xref: /openbmc/linux/kernel/kexec_core.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec.c - kexec system call core code.
4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsname.h>
25 #include <linux/numa.h>
26 #include <linux/suspend.h>
27 #include <linux/device.h>
28 #include <linux/freezer.h>
29 #include <linux/pm.h>
30 #include <linux/cpu.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/console.h>
34 #include <linux/vmalloc.h>
35 #include <linux/swap.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/compiler.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frame.h>
40 
41 #include <asm/page.h>
42 #include <asm/sections.h>
43 
44 #include <crypto/hash.h>
45 #include <crypto/sha.h>
46 #include "kexec_internal.h"
47 
48 DEFINE_MUTEX(kexec_mutex);
49 
50 /* Per cpu memory for storing cpu states in case of system crash. */
51 note_buf_t __percpu *crash_notes;
52 
53 /* Flag to indicate we are going to kexec a new kernel */
54 bool kexec_in_progress = false;
55 
56 
57 /* Location of the reserved area for the crash kernel */
58 struct resource crashk_res = {
59 	.name  = "Crash kernel",
60 	.start = 0,
61 	.end   = 0,
62 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
63 	.desc  = IORES_DESC_CRASH_KERNEL
64 };
65 struct resource crashk_low_res = {
66 	.name  = "Crash kernel",
67 	.start = 0,
68 	.end   = 0,
69 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
70 	.desc  = IORES_DESC_CRASH_KERNEL
71 };
72 
73 int kexec_should_crash(struct task_struct *p)
74 {
75 	/*
76 	 * If crash_kexec_post_notifiers is enabled, don't run
77 	 * crash_kexec() here yet, which must be run after panic
78 	 * notifiers in panic().
79 	 */
80 	if (crash_kexec_post_notifiers)
81 		return 0;
82 	/*
83 	 * There are 4 panic() calls in do_exit() path, each of which
84 	 * corresponds to each of these 4 conditions.
85 	 */
86 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
87 		return 1;
88 	return 0;
89 }
90 
91 int kexec_crash_loaded(void)
92 {
93 	return !!kexec_crash_image;
94 }
95 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
96 
97 /*
98  * When kexec transitions to the new kernel there is a one-to-one
99  * mapping between physical and virtual addresses.  On processors
100  * where you can disable the MMU this is trivial, and easy.  For
101  * others it is still a simple predictable page table to setup.
102  *
103  * In that environment kexec copies the new kernel to its final
104  * resting place.  This means I can only support memory whose
105  * physical address can fit in an unsigned long.  In particular
106  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
107  * If the assembly stub has more restrictive requirements
108  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
109  * defined more restrictively in <asm/kexec.h>.
110  *
111  * The code for the transition from the current kernel to the
112  * the new kernel is placed in the control_code_buffer, whose size
113  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
114  * page of memory is necessary, but some architectures require more.
115  * Because this memory must be identity mapped in the transition from
116  * virtual to physical addresses it must live in the range
117  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
118  * modifiable.
119  *
120  * The assembly stub in the control code buffer is passed a linked list
121  * of descriptor pages detailing the source pages of the new kernel,
122  * and the destination addresses of those source pages.  As this data
123  * structure is not used in the context of the current OS, it must
124  * be self-contained.
125  *
126  * The code has been made to work with highmem pages and will use a
127  * destination page in its final resting place (if it happens
128  * to allocate it).  The end product of this is that most of the
129  * physical address space, and most of RAM can be used.
130  *
131  * Future directions include:
132  *  - allocating a page table with the control code buffer identity
133  *    mapped, to simplify machine_kexec and make kexec_on_panic more
134  *    reliable.
135  */
136 
137 /*
138  * KIMAGE_NO_DEST is an impossible destination address..., for
139  * allocating pages whose destination address we do not care about.
