[j].mem;
196 			pend   = pstart + image->segment[j].memsz;
197 			/* Do the segments overlap ? */
198 			if ((mend > pstart) && (mstart < pend))
199 				return -EINVAL;
200 		}
201 	}
202 
203 	/* Ensure our buffer sizes are strictly less than
204 	 * our memory sizes.  This should always be the case,
205 	 * and it is easier to check up front than to be surprised
206 	 * later on.
207 	 */
208 	for (i = 0; i < nr_segments; i++) {
209 		if (image->segment[i].bufsz > image->segment[i].memsz)
210 			return -EINVAL;
211 	}
212 
213 	/*
214 	 * Verify that no more than half of memory will be consumed. If the
215 	 * request from userspace is too large, a large amount of time will be
216 	 * wasted allocating pages, which can cause a soft lockup.
217 	 */
218 	for (i = 0; i < nr_segments; i++) {
219 		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
220 			return -EINVAL;
221 
222 		total_pages += PAGE_COUNT(image->segment[i].memsz);
223 	}
224 
225 	if (total_pages > nr_pages / 2)
226 		return -EINVAL;
227 
228 	/*
229 	 * Verify we have good destination addresses.  Normally
230 	 * the caller is responsible for making certain we don't
231 	 * attempt to load the new image into invalid or reserved
232 	 * areas of RAM.  But crash kernels are preloaded into a
233 	 * reserved area of ram.  We must ensure the addresses
234 	 * are in the reserved area otherwise preloading the
235 	 * kernel could corrupt things.
236 	 */
237 
238 	if (image->type == KEXEC_TYPE_CRASH) {
239 		for (i = 0; i < nr_segments; i++) {
240 			unsigned long mstart, mend;
241 
242 			mstart = image->segment[i].mem;
243 			mend = mstart + image->segment[i].memsz - 1;
244 			/* Ensure we are within the crash kernel limits */
245 			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
246 			    (mend > phys_to_boot_phys(crashk_res.end)))
247 				return -EADDRNOTAVAIL;
248 		}
249 	}
250 
251 	return 0;
252 }
253 
254 struct kimage *do_kimage_alloc_init(void)
255 {
256 	struct kimage *image;
257 
258 	/* Allocate a controlling structure */
259 	image = kzalloc(sizeof(*image), GFP_KERNEL);
260 	if (!image)
261 		return NULL;
262 
263 	image->head = 0;
264 	image->entry = &image->head;
265 	image->last_entry = &image->head;
266 	image->control_page = ~0; /* By default this does not apply */
267 	image->type = KEXEC_TYPE_DEFAULT;
268 
269 	/* Initialize the list of control pages */
270 	INIT_LIST_HEAD(&image->control_pages);
271 
272 	/* Initialize the list of destination pages */
273 	INIT_LIST_HEAD(&image->dest_pages);
274 
275 	/* Initialize the list of unusable pages */
276 	INIT_LIST_HEAD(&image->unusable_pages);
277 
278 	return image;
279 }
280 
281 int kimage_is_destination_range(struct kimage *image,
282 					unsigned long start,
283 					unsigned long end)
284 {
285 	unsigned long i;
286 
287 	for (i = 0; i < image->nr_segments; i++) {
288 		unsigned long mstart, mend;
289 
290 		mstart = image->segment[i].mem;
291 		mend = mstart + image->segment[i].memsz;
292 		if ((end > mstart) && (start < mend))
293 			return 1;
294 	}
295 
296 	return 0;
297 }
298 
299 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
300 {
301 	struct page *pages;
302 
303 	if (fatal_signal_pending(current))
304 		return NULL;
305 	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
306 	if (pages) {
307 		unsigned int count, i;
308 
309 		pages->mapping = NULL;
310 		set_page_private(pages, order);
311 		count = 1 << order;
312 		for (i = 0; i < count; i++)
313 			SetPageReserved(pages + i);
314 
315 		arch_kexec_post_alloc_pages(page_address(pages), count,
316 					    gfp_mask);
317 
318 		if (gfp_mask & __GFP_ZERO)
319 			for (i = 0; i < count; i++)
320 				clear_highpage(pages + i);
321 	}
322 
323 	return pages;
324 }
325 
326 static void kimage_free_pages(struct page *page)
327 {
328 	unsigned int order, count, i;
329 
330 	order = page_private(page);
331 	count = 1 << order;
332 
333 	arch_kexec_pre_free_pages(page_address(page), count);
334 
335 	for (i = 0; i < count; i++)
336 		ClearPageReserved(page + i);
337 	__free_pages(page, order);
338 }
339 
340 void kimage_free_page_list(struct list_head *list)
341 {
342 	struct page *page, *next;
343 
344 	list_for_each_entry_safe(page, next, list, lru) {
345 		list_del(&page->lru);
346 		kimage_free_pages(page);
347 	}
348 }
349 
350 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
351 							unsigned int order)
352 {
353 	/* Control pages are special, they are the intermediaries
354 	 * that are needed while we copy the rest of the pages
355 	 * to their final resting place.  As such they must
356 	 * not conflict with either the destination addresses
357 	 * or memory the kernel is already using.
