xref: /openbmc/linux/kernel/kexec_core.c (revision 260ea95c)
1 /*
2  * kexec.c - kexec system call core code.
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
41 #include <linux/frame.h>
42 
43 #include <asm/page.h>
44 #include <asm/sections.h>
45 
46 #include <crypto/hash.h>
47 #include <crypto/sha.h>
48 #include "kexec_internal.h"
49 
50 DEFINE_MUTEX(kexec_mutex);
51 
52 /* Per cpu memory for storing cpu states in case of system crash. */
53 note_buf_t __percpu *crash_notes;
54 
55 /* Flag to indicate we are going to kexec a new kernel */
56 bool kexec_in_progress = false;
57 
58 
59 /* Location of the reserved area for the crash kernel */
60 struct resource crashk_res = {
61 	.name  = "Crash kernel",
62 	.start = 0,
63 	.end   = 0,
64 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
65 	.desc  = IORES_DESC_CRASH_KERNEL
66 };
67 struct resource crashk_low_res = {
68 	.name  = "Crash kernel",
69 	.start = 0,
70 	.end   = 0,
71 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
72 	.desc  = IORES_DESC_CRASH_KERNEL
73 };
74 
75 int kexec_should_crash(struct task_struct *p)
76 {
77 	/*
78 	 * If crash_kexec_post_notifiers is enabled, don't run
79 	 * crash_kexec() here yet, which must be run after panic
80 	 * notifiers in panic().
81 	 */
82 	if (crash_kexec_post_notifiers)
83 		return 0;
84 	/*
85 	 * There are 4 panic() calls in do_exit() path, each of which
86 	 * corresponds to each of these 4 conditions.
87 	 */
88 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
89 		return 1;
90 	return 0;
91 }
92 
93 int kexec_crash_loaded(void)
94 {
95 	return !!kexec_crash_image;
96 }
97 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
98 
99 /*
100  * When kexec transitions to the new kernel there is a one-to-one
101  * mapping between physical and virtual addresses.  On processors
102  * where you can disable the MMU this is trivial, and easy.  For
103  * others it is still a simple predictable page table to setup.
104  *
105  * In that environment kexec copies the new kernel to its final
106  * resting place.  This means I can only support memory whose
107  * physical address can fit in an unsigned long.  In particular
108  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
109  * If the assembly stub has more restrictive requirements
110  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
111  * defined more restrictively in <asm/kexec.h>.
112  *
113  * The code for the transition from the current kernel to the
114  * the new kernel is placed in the control_code_buffer, whose size
115  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
116  * page of memory is necessary, but some architectures require more.
117  * Because this memory must be identity mapped in the transition from
118  * virtual to physical addresses it must live in the range
119  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
120  * modifiable.
121  *
122  * The assembly stub in the control code buffer is passed a linked list
123  * of descriptor pages detailing the source pages of the new kernel,
124  * and the destination addresses of those source pages.  As this data
125  * structure is not used in the context of the current OS, it must
126  * be self-contained.
127  *
128  * The code has been made to work with highmem pages and will use a
129  * destination page in its final resting place (if it happens
130  * to allocate it).  The end product of this is that most of the
131  * physical address space, and most of RAM can be used.
132  *
133  * Future directions include:
134  *  - allocating a page table with the control code buffer identity
135  *    mapped, to simplify machine_kexec and make kexec_on_panic more
136  *    reliable.
137  */
138 
139 /*
140  * KIMAGE_NO_DEST is an impossible destination address..., for
141  * allocating pages whose destination address we do not care about.
142  */
143 #define KIMAGE_NO_DEST (-1UL)
144 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
145 
146 static struct page *kimage_alloc_page(struct kimage *image,
147 				       gfp_t gfp_mask,
148 				       unsigned long dest);
149 
150 int sanity_check_segment_list(struct kimage *image)
151 {
152 	int i;
153 	unsigned long nr_segments = image->nr_segments;
154 	unsigned long total_pages = 0;
155 
156 	/*
157 	 * Verify we have good destination addresses.  The caller is
158 	 * responsible for making certain we don't attempt to load
159 	 * the new image into invalid or reserved areas of RAM.  This
160 	 * just verifies it is an address we can use.
161 	 *
162 	 * Since the kernel does everything in page size chunks ensure
163 	 * the destination addresses are page aligned.  Too many
164 	 * special cases crop of when we don't do this.  The most
165 	 * insidious is getting overlapping destination addresses
166 	 * simply because addresses are changed to page size
167 	 * granularity.