140  */
141 #define KIMAGE_NO_DEST (-1UL)
142 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
143 
144 static struct page *kimage_alloc_page(struct kimage *image,
145 				       gfp_t gfp_mask,
146 				       unsigned long dest);
147 
148 int sanity_check_segment_list(struct kimage *image)
149 {
150 	int i;
151 	unsigned long nr_segments = image->nr_segments;
152 	unsigned long total_pages = 0;
153 	unsigned long nr_pages = totalram_pages();
154 
155 	/*
156 	 * Verify we have good destination addresses.  The caller is
157 	 * responsible for making certain we don't attempt to load
158 	 * the new image into invalid or reserved areas of RAM.  This
159 	 * just verifies it is an address we can use.
160 	 *
161 	 * Since the kernel does everything in page size chunks ensure
162 	 * the destination addresses are page aligned.  Too many
163 	 * special cases crop of when we don't do this.  The most
164 	 * insidious is getting overlapping destination addresses
165 	 * simply because addresses are changed to page size
166 	 * granularity.
167 	 */
168 	for (i = 0; i < nr_segments; i++) {
169 		unsigned long mstart, mend;
170 
171 		mstart = image->segment[i].mem;
172 		mend   = mstart + image->segment[i].memsz;
173 		if (mstart > mend)
174 			return -EADDRNOTAVAIL;
175 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
176 			return -EADDRNOTAVAIL;
177 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
178 			return -EADDRNOTAVAIL;
179 	}
180 
181 	/* Verify our destination addresses do not overlap.
182 	 * If we alloed overlapping destination addresses
183 	 * through very weird things can happen with no
184 	 * easy explanation as one segment stops on another.
185 	 */
186 	for (i = 0; i < nr_segments; i++) {
187 		unsigned long mstart, mend;
188 		unsigned long j;
189 
190 		mstart = image->segment[i].mem;
191 		mend   = mstart + image->segment[i].memsz;
192 		for (j = 0; j < i; j++) {
193 			unsigned long pstart, pend;
194 
195 			pstart = image->segment[j].mem;
196 			pend   = pstart + image->segment[j].memsz;
197 			/* Do the segments overlap ? */
198 			if ((mend > pstart) && (mstart < pend))
199 				return -EINVAL;
200 		}
201 	}
202 
203 	/* Ensure our buffer sizes are strictly less than
204 	 * our memory sizes.  This should always be the case,
205 	 * and it is easier to check up front than to be surprised
206 	 * later on.
207 	 */
208 	for (i = 0; i < nr_segments; i++) {
209 		if (image->segment[i].bufsz > image->segment[i].memsz)
210 			return -EINVAL;
211 	}
212 
213 	/*
214 	 * Verify that no more than half of memory will be consumed. If the
215 	 * request from userspace is too large, a large amount of time will be
216 	 * wasted allocating pages, which can cause a soft lockup.
217 	 */
218 	for (i = 0; i < nr_segments; i++) {
219 		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
220 			return -EINVAL;
221 
222 		total_pages += PAGE_COUNT(image->segment[i].memsz);
223 	}
224 
225 	if (total_pages > nr_pages / 2)
226 		return -EINVAL;
227 
228 	/*
229 	 * Verify we have good destination addresses.  Normally
230 	 * the caller is responsible for making certain we don't
231 	 * attempt to load the new image into invalid or reserved
232 	 * areas of RAM.  But crash kernels are preloaded into a
233 	 * reserved area of ram.  We must ensure the addresses
234 	 * are in the reserved area otherwise preloading the
235 	 * kernel could corrupt things.
