1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec.c - kexec system call core code. 4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/btf.h> 10 #include <linux/capability.h> 11 #include <linux/mm.h> 12 #include <linux/file.h> 13 #include <linux/slab.h> 14 #include <linux/fs.h> 15 #include <linux/kexec.h> 16 #include <linux/mutex.h> 17 #include <linux/list.h> 18 #include <linux/highmem.h> 19 #include <linux/syscalls.h> 20 #include <linux/reboot.h> 21 #include <linux/ioport.h> 22 #include <linux/hardirq.h> 23 #include <linux/elf.h> 24 #include <linux/elfcore.h> 25 #include <linux/utsname.h> 26 #include <linux/numa.h> 27 #include <linux/suspend.h> 28 #include <linux/device.h> 29 #include <linux/freezer.h> 30 #include <linux/panic_notifier.h> 31 #include <linux/pm.h> 32 #include <linux/cpu.h> 33 #include <linux/uaccess.h> 34 #include <linux/io.h> 35 #include <linux/console.h> 36 #include <linux/vmalloc.h> 37 #include <linux/swap.h> 38 #include <linux/syscore_ops.h> 39 #include <linux/compiler.h> 40 #include <linux/hugetlb.h> 41 #include <linux/objtool.h> 42 #include <linux/kmsg_dump.h> 43 44 #include <asm/page.h> 45 #include <asm/sections.h> 46 47 #include <crypto/hash.h> 48 #include "kexec_internal.h" 49 50 atomic_t __kexec_lock = ATOMIC_INIT(0); 51 52 /* Flag to indicate we are going to kexec a new kernel */ 53 bool kexec_in_progress = false; 54 55 56 /* Location of the reserved area for the crash kernel */ 57 struct resource crashk_res = { 58 .name = "Crash kernel", 59 .start = 0, 60 .end = 0, 61 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 62 .desc = IORES_DESC_CRASH_KERNEL 63 }; 64 struct resource crashk_low_res = { 65 .name = "Crash kernel", 66 .start = 0, 67 .end = 0, 68 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 69 .desc = IORES_DESC_CRASH_KERNEL 70 }; 71 72 int kexec_should_crash(struct task_struct *p) 73 { 74 /* 75 * If crash_kexec_post_notifiers is enabled, don't run 76 * crash_kexec() here yet, which must be run after panic 77 * notifiers in panic(). 78 */ 79 if (crash_kexec_post_notifiers) 80 return 0; 81 /* 82 * There are 4 panic() calls in make_task_dead() path, each of which 83 * corresponds to each of these 4 conditions. 84 */ 85 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 86 return 1; 87 return 0; 88 } 89 90 int kexec_crash_loaded(void) 91 { 92 return !!kexec_crash_image; 93 } 94 EXPORT_SYMBOL_GPL(kexec_crash_loaded); 95 96 /* 97 * When kexec transitions to the new kernel there is a one-to-one 98 * mapping between physical and virtual addresses. On processors 99 * where you can disable the MMU this is trivial, and easy. For 100 * others it is still a simple predictable page table to setup. 101 * 102 * In that environment kexec copies the new kernel to its final 103 * resting place. This means I can only support memory whose 104 * physical address can fit in an unsigned long. In particular 105 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 106 * If the assembly stub has more restrictive requirements 107 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 108 * defined more restrictively in <asm/kexec.h>. 109 * 110 * The code for the transition from the current kernel to the 111 * new kernel is placed in the control_code_buffer, whose size 112 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 113 * page of memory is necessary, but some architectures require more. 114 * Because this memory must be identity mapped in the transition from 115 * virtual to physical addresses it must live in the range 116 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 117 * modifiable. 118 * 119 * The assembly stub in the control code buffer is passed a linked list 120 * of descriptor pages detailing the source pages of the new kernel, 121 * and the destination addresses of those source pages. As this data 122 * structure is not used in the context of the current OS, it must 123 * be self-contained. 124 * 125 * The code has been made to work with highmem pages and will use a 126 * destination page in its final resting place (if it happens 127 * to allocate it). The end product of this is that most of the 128 * physical address space, and most of RAM can be used. 129 * 130 * Future directions include: 131 * - allocating a page table with the control code buffer identity 132 * mapped, to simplify machine_kexec and make kexec_on_panic more 133 * reliable. 134 */ 135 136 /* 137 * KIMAGE_NO_DEST is an impossible destination address..., for 138 * allocating pages whose destination address we do not care about. 