xref: /openbmc/linux/kernel/kexec_core.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /*
2  * kexec.c - kexec system call core code.
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
41 #include <linux/frame.h>
42 
43 #include <asm/page.h>
44 #include <asm/sections.h>
45 
46 #include <crypto/hash.h>
47 #include <crypto/sha.h>
48 #include "kexec_internal.h"
49 
50 DEFINE_MUTEX(kexec_mutex);
51 
52 /* Per cpu memory for storing cpu states in case of system crash. */
53 note_buf_t __percpu *crash_notes;
54 
55 /* Flag to indicate we are going to kexec a new kernel */
56 bool kexec_in_progress = false;
57 
58 
59 /* Location of the reserved area for the crash kernel */
60 struct resource crashk_res = {
61 	.name  = "Crash kernel",
62 	.start = 0,
63 	.end   = 0,
64 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
65 	.desc  = IORES_DESC_CRASH_KERNEL
66 };
67 struct resource crashk_low_res = {
68 	.name  = "Crash kernel",
69 	.start = 0,
70 	.end   = 0,
71 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
72 	.desc  = IORES_DESC_CRASH_KERNEL
73 };
74 
75 int kexec_should_crash(struct task_struct *p)
76 {
77 	/*
78 	 * If crash_kexec_post_notifiers is enabled, don't run
79 	 * crash_kexec() here yet, which must be run after panic
80 	 * notifiers in panic().
81 	 */
82 	if (crash_kexec_post_notifiers)
83 		return 0;
84 	/*
85 	 * There are 4 panic() calls in do_exit() path, each of which
86 	 * corresponds to each of these 4 conditions.
87 	 */
88 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
89 		return 1;
90 	return 0;
91 }
92 
93 int kexec_crash_loaded(void)
94 {
95 	return !!kexec_crash_image;
96 }
97 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
98 
99 /*
100  * When kexec transitions to the new kernel there is a one-to-one
101  * mapping between physical and virtual addresses.  On processors
102  * where you can disable the MMU this is trivial, and easy.  For
103  * others it is still a simple predictable page table to setup.
104  *
105  * In that environment kexec copies the new kernel to its final
106  * resting place.  This means I can only support memory whose
107  * physical address can fit in an unsigned long.  In particular
108  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
109  * If the assembly stub has more restrictive requirements
110  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
111  * defined more restrictively in <asm/kexec.h>.
112  *
113  * The code for the transition from the current kernel to the
114  * the new kernel is placed in the control_code_buffer, whose size
115  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
116  * page of memory is necessary, but some architectures require more.
117  * Because this memory must be identity mapped in the transition from
118  * virtual to physical addresses it must live in the range
119  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
120  * modifiable.
121  *
122  * The assembly stub in the control code buffer is passed a linked list
123  * of descriptor pages detailing the source pages of the new kernel,
124  * and the destination addresses of those source pages.  As this data
125  * structure is not used in the context of the current OS, it must
126  * be self-contained.
127  *
128  * The code has been made to work with highmem pages and will use a
129  * destination page in its final resting place (if it happens
130  * to allocate it).  The end product of this is that most of the
131  * physical address space, and most of RAM can be used.
132  *
133  * Future directions include:
134  *  - allocating a page table with the control code buffer identity
135  *    mapped, to simplify machine_kexec and make kexec_on_panic more
136  *    reliable.
137  */
138 
139 /*
140  * KIMAGE_NO_DEST is an impossible destination address..., for
141  * allocating pages whose destination address we do not care about.
142  */
143 #define KIMAGE_NO_DEST (-1UL)
144 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
145 
146 static struct page *kimage_alloc_page(struct kimage *image,
147 				       gfp_t gfp_mask,
148 				       unsigned long dest);
149 
150 int sanity_check_segment_list(struct kimage *image)
151 {
152 	int i;
153 	unsigned long nr_segments = image->nr_segments;
154 	unsigned long total_pages = 0;
155 
156 	/*
157 	 * Verify we have good destination addresses.  The caller is
158 	 * responsible for making certain we don't attempt to load
159 	 * the new image into invalid or reserved areas of RAM.  This
160 	 * just verifies it is an address we can use.
161 	 *
162 	 * Since the kernel does everything in page size chunks ensure
163 	 * the destination addresses are page aligned.  Too many
164 	 * special cases crop of when we don't do this.  The most
165 	 * insidious is getting overlapping destination addresses
166 	 * simply because addresses are changed to page size
167 	 * granularity.
168 	 */
169 	for (i = 0; i < nr_segments; i++) {
170 		unsigned long mstart, mend;
171 
172 		mstart = image->segment[i].mem;
173 		mend   = mstart + image->segment[i].memsz;
174 		if (mstart > mend)
175 			return -EADDRNOTAVAIL;
176 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
177 			return -EADDRNOTAVAIL;
178 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
179 			return -EADDRNOTAVAIL;
180 	}
181 
182 	/* Verify our destination addresses do not overlap.