358 	 *
359 	 * The only case where we really need more than one of
360 	 * these are for architectures where we cannot disable
361 	 * the MMU and must instead generate an identity mapped
362 	 * page table for all of the memory.
363 	 *
364 	 * At worst this runs in O(N) of the image size.
365 	 */
366 	struct list_head extra_pages;
367 	struct page *pages;
368 	unsigned int count;
369 
370 	count = 1 << order;
371 	INIT_LIST_HEAD(&extra_pages);
372 
373 	/* Loop while I can allocate a page and the page allocated
374 	 * is a destination page.
375 	 */
376 	do {
377 		unsigned long pfn, epfn, addr, eaddr;
378 
379 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
380 		if (!pages)
381 			break;
382 		pfn   = page_to_boot_pfn(pages);
383 		epfn  = pfn + count;
384 		addr  = pfn << PAGE_SHIFT;
385 		eaddr = epfn << PAGE_SHIFT;
386 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
387 			      kimage_is_destination_range(image, addr, eaddr)) {
388 			list_add(&pages->lru, &extra_pages);
389 			pages = NULL;
390 		}
391 	} while (!pages);
392 
393 	if (pages) {
394 		/* Remember the allocated page... */
395 		list_add(&pages->lru, &image->control_pages);
396 
397 		/* Because the page is already in it's destination
398 		 * location we will never allocate another page at
399 		 * that address.  Therefore kimage_alloc_pages
400 		 * will not return it (again) and we don't need
401 		 * to give it an entry in image->segment[].
402 		 */
403 	}
404 	/* Deal with the destination pages I have inadvertently allocated.
405 	 *
406 	 * Ideally I would convert multi-page allocations into single
407 	 * page allocations, and add everything to image->dest_pages.
408 	 *
409 	 * For now it is simpler to just free the pages.
410 	 */
411 	kimage_free_page_list(&extra_pages);
412 
413 	return pages;
414 }
415 
416 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
417 						      unsigned int order)
418 {
419 	/* Control pages are special, they are the intermediaries
420 	 * that are needed while we copy the rest of the pages
421 	 * to their final resting place.  As such they must
422 	 * not conflict with either the destination addresses
423 	 * or memory the kernel is already using.
424 	 *
425 	 * Control pages are also the only pags we must allocate
426 	 * when loading a crash kernel.  All of the other pages
427 	 * are specified by the segments and we just memcpy
428 	 * into them directly.
429 	 *
430 	 * The only case where we really need more than one of
431 	 * these are for architectures where we cannot disable
432 	 * the MMU and must instead generate an identity mapped
433 	 * page table for all of the memory.
434 	 *
435 	 * Given the low demand this implements a very simple
436 	 * allocator that finds the first hole of the appropriate
437 	 * size in the reserved memory region, and allocates all
438 	 * of the memory up to and including the hole.