168 	 */
169 	for (i = 0; i < nr_segments; i++) {
170 		unsigned long mstart, mend;
171 
172 		mstart = image->segment[i].mem;
173 		mend   = mstart + image->segment[i].memsz;
174 		if (mstart > mend)
175 			return -EADDRNOTAVAIL;
176 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
177 			return -EADDRNOTAVAIL;
178 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
179 			return -EADDRNOTAVAIL;
180 	}
181 
182 	/* Verify our destination addresses do not overlap.
183 	 * If we alloed overlapping destination addresses
184 	 * through very weird things can happen with no
185 	 * easy explanation as one segment stops on another.
186 	 */
187 	for (i = 0; i < nr_segments; i++) {
188 		unsigned long mstart, mend;
189 		unsigned long j;
190 
191 		mstart = image->segment[i].mem;
192 		mend   = mstart + image->segment[i].memsz;
193 		for (j = 0; j < i; j++) {
194 			unsigned long pstart, pend;
195 
196 			pstart = image->segment[j].mem;
197 			pend   = pstart + image->segment[j].memsz;
198 			/* Do the segments overlap ? */
199 			if ((mend > pstart) && (mstart < pend))
200 				return -EINVAL;
201 		}
202 	}
203 
204 	/* Ensure our buffer sizes are strictly less than
205 	 * our memory sizes.  This should always be the case,
206 	 * and it is easier to check up front than to be surprised
207 	 * later on.
208 	 */
209 	for (i = 0; i < nr_segments; i++) {
210 		if (image->segment[i].bufsz > image->segment[i].memsz)
211 			return -EINVAL;
212 	}
213 
214 	/*
215 	 * Verify that no more than half of memory will be consumed. If the
216 	 * request from userspace is too large, a large amount of time will be
217 	 * wasted allocating pages, which can cause a soft lockup.
218 	 */
219 	for (i = 0; i < nr_segments; i++) {
220 		if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2)
221 			return -EINVAL;
222 
223 		total_pages += PAGE_COUNT(image->segment[i].memsz);
224 	}
225 
226 	if (total_pages > totalram_pages / 2)
227 		return -EINVAL;
228 
229 	/*
230 	 * Verify we have good destination addresses.  Normally
231 	 * the caller is responsible for making certain we don't
232 	 * attempt to load the new image into invalid or reserved
233 	 * areas of RAM.  But crash kernels are preloaded into a
234 	 * reserved area of ram.  We must ensure the addresses
235 	 * are in the reserved area otherwise preloading the
236 	 * kernel could corrupt things.
237 	 */
238 
239 	if (image->type == KEXEC_TYPE_CRASH) {
240 		for (i = 0; i < nr_segments; i++) {
241 			unsigned long mstart, mend;
242 
243 			mstart = image->segment[i].mem;
244 			mend = mstart + image->segment[i].memsz - 1;
245 			/* Ensure we are within the crash kernel limits */
246 			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
247 			    (mend > phys_to_boot_phys(crashk_res.end)))
248 				return -EADDRNOTAVAIL;
249 		}
250 	}
251 
252 	return 0;
253 }
254 
255 struct kimage *do_kimage_alloc_init(void)
256 {
257 	struct kimage *image;
258 
259 	/* Allocate a controlling structure */
260 	image = kzalloc(sizeof(*image), GFP_KERNEL);
261 	if (!image)
262 		return NULL;
263 
264 	image->head = 0;
265 	image->entry = &image->head;
266 	image->last_entry = &image->head;
267 	image->control_page = ~0; /* By default this does not apply */
268 	image->type = KEXEC_TYPE_DEFAULT;
269 
270 	/* Initialize the list of control pages */
271 	INIT_LIST_HEAD(&image->control_pages);
272 
273 	/* Initialize the list of destination pages */
274 	INIT_LIST_HEAD(&image->dest_pages);
275 
276 	/* Initialize the list of unusable pages */
277 	INIT_LIST_HEAD(&image->unusable_pages);
278 
279 	return image;
280 }
281 
282 int kimage_is_destination_range(struct kimage *image,
283 					unsigned long start,
284 					unsigned long end)
285 {
286 	unsigned long i;
287 
288 	for (i = 0; i < image->nr_segments; i++) {
289 		unsigned long mstart, mend;
290 
291 		mstart = image->segment[i].mem;
292 		mend = mstart + image->segment[i].memsz;
293 		if ((end > mstart) && (start < mend))
294 			return 1;
295 	}
296 
297 	return 0;
298 }
299 
300 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
301 {
302 	struct page *pages;
303 
304 	pages = alloc_pages(gfp_mask, order);
305 	if (pages) {
306 		unsigned int count, i;
307 
308 		pages->mapping = NULL;
309 		set_page_private(pages, order);
310 		count = 1 << order;
311 		for (i = 0; i < count; i++)
312 			SetPageReserved(pages + i);
313 	}
314 
315 	return pages;
316 }
317 
318 static void kimage_free_pages(struct page *page)
319 {
320 	unsigned int order, count, i;
321 
322 	order = page_private(page);
323 	count = 1 << order;
324 	for (i = 0; i < count; i++)
325 		ClearPageReserved(page + i);
326 	__free_pages(page, order);
327 }
328 
329 void kimage_free_page_list(struct list_head *list)
330 {
331 	struct page *page, *next;
332 
333 	list_for_each_entry_safe(page, next, list, lru) {
334 		list_del(&page->lru);
335 		kimage_free_pages(page);
336 	}
337 }
338 
339 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
340 							unsigned int order)
341 {
342 	/* Control pages are special, they are the intermediaries
343 	 * that are needed while we copy the rest of the pages
344 	 * to their final resting place.  As such they must
345 	 * not conflict with either the destination addresses
346 	 * or memory the kernel is already using.