236 	 */
237 
238 	if (image->type == KEXEC_TYPE_CRASH) {
239 		for (i = 0; i < nr_segments; i++) {
240 			unsigned long mstart, mend;
241 
242 			mstart = image->segment[i].mem;
243 			mend = mstart + image->segment[i].memsz - 1;
244 			/* Ensure we are within the crash kernel limits */
245 			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
246 			    (mend > phys_to_boot_phys(crashk_res.end)))
247 				return -EADDRNOTAVAIL;
248 		}
249 	}
250 
251 	return 0;
252 }
253 
254 struct kimage *do_kimage_alloc_init(void)
255 {
256 	struct kimage *image;
257 
258 	/* Allocate a controlling structure */
259 	image = kzalloc(sizeof(*image), GFP_KERNEL);
260 	if (!image)
261 		return NULL;
262 
263 	image->head = 0;
264 	image->entry = &image->head;
265 	image->last_entry = &image->head;
266 	image->control_page = ~0; /* By default this does not apply */
267 	image->type = KEXEC_TYPE_DEFAULT;
268 
269 	/* Initialize the list of control pages */
270 	INIT_LIST_HEAD(&image->control_pages);
271 
272 	/* Initialize the list of destination pages */
273 	INIT_LIST_HEAD(&image->dest_pages);
274 
275 	/* Initialize the list of unusable pages */
276 	INIT_LIST_HEAD(&image->unusable_pages);
277 
278 	return image;
279 }
280 
281 int kimage_is_destination_range(struct kimage *image,
282 					unsigned long start,
283 					unsigned long end)
284 {
285 	unsigned long i;
286 
287 	for (i = 0; i < image->nr_segments; i++) {
288 		unsigned long mstart, mend;
289 
290 		mstart = image->segment[i].mem;
291 		mend = mstart + image->segment[i].memsz;
292 		if ((end > mstart) && (start < mend))
293 			return 1;
294 	}
295 
296 	return 0;
297 }
298 
299 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
300 {
301 	struct page *pages;
302 
303 	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
304 	if (pages) {
305 		unsigned int count, i;
306 
307 		pages->mapping = NULL;
308 		set_page_private(pages, order);
309 		count = 1 << order;
310 		for (i = 0; i < count; i++)
311 			SetPageReserved(pages + i);
312 
313 		arch_kexec_post_alloc_pages(page_address(pages), count,
314 					    gfp_mask);
315 
316 		if (gfp_mask & __GFP_ZERO)
317 			for (i = 0; i < count; i++)
318 				clear_highpage(pages + i);
319 	}
320 
321 	return pages;
322 }
323 
324 static void kimage_free_pages(struct page *page)
325 {
326 	unsigned int order, count, i;
327 
328 	order = page_private(page);
329 	count = 1 << order;
330 
331 	arch_kexec_pre_free_pages(page_address(page), count);
332 
333 	for (i = 0; i < count; i++)
334 		ClearPageReserved(page + i);
335 	__free_pages(page, order);
336 }
337 
338 void kimage_free_page_list(struct list_head *list)
339 {
340 	struct page *page, *next;
341 
342 	list_for_each_entry_safe(page, next, list, lru) {
343 		list_del(&page->lru);
344 		kimage_free_pages(page);
345 	}
346 }
347 
348 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
349 							unsigned int order)
350 {
351 	/* Control pages are special, they are the intermediaries
352 	 * that are needed while we copy the rest of the pages
353 	 * to their final resting place.  As such they must
354 	 * not conflict with either the destination addresses
355 	 * or memory the kernel is already using.
356 	 *
357 	 * The only case where we really need more than one of
358 	 * these are for architectures where we cannot disable
359 	 * the MMU and must instead generate an identity mapped
360 	 * page table for all of the memory.
361 	 *
362 	 * At worst this runs in O(N) of the image size.
363 	 */
364 	struct list_head extra_pages;
365 	struct page *pages;
366 	unsigned int count;
367 
368 	count = 1 << order;
369 	INIT_LIST_HEAD(&extra_pages);
370 
371 	/* Loop while I can allocate a page and the page allocated
372 	 * is a destination page.
373 	 */
374 	do {
375 		unsigned long pfn, epfn, addr, eaddr;
376 
377 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
378 		if (!pages)
379 			break;
380 		pfn   = page_to_boot_pfn(pages);
381 		epfn  = pfn + count;
382 		addr  = pfn << PAGE_SHIFT;
383 		eaddr = epfn << PAGE_SHIFT;
384 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
385 			      kimage_is_destination_range(image, addr, eaddr)) {
386 			list_add(&pages->lru, &extra_pages);
387 			pages = NULL;
388 		}
389 	} while (!pages);
390 
391 	if (pages) {
392 		/* