1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec.c - kexec system call core code. 4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/btf.h> 10 #include <linux/capability.h> 11 #include <linux/mm.h> 12 #include <linux/file.h> 13 #include <linux/slab.h> 14 #include <linux/fs.h> 15 #include <linux/kexec.h> 16 #include <linux/mutex.h> 17 #include <linux/list.h> 18 #include <linux/highmem.h> 19 #include <linux/syscalls.h> 20 #include <linux/reboot.h> 21 #include <linux/ioport.h> 22 #include <linux/hardirq.h> 23 #include <linux/elf.h> 24 #include <linux/elfcore.h> 25 #include <linux/utsname.h> 26 #include <linux/numa.h> 27 #include <linux/suspend.h> 28 #include <linux/device.h> 29 #include <linux/freezer.h> 30 #include <linux/panic_notifier.h> 31 #include <linux/pm.h> 32 #include <linux/cpu.h> 33 #include <linux/uaccess.h> 34 #include <linux/io.h> 35 #include <linux/console.h> 36 #include <linux/vmalloc.h> 37 #include <linux/swap.h> 38 #include <linux/syscore_ops.h> 39 #include <linux/compiler.h> 40 #include <linux/hugetlb.h> 41 #include <linux/objtool.h> 42 #include <linux/kmsg_dump.h> 43 44 #include <asm/page.h> 45 #include <asm/sections.h> 46 47 #include <crypto/hash.h> 48 #include "kexec_internal.h" 49 50 atomic_t __kexec_lock = ATOMIC_INIT(0); 51 52 /* Per cpu memory for storing cpu states in case of system crash. */ 53 note_buf_t __percpu *crash_notes; 54 55 /* Flag to indicate we are going to kexec a new kernel */ 56 bool kexec_in_progress = false; 57 58 59 /* Location of the reserved area for the crash kernel */ 60 struct resource crashk_res = { 61 .name = "Crash kernel", 62 .start = 0, 63 .end = 0, 64 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 65 .desc = IORES_DESC_CRASH_KERNEL 66 }; 67 struct resource crashk_low_res = { 68 .name = "Crash kernel", 69 .start = 0, 70 .end = 0, 71 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 72 .desc = IORES_DESC_CRASH_KERNEL 73 }; 74 75 int kexec_should_crash(struct task_struct *p) 76 { 77 /* 78 * If crash_kexec_post_notifiers is enabled, don't run 79 * crash_kexec() here yet, which must be run after panic 80 * notifiers in panic(). 81 */ 82 if (crash_kexec_post_notifiers) 83 return 0; 84 /* 85 * There are 4 panic() calls in make_task_dead() path, each of which 86 * corresponds to each of these 4 conditions. 87 */ 88 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 89 return 1; 90 return 0; 91 } 92 93 int kexec_crash_loaded(void) 94 { 95 return !!kexec_crash_image; 96 } 97 EXPORT_SYMBOL_GPL(kexec_crash_loaded); 98 99 /* 100 * When kexec transitions to the new kernel there is a one-to-one 101 * mapping between physical and virtual addresses. On processors 102 * where you can disable the MMU this is trivial, and easy. For 103 * others it is still a simple predictable page table to setup. 104 * 105 * In that environment kexec copies the new kernel to its final 106 * resting place. This means I can only support memory whose 107 * physical address can fit in an unsigned long. In particular 108 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 109 * If the assembly stub has more restrictive requirements 110 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 111 * defined more restrictively in <asm/kexec.h>. 112 * 113 * The code for the transition from the current kernel to the 114 * new kernel is placed in the control_code_buffer, whose size 115 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 116 * page of memory is necessary, but some architectures require more. 117 * Because this memory must be identity mapped in the transition from 118 * virtual to physical addresses it must live in the range 119 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 120 * modifiable. 121 * 122 * The assembly stub in the control code buffer is passed a linked list 123 * of descriptor pages detailing the source pages of the new kernel, 124 * and the destination addresses of those source pages. As this data 125 * structure is not used in the context of the current OS, it must 126 * be self-contained. 127 * 128 * The code has been made to work with highmem pages and will use a 129 * destination page in its final resting place (if it happens 130 * to allocate it). The end product of this is that most of the 131 * physical address space, and most of RAM can be used. 132 * 133 * Future directions include: 134 * - allocating a page table with the control code buffer identity 135 * mapped, to simplify machine_kexec and make kexec_on_panic more 136 * reliable. 137 */ 138 139 /* 140 * KIMAGE_NO_DEST is an impossible destination address..., for 141 * allocating pages whose destination address we do not care about. 