139 */ 140 #define KIMAGE_NO_DEST (-1UL) 141 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) 142 143 static struct page *kimage_alloc_page(struct kimage *image, 144 gfp_t gfp_mask, 145 unsigned long dest); 146 147 int sanity_check_segment_list(struct kimage *image) 148 { 149 int i; 150 unsigned long nr_segments = image->nr_segments; 151 unsigned long total_pages = 0; 152 unsigned long nr_pages = totalram_pages(); 153 154 /* 155 * Verify we have good destination addresses. The caller is 156 * responsible for making certain we don't attempt to load 157 * the new image into invalid or reserved areas of RAM. This 158 * just verifies it is an address we can use. 159 * 160 * Since the kernel does everything in page size chunks ensure 161 * the destination addresses are page aligned. Too many 162 * special cases crop of when we don't do this. The most 163 * insidious is getting overlapping destination addresses 164 * simply because addresses are changed to page size 165 * granularity. 166 */ 167 for (i = 0; i < nr_segments; i++) { 168 unsigned long mstart, mend; 169 170 mstart = image->segment[i].mem; 171 mend = mstart + image->segment[i].memsz; 172 if (mstart > mend) 173 return -EADDRNOTAVAIL; 174 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 175 return -EADDRNOTAVAIL; 176 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 177 return -EADDRNOTAVAIL; 178 } 179 180 /* Verify our destination addresses do not overlap. 181 * If we alloed overlapping destination addresses 182 * through very weird things can happen with no 183 * easy explanation as one segment stops on another. 184 */ 185 for (i = 0; i < nr_segments; i++) { 186 unsigned long mstart, mend; 187 unsigned long j; 188 189 mstart = image->segment[i].mem; 190 mend = mstart + image->segment[i].memsz; 191 for (j = 0; j < i; j++) { 192 unsigned long pstart, pend; 193 194 pstart = image->segment[j].mem; 195 pend = pstart + image->segment[j].memsz; 196 /* Do the segments overlap ? */ 197 if ((mend > pstart) && (mstart < pend)) 198 return -EINVAL; 199 } 200 } 201 202 /* Ensure our buffer sizes are strictly less than 203 * our memory sizes. This should always be the case, 204 * and it is easier to check up front than to be surprised 205 * later on. 206 */ 207 for (i = 0; i < nr_segments; i++) { 208 if (image->segment[i].bufsz > image->segment[i].memsz) 209 return -EINVAL; 210 } 211 212 /* 213 * Verify that no more than half of memory will be consumed. If the 214 * request from userspace is too large, a large amount of time will be 215 * wasted allocating pages, which can cause a soft lockup. 216 */ 217 for (i = 0; i < nr_segments; i++) { 218 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2) 219 return -EINVAL; 220 221 total_pages += PAGE_COUNT(image->segment[i].memsz); 222 } 223 224 if (total_pages > nr_pages / 2) 225 return -EINVAL; 226 227 /* 228 * Verify we have good destination addresses. Normally 229 * the caller is responsible for making certain we don't 230 * attempt to load the new image into invalid or reserved 231 * areas of RAM. But crash kernels are preloaded into a 232 * reserved area of ram. We must ensure the addresses 233 * are in the reserved area otherwise preloading the 234 * kernel could corrupt things. 235 */ 236 237 if (image->type == KEXEC_TYPE_CRASH) { 238 for (i = 0; i < nr_segments; i++) { 239 unsigned long mstart, mend; 240 241 mstart = image->segment[i].mem; 242 mend = mstart + image->segment[i].memsz - 1; 243 /* Ensure we are within the crash kernel limits */ 244 if ((mstart < phys_to_boot_phys(crashk_res.start)) || 245 (mend > phys_to_boot_phys(crashk_res.end))) 246 return -EADDRNOTAVAIL; 247 } 248 } 249 250 return 0; 251 } 252 253 struct kimage *do_kimage_alloc_init(void) 254 { 255 struct kimage *image; 256 257 /* Allocate a controlling structure */ 258 image = kzalloc(sizeof(*image), GFP_KERNEL); 259 if (!image) 260 return NULL; 261 262 image->head = 0; 263 image->entry = &image->head; 264 image->last_entry = &image->head; 265 image->control_page = ~0; /* By default this does not apply */ 266 image->type = KEXEC_TYPE_DEFAULT; 267 268 /* Initialize the list of control pages */ 269 INIT_LIST_HEAD(&image->control_pages); 270 271 /* Initialize the list of destination pages */ 272 INIT_LIST_HEAD(&image->dest_pages); 273 274 /* Initialize the list of unusable pages */ 275 INIT_LIST_HEAD(&image->unusable_pages); 276 277 #ifdef CONFIG_CRASH_HOTPLUG 278 image->hp_action = KEXEC_CRASH_HP_NONE; 279 image->elfcorehdr_index = -1; 280 image->elfcorehdr_updated = false; 281 #endif 282 283 return image; 284 } 285 286 int kimage_is_destination_range(struct kimage *image, 287 unsigned long start, 288 unsigned long end) 289 { 290 unsigned long