347 	 *
348 	 * The only case where we really need more than one of
349 	 * these are for architectures where we cannot disable
350 	 * the MMU and must instead generate an identity mapped
351 	 * page table for all of the memory.
352 	 *
353 	 * At worst this runs in O(N) of the image size.
354 	 */
355 	struct list_head extra_pages;
356 	struct page *pages;
357 	unsigned int count;
358 
359 	count = 1 << order;
360 	INIT_LIST_HEAD(&extra_pages);
361 
362 	/* Loop while I can allocate a page and the page allocated
363 	 * is a destination page.
364 	 */
365 	do {
366 		unsigned long pfn, epfn, addr, eaddr;
367 
368 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
369 		if (!pages)
370 			break;
371 		pfn   = page_to_boot_pfn(pages);
372 		epfn  = pfn + count;
373 		addr  = pfn << PAGE_SHIFT;
374 		eaddr = epfn << PAGE_SHIFT;
375 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
376 			      kimage_is_destination_range(image, addr, eaddr)) {
377 			list_add(&pages->lru, &extra_pages);
378 			pages = NULL;
379 		}
380 	} while (!pages);
381 
382 	if (pages) {
383 		/* Remember the allocated page... */
384 		list_add(&pages->lru, &image->control_pages);
385 
386 		/* Because the page is already in it's destination
387 		 * location we will never allocate another page at
388 		 * that address.  Therefore kimage_alloc_pages
389 		 * will not return it (again) and we don't need
390 		 * to give it an entry in image->segment[].
391 		 */
392 	}
393 	/* Deal with the destination pages I have inadvertently allocated.
394 	 *
395 	 * Ideally I would convert multi-page allocations into single
396 	 * page allocations, and add everything to image->dest_pages.
397 	 *
398 	 * For now it is simpler to just free the pages.
399 	 */
400 	kimage_free_page_list(&extra_pages);
401 
402 	return pages;
403 }
404 
405 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
406 						      unsigned int order)
407 {
408 	/* Control pages are special, they are the intermediaries
409 	 * that are needed while we copy the rest of the pages
410 	 * to their final resting place.  As such they must
411 	 * not conflict with either the destination addresses
412 	 * or memory the kernel is already using.
413 	 *
414 	 * Control pages are also the only pags we must allocate
415 	 * when loading a crash kernel.  All of the other pages
416 	 * are specified by the segments and we just memcpy
417 	 * into them directly.
418 	 *
419 	 * The only case where we really need more than one of
420 	 * these are for architectures where we cannot disable
421 	 * the MMU and must instead generate an identity mapped
422 	 * page table for all of the memory.
423 	 *
424 	 * Given the low demand this implements a very simple
425 	 * allocator that finds the first hole of the appropriate
426 	 * size in the reserved memory region, and allocates all
427 	 * of the memory up to and including the hole.