439 	 */
440 	unsigned long hole_start, hole_end, size;
441 	struct page *pages;
442 
443 	pages = NULL;
444 	size = (1 << order) << PAGE_SHIFT;
445 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
446 	hole_end   = hole_start + size - 1;
447 	while (hole_end <= crashk_res.end) {
448 		unsigned long i;
449 
450 		cond_resched();
451 
452 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
453 			break;
454 		/* See if I overlap any of the segments */
455 		for (i = 0; i < image->nr_segments; i++) {
456 			unsigned long mstart, mend;
457 
458 			mstart = image->segment[i].mem;
459 			mend   = mstart + image->segment[i].memsz - 1;
460 			if ((hole_end >= mstart) && (hole_start <= mend)) {
461 				/* Advance the hole to the end of the segment */
462 				hole_start = (mend + (size - 1)) & ~(size - 1);
463 				hole_end   = hole_start + size - 1;
464 				break;
465 			}
466 		}
467 		/* If I don't overlap any segments I have found my hole! */
468 		if (i == image->nr_segments) {
469 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
470 			image->control_page = hole_end;
471 			break;
472 		}
473 	}
474 
475 	/* Ensure that these pages are decrypted if SME is enabled. */
476 	if (pages)
477 		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
478 
479 	return pages;
480 }
481 
482 
483 struct page *kimage_alloc_control_pages(struct kimage *image,
484 					 unsigned int order)
485 {
486 	struct page *pages = NULL;
487 
488 	switch (image->type) {
489 	case KEXEC_TYPE_DEFAULT:
490 		pages = kimage_alloc_normal_control_pages(image, order);
491 		break;
492 	case KEXEC_TYPE_CRASH:
493 		pages = kimage_alloc_crash_control_pages(image, order);
494 		break;
495 	}
496 
497 	return pages;
498 }
499 
500 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
501 {
502 	struct page *vmcoreinfo_page;
503 	void *safecopy;
504 
505 	if (image->type != KEXEC_TYPE_CRASH)
506 		return 0;
507 
508 	/*
509 	 * For kdump, allocate one vmcoreinfo safe copy from the
510 	 * crash memory. as we have arch_kexec_protect_crashkres()
511 	 * after kexec syscall, we naturally protect it from write
512 	 * (even read) access under kernel direct mapping. But on
513 	 * the other hand, we still need to operate it when crash
514 	 * happens to generate vmcoreinfo note, hereby we rely on
515 	 * vmap for this purpose.
516 	 */
517 	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
518 	if (!vmcoreinfo_page) {
519 		pr_warn("Could not allocate vmcoreinfo buffer\n");
520 		return -ENOMEM;
521 	}
522 	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
523 	if (!safecopy) {
524 		pr_warn("Could not vmap vmcoreinfo buffer\n");
525 		return -ENOMEM;
526 	}
527 
528 	image->vmcoreinfo_data_copy = safecopy;
529 	crash_update_vmcoreinfo_safecopy(safecopy);
530 
531 	return 0;
532 }
533 
534 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
535 {
536 	if (*image->entry != 0)
537 		image->entry++;
538 
539 	if (image->entry == image->last_entry) {
540 		kimage_entry_t *ind_page;
541 		struct page *page;
542 
543 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
544 		if (!page)
545 			return -ENOMEM;
546 
547 		ind_page = page_address(page);
548 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
549 		image->entry = ind_page;
550 		image->last_entry = ind_page +
551 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
552 	}
553 	*image->entry = entry;
554 	image->entry++;
555 	*image->entry = 0;
556 
557 	return 0;
558 }
559 
560 static int kimage_set_destination(struct kimage *image,
561 				   unsigned long destination)
562 {
563 	int result;
564 
565 	destination &= PAGE_MASK;
566 	result = kimage_add_entry(image, destination | IND_DESTINATION);
567 
568 	return result;
569 }
570 
571 
572 static int kimage_add_page(struct kimage *image, unsigned long page)
573 {
574 	int result;
575 
576 	page &= PAGE_MASK;
