1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec.c - kexec system call core code. 4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/capability.h> 10 #include <linux/mm.h> 11 #include <linux/file.h> 12 #include <linux/slab.h> 13 #include <linux/fs.h> 14 #include <linux/kexec.h> 15 #include <linux/mutex.h> 16 #include <linux/list.h> 17 #include <linux/highmem.h> 18 #include <linux/syscalls.h> 19 #include <linux/reboot.h> 20 #include <linux/ioport.h> 21 #include <linux/hardirq.h> 22 #include <linux/elf.h> 23 #include <linux/elfcore.h> 24 #include <linux/utsname.h> 25 #include <linux/numa.h> 26 #include <linux/suspend.h> 27 #include <linux/device.h> 28 #include <linux/freezer.h> 29 #include <linux/pm.h> 30 #include <linux/cpu.h> 31 #include <linux/uaccess.h> 32 #include <linux/io.h> 33 #include <linux/console.h> 34 #include <linux/vmalloc.h> 35 #include <linux/swap.h> 36 #include <linux/syscore_ops.h> 37 #include <linux/compiler.h> 38 #include <linux/hugetlb.h> 39 #include <linux/objtool.h> 40 #include <linux/kmsg_dump.h> 41 42 #include <asm/page.h> 43 #include <asm/sections.h> 44 45 #include <crypto/hash.h> 46 #include "kexec_internal.h" 47 48 DEFINE_MUTEX(kexec_mutex); 49 50 /* Per cpu memory for storing cpu states in case of system crash. */ 51 note_buf_t __percpu *crash_notes; 52 53 /* Flag to indicate we are going to kexec a new kernel */ 54 bool kexec_in_progress = false; 55 56 57 /* Location of the reserved area for the crash kernel */ 58 struct resource crashk_res = { 59 .name = "Crash kernel", 60 .start = 0, 61 .end = 0, 62 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 63 .desc = IORES_DESC_CRASH_KERNEL 64 }; 65 struct resource crashk_low_res = { 66 .name = "Crash kernel", 67 .start = 0, 68 .end = 0, 69 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 70 .desc = IORES_DESC_CRASH_KERNEL 71 }; 72 73 int kexec_should_crash(struct task_struct *p) 74 { 75 /* 76 * If crash_kexec_post_notifiers is enabled, don't run 77 * crash_kexec() here yet, which must be run after panic 78 * notifiers in panic(). 79 */ 80 if (crash_kexec_post_notifiers) 81 return 0; 82 /* 83 * There are 4 panic() calls in do_exit() path, each of which 84 * corresponds to each of these 4 conditions. 85 */ 86 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 87 return 1; 88 return 0; 89 } 90 91 int kexec_crash_loaded(void) 92 { 93 return !!kexec_crash_image; 94 } 95 EXPORT_SYMBOL_GPL(kexec_crash_loaded); 96 97 /* 98 * When kexec transitions to the new kernel there is a one-to-one 99 * mapping between physical and virtual addresses. On processors 100 * where you can disable the MMU this is trivial, and easy. For 101 * others it is still a simple predictable page table to setup. 102 * 103 * In that environment kexec copies the new kernel to its final 104 * resting place. This means I can only support memory whose 105 * physical address can fit in an unsigned long. In particular 106 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 107 * If the assembly stub has more restrictive requirements 108 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 109 * defined more restrictively in <asm/kexec.h>. 110 * 111 * The code for the transition from the current kernel to the 112 * new kernel is placed in the control_code_buffer, whose size 113 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 114 * page of memory is necessary, but some architectures require more. 115 * Because this memory must be identity mapped in the transition from 116 * virtual to physical addresses it must live in the range 117 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 118 * modifiable. 119 * 120 * The assembly stub in the control code buffer is passed a linked list 121 * of descriptor pages detailing the source pages of the new kernel, 122 * and the destination addresses of those source pages. As this data 123 * structure is not used in the context of the current OS, it must 124 * be self-contained. 125 * 126 * The code has been made to work with highmem pages and will use a 127 * destination page in its final resting place (if it happens 128 * to allocate it). The end product of this is that most of the 129 * physical address space, and most of RAM can be used. 130 * 131 * Future directions include: 132 * - allocating a page table with the control code buffer identity 133 * mapped, to simplify machine_kexec and make kexec_on_panic more 134 * reliable. 