183 	 * If we alloed overlapping destination addresses
184 	 * through very weird things can happen with no
185 	 * easy explanation as one segment stops on another.
186 	 */
187 	for (i = 0; i < nr_segments; i++) {
188 		unsigned long mstart, mend;
189 		unsigned long j;
190 
191 		mstart = image->segment[i].mem;
192 		mend   = mstart + image->segment[i].memsz;
193 		for (j = 0; j < i; j++) {
194 			unsigned long pstart, pend;
195 
196 			pstart = image->segment[j].mem;
197 			pend   = pstart + image->segment[j].memsz;
198 			/* Do the segments overlap ? */
199 			if ((mend > pstart) && (mstart < pend))
200 				return -EINVAL;
201 		}
202 	}
203 
204 	/* Ensure our buffer sizes are strictly less than
205 	 * our memory sizes.  This should always be the case,
206 	 * and it is easier to check up front than to be surprised
207 	 * later on.
208 	 */
209 	for (i = 0; i < nr_segments; i++) {
210 		if (image->segment[i].bufsz > image->segment[i].memsz)
211 			return -EINVAL;
212 	}
213 
214 	/*
215 	 * Verify that no more than half of memory will be consumed. If the
216 	 * request from userspace is too large, a large amount of time will be
217 	 * wasted allocating pages, which can cause a soft lockup.
218 	 */
219 	for (i = 0; i < nr_segments; i++) {
220 		if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2)
221 			return -EINVAL;
222 
223 		total_pages += PAGE_COUNT(image->segment[i].memsz);
224 	}
225 
226 	if (total_pages > totalram_pages / 2)
227 		return -EINVAL;
228 
229 	/*
230 	 * Verify we have good destination addresses.  Normally
231 	 * the caller is responsible for making certain we don't
232 	 * attempt to load the new image into invalid or reserved
233 	 * areas of RAM.  But crash kernels are preloaded into a
234 	 * reserved area of ram.  We must ensure the addresses
235 	 * are in the reserved area otherwise preloading the
236 	 * kernel could corrupt things.
237 	 */
238 
239 	if (image->type == KEXEC_TYPE_CRASH) {
240 		for (i = 0; i < nr_segments; i++) {
241 			unsigned long mstart, mend;
242 
243 			mstart = image->segment[i].mem;
244 			mend = mstart + image->segment[i].memsz - 1;
245 			/* Ensure we are within the crash kernel limits */
246 			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
247 			    (mend > phys_to_boot_phys(crashk_res.end)))
248 				return -EADDRNOTAVAIL;
249 		}
250 	}
251 
252 	return 0;
253 }
254 
255 struct kimage *do_kimage_alloc_init(void)
256 {
257 	struct kimage *image;
258 
259 	/* Allocate a controlling structure */
260 	image = kzalloc(sizeof(*image), GFP_KERNEL);
261 	if (!image)
262 		return NULL;
263 
264 	image->head = 0;
265 	image->entry = &image->head;
266 	image->last_entry = &image->head;
267 	image->control_page = ~0; /* By default this does not apply */
268 	image->type = KEXEC_TYPE_DEFAULT;
269 
270 	/* Initialize the list of control pages */
271 	INIT_LIST_HEAD(&image->control_pages);
272 
273 	/* Initialize the list of destination pages */
274 	INIT_LIST_HEAD(&image->dest_pages);
275 
276 	/* Initialize the list of unusable pages */
277 	INIT_LIST_HEAD(&image->unusable_pages);
278 
279 	return image;
280 }
281 
282 int kimage_is_destination_range(struct kimage *image,
283 					unsigned long start,
284 					unsigned long end)
285 {
286 	unsigned long i;
287 
288 	for (i = 0; i < image->nr_segments; i++) {
289 		unsigned long mstart, mend;
290 
291 		mstart = image->segment[i].mem;
292 		mend = mstart + image->segment[i].memsz;
293 		if ((end > mstart) && (start < mend))
294 			return 1;
295 	}
296 
297 	return 0;
298 }
299 
300 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
301 {
302 	struct page *pages;
303 
304 	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
305 	if (pages) {
306 		unsigned int count, i;
307 
308 		pages->mapping = NULL;
309 		set_page_private(pages, order);
310 		count = 1 << order;
311 		for (i = 0; i < count; i++)
312 			SetPageReserved(pages + i);
313 
314 		arch_kexec_post_alloc_pages(page_address(pages), count,
315 					    gfp_mask);
316 
317 		if (gfp_mask & __GFP_ZERO)
318 			for (i = 0; i < count; i++)
319 				clear_highpage(pages + i);
320 	}
321 
322 	return pages;
323 }
324 
325 static void kimage_free_pages(struct page *page)
326 {
327 	unsigned int order, count, i;
328 
329 	order = page_private(page);
330 	count = 1 << order;
331 
332 	arch_kexec_pre_free_pages(page_address(page), count);
333 
334 	for (i = 0; i < count; i++)
335 		ClearPageReserved(page + i);
336 	__free_pages(page, order);
337 }
338 
339 void kimage_free_page_list(struct list_head *list)
340 {
341 	struct page *page, *next;
342 
343 	list_for_each_entry_safe(page, next, list, lru) {
344 		list_del(&page->lru);
345 		kimage_free_pages(page);
346 	}
347 }
348 
349 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
350 							unsigned int order)
351 {
352 	/* Control pages are special, they are the intermediaries
353 	 * that are needed while we copy the rest of the pages
354 	 * to their final resting place.  As such they must
355 	 * not conflict with either the destination addresses
356 	 * or memory the kernel is already using.