428 	 */
429 	unsigned long hole_start, hole_end, size;
430 	struct page *pages;
431 
432 	pages = NULL;
433 	size = (1 << order) << PAGE_SHIFT;
434 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
435 	hole_end   = hole_start + size - 1;
436 	while (hole_end <= crashk_res.end) {
437 		unsigned long i;
438 
439 		cond_resched();
440 
441 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
442 			break;
443 		/* See if I overlap any of the segments */
444 		for (i = 0; i < image->nr_segments; i++) {
445 			unsigned long mstart, mend;
446 
447 			mstart = image->segment[i].mem;
448 			mend   = mstart + image->segment[i].memsz - 1;
449 			if ((hole_end >= mstart) && (hole_start <= mend)) {
450 				/* Advance the hole to the end of the segment */
451 				hole_start = (mend + (size - 1)) & ~(size - 1);
452 				hole_end   = hole_start + size - 1;
453 				break;
454 			}
455 		}
456 		/* If I don't overlap any segments I have found my hole! */
457 		if (i == image->nr_segments) {
458 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
459 			image->control_page = hole_end;
460 			break;
461 		}
462 	}
463 
464 	return pages;
465 }
466 
467 
468 struct page *kimage_alloc_control_pages(struct kimage *image,
469 					 unsigned int order)
470 {
471 	struct page *pages = NULL;
472 
473 	switch (image->type) {
474 	case KEXEC_TYPE_DEFAULT:
475 		pages = kimage_alloc_normal_control_pages(image, order);
476 		break;
477 	case KEXEC_TYPE_CRASH:
478 		pages = kimage_alloc_crash_control_pages(image, order);
479 		break;
480 	}
481 
482 	return pages;
483 }
484 
485 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
486 {
487 	struct page *vmcoreinfo_page;
488 	void *safecopy;
489 
490 	if (image->type != KEXEC_TYPE_CRASH)
491 		return 0;
492 
493 	/*
494 	 * For kdump, allocate one vmcoreinfo safe copy from the
495 	 * crash memory. as we have arch_kexec_protect_crashkres()
496 	 * after kexec syscall, we naturally protect it from write
497 	 * (even read) access under kernel direct mapping. But on
498 	 * the other hand, we still need to operate it when crash
499 	 * happens to generate vmcoreinfo note, hereby we rely on
500 	 * vmap for this purpose.
501 	 */
502 	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
503 	if (!vmcoreinfo_page) {
504 		pr_warn("Could not allocate vmcoreinfo buffer\n");
505 		return -ENOMEM;
506 	}
507 	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
508 	if (!safecopy) {
509 		pr_warn("Could not vmap vmcoreinfo buffer\n");
510 		return -ENOMEM;
511 	}
512 
513 	image->vmcoreinfo_data_copy = safecopy;
514 	crash_update_vmcoreinfo_safecopy(safecopy);
515 
516 	return 0;
517 }
518 
519 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
520 {
521 	if (*image->entry != 0)
522 		image->entry++;
523 
524 	if (image->entry == image->last_entry) {
525 		kimage_entry_t *ind_page;
526 		struct page *page;
527 
528 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
529 		if (!page)
530 			return -ENOMEM;
531 
532 		ind_page = page_address(page);
533 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
534 		image->entry = ind_page;
535 		image->last_entry = ind_page +
536 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
537 	}
538 	*image->entry = entry;
539 	image->entry++;
540 	*image->entry = 0;
541 
542 	return 0;
543 }
544 
545 static int kimage_set_destination(struct kimage *image,
546 				   unsigned long destination)
547 {
548 	int result;
549 
550 	destination &= PAGE_MASK;
551 	result = kimage_add_entry(image, destination | IND_DESTINATION);
552 
553 	return result;
554 }
555 
556 
557 static int kimage_add_page(struct kimage *image, unsigned long page)
558 {
559 	int result;
560 
561 	page &= PAGE_MASK;
562 	result = kimage_add_entry(image, page | IND_SOURCE);
563 
564 	return result;
565 }
566 
567 
568 static void kimage_free_extra_pages(struct kimage *image)
569 {
570 	/* Walk through and free any extra destination pages I may have */
571 	kimage_free_page_list(&image->dest_pages);
572 
573 	/* Walk through and free any unusable pages I have cached */
574 	kimage_free_page_list(&image->unusable_pages);
575 
576 }
577 void kimage_terminate(struct kimage *image)
578 {
579 	if (*image->entry != 0)
580 		image->entry++;
581 
582 	*image->entry = IND_DONE;
583 }
584 
585 #define for_each_kimage_entry(image, ptr, entry) \
586 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
587 		ptr = (entry & IND_INDIRECTION) ? \
588 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
589 
590 static void kimage_free_entry(kimage_entry_t entry)
591 {
592 	struct page *page;
593 
594 	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
595 	kimage_free_pages(page);
596 }
597 
598 void kimage_free(struct kimage *image)
599 {
600 	kimage_entry_t *ptr, entry;
601 	kimage_entry_t ind = 0;
602 
603 	if (!image)
604 		return;
605 
606 	if (image->vmcoreinfo_data_copy) {
607 		crash_update_vmcoreinfo_safecopy(NULL);
608 		vunmap(image->vmcoreinfo_data_copy);
609 	}
610 
611 	kimage_free_extra_pages(image);
612 	for_each_kimage_entry(image, ptr, entry) {
613 		if (entry & IND_INDIRECTION) {
614 			/* Free the previous indirection page */
615 			if (ind & IND_INDIRECTION)
616 				kimage_free_entry(ind);
617 			/* Save this indirection page until we are
618 			 * done with it.