135 */ 136 137 /* 138 * KIMAGE_NO_DEST is an impossible destination address..., for 139 * allocating pages whose destination address we do not care about. 140 */ 141 #define KIMAGE_NO_DEST (-1UL) 142 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) 143 144 static struct page *kimage_alloc_page(struct kimage *image, 145 gfp_t gfp_mask, 146 unsigned long dest); 147 148 int sanity_check_segment_list(struct kimage *image) 149 { 150 int i; 151 unsigned long nr_segments = image->nr_segments; 152 unsigned long total_pages = 0; 153 unsigned long nr_pages = totalram_pages(); 154 155 /* 156 * Verify we have good destination addresses. The caller is 157 * responsible for making certain we don't attempt to load 158 * the new image into invalid or reserved areas of RAM. This 159 * just verifies it is an address we can use. 160 * 161 * Since the kernel does everything in page size chunks ensure 162 * the destination addresses are page aligned. Too many 163 * special cases crop of when we don't do this. The most 164 * insidious is getting overlapping destination addresses 165 * simply because addresses are changed to page size 166 * granularity. 167 */ 168 for (i = 0; i < nr_segments; i++) { 169 unsigned long mstart, mend; 170 171 mstart = image->segment[i].mem; 172 mend = mstart + image->segment[i].memsz; 173 if (mstart > mend) 174 return -EADDRNOTAVAIL; 175 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 176 return -EADDRNOTAVAIL; 177 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 178 return -EADDRNOTAVAIL; 179 } 180 181 /* Verify our destination addresses do not overlap. 182 * If we alloed overlapping destination addresses 183 * through very weird things can happen with no 184 * easy explanation as one segment stops on another. 185 */ 186 for (i = 0; i < nr_segments; i++) { 187 unsigned long mstart, mend; 188 unsigned long j; 189 190 mstart = image->segment[i].mem; 191 mend = mstart + image->segment[i].memsz; 192 for (j = 0; j < i; j++) { 193 unsigned long pstart, pend; 194 195 pstart = image->segment[j].mem; 196 pend = pstart + image->segment[j].memsz; 197 /* Do the segments overlap ? */ 198 if ((mend > pstart) && (mstart < pend)) 199 return -EINVAL; 200 } 201 } 202 203 /* Ensure our buffer sizes are strictly less than 204 * our memory sizes. This should always be the case, 205 * and it is easier to check up front than to be surprised 206 * later on. 207 */ 208 for (i = 0; i < nr_segments; i++) { 209 if (image->segment[i].bufsz > image->segment[i].memsz) 210 return -EINVAL; 211 } 212 213 /* 214 * Verify that no more than half of memory will be consumed. If the 215 * request from userspace is too large, a large amount of time will be 216 * wasted allocating pages, which can cause a soft lockup. 217 */ 218 for (i = 0; i < nr_segments; i++) { 219 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2) 220 return -EINVAL; 221 222 total_pages += PAGE_COUNT(image->segment[i].memsz); 223 } 224 225 if (total_pages > nr_pages / 2) 226 return -EINVAL; 227 228 /* 229 * Verify we have good destination addresses. Normally 230 * the caller is responsible for making certain we don't 231 * attempt to load the new image into invalid or reserved 232 * areas of RAM. But crash kernels are preloaded into a 233 * reserved area of ram. We must ensure the addresses 234 * are in the reserved area otherwise preloading the 235 * kernel could corrupt things. 236 */ 237 238 if (image->type == KEXEC_TYPE_CRASH) { 239 for (i = 0; i < nr_segments; i++) { 240 unsigned long mstart, mend; 241 242 mstart = image->segment[i].mem; 243 mend = mstart + image->segment[i].memsz - 1; 244 /* Ensure we are within the crash kernel limits */ 245 if ((mstart < phys_to_boot_phys(crashk_res.start)) || 246 (mend > phys_to_boot_phys(crashk_res.end))) 247 return -EADDRNOTAVAIL; 248 } 249 } 250 251 return 0; 252 } 253 254 struct kimage *do_kimage_alloc_init(void) 255 { 256 struct kimage *image; 257 258 /* Allocate a controlling structure */ 259 image = kzalloc(sizeof(*image), GFP_KERNEL); 260 if (!image) 261 return NULL; 262 263 image->head = 0; 264 image->entry = &image->head; 265 image->last_entry = &image->head; 266 image->control_page = ~0; /* By default this does not apply */ 267 image->type = KEXEC_TYPE_DEFAULT; 268 269 /* Initialize the list of control