142 */ 143 #define KIMAGE_NO_DEST (-1UL) 144 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) 145 146 static struct page *kimage_alloc_page(struct kimage *image, 147 gfp_t gfp_mask, 148 unsigned long dest); 149 150 int sanity_check_segment_list(struct kimage *image) 151 { 152 int i; 153 unsigned long nr_segments = image->nr_segments; 154 unsigned long total_pages = 0; 155 unsigned long nr_pages = totalram_pages(); 156 157 /* 158 * Verify we have good destination addresses. The caller is 159 * responsible for making certain we don't attempt to load 160 * the new image into invalid or reserved areas of RAM. This 161 * just verifies it is an address we can use. 162 * 163 * Since the kernel does everything in page size chunks ensure 164 * the destination addresses are page aligned. Too many 165 * special cases crop of when we don't do this. The most 166 * insidious is getting overlapping destination addresses 167 * simply because addresses are changed to page size 168 * granularity. 169 */ 170 for (i = 0; i < nr_segments; i++) { 171 unsigned long mstart, mend; 172 173 mstart = image->segment[i].mem; 174 mend = mstart + image->segment[i].memsz; 175 if (mstart > mend) 176 return -EADDRNOTAVAIL; 177 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 178 return -EADDRNOTAVAIL; 179 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 180 return -EADDRNOTAVAIL; 181 } 182 183 /* Verify our destination addresses do not overlap. 184 * If we alloed overlapping destination addresses 185 * through very weird things can happen with no 186 * easy explanation as one segment stops on another. 187 */ 188 for (i = 0; i < nr_segments; i++) { 189 unsigned long mstart, mend; 190 unsigned long j; 191 192 mstart = image->segment[i].mem; 193 mend = mstart + image->segment[i].memsz; 194 for (j = 0; j < i; j++) { 195 unsigned long pstart, pend; 196 197 pstart = image->segment[j].mem; 198 pend = pstart + image->segment[j].memsz; 199 /* Do the segments overlap ? */ 200 if ((mend > pstart) && (mstart < pend)) 201 return -EINVAL; 202 } 203 } 204 205 /* Ensure our buffer sizes are strictly less than 206 * our memory sizes. This should always be the case, 207 * and it is easier to check up front than to be surprised 208 * later on. 209 */ 210 for (i = 0; i < nr_segments; i++) { 211 if (image->segment[i].bufsz > image->segment[i].memsz) 212 return -EINVAL; 213 } 214 215 /* 216 * Verify that no more than half of memory will be consumed. If the 217 * request from userspace is too large, a large amount of time will be 218 * wasted allocating pages, which can cause a soft lockup. 219 */ 220 for (i = 0; i < nr_segments; i++) { 221 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2) 222 return -EINVAL; 223 224 total_pages += PAGE_COUNT(image->segment[i].memsz); 225 } 226 227 if (total_pages > nr_pages / 2) 228 return -EINVAL; 229 230 /* 231 * Verify we have good destination addresses. Normally 232 * the caller is responsible for making certain we don't 233 * attempt to load the new image into invalid or reserved 234 * areas of RAM. But crash kernels are preloaded into a 235 * reserved area of ram. We must ensure the addresses 236 * are in the reserved area otherwise preloading the 237 * kernel could corrupt things. 238 */ 239 240 if (image->type == KEXEC_TYPE_CRASH) { 241 for (i = 0; i < nr_segments; i++) { 242 unsigned long mstart, mend; 243 244 mstart = image->segment[i].mem; 245 mend = mstart + image->segment[i].memsz - 1; 246 /* Ensure we are within the crash kernel limits */ 247 if ((mstart < phys_to_boot_phys(crashk_res.start)) || 248 (mend > phys_to_boot_phys(crashk_res.end))) 249 return -EADDRNOTAVAIL; 250 } 251 } 252 253 return 0; 254 } 255 256 struct kimage *do_kimage_alloc_init(void) 257 { 258 struct kimage *image; 259 260 /* Allocate a controlling structure */ 261 image = kzalloc(sizeof(*image), GFP_KERNEL); 262 if (!image) 263 return NULL; 264 265 image->head = 0; 266 image->entry = &image->head; 267 image->last_entry = &image->head; 268 image->control_page = ~0; /* By default this does not apply */ 269 image->type = KEXEC_TYPE_DEFAULT; 270 271 /* Initialize the list of control pages */ 272 INIT_LIST_HEAD(&image->control_pages); 273 274 /* Initialize the list of destination pages */ 275 INIT_LIST_HEAD(&image->dest_pages); 276 277 /* Initialize the list of unusable pages */ 278 INIT_LIST_HEAD(&image->unusable_pages); 279 280 return image; 281 } 282 283 int kimage_is_destination_range(struct kimage *image, 284 unsigned long start, 285 unsigned long end) 286 { 287 unsigned long i; 288 289 for (i = 0; i < image->nr_segments; i++) { 290 unsigned long mstart, mend; 291 292 mstart = image->segment[i].mem; 293 mend = mstart + image->segment[i].memsz; 294 if ((end > mstart) && (start < mend)) 295 return 1; 296 } 297 298 return 0; 299 } 300 301 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 302 { 303 struct page *pages; 304 305 if (fatal_signal_pending(current)) 306 return NULL; 307 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order); 308 if (pages) { 309 unsigned int count, i; 310 311 pages->mapping = NULL; 312 set_page_private(pages, order); 313 count = 1 << order; 314 for (i = 0; i < count; i++) 315 SetPageReserved(pages + i); 316 317 arch_kexec_post_alloc_pages(page_address(pages), count, 318 gfp_mask); 319 320 if (gfp_mask & __GFP_ZERO) 321 for (i = 0; i < count; i++) 322 clear_highpage(pages + i); 323 } 324 325 return pages; 326 } 327 328 static void kimage_free_pages(struct page *page) 329 { 330 unsigned int order, count, i; 331 332 order = page_private(page); 333 count = 1 << order; 334 335 arch_kexec_pre_free_pages(page_address(page), count); 336 337 for (i = 0; i < count; i++) 338 ClearPageReserved(page + i); 339 __free_pages(page, order); 340 } 341 342 void kimage_free_page_list(struct list_head *list) 343 { 344 struct page *page, *next; 345 346 list_for_each_entry_safe(page, next, list, lru) { 347 list_del(&page->lru); 348 kimage_free_pages(page); 349 } 350 } 351 352 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 353 unsigned int order) 354 { 355 /* Control pages are special, they are the intermediaries 356 * that are needed while we copy the rest of the pages 357 * to their final resting place. As such they must 358 * not conflict with either the destination addresses 359 * or memory the kernel is already using. 360 * 361 * The only case where we really need more than one of 362 * these are for architectures where we cannot disable 363 * the MMU and must instead generate an identity mapped 364 * page table for all of the memory. 365 * 366 * At worst this runs in O(N) of the image size. 367 */ 368 struct list_head extra_pages; 369 struct page *pages; 370 unsigned int count; 371 372 count = 1 << order; 373 INIT_LIST_HEAD(&extra_pages); 374 375 /* Loop while I can allocate a page and the page allocated 376 * is a destination page. 377 */ 378 do { 379 unsigned long pfn, epfn, addr, eaddr; 380 381 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); 382 if (!pages) 383 break; 384 pfn = page_to_boot_pfn(pages); 385 epfn = pfn + count; 386 addr = pfn << PAGE_SHIFT; 387 eaddr = epfn << PAGE_SHIFT; 388 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 389 kimage_is_destination_range(image, addr, eaddr)) { 390 list_add(&pages->lru, &extra_pages); 391 pages = NULL; 392 } 393 } while (!pages); 394 395 if (pages) { 396 /* Remember the allocated page... */ 397 list_add(&pages->lru, &image->control_pages); 398 399 /* Because the page is already in it's destination 400 * location we will never allocate another page at 401 * that address. Therefore kimage_alloc_pages 402 * will not return it (again) and we don't need 403 * to give it an entry in image->segment[]. 404 */ 405 } 406 /* Deal with the destination pages I have inadvertently allocated. 407 * 408 * Ideally I would convert multi-page allocations into single 409 * page allocations, and add everything to image->dest_pages. 410 * 411 * For now it is simpler to just free the pages. 412 */ 413 kimage_free_page_list(&extra_pages); 414 415 return pages; 416 } 417 418 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 419 unsigned int order) 420 { 421 /* Control pages are special, they are the intermediaries 422 * that are needed while we copy the rest of the pages 423 * to their final resting place. As such they must 424 * not conflict with either the destination addresses 425 * or memory the kernel is already using. 426 * 427 * Control pages are also the only pags we must allocate 428 * when loading a crash kernel. All of the other pages 429 * are specified by the segments and we just memcpy 430 * into them directly. 431 * 432 * The only case where we really need more than one of 433 * these are for architectures where we cannot disable 434 * the MMU and must instead generate an identity mapped 435 * page table for all of the memory. 