357 	 *
358 	 * The only case where we really need more than one of
359 	 * these are for architectures where we cannot disable
360 	 * the MMU and must instead generate an identity mapped
361 	 * page table for all of the memory.
362 	 *
363 	 * At worst this runs in O(N) of the image size.
364 	 */
365 	struct list_head extra_pages;
366 	struct page *pages;
367 	unsigned int count;
368 
369 	count = 1 << order;
370 	INIT_LIST_HEAD(&extra_pages);
371 
372 	/* Loop while I can allocate a page and the page allocated
373 	 * is a destination page.
374 	 */
375 	do {
376 		unsigned long pfn, epfn, addr, eaddr;
377 
378 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
379 		if (!pages)
380 			break;
381 		pfn   = page_to_boot_pfn(pages);
382 		epfn  = pfn + count;
383 		addr  = pfn << PAGE_SHIFT;
384 		eaddr = epfn << PAGE_SHIFT;
385 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
386 			      kimage_is_destination_range(image, addr, eaddr)) {
387 			list_add(&pages->lru, &extra_pages);
388 			pages = NULL;
389 		}
390 	} while (!pages);
391 
392 	if (pages) {
393 		/* Remember the allocated page... */
394 		list_add(&pages->lru, &image->control_pages);
395 
396 		/* Because the page is already in it's destination
397 		 * location we will never allocate another page at
398 		 * that address.  Therefore kimage_alloc_pages
399 		 * will not return it (again) and we don't need
400 		 * to give it an entry in image->segment[].
401 		 */
402 	}
403 	/* Deal with the destination pages I have inadvertently allocated.
404 	 *
405 	 * Ideally I would convert multi-page allocations into single
406 	 * page allocations, and add everything to image->dest_pages.
407 	 *
408 	 * For now it is simpler to just free the pages.
409 	 */
410 	kimage_free_page_list(&extra_pages);
411 
412 	return pages;
413 }
414 
415 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
416 						      unsigned int order)
417 {
418 	/* Control pages are special, they are the intermediaries
419 	 * that are needed while we copy the rest of the pages
420 	 * to their final resting place.  As such they must
421 	 * not conflict with either the destination addresses
422 	 * or memory the kernel is already using.
423 	 *
424 	 * Control pages are also the only pags we must allocate
425 	 * when loading a crash kernel.  All of the other pages
426 	 * are specified by the segments and we just memcpy
427 	 * into them directly.
428 	 *
429 	 * The only case where we really need more than one of
430 	 * these are for architectures where we cannot disable
431 	 * the MMU and must instead generate an identity mapped
432 	 * page table for all of the memory.
433 	 *
434 	 * Given the low demand this implements a very simple
435 	 * allocator that finds the first hole of the appropriate
436 	 * size in the reserved memory region, and allocates all
437 	 * of the memory up to and including the hole.