577 	result = kimage_add_entry(image, page | IND_SOURCE);
578 
579 	return result;
580 }
581 
582 
583 static void kimage_free_extra_pages(struct kimage *image)
584 {
585 	/* Walk through and free any extra destination pages I may have */
586 	kimage_free_page_list(&image->dest_pages);
587 
588 	/* Walk through and free any unusable pages I have cached */
589 	kimage_free_page_list(&image->unusable_pages);
590 
591 }
592 
593 int __weak machine_kexec_post_load(struct kimage *image)
594 {
595 	return 0;
596 }
597 
598 void kimage_terminate(struct kimage *image)
599 {
600 	if (*image->entry != 0)
601 		image->entry++;
602 
603 	*image->entry = IND_DONE;
604 }
605 
606 #define for_each_kimage_entry(image, ptr, entry) \
607 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
608 		ptr = (entry & IND_INDIRECTION) ? \
609 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
610 
611 static void kimage_free_entry(kimage_entry_t entry)
612 {
613 	struct page *page;
614 
615 	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
616 	kimage_free_pages(page);
617 }
618 
619 void kimage_free(struct kimage *image)
620 {
621 	kimage_entry_t *ptr, entry;
622 	kimage_entry_t ind = 0;
623 
624 	if (!image)
625 		return;
626 
627 	if (image->vmcoreinfo_data_copy) {
628 		crash_update_vmcoreinfo_safecopy(NULL);
629 		vunmap(image->vmcoreinfo_data_copy);
630 	}
631 
632 	kimage_free_extra_pages(image);
633 	for_each_kimage_entry(image, ptr, entry) {
634 		if (entry & IND_INDIRECTION) {
635 			/* Free the previous indirection page */
636 			if (ind & IND_INDIRECTION)
637 				kimage_free_entry(ind);
638 			/* Save this indirection page until we are
639 			 * done with it.
640 			 */
641 			ind = entry;
642 		} else if (entry & IND_SOURCE)
643 			kimage_free_entry(entry);
644 	}
645 	/* Free the final indirection page */
646 	if (ind & IND_INDIRECTION)
647 		kimage_free_entry(ind);
648 
649 	/* Handle any machine specific cleanup */
650 	machine_kexec_cleanup(image);
651 
652 	/* Free the kexec control pages... */
653 	kimage_free_page_list(&image->control_pages);
654 
655 	/*
656 	 * Free up any temporary buffers allocated. This might hit if
657 	 * error occurred much later after buffer allocation.
658 	 */
659 	if (image->file_mode)
660 		kimage_file_post_load_cleanup(image);
661 
662 	kfree(image);
663 }
664 
665 static kimage_entry_t *kimage_dst_used(struct kimage *image,
666 					unsigned long page)
667 {
668 	kimage_entry_t *ptr, entry;
669 	unsigned long destination = 0;
670 
671 	for_each_kimage_entry(image, ptr, entry) {
672 		if (entry & IND_DESTINATION)
673 			destination = entry & PAGE_MASK;
674 		else if (entry & IND_SOURCE) {
675 			if (page == destination)
676 				return ptr;
677 			destination += PAGE_SIZE;
678 		}
679 	}
680 
681 	return NULL;
682 }
683 
684 static struct page *kimage_alloc_page(struct kimage *image,
685 					gfp_t gfp_mask,
686 					unsigned long destination)
687 {
688 	/*
689 	 * Here we implement safeguards to ensure that a source page
690 	 * is not copied to its destination page before the data on
691 	 * the destination page is no longer useful.
692 	 *
693 	 * To do this we maintain the invariant that a source page is
694 	 * either its own destination page, or it is not a
695 	 * destination page at all.
696 	 *
697 	 * That is slightly stronger than required, but the proof
698 	 * that no problems will not occur is trivial, and the
699 	 * implementation is simply to verify.
700 	 *
701 	 * When allocating all pages normally this algorithm will run
702 	 * in O(N) time, but in the worst case it will run in O(N^2)
703 	 * time.   If the runtime is a problem the data structures can
704 	 * be fixed.
705 	 */
706 	struct page *page;
707 	unsigned long addr;
708 
709 	/*
710 	 * Walk through the list of destination pages, and see if I
711 	 * have a match.