436 * 437 * Given the low demand this implements a very simple 438 * allocator that finds the first hole of the appropriate 439 * size in the reserved memory region, and allocates all 440 * of the memory up to and including the hole. 441 */ 442 unsigned long hole_start, hole_end, size; 443 struct page *pages; 444 445 pages = NULL; 446 size = (1 << order) << PAGE_SHIFT; 447 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 448 hole_end = hole_start + size - 1; 449 while (hole_end <= crashk_res.end) { 450 unsigned long i; 451 452 cond_resched(); 453 454 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 455 break; 456 /* See if I overlap any of the segments */ 457 for (i = 0; i < image->nr_segments; i++) { 458 unsigned long mstart, mend; 459 460 mstart = image->segment[i].mem; 461 mend = mstart + image->segment[i].memsz - 1; 462 if ((hole_end >= mstart) && (hole_start <= mend)) { 463 /* Advance the hole to the end of the segment */ 464 hole_start = (mend + (size - 1)) & ~(size - 1); 465 hole_end = hole_start + size - 1; 466 break; 467 } 468 } 469 /* If I don't overlap any segments I have found my hole! */ 470 if (i == image->nr_segments) { 471 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 472 image->control_page = hole_end; 473 break; 474 } 475 } 476 477 /* Ensure that these pages are decrypted if SME is enabled. */ 478 if (pages) 479 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0); 480 481 return pages; 482 } 483 484 485 struct page *kimage_alloc_control_pages(struct kimage *image, 486 unsigned int order) 487 { 488 struct page *pages = NULL; 489 490 switch (image->type) { 491 case KEXEC_TYPE_DEFAULT: 492 pages = kimage_alloc_normal_control_pages(image, order); 493 break; 494 case KEXEC_TYPE_CRASH: 495 pages = kimage_alloc_crash_control_pages(image, order); 496 break; 497 } 498 499 return pages; 500 } 501 502 int kimage_crash_copy_vmcoreinfo(struct kimage *image) 503 { 504 struct page *vmcoreinfo_page; 505 void *safecopy; 506 507 if (image->type != KEXEC_TYPE_CRASH) 508 return 0; 509 510 /* 511 * For kdump, allocate one vmcoreinfo safe copy from the 512 * crash memory. as we have arch_kexec_protect_crashkres() 513 * after kexec syscall, we naturally protect it from write 514 * (even read) access under kernel direct mapping. But on 515 * the other hand, we still need to operate it when crash 516 * happens to generate vmcoreinfo note, hereby we rely on 517 * vmap for this purpose. 518 */ 519 vmcoreinfo_page = kimage_alloc_control_pages(image, 0); 520 if (!vmcoreinfo_page) { 521 pr_warn("Could not allocate vmcoreinfo buffer\n"); 522 return -ENOMEM; 523 } 524 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); 525 if (!safecopy) { 526 pr_warn("Could not vmap vmcoreinfo buffer\n"); 527 return -ENOMEM; 528 } 529 530 image->vmcoreinfo_data_copy = safecopy; 531 crash_update_vmcoreinfo_safecopy(safecopy); 532 533 return 0; 534 } 535 536 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 537 { 538 if (*image->entry != 0) 539 image->entry++; 540 541 if (image->entry == image->last_entry) { 542 kimage_entry_t *ind_page; 543 struct page *page; 544 545 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 546 if (!page) 547 return -ENOMEM; 548 549 ind_page = page_address(page); 550 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; 551 image->entry = ind_page; 552 image->last_entry = ind_page + 553 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 554 } 555 *image->entry = entry; 556 image->entry++; 557 *image->entry = 0; 558 559 return 0; 560 } 561 562 static int kimage_set_destination(struct kimage *image, 563 unsigned long destination) 564 { 565 destination &= PAGE_MASK; 566 567 return kimage_add_entry(image, destination | IND_DESTINATION); 568 } 569 570 571 static int kimage_add_page(struct kimage *image, unsigned long page) 572 { 573 page &= PAGE_MASK; 574 575 return kimage_add_entry(image, page | IND_SOURCE); 576 } 577 578 579 static void kimage_free_extra_pages(struct kimage *image) 580 { 581 /* Walk through and free any extra destination pages I may have */ 582 kimage_free_page_list(&image->dest_pages); 583 584 /* Walk through and free any unusable pages I have cached */ 585 kimage_free_page_list(&image->unusable_pages); 586 587 } 588 589 void kimage_terminate(struct kimage *image) 590 { 591 if (*image->entry != 0) 592 image->entry++; 593 594 *image->entry = IND_DONE; 595 } 596 597 #define for_each_kimage_entry(image, ptr, entry) \ 598 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 599 ptr = (entry & IND_INDIRECTION) ? \ 600 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 601 602 static void kimage_free_entry(kimage_entry_t entry) 603 { 604 struct page *page; 605 606 page = boot_pfn_to_page(entry >> PAGE_SHIFT); 607 kimage_free_pages(page); 608 } 609 610 void kimage_free(struct kimage *image) 611 { 612 kimage_entry_t *ptr, entry; 613 kimage_entry_t ind = 0; 614 615 if (!image) 616 return; 617 618 if (image->vmcoreinfo_data_copy) { 619 crash_update_vmcoreinfo_safecopy(NULL); 620 vunmap(image->vmcoreinfo_data_copy); 621 } 622 623 kimage_free_extra_pages(image); 624 for_each_kimage_entry(image, ptr, entry) { 625 if (entry & IND_INDIRECTION) { 626 /* Free the previous indirection page */ 627 if (ind & IND_INDIRECTION) 628 kimage_free_entry(ind); 629 /* Save this indirection page until we are 630 * done with it. 631 */ 632 ind = entry; 633 } else if (entry & IND_SOURCE) 634 kimage_free_entry(entry); 635 } 636 /* Free the final indirection page */ 637 if (ind & IND_INDIRECTION) 638 kimage_free_entry(ind); 639 640 /* Handle any machine specific cleanup */ 641 machine_kexec_cleanup(image); 642 643 /* Free the kexec control pages... */ 644 kimage_free_page_list(&image->control_pages); 645 646 /* 647 * Free up any temporary buffers allocated. This might hit if 648 * error occurred much later after buffer allocation. 649 */ 650 if (image->file_mode) 651 kimage_file_post_load_cleanup(image); 652 653 kfree(image); 654 } 655 656 static kimage_entry_t *kimage_dst_used(struct kimage *image, 657 unsigned long page) 658 { 659 kimage_entry_t *ptr, entry; 660 unsigned long destination = 0; 661 662 for_each_kimage_entry(image, ptr, entry) { 663 if (entry & IND_DESTINATION) 664 destination = entry & PAGE_MASK; 665 else if (entry & IND_SOURCE) { 666 if (page == destination) 667 return ptr; 668 destination += PAGE_SIZE; 669 } 670 } 671 672 return NULL; 673 } 674 675 static struct page *kimage_alloc_page(struct kimage *image, 676 gfp_t gfp_mask, 677 unsigned long destination) 678 { 679 /* 680 * Here we implement safeguards to ensure that a source page 681 * is not copied to its destination page before the data on 682 * the destination page is no longer useful. 683 * 684 * To do this we maintain the invariant that a source page is 685 * either its own destination page, or it is not a 686 * destination page at all. 687 * 688 * That is slightly stronger than required, but the proof 689 * that no problems will not occur is trivial, and the 690 * implementation is simply to verify. 691 * 692 * When allocating all pages normally this algorithm will run 693 * in O(N) time, but in the worst case it will run in O(N^2) 694 * time. If the runtime is a problem the data structures can 695 * be fixed. 696 */ 697 struct page *page; 698 unsigned long addr; 699 700 /* 701 * Walk through the list of destination pages, and see if I 702 * have a match. 703 */ 704 list_for_each_entry(page, &image->dest_pages, lru) { 705 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 706 if (addr == destination) { 707 list_del(&page->lru); 708 return page; 709 } 710 } 711 page = NULL; 712 while (1) { 713 kimage_entry_t *old; 714 715 /* Allocate a page, if we run out of memory give up */ 716 page = kimage_alloc_pages(gfp_mask, 0); 717 if (!page) 718 return NULL; 719 /* If the page cannot be used file it away */ 720 if (page_to_boot_pfn(page) > 721 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 722 list_add(&page->lru, &image->unusable_pages); 723 continue; 724 } 725 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 726 727 /* If it is the destination page we want use it */ 728 if (addr == destination) 729 break; 730 731 /* If the page is not a destination page use it */ 732 if (!kimage_is_destination_range(image, addr, 733 addr + PAGE_SIZE)) 734 break; 735 736 /* 737 * I know that the page is someones destination page. 738 * See if there is already a source page for this 739 * destination page. And if so swap the source pages. 740 */ 741 old = kimage_dst_used(image, addr); 742 if (old) { 743 /* If so move it */ 744 unsigned long old_addr; 745 struct page *old_page; 746 747 old_addr = *old & PAGE_MASK; 748 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); 749 copy_highpage(page, old_page); 750 *old = addr | (*old & ~PAGE_MASK); 751 752 /* The old page I have found cannot be a 753 * destination page, so return it if it's 754 * gfp_flags honor the ones passed in. 755 */ 756 if (!