438 	 */
439 	unsigned long hole_start, hole_end, size;
440 	struct page *pages;
441 
442 	pages = NULL;
443 	size = (1 << order) << PAGE_SHIFT;
444 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
445 	hole_end   = hole_start + size - 1;
446 	while (hole_end <= crashk_res.end) {
447 		unsigned long i;
448 
449 		cond_resched();
450 
451 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
452 			break;
453 		/* See if I overlap any of the segments */
454 		for (i = 0; i < image->nr_segments; i++) {
455 			unsigned long mstart, mend;
456 
457 			mstart = image->segment[i].mem;
458 			mend   = mstart + image->segment[i].memsz - 1;
459 			if ((hole_end >= mstart) && (hole_start <= mend)) {
460 				/* Advance the hole to the end of the segment */
461 				hole_start = (mend + (size - 1)) & ~(size - 1);
462 				hole_end   = hole_start + size - 1;
463 				break;
464 			}
465 		}
466 		/* If I don't overlap any segments I have found my hole! */
467 		if (i == image->nr_segments) {
468 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
469 			image->control_page = hole_end;
470 			break;
471 		}
472 	}
473 
474 	return pages;
475 }
476 
477 
478 struct page *kimage_alloc_control_pages(struct kimage *image,
479 					 unsigned int order)
480 {
481 	struct page *pages = NULL;
482 
483 	switch (image->type) {
484 	case KEXEC_TYPE_DEFAULT:
485 		pages = kimage_alloc_normal_control_pages(image, order);
486 		break;
487 	case KEXEC_TYPE_CRASH:
488 		pages = kimage_alloc_crash_control_pages(image, order);
489 		break;
490 	}
491 
492 	return pages;
493 }
494 
495 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
496 {
497 	struct page *vmcoreinfo_page;
498 	void *safecopy;
499 
500 	if (image->type != KEXEC_TYPE_CRASH)
501 		return 0;
502 
503 	/*
504 	 * For kdump, allocate one vmcoreinfo safe copy from the
505 	 * crash memory. as we have arch_kexec_protect_crashkres()
506 	 * after kexec syscall, we naturally protect it from write
507 	 * (even read) access under kernel direct mapping. But on
508 	 * the other hand, we still need to operate it when crash
509 	 * happens to generate vmcoreinfo note, hereby we rely on
510 	 * vmap for this purpose.
511 	 */
512 	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
513 	if (!vmcoreinfo_page) {
514 		pr_warn("Could not allocate vmcoreinfo buffer\n");
515 		return -ENOMEM;
516 	}
517 	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
518 	if (!safecopy) {
519 		pr_warn("Could not vmap vmcoreinfo buffer\n");
520 		return -ENOMEM;
521 	}
522 
523 	image->vmcoreinfo_data_copy = safecopy;
524 	crash_update_vmcoreinfo_safecopy(safecopy);
525 
526 	return 0;
527 }
528 
529 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
530 {
531 	if (*image->entry != 0)
532 		image->entry++;
533 
534 	if (image->entry == image->last_entry) {
535 		kimage_entry_t *ind_page;
536 		struct page *page;
537 
538 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
539 		if (!page)
540 			return -ENOMEM;
541 
542 		ind_page = page_address(page);
543 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
544 		image->entry = ind_page;
545 		image->last_entry = ind_page +
546 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
547 	}
548 	*image->entry = entry;
549 	image->entry++;
550 	*image->entry = 0;
551 
552 	return 0;
553 }
554 
555 static int kimage_set_destination(struct kimage *image,
556 				   unsigned long destination)
557 {
558 	int result;
559 
560 	destination &= PAGE_MASK;
561 	result = kimage_add_entry(image, destination | IND_DESTINATION);
562 
563 	return result;
564 }
565 
566 
567 static int kimage_add_page(struct kimage *image, unsigned long page)
568 {
569 	int result;
570 
571 	page &= PAGE_MASK;
572 	result = kimage_add_entry(image, page | IND_SOURCE);
573 
574 	return result;
575 }
576 
577 
578 static void kimage_free_extra_pages(struct kimage *image)
579 {
580 	/* Walk through and free any extra destination pages I may have */
581 	kimage_free_page_list(&image->dest_pages);
582 
583 	/* Walk through and free any unusable pages I have cached */
584 	kimage_free_page_list(&image->unusable_pages);
585 
586 }
587 void kimage_terminate(struct kimage *image)
588 {
589 	if (*image->entry != 0)
590 		image->entry++;
591 
592 	*image->entry = IND_DONE;
593 }
594 
595 #define for_each_kimage_entry(image, ptr, entry) \
596 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
597 		ptr = (entry & IND_INDIRECTION) ? \
598 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
599 
600 static void kimage_free_entry(kimage_entry_t entry)
601 {
602 	struct page *page;
603 
604 	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
605 	kimage_free_pages(page);
606 }
607 
608 void kimage_free(struct kimage *image)
609 {
610 	kimage_entry_t *ptr, entry;
611 	kimage_entry_t ind = 0;
612 
613 	if (!image)
614 		return;
615 
616 	if (image->vmcoreinfo_data_copy) {
617 		crash_update_vmcoreinfo_safecopy(NULL);
618 		vunmap(image->vmcoreinfo_data_copy);
619 	}
620 
621 	kimage_free_extra_pages(image);
622 	for_each_kimage_entry(image, ptr, entry) {
623 		if (entry & IND_INDIRECTION) {
624 			/* Free the previous indirection page */
625 			if (ind & IND_INDIRECTION)
626 				kimage_free_entry(ind);
627 			/* Save this indirection page until we are
628 			 * done with it.