712 	 */
713 	list_for_each_entry(page, &image->dest_pages, lru) {
714 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
715 		if (addr == destination) {
716 			list_del(&page->lru);
717 			return page;
718 		}
719 	}
720 	page = NULL;
721 	while (1) {
722 		kimage_entry_t *old;
723 
724 		/* Allocate a page, if we run out of memory give up */
725 		page = kimage_alloc_pages(gfp_mask, 0);
726 		if (!page)
727 			return NULL;
728 		/* If the page cannot be used file it away */
729 		if (page_to_boot_pfn(page) >
730 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
731 			list_add(&page->lru, &image->unusable_pages);
732 			continue;
733 		}
734 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
735 
736 		/* If it is the destination page we want use it */
737 		if (addr == destination)
738 			break;
739 
740 		/* If the page is not a destination page use it */
741 		if (!kimage_is_destination_range(image, addr,
742 						  addr + PAGE_SIZE))
743 			break;
744 
745 		/*
746 		 * I know that the page is someones destination page.
747 		 * See if there is already a source page for this
748 		 * destination page.  And if so swap the source pages.
749 		 */
750 		old = kimage_dst_used(image, addr);
751 		if (old) {
752 			/* If so move it */
753 			unsigned long old_addr;
754 			struct page *old_page;
755 
756 			old_addr = *old & PAGE_MASK;
757 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
758 			copy_highpage(page, old_page);
759 			*old = addr | (*old & ~PAGE_MASK);
760 
761 			/* The old page I have found cannot be a
762 			 * destination page, so return it if it's
763 			 * gfp_flags honor the ones passed in.
764 			 */
765 			if (!(gfp_mask & __GFP_HIGHMEM) &&
766 			    PageHighMem(old_page)) {
767 				kimage_free_pages(old_page);
768 				continue;
769 			}
770 			addr = old_addr;
771 			page = old_page;
772 			break;
773 		}
774 		/* Place the page on the destination list, to be used later */
775 		list_add(&page->lru, &image->dest_pages);
776 	}
777 
778 	return page;
779 }
780 
781 static int kimage_load_normal_segment(struct kimage *image,
782 					 struct kexec_segment *segment)
783 {
784 	unsigned long maddr;
785 	size_t ubytes, mbytes;
786 	int result;
787 	unsigned char __user *buf = NULL;
788 	unsigned char *kbuf = NULL;
789 
790 	result = 0;
791 	if (image->file_mode)
792 		kbuf = segment->kbuf;
793 	else
794 		buf = segment->buf;
795 	ubytes = segment->bufsz;
796 	mbytes = segment->memsz;
797 	maddr = segment->mem;
798 
799 	result = kimage_set_destination(image, maddr);
800 	if (result < 0)
801 		goto out;
802 
803 	while (mbytes) {
804 		struct page *page;
805 		char *ptr;
806 		size_t uchunk, mchunk;
807 
808 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
809 		if (!page) {
810 			result  = -ENOMEM;
811 			goto out;
812 		}
813 		result = kimage_add_page(image, page_to_boot_pfn(page)
814 								<< PAGE_SHIFT);
815 		if (result < 0)
816 			goto out;
817 
818 		ptr = kmap(page);
819 		/* Start with a clear page */
820 		clear_page(ptr);
821 		ptr += maddr & ~PAGE_MASK;
822 		mchunk = min_t(size_t, mbytes,
823 				PAGE_SIZE - (maddr & ~PAGE_MASK));
824 		uchunk = min(ubytes, mchunk);
825 
826 		/* For file based kexec, source pages are in kernel memory */
827 		if (image->file_mode)
828 			memcpy(ptr, kbuf, uchunk);
829 		else
830 			result = copy_from_user(ptr, buf, uchunk);
831 		kunmap(page);
832 		if (result) {
833 			result = -EFAULT;
834 			goto out;
835 		}
836 		ubytes -= uchunk;
837 		maddr  += mchunk;
838 		if (image->file_mode)
839 			kbuf += mchunk;
840 		else
841 			buf += mchunk;
842 		mbytes -= mchunk;
843 
844 		cond_resched();
845 	}
846 out:
847 	return result;
848 }
849 
850 static int kimage_load_crash_segment(struct kimage *image,
851 					struct kexec_segment *segment)
852 {
853 	/* For crash dumps kernels we simply copy the data from
854 	 * user space to it's destination.
855 	 * We do things a page at a time for the sake of kmap.
856 	 */
857 	unsigned long maddr;
858 	size_t ubytes, mbytes;
859 	int result;
860 	unsigned char __user *buf = NULL;
861 	unsigned char *kbuf = NULL;
862 
863 	result = 0;
864 	if (image->file_mode)
865 		kbuf = segment->kbuf;
866 	else
867 		buf = segment->buf;
868 	ubytes = segment->bufsz;
869 	mbytes = segment->memsz;
870 	maddr = segment->mem;
871 	while (mbytes) {
872 		struct page *page;
873 		char *ptr;
874 		size_t uchunk, mchunk;
875 
876 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
877 		if (!page) {
878 			result  = -ENOMEM;
879 			goto out;
880 		}
881 		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
882 		ptr = kmap(page);
883 		ptr += maddr & ~PAGE_MASK;
884 		mchunk = min_t(size_t, mbytes,
885 				PAGE_SIZE - (maddr & ~PAGE_MASK));
886 		uchunk = min(ubytes, mchunk);
887 		if (mchunk > uchunk) {
888 			/* Zero the trailing part of the page */
889 			memset(ptr + uchunk, 0, mchunk - uchunk);
890 		}
891 
892 		/* For file based kexec, source pages are in kernel memory */
893 		if (image->file_mode)
894 			memcpy(ptr, kbuf, uchunk);
895 		else
896 			result = copy_from_user(ptr, buf, uchunk);
897 		kexec_flush_icache_page(page);
898 		kunmap(page);
899 		arch_kexec_pre_free_pages(page_address(page), 1);
900 		if (result) {
901 			result = -EFAULT;
902 			goto out;
903 		}
904 		ubytes -= uchunk;
905 		maddr  += mchunk;
906 		if (image->file_mode)
907 			kbuf += mchunk;
908 		else
909 			buf += mchunk;
910 		mbytes -= mchunk;
911 
912 		cond_resched();
913 	}
914 out:
915 	return result;
916 }
917 
918 int kimage_load_segment(struct kimage *image,
919 				struct kexec_segment *segment)
920 {
921 	int result = -ENOMEM;
922 
923 	switch (image->type) {
924 	case KEXEC_TYPE_DEFAULT:
925 		result = kimage_load_normal_segment(image, segment);
926 		break;
927 	case KEXEC_TYPE_CRASH:
928 		result = kimage_load_crash_segment(image, segment);
929 		break;
930 	}
931 
932 	return result;
933 }
934 
935 struct kimage *kexec_image;
936 struct kimage *kexec_crash_image;
937 int kexec_load_disabled;
938 
939 /*
940  * No panic_cpu check version of crash_kexec().  This function is called
941  * only when panic_cpu holds the current CPU number; this is the only CPU
942  * which processes crash_kexec routines.
943  */
944 void __noclone __crash_kexec(struct pt_regs *regs)
945 {
946 	/* Take the kexec_mutex here to prevent sys_kexec_load
947 	 * running on one cpu from replacing the crash kernel
948 	 * we are using after a panic on a different cpu.
949 	 *
950 	 * If the crash kernel was not located in a fixed area
951 	 * of memory the xchg(&kexec_crash_image) would be
952 	 * sufficient.  But since I reuse the memory...
953 	 */
954 	if (mutex_trylock(&kexec_mutex)) {
955 		if (kexec_crash_image) {
956 			struct pt_regs fixed_regs;
957 
958 			crash_setup_regs(&fixed_regs, regs);
959 			crash_save_vmcoreinfo();
960 			machine_crash_shutdown(&fixed_regs);
961 			machine_kexec(kexec_crash_image);
962 		}
963 		mutex_unlock(&kexec_mutex);
964 	}
965 }
966 STACK_FRAME_NON_STANDARD(__crash_kexec);
967 
968 void crash_kexec(struct pt_regs *regs)
969 {
970 	int old_cpu, this_cpu;
971 
972 	/*
973 	 * Only one CPU is allowed to execute the crash_kexec() code as with
974 	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
975 	 * may stop each other.  To exclude them, we use panic_cpu here too.