pages */ 270 INIT_LIST_HEAD(&image->control_pages); 271 272 /* Initialize the list of destination pages */ 273 INIT_LIST_HEAD(&image->dest_pages); 274 275 /* Initialize the list of unusable pages */ 276 INIT_LIST_HEAD(&image->unusable_pages); 277 278 return image; 279 } 280 281 int kimage_is_destination_range(struct kimage *image, 282 unsigned long start, 283 unsigned long end) 284 { 285 unsigned long i; 286 287 for (i = 0; i < image->nr_segments; i++) { 288 unsigned long mstart, mend; 289 290 mstart = image->segment[i].mem; 291 mend = mstart + image->segment[i].memsz; 292 if ((end > mstart) && (start < mend)) 293 return 1; 294 } 295 296 return 0; 297 } 298 299 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 300 { 301 struct page *pages; 302 303 if (fatal_signal_pending(current)) 304 return NULL; 305 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order); 306 if (pages) { 307 unsigned int count, i; 308 309 pages->mapping = NULL; 310 set_page_private(pages, order); 311 count = 1 << order; 312 for (i = 0; i < count; i++) 313 SetPageReserved(pages + i); 314 315 arch_kexec_post_alloc_pages(page_address(pages), count, 316 gfp_mask); 317 318 if (gfp_mask & __GFP_ZERO) 319 for (i = 0; i < count; i++) 320 clear_highpage(pages + i); 321 } 322 323 return pages; 324 } 325 326 static void kimage_free_pages(struct page *page) 327 { 328 unsigned int order, count, i; 329 330 order = page_private(page); 331 count = 1 << order; 332 333 arch_kexec_pre_free_pages(page_address(page), count); 334 335 for (i = 0; i < count; i++) 336 ClearPageReserved(page + i); 337 __free_pages(page, order); 338 } 339 340 void kimage_free_page_list(struct list_head *list) 341 { 342 struct page *page, *next; 343 344 list_for_each_entry_safe(page, next, list, lru) { 345 list_del(&page->lru); 346 kimage_free_pages(page); 347 } 348 } 349 350 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 351 unsigned int order) 352 { 353 /* Control pages are special, they are the intermediaries 354 * that are needed while we copy the rest of the pages 355 * to their final resting place. As such they must 356 * not conflict with either the destination addresses 357 * or memory the kernel is already using. 358 * 359 * The only case where we really need more than one of 360 * these are for architectures where we cannot disable 361 * the MMU and must instead generate an identity mapped 362 * page table for all of the memory. 363 * 364 * At worst this runs in O(N) of the image size. 365 */ 366 struct list_head extra_pages; 367 struct page *pages; 368 unsigned int count; 369 370 count = 1 << order; 371 INIT_LIST_HEAD(&extra_pages); 372 373 /* Loop while I can allocate a page and the page allocated 374 * is a destination page. 375 */ 376 do { 377 unsigned long pfn, epfn, addr, eaddr; 378 379 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); 380 if (!pages) 381 break; 382 pfn = page_to_boot_pfn(pages); 383 epfn = pfn + count; 384 addr = pfn << PAGE_SHIFT; 385 eaddr = epfn << PAGE_SHIFT; 386 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 387 kimage_is_destination_range(image, addr, eaddr)) { 388 list_add(&pages->lru, &extra_pages); 389 pages = NULL; 390 } 391 } while (!pages); 392 393 if (pages) { 394 /* Remember the allocated page... */ 395 list_add(&pages->lru, &image->control_pages); 396 397 /* Because the page is already in it's destination 398 * location we will never allocate another page at 399 * that address. Therefore kimage_alloc_pages 400 * will not return it (again) and we don't need 401 * to give it an entry in image->segment[]. 402 */ 403 } 404 /* Deal with the destination pages I have inadvertently allocated. 405 * 406 * Ideally I would convert multi-page allocations into single 407 * page allocations, and add everything to image->dest_pages. 408 * 409 * For now it is simpler to just free the pages. 410 */ 411 kimage_free_page_list(&extra_pages); 412 413 return pages; 414 } 415 416 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 417 unsigned int order) 418 { 419 /* Control pages are special, they are the intermediaries 420 * that are needed while we copy the rest of the pages 421 * to their final resting place. As such they must 422 * not conflict with either the destination addresses 423 * or memory the kernel is already using. 