629 			 */
630 			ind = entry;
631 		} else if (entry & IND_SOURCE)
632 			kimage_free_entry(entry);
633 	}
634 	/* Free the final indirection page */
635 	if (ind & IND_INDIRECTION)
636 		kimage_free_entry(ind);
637 
638 	/* Handle any machine specific cleanup */
639 	machine_kexec_cleanup(image);
640 
641 	/* Free the kexec control pages... */
642 	kimage_free_page_list(&image->control_pages);
643 
644 	/*
645 	 * Free up any temporary buffers allocated. This might hit if
646 	 * error occurred much later after buffer allocation.
647 	 */
648 	if (image->file_mode)
649 		kimage_file_post_load_cleanup(image);
650 
651 	kfree(image);
652 }
653 
654 static kimage_entry_t *kimage_dst_used(struct kimage *image,
655 					unsigned long page)
656 {
657 	kimage_entry_t *ptr, entry;
658 	unsigned long destination = 0;
659 
660 	for_each_kimage_entry(image, ptr, entry) {
661 		if (entry & IND_DESTINATION)
662 			destination = entry & PAGE_MASK;
663 		else if (entry & IND_SOURCE) {
664 			if (page == destination)
665 				return ptr;
666 			destination += PAGE_SIZE;
667 		}
668 	}
669 
670 	return NULL;
671 }
672 
673 static struct page *kimage_alloc_page(struct kimage *image,
674 					gfp_t gfp_mask,
675 					unsigned long destination)
676 {
677 	/*
678 	 * Here we implement safeguards to ensure that a source page
679 	 * is not copied to its destination page before the data on
680 	 * the destination page is no longer useful.
681 	 *
682 	 * To do this we maintain the invariant that a source page is
683 	 * either its own destination page, or it is not a
684 	 * destination page at all.
685 	 *
686 	 * That is slightly stronger than required, but the proof
687 	 * that no problems will not occur is trivial, and the
688 	 * implementation is simply to verify.
689 	 *
690 	 * When allocating all pages normally this algorithm will run
691 	 * in O(N) time, but in the worst case it will run in O(N^2)
692 	 * time.   If the runtime is a problem the data structures can
693 	 * be fixed.
694 	 */
695 	struct page *page;
696 	unsigned long addr;
697 
698 	/*
699 	 * Walk through the list of destination pages, and see if I
700 	 * have a match.
701 	 */
702 	list_for_each_entry(page, &image->dest_pages, lru) {
703 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
704 		if (addr == destination) {
705 			list_del(&page->lru);
706 			return page;
707 		}
708 	}
709 	page = NULL;
710 	while (1) {
711 		kimage_entry_t *old;
712 
713 		/* Allocate a page, if we run out of memory give up */
714 		page = kimage_alloc_pages(gfp_mask, 0);
715 		if (!page)
716 			return NULL;
717 		/* If the page cannot be used file it away */
718 		if (page_to_boot_pfn(page) >
719 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
720 			list_add(&page->lru, &image->unusable_pages);
721 			continue;
722 		}
723 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
724 
725 		/* If it is the destination page we want use it */
726 		if (addr == destination)
727 			break;
728 
729 		/* If the page is not a destination page use it */
730 		if (!kimage_is_destination_range(image, addr,
731 						  addr + PAGE_SIZE))
732 			break;
733 
734 		/*
735 		 * I know that the page is someones destination page.
736 		 * See if there is already a source page for this
737 		 * destination page.  And if so swap the source pages.
738 		 */
739 		old = kimage_dst_used(image, addr);
740 		if (old) {
741 			/* If so move it */
742 			unsigned long old_addr;
743 			struct page *old_page;
744 
745 			old_addr = *old & PAGE_MASK;
746 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
747 			copy_highpage(page, old_page);
748 			*old = addr | (*old & ~PAGE_MASK);
749 
750 			/* The old page I have found cannot be a
751 			 * destination page, so return it if it's
752 			 * gfp_flags honor the ones passed in.