619 			 */
620 			ind = entry;
621 		} else if (entry & IND_SOURCE)
622 			kimage_free_entry(entry);
623 	}
624 	/* Free the final indirection page */
625 	if (ind & IND_INDIRECTION)
626 		kimage_free_entry(ind);
627 
628 	/* Handle any machine specific cleanup */
629 	machine_kexec_cleanup(image);
630 
631 	/* Free the kexec control pages... */
632 	kimage_free_page_list(&image->control_pages);
633 
634 	/*
635 	 * Free up any temporary buffers allocated. This might hit if
636 	 * error occurred much later after buffer allocation.
637 	 */
638 	if (image->file_mode)
639 		kimage_file_post_load_cleanup(image);
640 
641 	kfree(image);
642 }
643 
644 static kimage_entry_t *kimage_dst_used(struct kimage *image,
645 					unsigned long page)
646 {
647 	kimage_entry_t *ptr, entry;
648 	unsigned long destination = 0;
649 
650 	for_each_kimage_entry(image, ptr, entry) {
651 		if (entry & IND_DESTINATION)
652 			destination = entry & PAGE_MASK;
653 		else if (entry & IND_SOURCE) {
654 			if (page == destination)
655 				return ptr;
656 			destination += PAGE_SIZE;
657 		}
658 	}
659 
660 	return NULL;
661 }
662 
663 static struct page *kimage_alloc_page(struct kimage *image,
664 					gfp_t gfp_mask,
665 					unsigned long destination)
666 {
667 	/*
668 	 * Here we implement safeguards to ensure that a source page
669 	 * is not copied to its destination page before the data on
670 	 * the destination page is no longer useful.
671 	 *
672 	 * To do this we maintain the invariant that a source page is
673 	 * either its own destination page, or it is not a
674 	 * destination page at all.
675 	 *
676 	 * That is slightly stronger than required, but the proof
677 	 * that no problems will not occur is trivial, and the
678 	 * implementation is simply to verify.
679 	 *
680 	 * When allocating all pages normally this algorithm will run
681 	 * in O(N) time, but in the worst case it will run in O(N^2)
682 	 * time.   If the runtime is a problem the data structures can
683 	 * be fixed.
684 	 */
685 	struct page *page;
686 	unsigned long addr;
687 
688 	/*
689 	 * Walk through the list of destination pages, and see if I
690 	 * have a match.
691 	 */
692 	list_for_each_entry(page, &image->dest_pages, lru) {
693 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
694 		if (addr == destination) {
695 			list_del(&page->lru);
696 			return page;
697 		}
698 	}
699 	page = NULL;
700 	while (1) {
701 		kimage_entry_t *old;
702 
703 		/* Allocate a page, if we run out of memory give up */
704 		page = kimage_alloc_pages(gfp_mask, 0);
705 		if (!page)
706 			return NULL;
707 		/* If the page cannot be used file it away */
708 		if (page_to_boot_pfn(page) >
709 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
710 			list_add(&page->lru, &image->unusable_pages);
711 			continue;
712 		}
713 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
714 
715 		/* If it is the destination page we want use it */
716 		if (addr == destination)
717 			break;
718 
719 		/* If the page is not a destination page use it */
720 		if (!kimage_is_destination_range(image, addr,
721 						  addr + PAGE_SIZE))
722 			break;
723 
724 		/*
725 		 * I know that the page is someones destination page.
726 		 * See if there is already a source page for this
727 		 * destination page.  And if so swap the source pages.
728 		 */
729 		old = kimage_dst_used(image, addr);
730 		if (old) {
731 			/* If so move it */
732 			unsigned long old_addr;
733 			struct page *old_page;
734 
735 			old_addr = *old & PAGE_MASK;
736 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
737 			copy_highpage(page, old_page);
738 			*old = addr | (*old & ~PAGE_MASK);
739 
740 			/* The old page I have found cannot be a
741 			 * destination page, so return it if it's
742 			 * gfp_flags honor the ones passed in.
743 			 */
744 			if (!(gfp_mask & __GFP_HIGHMEM) &&
745 			    PageHighMem(old_page)) {
746 				kimage_free_pages(old_page);
747 				continue;
748 			}
749 			addr = old_addr;
750 			page = old_page;
751 			break;
752 		}
753 		/* Place the page on the destination list, to be used later */
754 		list_add(&page->lru, &image->dest_pages);
755 	}
756 
757 	return page;
758 }
759 
760 static int kimage_load_normal_segment(struct kimage *image,
761 					 struct kexec_segment *segment)
762 {
763 	unsigned long maddr;
764 	size_t ubytes, mbytes;
765 	int result;
766 	unsigned char __user *buf = NULL;
767 	unsigned char *kbuf = NULL;
768 
769 	result = 0;
770 	if (image->file_mode)
771 		kbuf = segment->kbuf;
772 	else
773 		buf = segment->buf;
774 	ubytes = segment->bufsz;
775 	mbytes = segment->memsz;
776 	maddr = segment->mem;
777 
778 	result = kimage_set_destination(image, maddr);
779 	if (result < 0)
780 		goto out;
781 
782 	while (mbytes) {
783 		struct page *page;
784 		char *ptr;
785 		size_t uchunk, mchunk;
786 
787 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
788 		if (!page) {
789 			result  = -ENOMEM;
790 			goto out;
791 		}
792 		result = kimage_add_page(image, page_to_boot_pfn(page)
793 								<< PAGE_SHIFT);
794 		if (result < 0)
795 			goto out;
796 
797 		ptr = kmap(page);
798 		/* Start with a clear page */
799 		clear_page(ptr);
800 		ptr += maddr & ~PAGE_MASK;
801 		mchunk = min_t(size_t, mbytes,
802 				PAGE_SIZE - (maddr & ~PAGE_MASK));
803 		uchunk = min(ubytes, mchunk);
804 
805 		/* For file based kexec, source pages are in kernel memory */
806 		if (image->file_mode)
807 			memcpy(ptr, kbuf, uchunk);
808 		else
809 			result = copy_from_user(ptr, buf, uchunk);
810 		kunmap(page);
811 		if (result) {
812 			result = -EFAULT;
813 			goto out;
814 		}
815 		ubytes -= uchunk;
816 		maddr  += mchunk;
817 		if (image->file_mode)
818 			kbuf += mchunk;
819 		else
820 			buf += mchunk;
821 		mbytes -= mchunk;
822 	}
823 out:
824 	return result;
825 }
826 
827 static int kimage_load_crash_segment(struct kimage *image,
828 					struct kexec_segment *segment)
829 {
830 	/* For crash dumps kernels we simply copy the data from
831 	 * user space to it's destination.
832 	 * We do things a page at a time for the sake of kmap.
833 	 */
834 	unsigned long maddr;
835 	size_t ubytes, mbytes;
836 	int result;
837 	unsigned char __user *buf = NULL;
838 	unsigned char *kbuf = NULL;
839 
840 	result = 0;
841 	if (image->file_mode)
842 		kbuf = segment->kbuf;
843 	else
844 		buf = segment->buf;
845 	ubytes = segment->bufsz;
846 	mbytes = segment->memsz;
847 	maddr = segment->mem;
848 	while (mbytes) {
849 		struct page *page;
850 		char *ptr;
851 		size_t uchunk, mchunk;
852 
853 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
854 		if (!page) {
855 			result  = -ENOMEM;
856 			goto out;
857 		}
858 		ptr = kmap(page);
859 		ptr += maddr & ~PAGE_MASK;
860 		mchunk = min_t(size_t, mbytes,
861 				PAGE_SIZE - (maddr & ~PAGE_MASK));
862 		uchunk = min(ubytes, mchunk);
863 		if (mchunk > uchunk) {
864 			/* Zero the trailing part of the page */
865 			memset(ptr + uchunk, 0, mchunk - uchunk);
866 		}
867 
868 		/* For file based kexec, source pages are in kernel memory */
869 		if (image->file_mode)
870 			memcpy(ptr, kbuf, uchunk);
871 		else
872 			result = copy_from_user(ptr, buf, uchunk);
873 		kexec_flush_icache_page(page);
874 		kunmap(page);
875 		if (result) {
876 			result = -EFAULT;
877 			goto out;
878 		}
879 		ubytes -= uchunk;
880 		maddr  += mchunk;
881 		if (image->file_mode)
882 			kbuf += mchunk;
883 		else
884 			buf += mchunk;
885 		mbytes -= mchunk;
886 	}
887 out:
888 	return result;
889 }
890 
891 int kimage_load_segment(struct kimage *image,
892 				struct kexec_segment *segment)
893 {
894 	int result = -ENOMEM;
895 
896 	switch (image->type) {
897 	case KEXEC_TYPE_DEFAULT:
898 		result = kimage_load_normal_segment(image, segment);
899 		break;
900 	case KEXEC_TYPE_CRASH:
901 		result = kimage_load_crash_segment(image, segment);
902 		break;
903 	}
904 
905 	return result;
906 }
907 
908 struct kimage *kexec_image;
909 struct kimage *kexec_crash_image;
910 int kexec_load_disabled;
911 
912 /*
913  * No panic_cpu check version of crash_kexec().  This function is called
914  * only when panic_cpu holds the current CPU number; this is the only CPU
915  * which processes crash_kexec routines.