i; 291 292 for (i = 0; i < image->nr_segments; i++) { 293 unsigned long mstart, mend; 294 295 mstart = image->segment[i].mem; 296 mend = mstart + image->segment[i].memsz; 297 if ((end > mstart) && (start < mend)) 298 return 1; 299 } 300 301 return 0; 302 } 303 304 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 305 { 306 struct page *pages; 307 308 if (fatal_signal_pending(current)) 309 return NULL; 310 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order); 311 if (pages) { 312 unsigned int count, i; 313 314 pages->mapping = NULL; 315 set_page_private(pages, order); 316 count = 1 << order; 317 for (i = 0; i < count; i++) 318 SetPageReserved(pages + i); 319 320 arch_kexec_post_alloc_pages(page_address(pages), count, 321 gfp_mask); 322 323 if (gfp_mask & __GFP_ZERO) 324 for (i = 0; i < count; i++) 325 clear_highpage(pages + i); 326 } 327 328 return pages; 329 } 330 331 static void kimage_free_pages(struct page *page) 332 { 333 unsigned int order, count, i; 334 335 order = page_private(page); 336 count = 1 << order; 337 338 arch_kexec_pre_free_pages(page_address(page), count); 339 340 for (i = 0; i < count; i++) 341 ClearPageReserved(page + i); 342 __free_pages(page, order); 343 } 344 345 void kimage_free_page_list(struct list_head *list) 346 { 347 struct page *page, *next; 348 349 list_for_each_entry_safe(page, next, list, lru) { 350 list_del(&page->lru); 351 kimage_free_pages(page); 352 } 353 } 354 355 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 356 unsigned int order) 357 { 358 /* Control pages are special, they are the intermediaries 359 * that are needed while we copy the rest of the pages 360 * to their final resting place. As such they must 361 * not conflict with either the destination addresses 362 * or memory the kernel is already using. 363 * 364 * The only case where we really need more than one of 365 * these are for architectures where we cannot disable 366 * the MMU and must instead generate an identity mapped 367 * page table for all of the memory. 368 * 369 * At worst this runs in O(N) of the image size. 370 */ 371 struct list_head extra_pages; 372 struct page *pages; 373 unsigned int count; 374 375 count = 1 << order; 376 INIT_LIST_HEAD(&extra_pages); 377 378 /* Loop while I can allocate a page and the page allocated 379 * is a destination page. 380 */ 381 do { 382 unsigned long pfn, epfn, addr, eaddr; 383 384 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); 385 if (!pages) 386 break; 387 pfn = page_to_boot_pfn(pages); 388 epfn = pfn + count; 389 addr = pfn << PAGE_SHIFT; 390 eaddr = epfn << PAGE_SHIFT; 391 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 392 kimage_is_destination_range(image, addr, eaddr)) { 393 list_add(&pages->lru, &extra_pages); 394 pages = NULL; 395 } 396 } while (!pages); 397 398 if (pages) { 399 /* Remember the allocated page... */ 400 list_add(&pages->lru, &image->control_pages); 401 402 /* Because the page is already in it's destination 403 * location we will never allocate another page at 404 * that address. Therefore kimage_alloc_pages 405 * will not return it (again) and we don't need 406 * to give it an entry in image->segment[]. 407 */ 408 } 409 /* Deal with the destination pages I have inadvertently allocated. 410 * 411 * Ideally I would convert multi-page allocations into single 412 * page allocations, and add everything to image->dest_pages. 413 * 414 * For now it is simpler to just free the pages. 415 */ 416 kimage_free_page_list(&extra_pages); 417 418 return pages; 419 } 420 421 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 422 unsigned int order) 423 { 424 /* Control pages are special, they are the intermediaries 425 * that are needed while we copy the rest of the pages 426 * to their final resting place. As such they must 427 * not conflict with either the destination addresses 428 * or memory the kernel is already using. 429 * 430 * Control pages are also the only pags we must allocate 431 * when loading a crash kernel. All of the other pages 432 * are specified by the segments and we just memcpy 433 * into them directly. 434 * 435 * The only case where we really need more than one of 436 * these are for architectures where we cannot disable 437 * the MMU and must instead generate an identity mapped 438 * page table for all of the memory. 