753 			 */
754 			if (!(gfp_mask & __GFP_HIGHMEM) &&
755 			    PageHighMem(old_page)) {
756 				kimage_free_pages(old_page);
757 				continue;
758 			}
759 			addr = old_addr;
760 			page = old_page;
761 			break;
762 		}
763 		/* Place the page on the destination list, to be used later */
764 		list_add(&page->lru, &image->dest_pages);
765 	}
766 
767 	return page;
768 }
769 
770 static int kimage_load_normal_segment(struct kimage *image,
771 					 struct kexec_segment *segment)
772 {
773 	unsigned long maddr;
774 	size_t ubytes, mbytes;
775 	int result;
776 	unsigned char __user *buf = NULL;
777 	unsigned char *kbuf = NULL;
778 
779 	result = 0;
780 	if (image->file_mode)
781 		kbuf = segment->kbuf;
782 	else
783 		buf = segment->buf;
784 	ubytes = segment->bufsz;
785 	mbytes = segment->memsz;
786 	maddr = segment->mem;
787 
788 	result = kimage_set_destination(image, maddr);
789 	if (result < 0)
790 		goto out;
791 
792 	while (mbytes) {
793 		struct page *page;
794 		char *ptr;
795 		size_t uchunk, mchunk;
796 
797 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
798 		if (!page) {
799 			result  = -ENOMEM;
800 			goto out;
801 		}
802 		result = kimage_add_page(image, page_to_boot_pfn(page)
803 								<< PAGE_SHIFT);
804 		if (result < 0)
805 			goto out;
806 
807 		ptr = kmap(page);
808 		/* Start with a clear page */
809 		clear_page(ptr);
810 		ptr += maddr & ~PAGE_MASK;
811 		mchunk = min_t(size_t, mbytes,
812 				PAGE_SIZE - (maddr & ~PAGE_MASK));
813 		uchunk = min(ubytes, mchunk);
814 
815 		/* For file based kexec, source pages are in kernel memory */
816 		if (image->file_mode)
817 			memcpy(ptr, kbuf, uchunk);
818 		else
819 			result = copy_from_user(ptr, buf, uchunk);
820 		kunmap(page);
821 		if (result) {
822 			result = -EFAULT;
823 			goto out;
824 		}
825 		ubytes -= uchunk;
826 		maddr  += mchunk;
827 		if (image->file_mode)
828 			kbuf += mchunk;
829 		else
830 			buf += mchunk;
831 		mbytes -= mchunk;
832 
833 		cond_resched();
834 	}
835 out:
836 	return result;
837 }
838 
839 static int kimage_load_crash_segment(struct kimage *image,
840 					struct kexec_segment *segment)
841 {
842 	/* For crash dumps kernels we simply copy the data from
843 	 * user space to it's destination.
844 	 * We do things a page at a time for the sake of kmap.
845 	 */
846 	unsigned long maddr;
847 	size_t ubytes, mbytes;
848 	int result;
849 	unsigned char __user *buf = NULL;
850 	unsigned char *kbuf = NULL;
851 
852 	result = 0;
853 	if (image->file_mode)
854 		kbuf = segment->kbuf;
855 	else
856 		buf = segment->buf;
857 	ubytes = segment->bufsz;
858 	mbytes = segment->memsz;
859 	maddr = segment->mem;
860 	while (mbytes) {
861 		struct page *page;
862 		char *ptr;
863 		size_t uchunk, mchunk;
864 
865 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
866 		if (!page) {
867 			result  = -ENOMEM;
868 			goto out;
869 		}
870 		ptr = kmap(page);
871 		ptr += maddr & ~PAGE_MASK;
872 		mchunk = min_t(size_t, mbytes,
873 				PAGE_SIZE - (maddr & ~PAGE_MASK));
874 		uchunk = min(ubytes, mchunk);
875 		if (mchunk > uchunk) {
876 			/* Zero the trailing part of the page */
877 			memset(ptr + uchunk, 0, mchunk - uchunk);
878 		}
879 
880 		/* For file based kexec, source pages are in kernel memory */
881 		if (image->file_mode)
882 			memcpy(ptr, kbuf, uchunk);
883 		else
884 			result = copy_from_user(ptr, buf, uchunk);
885 		kexec_flush_icache_page(page);
886 		kunmap(page);
887 		if (result) {
888 			result = -EFAULT;
889 			goto out;
890 		}
891 		ubytes -= uchunk;
892 		maddr  += mchunk;
893 		if (image->file_mode)
894 			kbuf += mchunk;
895 		else
896 			buf += mchunk;
897 		mbytes -= mchunk;
898 
899 		cond_resched();
900 	}
901 out:
902 	return result;
903 }
904 
905 int kimage_load_segment(struct kimage *image,
906 				struct kexec_segment *segment)
907 {
908 	int result = -ENOMEM;
909 
910 	switch (image->type) {
911 	case KEXEC_TYPE_DEFAULT:
912 		result = kimage_load_normal_segment(image, segment);
913 		break;
914 	case KEXEC_TYPE_CRASH:
915 		result = kimage_load_crash_segment(image, segment);
916 		break;
917 	}
918 
919 	return result;
920 }
921 
922 struct kimage *kexec_image;
923 struct kimage *kexec_crash_image;
924 int kexec_load_disabled;
925 
926 /*
927  * No panic_cpu check version of crash_kexec().  This function is called
928  * only when panic_cpu holds the current CPU number; this is the only CPU
929  * which processes crash_kexec routines.