424 * 425 * Control pages are also the only pags we must allocate 426 * when loading a crash kernel. All of the other pages 427 * are specified by the segments and we just memcpy 428 * into them directly. 429 * 430 * The only case where we really need more than one of 431 * these are for architectures where we cannot disable 432 * the MMU and must instead generate an identity mapped 433 * page table for all of the memory. 434 * 435 * Given the low demand this implements a very simple 436 * allocator that finds the first hole of the appropriate 437 * size in the reserved memory region, and allocates all 438 * of the memory up to and including the hole. 439 */ 440 unsigned long hole_start, hole_end, size; 441 struct page *pages; 442 443 pages = NULL; 444 size = (1 << order) << PAGE_SHIFT; 445 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 446 hole_end = hole_start + size - 1; 447 while (hole_end <= crashk_res.end) { 448 unsigned long i; 449 450 cond_resched(); 451 452 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 453 break; 454 /* See if I overlap any of the segments */ 455 for (i = 0; i < image->nr_segments; i++) { 456 unsigned long mstart, mend; 457 458 mstart = image->segment[i].mem; 459 mend = mstart + image->segment[i].memsz - 1; 460 if ((hole_end >= mstart) && (hole_start <= mend)) { 461 /* Advance the hole to the end of the segment */ 462 hole_start = (mend + (size - 1)) & ~(size - 1); 463 hole_end = hole_start + size - 1; 464 break; 465 } 466 } 467 /* If I don't overlap any segments I have found my hole! */ 468 if (i == image->nr_segments) { 469 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 470 image->control_page = hole_end; 471 break; 472 } 473 } 474 475 /* Ensure that these pages are decrypted if SME is enabled. */ 476 if (pages) 477 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0); 478 479 return pages; 480 } 481 482 483 struct page *kimage_alloc_control_pages(struct kimage *image, 484 unsigned int order) 485 { 486 struct page *pages = NULL; 487 488 switch (image->type) { 489 case KEXEC_TYPE_DEFAULT: 490 pages = kimage_alloc_normal_control_pages(image, order); 491 break; 492 case KEXEC_TYPE_CRASH: 493 pages = kimage_alloc_crash_control_pages(image, order); 494 break; 495 } 496 497 return pages; 498 } 499 500 int kimage_crash_copy_vmcoreinfo(struct kimage *image) 501 { 502 struct page *vmcoreinfo_page; 503 void *safecopy; 504 505 if (image->type != KEXEC_TYPE_CRASH) 506 return 0; 507 508 /* 509 * For kdump, allocate one vmcoreinfo safe copy from the 510 * crash memory. as we have arch_kexec_protect_crashkres() 511 * after kexec syscall, we naturally protect it from write 512 * (even read) access under kernel direct mapping. But on 513 * the other hand, we still need to operate it when crash 514 * happens to generate vmcoreinfo note, hereby we rely on 515 * vmap for this purpose. 516 */ 517 vmcoreinfo_page = kimage_alloc_control_pages(image, 0); 518 if (!vmcoreinfo_page) { 519 pr_warn("Could not allocate vmcoreinfo buffer\n"); 520 return -ENOMEM; 521 } 522 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); 523 if (!safecopy) { 524 pr_warn("Could not vmap vmcoreinfo buffer\n"); 525 return -ENOMEM; 526 } 527 528 image->vmcoreinfo_data_copy = safecopy; 529 crash_update_vmcoreinfo_safecopy(safecopy); 530 531 return 0; 532 } 533 534 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 535 { 536 if (*image->entry != 0) 537 image->entry++; 538 539 if (image->entry == image->last_entry) { 540 kimage_entry_t *ind_page; 541 struct page *page; 542 543 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 544 if (!page) 545 return -ENOMEM; 546 547 ind_page = page_address(page); 548 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; 549 image->entry = ind_page; 550 image->last_entry = ind_page + 551 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 552 } 553 *image->entry = entry; 554 image->entry++; 555 *image->entry = 0; 556 557 return 0; 558 } 559 560 static int kimage_set_destination(struct kimage *image, 561 unsigned long destination) 562 { 563 int result; 564 565 destination &= PAGE_MASK; 566 result = kimage_add_entry(image, destination | IND_DESTINATION); 567 568 return result; 569 } 570 571 572 static int kimage_add_page(struct kimage *image, unsigned long page) 573 { 574 int result; 575 576 page &= PAGE_MASK; 577 result = kimage_add_entry(image, page | IND_SOURCE); 578 579 return