439 * 440 * Given the low demand this implements a very simple 441 * allocator that finds the first hole of the appropriate 442 * size in the reserved memory region, and allocates all 443 * of the memory up to and including the hole. 444 */ 445 unsigned long hole_start, hole_end, size; 446 struct page *pages; 447 448 pages = NULL; 449 size = (1 << order) << PAGE_SHIFT; 450 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 451 hole_end = hole_start + size - 1; 452 while (hole_end <= crashk_res.end) { 453 unsigned long i; 454 455 cond_resched(); 456 457 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 458 break; 459 /* See if I overlap any of the segments */ 460 for (i = 0; i < image->nr_segments; i++) { 461 unsigned long mstart, mend; 462 463 mstart = image->segment[i].mem; 464 mend = mstart + image->segment[i].memsz - 1; 465 if ((hole_end >= mstart) && (hole_start <= mend)) { 466 /* Advance the hole to the end of the segment */ 467 hole_start = (mend + (size - 1)) & ~(size - 1); 468 hole_end = hole_start + size - 1; 469 break; 470 } 471 } 472 /* If I don't overlap any segments I have found my hole! */ 473 if (i == image->nr_segments) { 474 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 475 image->control_page = hole_end; 476 break; 477 } 478 } 479 480 /* Ensure that these pages are decrypted if SME is enabled. */ 481 if (pages) 482 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0); 483 484 return pages; 485 } 486 487 488 struct page *kimage_alloc_control_pages(struct kimage *image, 489 unsigned int order) 490 { 491 struct page *pages = NULL; 492 493 switch (image->type) { 494 case KEXEC_TYPE_DEFAULT: 495 pages = kimage_alloc_normal_control_pages(image, order); 496 break; 497 case KEXEC_TYPE_CRASH: 498 pages = kimage_alloc_crash_control_pages(image, order); 499 break; 500 } 501 502 return pages; 503 } 504 505 int kimage_crash_copy_vmcoreinfo(struct kimage *image) 506 { 507 struct page *vmcoreinfo_page; 508 void *safecopy; 509 510 if (image->type != KEXEC_TYPE_CRASH) 511 return 0; 512 513 /* 514 * For kdump, allocate one vmcoreinfo safe copy from the 515 * crash memory. as we have arch_kexec_protect_crashkres() 516 * after kexec syscall, we naturally protect it from write 517 * (even read) access under kernel direct mapping. But on 518 * the other hand, we still need to operate it when crash 519 * happens to generate vmcoreinfo note, hereby we rely on 520 * vmap for this purpose. 521 */ 522 vmcoreinfo_page = kimage_alloc_control_pages(image, 0); 523 if (!vmcoreinfo_page) { 524 pr_warn("Could not allocate vmcoreinfo buffer\n"); 525 return -ENOMEM; 526 } 527 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); 528 if (!safecopy) { 529 pr_warn("Could not vmap vmcoreinfo buffer\n"); 530 return -ENOMEM; 531 } 532 533 image->vmcoreinfo_data_copy = safecopy; 534 crash_update_vmcoreinfo_safecopy(safecopy); 535 536 return 0; 537 } 538 539 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 540 { 541 if (*image->entry != 0) 542 image->entry++; 543 544 if (image->entry == image->last_entry) { 545 kimage_entry_t *ind_page; 546 struct page *page; 547 548 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 549 if (!page) 550 return -ENOMEM; 551 552 ind_page = page_address(page); 553 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; 554 image->entry = ind_page; 555 image->last_entry = ind_page + 556 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 557 } 558 *image->entry = entry; 559 image->entry++; 560 *image->entry = 0; 561 562 return 0; 563 } 564 565 static int kimage_set_destination(struct kimage *image, 566 unsigned long destination) 567 { 568 destination &= PAGE_MASK; 569 570 return kimage_add_entry(image, destination | IND_DESTINATION); 571 } 572 573 574 static int kimage_add_page(struct kimage *image, unsigned long page) 575 { 576 page &= PAGE_MASK; 577 578 return kimage_add_entry(image, page | IND_SOURCE); 579 } 580 581 582 static void kimage_free_extra_pages(struct kimage *image) 583 { 584 /* Walk through and free any extra destination pages I may have */ 585 kimage_free_page_list(&image->dest_pages); 586 587 /* Walk through and free any unusable pages I have cached */ 588 kimage_free_page_list(&image->unusable_pages); 589 590 } 591 592 void kimage_terminate(struct kimage *image) 593 { 594 if (*image->entry != 0) 595 image->entry++; 596 597 *image->entry = IND_DONE; 598 } 599 600 #define for_each_kimage_entry(image, ptr, entry) \ 601 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 602 ptr = (entry & IND_INDIRECTION) ? \ 603 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 604 605 static void kimage_free_entry(kimage_entry_t entry) 606 { 607 struct page *page; 608 609 page = boot_pfn_to_page(entry >> PAGE_SHIFT); 610 kimage_free_pages(page); 611 } 612 613 void kimage_free(struct kimage *image) 614 { 615 kimage_entry_t *ptr, entry; 616 kimage_entry_t ind = 0; 617 618 if (!image) 619 return; 620 621 