976 	 */
977 	this_cpu = raw_smp_processor_id();
978 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
979 	if (old_cpu == PANIC_CPU_INVALID) {
980 		/* This is the 1st CPU which comes here, so go ahead. */
981 		printk_safe_flush_on_panic();
982 		__crash_kexec(regs);
983 
984 		/*
985 		 * Reset panic_cpu to allow another panic()/crash_kexec()
986 		 * call.
987 		 */
988 		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
989 	}
990 }
991 
992 size_t crash_get_memory_size(void)
993 {
994 	size_t size = 0;
995 
996 	mutex_lock(&kexec_mutex);
997 	if (crashk_res.end != crashk_res.start)
998 		size = resource_size(&crashk_res);
999 	mutex_unlock(&kexec_mutex);
1000 	return size;
1001 }
1002 
1003 void __weak crash_free_reserved_phys_range(unsigned long begin,
1004 					   unsigned long end)
1005 {
1006 	unsigned long addr;
1007 
1008 	for (addr = begin; addr < end; addr += PAGE_SIZE)
1009 		free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
1010 }
1011 
1012 int crash_shrink_memory(unsigned long new_size)
1013 {
1014 	int ret = 0;
1015 	unsigned long start, end;
1016 	unsigned long old_size;
1017 	struct resource *ram_res;
1018 
1019 	mutex_lock(&kexec_mutex);
1020 
1021 	if (kexec_crash_image) {
1022 		ret = -ENOENT;
1023 		goto unlock;
1024 	}
1025 	start = crashk_res.start;
1026 	end = crashk_res.end;
1027 	old_size = (end == 0) ? 0 : end - start + 1;
1028 	if (new_size >= old_size) {
1029 		ret = (new_size == old_size) ? 0 : -EINVAL;
1030 		goto unlock;
1031 	}
1032 
1033 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1034 	if (!ram_res) {
1035 		ret = -ENOMEM;
1036 		goto unlock;
1037 	}
1038 
1039 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1040 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1041 
1042 	crash_free_reserved_phys_range(end, crashk_res.end);
1043 
1044 	if ((start == end) && (crashk_res.parent != NULL))
1045 		release_resource(&crashk_res);
1046 
1047 	ram_res->start = end;
1048 	ram_res->end = crashk_res.end;
1049 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1050 	ram_res->name = "System RAM";
1051 
1052 	crashk_res.end = end - 1;
1053 
1054 	insert_resource(&iomem_resource, ram_res);
1055 
1056 unlock:
1057 	mutex_unlock(&kexec_mutex);
1058 	return ret;
1059 }
1060 
1061 void crash_save_cpu(struct pt_regs *regs, int cpu)
1062 {
1063 	struct elf_prstatus prstatus;
1064 	u32 *buf;
1065 
1066 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1067 		return;
1068 
1069 	/* Using ELF notes here is opportunistic.
1070 	 * I need a well defined structure format
1071 	 * for the data I pass, and I need tags
1072 	 * on the data to indicate what information I have
1073 	 * squirrelled away.  ELF notes happen to provide
1074 	 * all of that, so there is no need to invent something new.
1075 	 */
1076 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1077 	if (!buf)
1078 		return;
1079 	memset(&prstatus, 0, sizeof(prstatus));
1080 	prstatus.common.pr_pid = current->pid;
1081 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1082 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1083 			      &prstatus, sizeof(prstatus));
1084 	final_note(buf);
1085 }
1086 
1087 static int __init crash_notes_memory_init(void)
1088 {
1089 	/* Allocate memory for saving cpu registers. */
1090 	size_t size, align;
1091 
1092 	/*
1093 	 * crash_notes could be allocated across 2 vmalloc pages when percpu
1094 	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1095 	 * pages are also on 2 continuous physical pages. In this case the
1096 	 * 2nd part of crash_notes in 2nd page could be lost since only the
1097 	 * starting address and size of crash_notes are exported through sysfs.
1098 	 * Here round up the size of crash_notes to the nearest power of two
1099 	 * and pass it to __alloc_percpu as align value. This can make sure
1100 	 * crash_notes is allocated inside one physical page.