916  */
917 void __noclone __crash_kexec(struct pt_regs *regs)
918 {
919 	/* Take the kexec_mutex here to prevent sys_kexec_load
920 	 * running on one cpu from replacing the crash kernel
921 	 * we are using after a panic on a different cpu.
922 	 *
923 	 * If the crash kernel was not located in a fixed area
924 	 * of memory the xchg(&kexec_crash_image) would be
925 	 * sufficient.  But since I reuse the memory...
926 	 */
927 	if (mutex_trylock(&kexec_mutex)) {
928 		if (kexec_crash_image) {
929 			struct pt_regs fixed_regs;
930 
931 			crash_setup_regs(&fixed_regs, regs);
932 			crash_save_vmcoreinfo();
933 			machine_crash_shutdown(&fixed_regs);
934 			machine_kexec(kexec_crash_image);
935 		}
936 		mutex_unlock(&kexec_mutex);
937 	}
938 }
939 STACK_FRAME_NON_STANDARD(__crash_kexec);
940 
941 void crash_kexec(struct pt_regs *regs)
942 {
943 	int old_cpu, this_cpu;
944 
945 	/*
946 	 * Only one CPU is allowed to execute the crash_kexec() code as with
947 	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
948 	 * may stop each other.  To exclude them, we use panic_cpu here too.
949 	 */
950 	this_cpu = raw_smp_processor_id();
951 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
952 	if (old_cpu == PANIC_CPU_INVALID) {
953 		/* This is the 1st CPU which comes here, so go ahead. */
954 		printk_safe_flush_on_panic();
955 		__crash_kexec(regs);
956 
957 		/*
958 		 * Reset panic_cpu to allow another panic()/crash_kexec()
959 		 * call.
960 		 */
961 		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
962 	}
963 }
964 
965 size_t crash_get_memory_size(void)
966 {
967 	size_t size = 0;
968 
969 	mutex_lock(&kexec_mutex);
970 	if (crashk_res.end != crashk_res.start)
971 		size = resource_size(&crashk_res);
972 	mutex_unlock(&kexec_mutex);
973 	return size;
974 }
975 
976 void __weak crash_free_reserved_phys_range(unsigned long begin,
977 					   unsigned long end)
978 {
979 	unsigned long addr;
980 
981 	for (addr = begin; addr < end; addr += PAGE_SIZE)
982 		free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
983 }
984 
985 int crash_shrink_memory(unsigned long new_size)
986 {
987 	int ret = 0;
988 	unsigned long start, end;
989 	unsigned long old_size;
990 	struct resource *ram_res;
991 
992 	mutex_lock(&kexec_mutex);
993 
994 	if (kexec_crash_image) {
995 		ret = -ENOENT;
996 		goto unlock;
997 	}
998 	start = crashk_res.start;
999 	end = crashk_res.end;
1000 	old_size = (end == 0) ? 0 : end - start + 1;
1001 	if (new_size >= old_size) {
1002 		ret = (new_size == old_size) ? 0 : -EINVAL;
1003 		goto unlock;
1004 	}
1005 
1006 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1007 	if (!ram_res) {
1008 		ret = -ENOMEM;
1009 		goto unlock;
1010 	}
1011 
1012 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1013 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1014 
1015 	crash_free_reserved_phys_range(end, crashk_res.end);
1016 
1017 	if ((start == end) && (crashk_res.parent != NULL))
1018 		release_resource(&crashk_res);
1019 
1020 	ram_res->start = end;
1021 	ram_res->end = crashk_res.end;
1022 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1023 	ram_res->name = "System RAM";
1024 
1025 	crashk_res.end = end - 1;
1026 
1027 	insert_resource(&iomem_resource, ram_res);
1028 
1029 unlock:
1030 	mutex_unlock(&kexec_mutex);
1031 	return ret;
1032 }
1033 
1034 void crash_save_cpu(struct pt_regs *regs, int cpu)
1035 {
1036 	struct elf_prstatus prstatus;
1037 	u32 *buf;
1038 
1039 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1040 		return;
1041 
1042 	/* Using ELF notes here is opportunistic.
1043 	 * I need a well defined structure format
1044 	 * for the data I pass, and I need tags
1045 	 * on the data to indicate what information I have
1046 	 * squirrelled away.  ELF notes happen to provide
1047 	 * all of that, so there is no need to invent something new.
1048 	 */
1049 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1050 	if (!buf)
1051 		return;
1052 	memset(&prstatus, 0, sizeof(prstatus));
1053 	prstatus.pr_pid = current->pid;
1054 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1055 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1056 			      &prstatus, sizeof(prstatus));
1057 	final_note(buf);
1058 }
1059 
1060 static int __init crash_notes_memory_init(void)
1061 {
1062 	/* Allocate memory for saving cpu registers. */
1063 	size_t size, align;
1064 
1065 	/*
1066 	 * crash_notes could be allocated across 2 vmalloc pages when percpu
1067 	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1068 	 * pages are also on 2 continuous physical pages. In this case the
1069 	 * 2nd part of crash_notes in 2nd page could be lost since only the
1070 	 * starting address and size of crash_notes are exported through sysfs.