if (image->vmcoreinfo_data_copy) { 622 crash_update_vmcoreinfo_safecopy(NULL); 623 vunmap(image->vmcoreinfo_data_copy); 624 } 625 626 kimage_free_extra_pages(image); 627 for_each_kimage_entry(image, ptr, entry) { 628 if (entry & IND_INDIRECTION) { 629 /* Free the previous indirection page */ 630 if (ind & IND_INDIRECTION) 631 kimage_free_entry(ind); 632 /* Save this indirection page until we are 633 * done with it. 634 */ 635 ind = entry; 636 } else if (entry & IND_SOURCE) 637 kimage_free_entry(entry); 638 } 639 /* Free the final indirection page */ 640 if (ind & IND_INDIRECTION) 641 kimage_free_entry(ind); 642 643 /* Handle any machine specific cleanup */ 644 machine_kexec_cleanup(image); 645 646 /* Free the kexec control pages... */ 647 kimage_free_page_list(&image->control_pages); 648 649 /* 650 * Free up any temporary buffers allocated. This might hit if 651 * error occurred much later after buffer allocation. 652 */ 653 if (image->file_mode) 654 kimage_file_post_load_cleanup(image); 655 656 kfree(image); 657 } 658 659 static kimage_entry_t *kimage_dst_used(struct kimage *image, 660 unsigned long page) 661 { 662 kimage_entry_t *ptr, entry; 663 unsigned long destination = 0; 664 665 for_each_kimage_entry(image, ptr, entry) { 666 if (entry & IND_DESTINATION) 667 destination = entry & PAGE_MASK; 668 else if (entry & IND_SOURCE) { 669 if (page == destination) 670 return ptr; 671 destination += PAGE_SIZE; 672 } 673 } 674 675 return NULL; 676 } 677 678 static struct page *kimage_alloc_page(struct kimage *image, 679 gfp_t gfp_mask, 680 unsigned long destination) 681 { 682 /* 683 * Here we implement safeguards to ensure that a source page 684 * is not copied to its destination page before the data on 685 * the destination page is no longer useful. 686 * 687 * To do this we maintain the invariant that a source page is 688 * either its own destination page, or it is not a 689 * destination page at all. 690 * 691 * That is slightly stronger than required, but the proof 692 * that no problems will not occur is trivial, and the 693 * implementation is simply to verify. 694 * 695 * When allocating all pages normally this algorithm will run 696 * in O(N) time, but in the worst case it will run in O(N^2) 697 * time. If the runtime is a problem the data structures can 698 * be fixed. 699 */ 700 struct page *page; 701 unsigned long addr; 702 703 /* 704 * Walk through the list of destination pages, and see if I 705 * have a match. 706 */ 707 list_for_each_entry(page, &image->dest_pages, lru) { 708 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 709 if (addr == destination) { 710 list_del(&page->lru); 711 return page; 712 } 713 } 714 page = NULL; 715 while (1) { 716 kimage_entry_t *old; 717 718 /* Allocate a page, if we run out of memory give up */ 719 page = kimage_alloc_pages(gfp_mask, 0); 720 if (!page) 721 return NULL; 722 /* If the page cannot be used file it away */ 723 if (page_to_boot_pfn(page) > 724 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 725 list_add(&page->lru, &image->unusable_pages); 726 continue; 727 } 728 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 729 730 /* If it is the destination page we want use it */ 731 if (addr == destination) 732 break; 733 734 /* If the page is not a destination page use it */ 735 if (!kimage_is_destination_range(image, addr, 736 addr + PAGE_SIZE)) 737 break; 738 739 /* 740 * I know that the page is someones destination page. 741 * See if there is already a source page for this 742 * destination page. And if so swap the source pages. 743 */ 744 old = kimage_dst_used(image, addr); 745 if (old) { 746 /* If so move it */ 747 unsigned long old_addr; 748 struct page *old_page; 749 750 old_addr = *old & PAGE_MASK; 751 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); 752 copy_highpage(page, old_page); 753 *old = addr | (*old & ~PAGE_MASK); 754 755 /* The old page I have found cannot be a 756 * destination page, so return it if it's 757 * gfp_flags honor the ones passed in. 758 */ 759 if (!