(gfp_mask & __GFP_HIGHMEM) && 757 PageHighMem(old_page)) { 758 kimage_free_pages(old_page); 759 continue; 760 } 761 page = old_page; 762 break; 763 } 764 /* Place the page on the destination list, to be used later */ 765 list_add(&page->lru, &image->dest_pages); 766 } 767 768 return page; 769 } 770 771 static int kimage_load_normal_segment(struct kimage *image, 772 struct kexec_segment *segment) 773 { 774 unsigned long maddr; 775 size_t ubytes, mbytes; 776 int result; 777 unsigned char __user *buf = NULL; 778 unsigned char *kbuf = NULL; 779 780 if (image->file_mode) 781 kbuf = segment->kbuf; 782 else 783 buf = segment->buf; 784 ubytes = segment->bufsz; 785 mbytes = segment->memsz; 786 maddr = segment->mem; 787 788 result = kimage_set_destination(image, maddr); 789 if (result < 0) 790 goto out; 791 792 while (mbytes) { 793 struct page *page; 794 char *ptr; 795 size_t uchunk, mchunk; 796 797 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 798 if (!page) { 799 result = -ENOMEM; 800 goto out; 801 } 802 result = kimage_add_page(image, page_to_boot_pfn(page) 803 << PAGE_SHIFT); 804 if (result < 0) 805 goto out; 806 807 ptr = kmap_local_page(page); 808 /* Start with a clear page */ 809 clear_page(ptr); 810 ptr += maddr & ~PAGE_MASK; 811 mchunk = min_t(size_t, mbytes, 812 PAGE_SIZE - (maddr & ~PAGE_MASK)); 813 uchunk = min(ubytes, mchunk); 814 815 /* For file based kexec, source pages are in kernel memory */ 816 if (image->file_mode) 817 memcpy(ptr, kbuf, uchunk); 818 else 819 result = copy_from_user(ptr, buf, uchunk); 820 kunmap_local(ptr); 821 if (result) { 822 result = -EFAULT; 823 goto out; 824 } 825 ubytes -= uchunk; 826 maddr += mchunk; 827 if (image->file_mode) 828 kbuf += mchunk; 829 else 830 buf += mchunk; 831 mbytes -= mchunk; 832 833 cond_resched(); 834 } 835 out: 836 return result; 837 } 838 839 static int kimage_load_crash_segment(struct kimage *image, 840 struct kexec_segment *segment) 841 { 842 /* For crash dumps kernels we simply copy the data from 843 * user space to it's destination. 844 * We do things a page at a time for the sake of kmap. 845 */ 846 unsigned long maddr; 847 size_t ubytes, mbytes; 848 int result; 849 unsigned char __user *buf = NULL; 850 unsigned char *kbuf = NULL; 851 852 result = 0; 853 if (image->file_mode) 854 kbuf = segment->kbuf; 855 else 856 buf = segment->buf; 857 ubytes = segment->bufsz; 858 mbytes = segment->memsz; 859 maddr = segment->mem; 860 while (mbytes) { 861 struct page *page; 862 char *ptr; 863 size_t uchunk, mchunk; 864 865 page = boot_pfn_to_page(maddr >> PAGE_SHIFT); 866 if (!page) { 867 result = -ENOMEM; 868 goto out; 869 } 870 arch_kexec_post_alloc_pages(page_address(page), 1, 0); 871 ptr = kmap_local_page(page); 872 ptr += maddr & ~PAGE_MASK; 873 mchunk = min_t(size_t, mbytes, 874 PAGE_SIZE - (maddr & ~PAGE_MASK)); 875 uchunk = min(ubytes, mchunk); 876 if (mchunk > uchunk) { 877 /* Zero the trailing part of the page */ 878 memset(ptr + uchunk, 0, mchunk - uchunk); 879 } 880 881 /* For file based kexec, source pages are in kernel memory */ 882 if (image->file_mode) 883 memcpy(ptr, kbuf, uchunk); 884 else 885 result = copy_from_user(ptr, buf, uchunk); 886 kexec_flush_icache_page(page); 887 kunmap_local(ptr); 888 arch_kexec_pre_free_pages(page_address(page), 1); 889 if (result) { 890 result = -EFAULT; 891 goto out; 892 } 893 ubytes -= uchunk; 894 maddr += mchunk; 895 if (image->file_mode) 896 kbuf += mchunk; 897 else 898 buf += mchunk; 899 mbytes -= mchunk; 900 901 cond_resched(); 902 } 903 out: 904 return result; 905 } 906 907 int kimage_load_segment(struct kimage *image, 908 struct kexec_segment *segment) 909 { 910 int result = -ENOMEM; 911 912 switch (image->type) { 913 case KEXEC_TYPE_DEFAULT: 914 result = kimage_load_normal_segment(image, segment); 915 break; 916 case KEXEC_TYPE_CRASH: 917 result = kimage_load_crash_segment(image, segment); 918 break; 919 } 920 921 return result; 922 } 923 924 struct kexec_load_limit { 925 /* Mutex protects the limit count. */ 926 struct mutex mutex; 927 int limit; 928 }; 929 930 static struct kexec_load_limit load_limit_reboot = { 931 .mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex), 932 .limit = -1, 933 }; 934 935 static struct kexec_load_limit load_limit_panic = { 936 .mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex), 937 .limit = -1, 938 }; 939 940 struct kimage *kexec_image; 941 struct kimage *kexec_crash_image; 942 static int kexec_load_disabled; 943 944 #ifdef CONFIG_SYSCTL 945 static int kexec_limit_handler(struct ctl_table *table, int write, 946 void *buffer, size_t *lenp, loff_t *ppos) 947 { 948 struct kexec_load_limit *limit = table->data; 949 int val; 950 struct ctl_table tmp = { 951 .data = &val, 952 .maxlen = sizeof(val), 953 .mode = table->mode, 954 }; 955 int ret; 956 957 if (write) { 958 ret = proc_dointvec(&tmp, write, buffer, lenp, ppos); 959 if (ret) 960 return ret; 961 962 if (val < 0) 963 return -EINVAL; 964 965 mutex_lock(&limit->mutex); 966 if (limit->limit != -1 && val >= limit->limit) 967 ret = -EINVAL; 968 else 969 limit->limit = val; 970 mutex_unlock(&limit->mutex); 971 972 return ret; 973 } 974 975 mutex_lock(&limit->mutex); 976 val = limit->limit; 977 mutex_unlock(&limit->mutex); 978 979 