930  */
931 void __noclone __crash_kexec(struct pt_regs *regs)
932 {
933 	/* Take the kexec_mutex here to prevent sys_kexec_load
934 	 * running on one cpu from replacing the crash kernel
935 	 * we are using after a panic on a different cpu.
936 	 *
937 	 * If the crash kernel was not located in a fixed area
938 	 * of memory the xchg(&kexec_crash_image) would be
939 	 * sufficient.  But since I reuse the memory...
940 	 */
941 	if (mutex_trylock(&kexec_mutex)) {
942 		if (kexec_crash_image) {
943 			struct pt_regs fixed_regs;
944 
945 			crash_setup_regs(&fixed_regs, regs);
946 			crash_save_vmcoreinfo();
947 			machine_crash_shutdown(&fixed_regs);
948 			machine_kexec(kexec_crash_image);
949 		}
950 		mutex_unlock(&kexec_mutex);
951 	}
952 }
953 STACK_FRAME_NON_STANDARD(__crash_kexec);
954 
955 void crash_kexec(struct pt_regs *regs)
956 {
957 	int old_cpu, this_cpu;
958 
959 	/*
960 	 * Only one CPU is allowed to execute the crash_kexec() code as with
961 	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
962 	 * may stop each other.  To exclude them, we use panic_cpu here too.
963 	 */
964 	this_cpu = raw_smp_processor_id();
965 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
966 	if (old_cpu == PANIC_CPU_INVALID) {
967 		/* This is the 1st CPU which comes here, so go ahead. */
968 		printk_safe_flush_on_panic();
969 		__crash_kexec(regs);
970 
971 		/*
972 		 * Reset panic_cpu to allow another panic()/crash_kexec()
973 		 * call.
974 		 */
975 		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
976 	}
977 }
978 
979 size_t crash_get_memory_size(void)
980 {
981 	size_t size = 0;
982 
983 	mutex_lock(&kexec_mutex);
984 	if (crashk_res.end != crashk_res.start)
985 		size = resource_size(&crashk_res);
986 	mutex_unlock(&kexec_mutex);
987 	return size;
988 }
989 
990 void __weak crash_free_reserved_phys_range(unsigned long begin,
991 					   unsigned long end)
992 {
993 	unsigned long addr;
994 
995 	for (addr = begin; addr < end; addr += PAGE_SIZE)
996 		free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
997 }
998 
999 int crash_shrink_memory(unsigned long new_size)
1000 {
1001 	int ret = 0;
1002 	unsigned long start, end;
1003 	unsigned long old_size;
1004 	struct resource *ram_res;
1005 
1006 	mutex_lock(&kexec_mutex);
1007 
1008 	if (kexec_crash_image) {
1009 		ret = -ENOENT;
1010 		goto unlock;
1011 	}
1012 	start = crashk_res.start;
1013 	end = crashk_res.end;
1014 	old_size = (end == 0) ? 0 : end - start + 1;
1015 	if (new_size >= old_size) {
1016 		ret = (new_size == old_size) ? 0 : -EINVAL;
1017 		goto unlock;
1018 	}
1019 
1020 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1021 	if (!ram_res) {
1022 		ret = -ENOMEM;
1023 		goto unlock;
1024 	}
1025 
1026 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1027 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1028 
1029 	crash_free_reserved_phys_range(end, crashk_res.end);
1030 
1031 	if ((start == end) && (crashk_res.parent != NULL))
1032 		release_resource(&crashk_res);
1033 
1034 	ram_res->start = end;
1035 	ram_res->end = crashk_res.end;
1036 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1037 	ram_res->name = "System RAM";
1038 
1039 	crashk_res.end = end - 1;
1040 
1041 	insert_resource(&iomem_resource, ram_res);
1042 
1043 unlock:
1044 	mutex_unlock(&kexec_mutex);
1045 	return ret;
1046 }
1047 
1048 void crash_save_cpu(struct pt_regs *regs, int cpu)
1049 {
1050 	struct elf_prstatus prstatus;
1051 	u32 *buf;
1052 
1053 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1054 		return;
1055 
1056 	/* Using ELF notes here is opportunistic.
1057 	 * I need a well defined structure format
1058 	 * for the data I pass, and I need tags
1059 	 * on the data to indicate what information I have
1060 	 * squirrelled away.  ELF notes happen to provide
1061 	 * all of that, so there is no need to invent something new.