(gfp_mask & __GFP_HIGHMEM) && 760 PageHighMem(old_page)) { 761 kimage_free_pages(old_page); 762 continue; 763 } 764 page = old_page; 765 break; 766 } 767 /* Place the page on the destination list, to be used later */ 768 list_add(&page->lru, &image->dest_pages); 769 } 770 771 return page; 772 } 773 774 static int kimage_load_normal_segment(struct kimage *image, 775 struct kexec_segment *segment) 776 { 777 unsigned long maddr; 778 size_t ubytes, mbytes; 779 int result; 780 unsigned char __user *buf = NULL; 781 unsigned char *kbuf = NULL; 782 783 if (image->file_mode) 784 kbuf = segment->kbuf; 785 else 786 buf = segment->buf; 787 ubytes = segment->bufsz; 788 mbytes = segment->memsz; 789 maddr = segment->mem; 790 791 result = kimage_set_destination(image, maddr); 792 if (result < 0) 793 goto out; 794 795 while (mbytes) { 796 struct page *page; 797 char *ptr; 798 size_t uchunk, mchunk; 799 800 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 801 if (!page) { 802 result = -ENOMEM; 803 goto out; 804 } 805 result = kimage_add_page(image, page_to_boot_pfn(page) 806 << PAGE_SHIFT); 807 if (result < 0) 808 goto out; 809 810 ptr = kmap_local_page(page); 811 /* Start with a clear page */ 812 clear_page(ptr); 813 ptr += maddr & ~PAGE_MASK; 814 mchunk = min_t(size_t, mbytes, 815 PAGE_SIZE - (maddr & ~PAGE_MASK)); 816 uchunk = min(ubytes, mchunk); 817 818 /* For file based kexec, source pages are in kernel memory */ 819 if (image->file_mode) 820 memcpy(ptr, kbuf, uchunk); 821 else 822 result = copy_from_user(ptr, buf, uchunk); 823 kunmap_local(ptr); 824 if (result) { 825 result = -EFAULT; 826 goto out; 827 } 828 ubytes -= uchunk; 829 maddr += mchunk; 830 if (image->file_mode) 831 kbuf += mchunk; 832 else 833 buf += mchunk; 834 mbytes -= mchunk; 835 836 cond_resched(); 837 } 838 out: 839 return result; 840 } 841 842 static int kimage_load_crash_segment(struct kimage *image, 843 struct kexec_segment *segment) 844 { 845 /* For crash dumps kernels we simply copy the data from 846 * user space to it's destination. 847 * We do things a page at a time for the sake of kmap. 848 */ 849 unsigned long maddr; 850 size_t ubytes, mbytes; 851 int result; 852 unsigned char __user *buf = NULL; 853 unsigned char *kbuf = NULL; 854 855 result = 0; 856 if (image->file_mode) 857 kbuf = segment->kbuf; 858 else 859 buf = segment->buf; 860 ubytes = segment->bufsz; 861 mbytes = segment->memsz; 862 maddr = segment->mem; 863 while (mbytes) { 864 struct page *page; 865 char *ptr; 866 size_t uchunk, mchunk; 867 868 page = boot_pfn_to_page(maddr >> PAGE_SHIFT); 869 if (!page) { 870 result = -ENOMEM; 871 goto out; 872 } 873 arch_kexec_post_alloc_pages(page_address(page), 1, 0); 874 ptr = kmap_local_page(page); 875 ptr += maddr & ~PAGE_MASK; 876 mchunk = min_t(size_t, mbytes, 877 PAGE_SIZE - (maddr & ~PAGE_MASK)); 878 uchunk = min(ubytes, mchunk); 879 if (mchunk > uchunk) { 880 /* Zero the trailing part of the page */ 881 memset(ptr + uchunk, 0, mchunk - uchunk); 882 } 883 884 /* For file based kexec, source pages are in kernel memory */ 885 if (image->file_mode) 886 memcpy(ptr, kbuf, uchunk); 887 else 888 result = copy_from_user(ptr, buf, uchunk); 889 kexec_flush_icache_page(page); 890 kunmap_local(ptr); 891 arch_kexec_pre_free_pages(page_address(page), 1); 892 if (result) { 893 result = -EFAULT; 894 goto out; 895 } 896 ubytes -= uchunk; 897 maddr += mchunk; 898 if (image->file_mode) 899 kbuf += mchunk; 900 else 901 buf += mchunk; 902 mbytes -= mchunk; 903 904 cond_resched(); 905 } 906 out: 907 return result; 908 } 909 910 int kimage_load_segment(struct kimage *image, 911 struct kexec_segment *segment) 912 { 913 int result = -ENOMEM; 914 915 switch (image->type) { 916 case KEXEC_TYPE_DEFAULT: 917 result = kimage_load_normal_segment(image, segment); 918 break; 919 case KEXEC_TYPE_CRASH: 920 result = kimage_load_crash_segment(image, segment); 921 break; 922 } 923 924 return result; 925 } 926 927 struct kexec_load_limit { 928 /* Mutex protects the limit count. */ 929 struct mutex mutex; 930 int limit; 931 }; 932 933 static struct kexec_load_limit load_limit_reboot = { 934 .mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex), 935 .limit = -1, 936 }; 937 938 static struct kexec_load_limit load_limit_panic = { 939 .mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex), 940 .limit = -1, 941 }; 942 943 struct kimage *kexec_image; 944 struct kimage *kexec_crash_image; 945 static int kexec_load_disabled; 946 947 #ifdef CONFIG_SYSCTL 948 static int kexec_limit_handler(struct ctl_table *table, int write, 949 void *buffer, size_t *lenp, loff_t *ppos) 950 { 951 struct kexec_load_limit *limit = table->data; 952 int val; 953 struct ctl_table tmp = { 954 .data = &val, 955 .maxlen = sizeof(val), 956 .mode = table->mode, 957 }; 958 int ret; 959 960 if (write) { 961 ret = proc_dointvec(&tmp, write, buffer, lenp, ppos); 962 if (ret) 963 return ret; 964 965 if (val < 0) 966 return -EINVAL; 967 968 mutex_lock(&limit->mutex); 969 if (limit->limit != -1 && val >= limit->limit) 970 ret = -EINVAL; 971 else 972 limit->limit = val; 973 mutex_unlock(&limit->mutex); 974 975 return ret; 976 } 977 978 mutex_lock(&limit->mutex); 979 val = limit->limit; 980 mutex_unlock(&limit->mutex); 981 982 