return proc_dointvec(&tmp, write, buffer, lenp, ppos); 980 } 981 982 static struct ctl_table kexec_core_sysctls[] = { 983 { 984 .procname = "kexec_load_disabled", 985 .data = &kexec_load_disabled, 986 .maxlen = sizeof(int), 987 .mode = 0644, 988 /* only handle a transition from default "0" to "1" */ 989 .proc_handler = proc_dointvec_minmax, 990 .extra1 = SYSCTL_ONE, 991 .extra2 = SYSCTL_ONE, 992 }, 993 { 994 .procname = "kexec_load_limit_panic", 995 .data = &load_limit_panic, 996 .mode = 0644, 997 .proc_handler = kexec_limit_handler, 998 }, 999 { 1000 .procname = "kexec_load_limit_reboot", 1001 .data = &load_limit_reboot, 1002 .mode = 0644, 1003 .proc_handler = kexec_limit_handler, 1004 }, 1005 { } 1006 }; 1007 1008 static int __init kexec_core_sysctl_init(void) 1009 { 1010 register_sysctl_init("kernel", kexec_core_sysctls); 1011 return 0; 1012 } 1013 late_initcall(kexec_core_sysctl_init); 1014 #endif 1015 1016 bool kexec_load_permitted(int kexec_image_type) 1017 { 1018 struct kexec_load_limit *limit; 1019 1020 /* 1021 * Only the superuser can use the kexec syscall and if it has not 1022 * been disabled. 1023 */ 1024 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 1025 return false; 1026 1027 /* Check limit counter and decrease it.*/ 1028 limit = (kexec_image_type == KEXEC_TYPE_CRASH) ? 1029 &load_limit_panic : &load_limit_reboot; 1030 mutex_lock(&limit->mutex); 1031 if (!limit->limit) { 1032 mutex_unlock(&limit->mutex); 1033 return false; 1034 } 1035 if (limit->limit != -1) 1036 limit->limit--; 1037 mutex_unlock(&limit->mutex); 1038 1039 return true; 1040 } 1041 1042 /* 1043 * No panic_cpu check version of crash_kexec(). This function is called 1044 * only when panic_cpu holds the current CPU number; this is the only CPU 1045 * which processes crash_kexec routines. 1046 */ 1047 void __noclone __crash_kexec(struct pt_regs *regs) 1048 { 1049 /* Take the kexec_lock here to prevent sys_kexec_load 1050 * running on one cpu from replacing the crash kernel 1051 * we are using after a panic on a different cpu. 1052 * 1053 * If the crash kernel was not located in a fixed area 1054 * of memory the xchg(&kexec_crash_image) would be 1055 * sufficient. But since I reuse the memory... 1056 */ 1057 if (kexec_trylock()) { 1058 if (kexec_crash_image) { 1059 struct pt_regs fixed_regs; 1060 1061 crash_setup_regs(&fixed_regs, regs); 1062 crash_save_vmcoreinfo(); 1063 machine_crash_shutdown(&fixed_regs); 1064 machine_kexec(kexec_crash_image); 1065 } 1066 kexec_unlock(); 1067 } 1068 } 1069 STACK_FRAME_NON_STANDARD(__crash_kexec); 1070 1071 __bpf_kfunc void crash_kexec(struct pt_regs *regs) 1072 { 1073 int old_cpu, this_cpu; 1074 1075 /* 1076 * Only one CPU is allowed to execute the crash_kexec() code as with 1077 * panic(). Otherwise parallel calls of panic() and crash_kexec() 1078 * may stop each other. To exclude them, we use panic_cpu here too. 1079 */ 1080 this_cpu = raw_smp_processor_id(); 1081 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 1082 if (old_cpu == PANIC_CPU_INVALID) { 1083 /* This is the 1st CPU which comes here, so go ahead. */ 1084 __crash_kexec(regs); 1085 1086 /* 1087 * Reset panic_cpu to allow another panic()/crash_kexec() 1088 * call. 1089 */ 1090 atomic_set(&panic_cpu, PANIC_CPU_INVALID); 1091 } 1092 } 1093 1094 ssize_t crash_get_memory_size(void) 1095 { 1096 ssize_t size = 0; 1097 1098 if (!kexec_trylock()) 1099 return -EBUSY; 1100 1101 if (crashk_res.end != crashk_res.start) 1102 size = resource_size(&crashk_res); 1103 1104 kexec_unlock(); 1105 return size; 1106 } 1107 1108 int crash_shrink_memory(unsigned long new_size) 1109 { 1110 int ret = 0; 1111 unsigned long start, end; 1112 unsigned long old_size; 1113 struct resource *ram_res; 1114 1115 if (!kexec_trylock()) 1116 return -EBUSY; 1117 1118 if (kexec_crash_image) { 1119 ret = -ENOENT; 1120 goto unlock; 1121 } 1122 start = crashk_res.start; 1123 end = crashk_res.end; 1124 old_size = (end == 0) ? 0 : end - start + 1; 1125 if (new_size >= old_size) { 1126 ret = (new_size == old_size) ? 0 : -EINVAL; 1127 goto unlock; 1128 } 1129 1130 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 1131 if (!ram_res) { 1132 ret = -ENOMEM; 1133 goto unlock; 1134 } 1135 1136 start = roundup(start, KEXEC_CRASH_MEM_ALIGN); 1137 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); 1138 1139 crash_free_reserved_phys_range(end, crashk_res.end); 1140 1141 if ((start == end) && (crashk_res.parent != NULL)) 1142 release_resource(&crashk_res); 1143 1144 ram_res->start = end; 1145 ram_res->end = crashk_res.end; 1146 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; 1147 ram_res->name = "System RAM"; 1148 1149 crashk_res.end = end - 1; 1150 1151 insert_resource(&iomem_resource, ram_res); 1152 1153 unlock: 1154 kexec_unlock(); 1155 return ret; 1156 } 1157 1158 void crash_save_cpu(struct pt_regs *regs, int cpu) 1159 { 1160 struct elf_prstatus prstatus; 1161 u32 *buf; 1162 1163 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 1164 return; 1165 1166 /* Using ELF notes here is opportunistic. 