result; 580 } 581 582 583 static void kimage_free_extra_pages(struct kimage *image) 584 { 585 /* Walk through and free any extra destination pages I may have */ 586 kimage_free_page_list(&image->dest_pages); 587 588 /* Walk through and free any unusable pages I have cached */ 589 kimage_free_page_list(&image->unusable_pages); 590 591 } 592 593 int __weak machine_kexec_post_load(struct kimage *image) 594 { 595 return 0; 596 } 597 598 void kimage_terminate(struct kimage *image) 599 { 600 if (*image->entry != 0) 601 image->entry++; 602 603 *image->entry = IND_DONE; 604 } 605 606 #define for_each_kimage_entry(image, ptr, entry) \ 607 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 608 ptr = (entry & IND_INDIRECTION) ? \ 609 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 610 611 static void kimage_free_entry(kimage_entry_t entry) 612 { 613 struct page *page; 614 615 page = boot_pfn_to_page(entry >> PAGE_SHIFT); 616 kimage_free_pages(page); 617 } 618 619 void kimage_free(struct kimage *image) 620 { 621 kimage_entry_t *ptr, entry; 622 kimage_entry_t ind = 0; 623 624 if (!image) 625 return; 626 627 if (image->vmcoreinfo_data_copy) { 628 crash_update_vmcoreinfo_safecopy(NULL); 629 vunmap(image->vmcoreinfo_data_copy); 630 } 631 632 kimage_free_extra_pages(image); 633 for_each_kimage_entry(image, ptr, entry) { 634 if (entry & IND_INDIRECTION) { 635 /* Free the previous indirection page */ 636 if (ind & IND_INDIRECTION) 637 kimage_free_entry(ind); 638 /* Save this indirection page until we are 639 * done with it. 640 */ 641 ind = entry; 642 } else if (entry & IND_SOURCE) 643 kimage_free_entry(entry); 644 } 645 /* Free the final indirection page */ 646 if (ind & IND_INDIRECTION) 647 kimage_free_entry(ind); 648 649 /* Handle any machine specific cleanup */ 650 machine_kexec_cleanup(image); 651 652 /* Free the kexec control pages... */ 653 kimage_free_page_list(&image->control_pages); 654 655 /* 656 * Free up any temporary buffers allocated. This might hit if 657 * error occurred much later after buffer allocation. 658 */ 659 if (image->file_mode) 660 kimage_file_post_load_cleanup(image); 661 662 kfree(image); 663 } 664 665 static kimage_entry_t *kimage_dst_used(struct kimage *image, 666 unsigned long page) 667 { 668 kimage_entry_t *ptr, entry; 669 unsigned long destination = 0; 670 671 for_each_kimage_entry(image, ptr, entry) { 672 if (entry & IND_DESTINATION) 673 destination = entry & PAGE_MASK; 674 else if (entry & IND_SOURCE) { 675 if (page == destination) 676 return ptr; 677 destination += PAGE_SIZE; 678 } 679 } 680 681 return NULL; 682 } 683 684 static struct page *kimage_alloc_page(struct kimage *image, 685 gfp_t gfp_mask, 686 unsigned long destination) 687 { 688 /* 689 * Here we implement safeguards to ensure that a source page 690 * is not copied to its destination page before the data on 691 * the destination page is no longer useful. 692 * 693 * To do this we maintain the invariant that a source page is 694 * either its own destination page, or it is not a 695 * destination page at all. 696 * 697 * That is slightly stronger than required, but the proof 698 * that no problems will not occur is trivial, and the 699 * implementation is simply to verify. 700 * 701 * When allocating all pages normally this algorithm will run 702 * in O(N) time, but in the worst case it will run in O(N^2) 703 * time. If the runtime is a problem the data structures can 704 * be fixed. 705 */ 706 struct page *page; 707 unsigned long addr; 708 709 /* 710 * Walk through the list of destination pages, and see if I 711 * have a match. 712 */ 713 list_for_each_entry(page, &image->dest_pages, lru) { 714 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 715 if (addr == destination) { 716 list_del(&page->lru); 717 return page; 718 } 719 } 720 page = NULL; 721 while (1) { 722 kimage_entry_t *old; 723 724 /* Allocate a page, if we run out of memory give up */ 725 page = kimage_alloc_pages(gfp_mask, 0); 726 if (!page) 727 return NULL; 728 /* If the page cannot be used file it away */ 729 if (page_to_boot_pfn(page) > 730 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 731 list_add(&page->lru, &image->unusable_pages); 732 continue; 733 } 734 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 735 736 /* If it is the destination page we want use it */ 737 if (addr == destination) 738 break; 739 740 /* If the page is not a destination page use it */ 741 if (!kimage_is_destination_range(image, addr, 742 addr + PAGE_SIZE)) 743 break; 744 745 /* 746 * I know that the page is someones destination page. 747 * See if there is already a source page for this 748 * destination page. And if so swap the source pages. 