return proc_dointvec(&tmp, write, buffer, lenp, ppos); 983 } 984 985 static struct ctl_table kexec_core_sysctls[] = { 986 { 987 .procname = "kexec_load_disabled", 988 .data = &kexec_load_disabled, 989 .maxlen = sizeof(int), 990 .mode = 0644, 991 /* only handle a transition from default "0" to "1" */ 992 .proc_handler = proc_dointvec_minmax, 993 .extra1 = SYSCTL_ONE, 994 .extra2 = SYSCTL_ONE, 995 }, 996 { 997 .procname = "kexec_load_limit_panic", 998 .data = &load_limit_panic, 999 .mode = 0644, 1000 .proc_handler = kexec_limit_handler, 1001 }, 1002 { 1003 .procname = "kexec_load_limit_reboot", 1004 .data = &load_limit_reboot, 1005 .mode = 0644, 1006 .proc_handler = kexec_limit_handler, 1007 }, 1008 { } 1009 }; 1010 1011 static int __init kexec_core_sysctl_init(void) 1012 { 1013 register_sysctl_init("kernel", kexec_core_sysctls); 1014 return 0; 1015 } 1016 late_initcall(kexec_core_sysctl_init); 1017 #endif 1018 1019 bool kexec_load_permitted(int kexec_image_type) 1020 { 1021 struct kexec_load_limit *limit; 1022 1023 /* 1024 * Only the superuser can use the kexec syscall and if it has not 1025 * been disabled. 1026 */ 1027 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 1028 return false; 1029 1030 /* Check limit counter and decrease it.*/ 1031 limit = (kexec_image_type == KEXEC_TYPE_CRASH) ? 1032 &load_limit_panic : &load_limit_reboot; 1033 mutex_lock(&limit->mutex); 1034 if (!limit->limit) { 1035 mutex_unlock(&limit->mutex); 1036 return false; 1037 } 1038 if (limit->limit != -1) 1039 limit->limit--; 1040 mutex_unlock(&limit->mutex); 1041 1042 return true; 1043 } 1044 1045 /* 1046 * No panic_cpu check version of crash_kexec(). This function is called 1047 * only when panic_cpu holds the current CPU number; this is the only CPU 1048 * which processes crash_kexec routines. 1049 */ 1050 void __noclone __crash_kexec(struct pt_regs *regs) 1051 { 1052 /* Take the kexec_lock here to prevent sys_kexec_load 1053 * running on one cpu from replacing the crash kernel 1054 * we are using after a panic on a different cpu. 1055 * 1056 * If the crash kernel was not located in a fixed area 1057 * of memory the xchg(&kexec_crash_image) would be 1058 * sufficient. But since I reuse the memory... 1059 */ 1060 if (kexec_trylock()) { 1061 if (kexec_crash_image) { 1062 struct pt_regs fixed_regs; 1063 1064 crash_setup_regs(&fixed_regs, regs); 1065 crash_save_vmcoreinfo(); 1066 machine_crash_shutdown(&fixed_regs); 1067 machine_kexec(kexec_crash_image); 1068 } 1069 kexec_unlock(); 1070 } 1071 } 1072 STACK_FRAME_NON_STANDARD(__crash_kexec); 1073 1074 __bpf_kfunc void crash_kexec(struct pt_regs *regs) 1075 { 1076 int old_cpu, this_cpu; 1077 1078 /* 1079 * Only one CPU is allowed to execute the crash_kexec() code as with 1080 * panic(). Otherwise parallel calls of panic() and crash_kexec() 1081 * may stop each other. To exclude them, we use panic_cpu here too. 1082 */ 1083 this_cpu = raw_smp_processor_id(); 1084 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 1085 if (old_cpu == PANIC_CPU_INVALID) { 1086 /* This is the 1st CPU which comes here, so go ahead. */ 1087 __crash_kexec(regs); 1088 1089 /* 1090 * Reset panic_cpu to allow another panic()/crash_kexec() 1091 * call. 1092 */ 1093 atomic_set(&panic_cpu, PANIC_CPU_INVALID); 1094 } 1095 } 1096 1097 static inline resource_size_t crash_resource_size(const struct resource *res) 1098 { 1099 return !res->end ? 0 : resource_size(res); 1100 } 1101 1102 ssize_t crash_get_memory_size(void) 1103 { 1104 ssize_t size = 0; 1105 1106 if (!kexec_trylock()) 1107 return -EBUSY; 1108 1109 size += crash_resource_size(&crashk_res); 1110 size += crash_resource_size(&crashk_low_res); 1111 1112 kexec_unlock(); 1113 return size; 1114 } 1115 1116 static int __crash_shrink_memory(struct resource *old_res, 1117 unsigned long new_size) 1118 { 1119 struct resource *ram_res; 1120 1121 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 1122 if (!ram_res) 1123 return -ENOMEM; 1124 1125 ram_res->start = old_res->start + new_size; 1126 ram_res->end = old_res->end; 1127 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; 1128 ram_res->name = "System RAM"; 1129 1130 if (!new_size) { 1131 release_resource(old_res); 1132 old_res->start = 0; 1133 old_res->end = 0; 1134 } else { 1135 crashk_res.end = ram_res->start - 1; 1136 } 1137 1138 crash_free_reserved_phys_range(ram_res->start, ram_res->end); 1139 insert_resource(&iomem_resource, ram_res); 1140 1141 return 0; 1142 } 1143 1144 int crash_shrink_memory(unsigned long new_size) 1145 { 1146 int ret = 0; 1147 unsigned long old_size, low_size; 1148 1149 if (!kexec_trylock()) 1150 return -EBUSY; 1151 1152 if (kexec_crash_image) { 1153 ret = -ENOENT; 1154 goto unlock; 1155 } 1156 1157 low_size = crash_resource_size(&crashk_low_res); 1158 old_size = crash_resource_size(&crashk_res) + low_size; 1159 new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN); 1160 if (new_size >= old_size) { 1161 ret = (new_size == old_size) ? 