1101 	 */
1102 	size = sizeof(note_buf_t);
1103 	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1104 
1105 	/*
1106 	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1107 	 * definitely will be in 2 pages with that.
1108 	 */
1109 	BUILD_BUG_ON(size > PAGE_SIZE);
1110 
1111 	crash_notes = __alloc_percpu(size, align);
1112 	if (!crash_notes) {
1113 		pr_warn("Memory allocation for saving cpu register states failed\n");
1114 		return -ENOMEM;
1115 	}
1116 	return 0;
1117 }
1118 subsys_initcall(crash_notes_memory_init);
1119 
1120 
1121 /*
1122  * Move into place and start executing a preloaded standalone
1123  * executable.  If nothing was preloaded return an error.
1124  */
1125 int kernel_kexec(void)
1126 {
1127 	int error = 0;
1128 
1129 	if (!mutex_trylock(&kexec_mutex))
1130 		return -EBUSY;
1131 	if (!kexec_image) {
1132 		error = -EINVAL;
1133 		goto Unlock;
1134 	}
1135 
1136 #ifdef CONFIG_KEXEC_JUMP
1137 	if (kexec_image->preserve_context) {
1138 		pm_prepare_console();
1139 		error = freeze_processes();
1140 		if (error) {
1141 			error = -EBUSY;
1142 			goto Restore_console;
1143 		}
1144 		suspend_console();
1145 		error = dpm_suspend_start(PMSG_FREEZE);
1146 		if (error)
1147 			goto Resume_console;
1148 		/* At this point, dpm_suspend_start() has been called,
1149 		 * but *not* dpm_suspend_end(). We *must* call
1150 		 * dpm_suspend_end() now.  Otherwise, drivers for
1151 		 * some devices (e.g. interrupt controllers) become
1152 		 * desynchronized with the actual state of the
1153 		 * hardware at resume time, and evil weirdness ensues.
1154 		 */
1155 		error = dpm_suspend_end(PMSG_FREEZE);
1156 		if (error)
1157 			goto Resume_devices;
1158 		error = suspend_disable_secondary_cpus();
1159 		if (error)
1160 			goto Enable_cpus;
1161 		local_irq_disable();
1162 		error = syscore_suspend();
1163 		if (error)
1164 			goto Enable_irqs;
1165 	} else
1166 #endif
1167 	{
1168 		kexec_in_progress = true;
1169 		kernel_restart_prepare("kexec reboot");
1170 		migrate_to_reboot_cpu();
1171 
1172 		/*
1173 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1174 		 * no further code needs to use CPU hotplug (which is true in
1175 		 * the reboot case). However, the kexec path depends on using
1176 		 * CPU hotplug again; so re-enable it here.
1177 		 */
1178 		cpu_hotplug_enable();
1179 		pr_notice("Starting new kernel\n");
1180 		machine_shutdown();
1181 	}
1182 
1183 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
1184 	machine_kexec(kexec_image);
1185 
1186 #ifdef CONFIG_KEXEC_JUMP
1187 	if (kexec_image->preserve_context) {
1188 		syscore_resume();
1189  Enable_irqs:
1190 		local_irq_enable();
1191  Enable_cpus:
1192 		suspend_enable_secondary_cpus();
1193 		dpm_resume_start(PMSG_RESTORE);
1194  Resume_devices:
1195 		dpm_resume_end(PMSG_RESTORE);
1196  Resume_console:
1197 		resume_console();
1198 		thaw_processes();
1199  Restore_console:
1200 		pm_restore_console();
1201 	}
1202 #endif
1203 
1204  Unlock:
1205 	mutex_unlock(&kexec_mutex);
1206 	return error;
1207 }
1208 
1209 /*
1210  * Protection mechanism for crashkernel reserved memory after
1211  * the kdump kernel is loaded.
1212  *
1213  * Provide an empty default implementation here -- architecture
1214  * code may override this
1215  */
1216 void __weak arch_kexec_protect_crashkres(void)
1217 {}
1218 
1219 void __weak arch_kexec_unprotect_crashkres(void)
1220 {}
1221