1167 * I need a well defined structure format 1168 * for the data I pass, and I need tags 1169 * on the data to indicate what information I have 1170 * squirrelled away. ELF notes happen to provide 1171 * all of that, so there is no need to invent something new. 1172 */ 1173 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); 1174 if (!buf) 1175 return; 1176 memset(&prstatus, 0, sizeof(prstatus)); 1177 prstatus.common.pr_pid = current->pid; 1178 elf_core_copy_regs(&prstatus.pr_reg, regs); 1179 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 1180 &prstatus, sizeof(prstatus)); 1181 final_note(buf); 1182 } 1183 1184 static int __init crash_notes_memory_init(void) 1185 { 1186 /* Allocate memory for saving cpu registers. */ 1187 size_t size, align; 1188 1189 /* 1190 * crash_notes could be allocated across 2 vmalloc pages when percpu 1191 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc 1192 * pages are also on 2 continuous physical pages. In this case the 1193 * 2nd part of crash_notes in 2nd page could be lost since only the 1194 * starting address and size of crash_notes are exported through sysfs. 1195 * Here round up the size of crash_notes to the nearest power of two 1196 * and pass it to __alloc_percpu as align value. This can make sure 1197 * crash_notes is allocated inside one physical page. 1198 */ 1199 size = sizeof(note_buf_t); 1200 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); 1201 1202 /* 1203 * Break compile if size is bigger than PAGE_SIZE since crash_notes 1204 * definitely will be in 2 pages with that. 1205 */ 1206 BUILD_BUG_ON(size > PAGE_SIZE); 1207 1208 crash_notes = __alloc_percpu(size, align); 1209 if (!crash_notes) { 1210 pr_warn("Memory allocation for saving cpu register states failed\n"); 1211 return -ENOMEM; 1212 } 1213 return 0; 1214 } 1215 subsys_initcall(crash_notes_memory_init); 1216 1217 1218 /* 1219 * Move into place and start executing a preloaded standalone 1220 * executable. If nothing was preloaded return an error. 1221 */ 1222 int kernel_kexec(void) 1223 { 1224 int error = 0; 1225 1226 if (!kexec_trylock()) 1227 return -EBUSY; 1228 if (!kexec_image) { 1229 error = -EINVAL; 1230 goto Unlock; 1231 } 1232 1233 #ifdef CONFIG_KEXEC_JUMP 1234 if (kexec_image->preserve_context) { 1235 pm_prepare_console(); 1236 error = freeze_processes(); 1237 if (error) { 1238 error = -EBUSY; 1239 goto Restore_console; 1240 } 1241 suspend_console(); 1242 error = dpm_suspend_start(PMSG_FREEZE); 1243 if (error) 1244 goto Resume_console; 1245 /* At this point, dpm_suspend_start() has been called, 1246 * but *not* dpm_suspend_end(). We *must* call 1247 * dpm_suspend_end() now. Otherwise, drivers for 1248 * some devices (e.g. interrupt controllers) become 1249 * desynchronized with the actual state of the 1250 * hardware at resume time, and evil weirdness ensues. 1251 */ 1252 error = dpm_suspend_end(PMSG_FREEZE); 1253 if (error) 1254 goto Resume_devices; 1255 error = suspend_disable_secondary_cpus(); 1256 if (error) 1257 goto Enable_cpus; 1258 local_irq_disable(); 1259 error = syscore_suspend(); 1260 if (error) 1261 goto Enable_irqs; 1262 } else 1263 #endif 1264 { 1265 kexec_in_progress = true; 1266 kernel_restart_prepare("kexec reboot"); 1267 migrate_to_reboot_cpu(); 1268 1269 /* 1270 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 1271 * no further code needs to use CPU hotplug (which is true in 1272 * the reboot case). However, the kexec path depends on using 1273 * CPU hotplug again; so re-enable it here. 1274 */ 1275 cpu_hotplug_enable(); 1276 pr_notice("Starting new kernel\n"); 1277 machine_shutdown(); 1278 } 1279 1280 kmsg_dump(KMSG_DUMP_SHUTDOWN); 1281 machine_kexec(kexec_image); 1282 1283 #ifdef CONFIG_KEXEC_JUMP 1284 if (kexec_image->preserve_context) { 1285 syscore_resume(); 1286 Enable_irqs: 1287 local_irq_enable(); 1288 Enable_cpus: 1289 suspend_enable_secondary_cpus(); 1290 dpm_resume_start(PMSG_RESTORE); 1291 Resume_devices: 1292 dpm_resume_end(PMSG_RESTORE); 1293 Resume_console: 1294 resume_console(); 1295 thaw_processes(); 1296 Restore_console: 1297 pm_restore_console(); 1298 } 1299 #endif 1300 1301 Unlock: 1302 kexec_unlock(); 1303 return error; 1304 } 1305