1071 	 * Here round up the size of crash_notes to the nearest power of two
1072 	 * and pass it to __alloc_percpu as align value. This can make sure
1073 	 * crash_notes is allocated inside one physical page.
1074 	 */
1075 	size = sizeof(note_buf_t);
1076 	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1077 
1078 	/*
1079 	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1080 	 * definitely will be in 2 pages with that.
1081 	 */
1082 	BUILD_BUG_ON(size > PAGE_SIZE);
1083 
1084 	crash_notes = __alloc_percpu(size, align);
1085 	if (!crash_notes) {
1086 		pr_warn("Memory allocation for saving cpu register states failed\n");
1087 		return -ENOMEM;
1088 	}
1089 	return 0;
1090 }
1091 subsys_initcall(crash_notes_memory_init);
1092 
1093 
1094 /*
1095  * Move into place and start executing a preloaded standalone
1096  * executable.  If nothing was preloaded return an error.
1097  */
1098 int kernel_kexec(void)
1099 {
1100 	int error = 0;
1101 
1102 	if (!mutex_trylock(&kexec_mutex))
1103 		return -EBUSY;
1104 	if (!kexec_image) {
1105 		error = -EINVAL;
1106 		goto Unlock;
1107 	}
1108 
1109 #ifdef CONFIG_KEXEC_JUMP
1110 	if (kexec_image->preserve_context) {
1111 		lock_system_sleep();
1112 		pm_prepare_console();
1113 		error = freeze_processes();
1114 		if (error) {
1115 			error = -EBUSY;
1116 			goto Restore_console;
1117 		}
1118 		suspend_console();
1119 		error = dpm_suspend_start(PMSG_FREEZE);
1120 		if (error)
1121 			goto Resume_console;
1122 		/* At this point, dpm_suspend_start() has been called,
1123 		 * but *not* dpm_suspend_end(). We *must* call
1124 		 * dpm_suspend_end() now.  Otherwise, drivers for
1125 		 * some devices (e.g. interrupt controllers) become
1126 		 * desynchronized with the actual state of the
1127 		 * hardware at resume time, and evil weirdness ensues.
1128 		 */
1129 		error = dpm_suspend_end(PMSG_FREEZE);
1130 		if (error)
1131 			goto Resume_devices;
1132 		error = disable_nonboot_cpus();
1133 		if (error)
1134 			goto Enable_cpus;
1135 		local_irq_disable();
1136 		error = syscore_suspend();
1137 		if (error)
1138 			goto Enable_irqs;
1139 	} else
1140 #endif
1141 	{
1142 		kexec_in_progress = true;
1143 		kernel_restart_prepare(NULL);
1144 		migrate_to_reboot_cpu();
1145 
1146 		/*
1147 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1148 		 * no further code needs to use CPU hotplug (which is true in
1149 		 * the reboot case). However, the kexec path depends on using
1150 		 * CPU hotplug again; so re-enable it here.
1151 		 */
1152 		cpu_hotplug_enable();
1153 		pr_emerg("Starting new kernel\n");
1154 		machine_shutdown();
1155 	}
1156 
1157 	machine_kexec(kexec_image);
1158 
1159 #ifdef CONFIG_KEXEC_JUMP
1160 	if (kexec_image->preserve_context) {
1161 		syscore_resume();
1162  Enable_irqs:
1163 		local_irq_enable();
1164  Enable_cpus:
1165 		enable_nonboot_cpus();
1166 		dpm_resume_start(PMSG_RESTORE);
1167  Resume_devices:
1168 		dpm_resume_end(PMSG_RESTORE);
1169  Resume_console:
1170 		resume_console();
1171 		thaw_processes();
1172  Restore_console:
1173 		pm_restore_console();
1174 		unlock_system_sleep();
1175 	}
1176 #endif
1177 
1178  Unlock:
1179 	mutex_unlock(&kexec_mutex);
1180 	return error;
1181 }
1182 
1183 /*
1184  * Protection mechanism for crashkernel reserved memory after
1185  * the kdump kernel is loaded.
1186  *
1187  * Provide an empty default implementation here -- architecture
1188  * code may override this
1189  */
1190 void __weak arch_kexec_protect_crashkres(void)
1191 {}
1192 
1193 void __weak arch_kexec_unprotect_crashkres(void)
1194 {}
1195