749 */ 750 old = kimage_dst_used(image, addr); 751 if (old) { 752 /* If so move it */ 753 unsigned long old_addr; 754 struct page *old_page; 755 756 old_addr = *old & PAGE_MASK; 757 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); 758 copy_highpage(page, old_page); 759 *old = addr | (*old & ~PAGE_MASK); 760 761 /* The old page I have found cannot be a 762 * destination page, so return it if it's 763 * gfp_flags honor the ones passed in. 764 */ 765 if (!(gfp_mask & __GFP_HIGHMEM) && 766 PageHighMem(old_page)) { 767 kimage_free_pages(old_page); 768 continue; 769 } 770 addr = old_addr; 771 page = old_page; 772 break; 773 } 774 /* Place the page on the destination list, to be used later */ 775 list_add(&page->lru, &image->dest_pages); 776 } 777 778 return page; 779 } 780 781 static int kimage_load_normal_segment(struct kimage *image, 782 struct kexec_segment *segment) 783 { 784 unsigned long maddr; 785 size_t ubytes, mbytes; 786 int result; 787 unsigned char __user *buf = NULL; 788 unsigned char *kbuf = NULL; 789 790 result = 0; 791 if (image->file_mode) 792 kbuf = segment->kbuf; 793 else 794 buf = segment->buf; 795 ubytes = segment->bufsz; 796 mbytes = segment->memsz; 797 maddr = segment->mem; 798 799 result = kimage_set_destination(image, maddr); 800 if (result < 0) 801 goto out; 802 803 while (mbytes) { 804 struct page *page; 805 char *ptr; 806 size_t uchunk, mchunk; 807 808 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 809 if (!page) { 810 result = -ENOMEM; 811 goto out; 812 } 813 result = kimage_add_page(image, page_to_boot_pfn(page) 814 << PAGE_SHIFT); 815 if (result < 0) 816 goto out; 817 818 ptr = kmap(page); 819 /* Start with a clear page */ 820 clear_page(ptr); 821 ptr += maddr & ~PAGE_MASK; 822 mchunk = min_t(size_t, mbytes, 823 PAGE_SIZE - (maddr & ~PAGE_MASK)); 824 uchunk = min(ubytes, mchunk); 825 826 /* For file based kexec, source pages are in kernel memory */ 827 if (image->file_mode) 828 memcpy(ptr, kbuf, uchunk); 829 else 830 result = copy_from_user(ptr, buf, uchunk); 831 kunmap(page); 832 if (result) { 833 result = -EFAULT; 834 goto out; 835 } 836 ubytes -= uchunk; 837 maddr += mchunk; 838 if (image->file_mode) 839 kbuf += mchunk; 840 else 841 buf += mchunk; 842 mbytes -= mchunk; 843 844 cond_resched(); 845 } 846 out: 847 return result; 848 } 849 850 static int kimage_load_crash_segment(struct kimage *image, 851 struct kexec_segment *segment) 852 { 853 /* For crash dumps kernels we simply copy the data from 854 * user space to it's destination. 855 * We do things a page at a time for the sake of kmap. 856 */ 857 unsigned long maddr; 858 size_t ubytes, mbytes; 859 int result; 860 unsigned char __user *buf = NULL; 861 unsigned char *kbuf = NULL; 862 863 result = 0; 864 if (image->file_mode) 865 kbuf = segment->kbuf; 866 else 867 buf = segment->buf; 868 ubytes = segment->bufsz; 869 mbytes = segment->memsz; 870 maddr = segment->mem; 871 while (mbytes) { 872 struct page *page; 873 char *ptr; 874 size_t uchunk, mchunk; 875 876 page = boot_pfn_to_page(maddr >> PAGE_SHIFT); 877 if (!page) { 878 result = -ENOMEM; 879 goto out; 880 } 881 arch_kexec_post_alloc_pages(page_address(page), 1, 0); 882 ptr = kmap(page); 883 ptr += maddr & ~PAGE_MASK; 884 mchunk = min_t(size_t, mbytes, 885 PAGE_SIZE - (maddr & ~PAGE_MASK)); 886 uchunk = min(ubytes, mchunk); 887 if (mchunk > uchunk) { 888 /* Zero the trailing part of the page */ 889 memset(ptr + uchunk, 0, mchunk - uchunk); 890 } 891 892 /* For file based kexec, source pages are in kernel memory */ 893 if (image->file_mode) 894 memcpy(ptr, kbuf, uchunk); 895 else 896 result = copy_from_user(ptr, buf, uchunk); 897 kexec_flush_icache_page(page); 898 kunmap(page); 899 arch_kexec_pre_free_pages(page_address(page), 1); 900 if (result) { 901 result = -EFAULT; 902 goto out; 903 } 904 ubytes -= uchunk; 905 maddr += mchunk; 906 if (image->file_mode) 907 kbuf += mchunk; 908 else 909 buf += mchunk; 910 mbytes -= mchunk; 911 912 cond_resched(); 913 } 914 out: 915 return result; 916 } 917 918 int