1062 	 */
1063 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1064 	if (!buf)
1065 		return;
1066 	memset(&prstatus, 0, sizeof(prstatus));
1067 	prstatus.pr_pid = current->pid;
1068 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1069 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1070 			      &prstatus, sizeof(prstatus));
1071 	final_note(buf);
1072 }
1073 
1074 static int __init crash_notes_memory_init(void)
1075 {
1076 	/* Allocate memory for saving cpu registers. */
1077 	size_t size, align;
1078 
1079 	/*
1080 	 * crash_notes could be allocated across 2 vmalloc pages when percpu
1081 	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1082 	 * pages are also on 2 continuous physical pages. In this case the
1083 	 * 2nd part of crash_notes in 2nd page could be lost since only the
1084 	 * starting address and size of crash_notes are exported through sysfs.
1085 	 * Here round up the size of crash_notes to the nearest power of two
1086 	 * and pass it to __alloc_percpu as align value. This can make sure
1087 	 * crash_notes is allocated inside one physical page.
1088 	 */
1089 	size = sizeof(note_buf_t);
1090 	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1091 
1092 	/*
1093 	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1094 	 * definitely will be in 2 pages with that.
1095 	 */
1096 	BUILD_BUG_ON(size > PAGE_SIZE);
1097 
1098 	crash_notes = __alloc_percpu(size, align);
1099 	if (!crash_notes) {
1100 		pr_warn("Memory allocation for saving cpu register states failed\n");
1101 		return -ENOMEM;
1102 	}
1103 	return 0;
1104 }
1105 subsys_initcall(crash_notes_memory_init);
1106 
1107 
1108 /*
1109  * Move into place and start executing a preloaded standalone
1110  * executable.  If nothing was preloaded return an error.
1111  */
1112 int kernel_kexec(void)
1113 {
1114 	int error = 0;
1115 
1116 	if (!mutex_trylock(&kexec_mutex))
1117 		return -EBUSY;
1118 	if (!kexec_image) {
1119 		error = -EINVAL;
1120 		goto Unlock;
1121 	}
1122 
1123 #ifdef CONFIG_KEXEC_JUMP
1124 	if (kexec_image->preserve_context) {
1125 		lock_system_sleep();
1126 		pm_prepare_console();
1127 		error = freeze_processes();
1128 		if (error) {
1129 			error = -EBUSY;
1130 			goto Restore_console;
1131 		}
1132 		suspend_console();
1133 		error = dpm_suspend_start(PMSG_FREEZE);
1134 		if (error)
1135 			goto Resume_console;
1136 		/* At this point, dpm_suspend_start() has been called,
1137 		 * but *not* dpm_suspend_end(). We *must* call
1138 		 * dpm_suspend_end() now.  Otherwise, drivers for
1139 		 * some devices (e.g. interrupt controllers) become
1140 		 * desynchronized with the actual state of the
1141 		 * hardware at resume time, and evil weirdness ensues.
1142 		 */
1143 		error = dpm_suspend_end(PMSG_FREEZE);
1144 		if (error)
1145 			goto Resume_devices;
1146 		error = disable_nonboot_cpus();
1147 		if (error)
1148 			goto Enable_cpus;
1149 		local_irq_disable();
1150 		error = syscore_suspend();
1151 		if (error)
1152 			goto Enable_irqs;
1153 	} else
1154 #endif
1155 	{
1156 		kexec_in_progress = true;
1157 		kernel_restart_prepare(NULL);
1158 		migrate_to_reboot_cpu();
1159 
1160 		/*
1161 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1162 		 * no further code needs to use CPU hotplug (which is true in
1163 		 * the reboot case). However, the kexec path depends on using
1164 		 * CPU hotplug again; so re-enable it here.
1165 		 */
1166 		cpu_hotplug_enable();
1167 		pr_emerg("Starting new kernel\n");
1168 		machine_shutdown();
1169 	}
1170 
1171 	machine_kexec(kexec_image);
1172 
1173 #ifdef CONFIG_KEXEC_JUMP
1174 	if (kexec_image->preserve_context) {
1175 		syscore_resume();
1176  Enable_irqs:
1177 		local_irq_enable();
1178  Enable_cpus:
1179 		enable_nonboot_cpus();
1180 		dpm_resume_start(PMSG_RESTORE);
1181  Resume_devices:
1182 		dpm_resume_end(PMSG_RESTORE);
1183  Resume_console:
1184 		resume_console();
1185 		thaw_processes();
1186  Restore_console:
1187 		pm_restore_console();
1188 		unlock_system_sleep();
1189 	}
1190 #endif
1191 
1192  Unlock:
1193 	mutex_unlock(&kexec_mutex);
1194 	return error;
1195 }
1196 
1197 /*
1198  * Protection mechanism for crashkernel reserved memory after
1199  * the kdump kernel is loaded.
1200  *
1201  * Provide an empty default implementation here -- architecture
1202  * code may override this
1203  */
1204 void __weak arch_kexec_protect_crashkres(void)
1205 {}
1206 
1207 void __weak arch_kexec_unprotect_crashkres(void)
1208 {}
1209