0 : -EINVAL; 1162 goto unlock; 1163 } 1164 1165 /* 1166 * (low_size > new_size) implies that low_size is greater than zero. 1167 * This also means that if low_size is zero, the else branch is taken. 1168 * 1169 * If low_size is greater than 0, (low_size > new_size) indicates that 1170 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res 1171 * needs to be shrunken. 1172 */ 1173 if (low_size > new_size) { 1174 ret = __crash_shrink_memory(&crashk_res, 0); 1175 if (ret) 1176 goto unlock; 1177 1178 ret = __crash_shrink_memory(&crashk_low_res, new_size); 1179 } else { 1180 ret = __crash_shrink_memory(&crashk_res, new_size - low_size); 1181 } 1182 1183 /* Swap crashk_res and crashk_low_res if needed */ 1184 if (!crashk_res.end && crashk_low_res.end) { 1185 crashk_res.start = crashk_low_res.start; 1186 crashk_res.end = crashk_low_res.end; 1187 release_resource(&crashk_low_res); 1188 crashk_low_res.start = 0; 1189 crashk_low_res.end = 0; 1190 insert_resource(&iomem_resource, &crashk_res); 1191 } 1192 1193 unlock: 1194 kexec_unlock(); 1195 return ret; 1196 } 1197 1198 void crash_save_cpu(struct pt_regs *regs, int cpu) 1199 { 1200 struct elf_prstatus prstatus; 1201 u32 *buf; 1202 1203 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 1204 return; 1205 1206 /* Using ELF notes here is opportunistic. 1207 * I need a well defined structure format 1208 * for the data I pass, and I need tags 1209 * on the data to indicate what information I have 1210 * squirrelled away. ELF notes happen to provide 1211 * all of that, so there is no need to invent something new. 1212 */ 1213 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); 1214 if (!buf) 1215 return; 1216 memset(&prstatus, 0, sizeof(prstatus)); 1217 prstatus.common.pr_pid = current->pid; 1218 elf_core_copy_regs(&prstatus.pr_reg, regs); 1219 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 1220 &prstatus, sizeof(prstatus)); 1221 final_note(buf); 1222 } 1223 1224 /* 1225 * Move into place and start executing a preloaded standalone 1226 * executable. If nothing was preloaded return an error. 1227 */ 1228 int kernel_kexec(void) 1229 { 1230 int error = 0; 1231 1232 if (!kexec_trylock()) 1233 return -EBUSY; 1234 if (!kexec_image) { 1235 error = -EINVAL; 1236 goto Unlock; 1237 } 1238 1239 #ifdef CONFIG_KEXEC_JUMP 1240 if (kexec_image->preserve_context) { 1241 pm_prepare_console(); 1242 error = freeze_processes(); 1243 if (error) { 1244 error = -EBUSY; 1245 goto Restore_console; 1246 } 1247 suspend_console(); 1248 error = dpm_suspend_start(PMSG_FREEZE); 1249 if (error) 1250 goto Resume_console; 1251 /* At this point, dpm_suspend_start() has been called, 1252 * but *not* dpm_suspend_end(). We *must* call 1253 * dpm_suspend_end() now. Otherwise, drivers for 1254 * some devices (e.g. interrupt controllers) become 1255 * desynchronized with the actual state of the 1256 * hardware at resume time, and evil weirdness ensues. 1257 */ 1258 error = dpm_suspend_end(PMSG_FREEZE); 1259 if (error) 1260 goto Resume_devices; 1261 error = suspend_disable_secondary_cpus(); 1262 if (error) 1263 goto Enable_cpus; 1264 local_irq_disable(); 1265 error = syscore_suspend(); 1266 if (error) 1267 goto Enable_irqs; 1268 } else 1269 #endif 1270 { 1271 kexec_in_progress = true; 1272 kernel_restart_prepare("kexec reboot"); 1273 migrate_to_reboot_cpu(); 1274 syscore_shutdown(); 1275 1276 /* 1277 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 1278 * no further code needs to use CPU hotplug (which is true in 1279 * the reboot case). However, the kexec path depends on using 1280 * CPU hotplug again; so re-enable it here. 1281 */ 1282 cpu_hotplug_enable(); 1283 pr_notice("Starting new kernel\n"); 1284 machine_shutdown(); 1285 } 1286 1287 kmsg_dump(KMSG_DUMP_SHUTDOWN); 1288 machine_kexec(kexec_image); 1289 1290 #ifdef CONFIG_KEXEC_JUMP 1291 if (kexec_image->preserve_context) { 1292 syscore_resume(); 1293 Enable_irqs: 1294 local_irq_enable(); 1295 Enable_cpus: 1296 suspend_enable_secondary_cpus(); 1297 dpm_resume_start(PMSG_RESTORE); 1298 Resume_devices: 1299 dpm_resume_end(PMSG_RESTORE); 1300 Resume_console: 1301 resume_console(); 1302 thaw_processes(); 1303 Restore_console: 1304 pm_restore_console(); 1305 } 1306 #endif 1307 1308 Unlock: 1309 kexec_unlock(); 1310 return error; 1311 } 1312