kimage_load_segment(struct kimage *image, 919 struct kexec_segment *segment) 920 { 921 int result = -ENOMEM; 922 923 switch (image->type) { 924 case KEXEC_TYPE_DEFAULT: 925 result = kimage_load_normal_segment(image, segment); 926 break; 927 case KEXEC_TYPE_CRASH: 928 result = kimage_load_crash_segment(image, segment); 929 break; 930 } 931 932 return result; 933 } 934 935 struct kimage *kexec_image; 936 struct kimage *kexec_crash_image; 937 int kexec_load_disabled; 938 939 /* 940 * No panic_cpu check version of crash_kexec(). This function is called 941 * only when panic_cpu holds the current CPU number; this is the only CPU 942 * which processes crash_kexec routines. 943 */ 944 void __noclone __crash_kexec(struct pt_regs *regs) 945 { 946 /* Take the kexec_mutex here to prevent sys_kexec_load 947 * running on one cpu from replacing the crash kernel 948 * we are using after a panic on a different cpu. 949 * 950 * If the crash kernel was not located in a fixed area 951 * of memory the xchg(&kexec_crash_image) would be 952 * sufficient. But since I reuse the memory... 953 */ 954 if (mutex_trylock(&kexec_mutex)) { 955 if (kexec_crash_image) { 956 struct pt_regs fixed_regs; 957 958 crash_setup_regs(&fixed_regs, regs); 959 crash_save_vmcoreinfo(); 960 machine_crash_shutdown(&fixed_regs); 961 machine_kexec(kexec_crash_image); 962 } 963 mutex_unlock(&kexec_mutex); 964 } 965 } 966 STACK_FRAME_NON_STANDARD(__crash_kexec); 967 968 void crash_kexec(struct pt_regs *regs) 969 { 970 int old_cpu, this_cpu; 971 972 /* 973 * Only one CPU is allowed to execute the crash_kexec() code as with 974 * panic(). Otherwise parallel calls of panic() and crash_kexec() 975 * may stop each other. To exclude them, we use panic_cpu here too. 976 */ 977 this_cpu = raw_smp_processor_id(); 978 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 979 if (old_cpu == PANIC_CPU_INVALID) { 980 /* This is the 1st CPU which comes here, so go ahead. */ 981 printk_safe_flush_on_panic(); 982 __crash_kexec(regs); 983 984 /* 985 * Reset panic_cpu to allow another panic()/crash_kexec() 986 * call. 987 */ 988 atomic_set(&panic_cpu, PANIC_CPU_INVALID); 989 } 990 } 991 992 size_t crash_get_memory_size(void) 993 { 994 size_t size = 0; 995 996 mutex_lock(&kexec_mutex); 997 if (crashk_res.end != crashk_res.start) 998 size = resource_size(&crashk_res); 999 mutex_unlock(&kexec_mutex); 1000 return size; 1001 } 1002 1003 void __weak crash_free_reserved_phys_range(unsigned long begin, 1004 unsigned long end) 1005 { 1006 unsigned long addr; 1007 1008 for (addr = begin; addr < end; addr += PAGE_SIZE) 1009 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT)); 1010 } 1011 1012 int crash_shrink_memory(unsigned long new_size) 1013 { 1014 int ret = 0; 1015 unsigned long start, end; 1016 unsigned long old_size; 1017 struct resource *ram_res; 1018 1019 mutex_lock(&kexec_mutex); 1020 1021 if (kexec_crash_image) { 1022 ret = -ENOENT; 1023 goto unlock; 1024 } 1025 start = crashk_res.start; 1026 end = crashk_res.end; 1027 old_size = (end == 0) ? 0 : end - start + 1; 1028 if (new_size >= old_size) { 1029 ret = (new_size == old_size) ? 0 : -EINVAL; 1030 goto unlock; 1031 } 1032 1033 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 1034 if (!ram_res) { 1035 ret = -ENOMEM; 1036 goto unlock; 1037 } 1038 1039 start = roundup(start, KEXEC_CRASH_MEM_ALIGN); 1040 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); 1041 1042 crash_free_reserved_phys_range(end, crashk_res.end); 1043 1044 if ((start == end) && (crashk_res.parent != NULL)) 1045 release_resource(&crashk_res); 1046 1047 ram_res->start = end; 1048 ram_res->end = crashk_res.end; 1049 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; 1050 ram_res->name = "System RAM"; 1051 1052 crashk_res.end = end - 1; 1053 1054 insert_resource(&iomem_resource, ram_res); 1055 1056 unlock: 1057 mutex_unlock(&kexec_mutex); 1058 return ret; 1059 } 1060 1061 void crash_save_cpu(struct pt_regs *regs, int cpu) 1062 { 1063 struct elf_prstatus prstatus; 1064 u32 *buf; 1065 1066 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 1067 return; 1068 1069 /* Using ELF notes here is opportunistic. 1070 * I need a well defined structure format 1071 * for the data I pass, and I need tags 1072 * on the data to indicate what information I have 1073 * squirrelled away. ELF notes happen to provide 1074 * all of that, so there is no need to invent something new. 1075 */ 1076 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); 1077 if (!buf) 1078 return; 1079 memset(&prstatus, 0, sizeof(prstatus)); 1080 prstatus.common.pr_pid = current->pid; 1081 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 1082 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 1083 &prstatus, sizeof(prstatus)); 1084 final_note(buf); 1085 } 1086 1087 static int __init crash_notes_memory_init(void) 1088 { 1089 /* Allocate memory for saving cpu registers. */ 1090 size_t size, align; 1091 1092 /* 1093 * crash_notes could be allocated across 2 vmalloc pages when percpu 1094 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc 1095 * pages are also on 2 continuous physical pages. In this case the 1096 * 2nd part of crash_notes in 2nd page could be lost since only the 1097 * starting address and size of crash_notes are exported through sysfs. 1098 * Here round up the size of crash_notes to the nearest power of two 1099 * and pass it to __alloc_percpu as align value. This can make sure 1100 * crash_notes is allocated inside one physical page. 1101 */ 1102 size = sizeof(note_buf_t); 1103 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); 1104 1105 /* 1106 * Break compile if size is bigger than PAGE_SIZE since crash_notes 1107 * definitely will be in 2 pages with that. 1108 */ 1109 BUILD_BUG_ON(size > PAGE_SIZE); 1110 1111 crash_notes = __alloc_percpu(size, align); 1112 if (!crash_notes) { 1113 pr_warn("Memory allocation for saving cpu register states failed\n"); 1114 return -ENOMEM; 1115 } 1116 return 0; 1117 } 1118 subsys_initcall(crash_notes_memory_init); 1119 1120 1121 /* 1122 * Move into place and start executing a preloaded standalone 1123 * executable. If nothing was preloaded return an error. 1124 */ 1125 int kernel_kexec(void) 1126 { 1127 int error = 0; 1128 1129 if (!mutex_trylock(&kexec_mutex)) 1130 return -EBUSY; 1131 if (!kexec_image) { 1132 error = -EINVAL; 1133 goto Unlock; 1134 } 1135 1136 #ifdef CONFIG_KEXEC_JUMP 1137 if (kexec_image->preserve_context) { 1138 pm_prepare_console(); 1139 error = freeze_processes(); 1140 if (error) { 1141 error = -EBUSY; 1142 goto Restore_console; 1143 } 1144 suspend_console(); 1145 error = dpm_suspend_start(PMSG_FREEZE); 1146 if (error) 1147 goto Resume_console; 1148 /* At this point, dpm_suspend_start() has been called, 1149 * but *not* dpm_suspend_end(). We *must* call 1150 * dpm_suspend_end() now. Otherwise, drivers for 1151 * some devices (e.g. interrupt controllers) become 1152 * desynchronized with the actual state of the 1153 * hardware at resume time, and evil weirdness ensues. 1154 */ 1155 error = dpm_suspend_end(PMSG_FREEZE); 1156 if (error) 1157 goto Resume_devices; 1158 error = suspend_disable_secondary_cpus(); 1159 if (error) 1160 goto Enable_cpus; 1161 local_irq_disable(); 1162 error = syscore_suspend(); 1163 if (error) 1164 goto Enable_irqs; 1165 } else 1166 #endif 1167 { 1168 kexec_in_progress = true; 1169 kernel_restart_prepare("kexec reboot"); 1170 migrate_to_reboot_cpu(); 1171 1172 /* 1173 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 1174 * no further code needs to use CPU hotplug (which is true in 1175 * the reboot case). However, the kexec path depends on using 1176 * CPU hotplug again; so re-enable it here. 1177 */ 1178 cpu_hotplug_enable(); 1179 pr_notice("Starting new kernel\n"); 1180 machine_shutdown(); 1181 } 1182 1183 kmsg_dump(KMSG_DUMP_SHUTDOWN); 1184 machine_kexec(kexec_image); 1185 1186 #ifdef CONFIG_KEXEC_JUMP 1187 if (kexec_image->preserve_context) { 1188 syscore_resume(); 1189 Enable_irqs: 1190 local_irq_enable(); 1191 Enable_cpus: 1192 suspend_enable_secondary_cpus(); 1193 dpm_resume_start(PMSG_RESTORE); 1194 Resume_devices: 1195 dpm_resume_end(PMSG_RESTORE); 1196 Resume_console: 1197 resume_console(); 1198 thaw_processes(); 1199 Restore_console: 1200 pm_restore_console(); 1201 } 1202 #endif 1203 1204 Unlock: 1205 mutex_unlock(&kexec_mutex); 1206 return error; 1207 } 1208 1209 /* 1210 * Protection mechanism for crashkernel reserved memory after 1211 * the kdump kernel is loaded. 1212 * 1213 * Provide an empty default implementation here -- architecture 1214 * code may override this 1215 */ 1216 void __weak arch_kexec_protect_crashkres(void) 1217 {} 1218 1219 void __weak arch_kexec_unprotect_crashkres(void) 1220 {} 1221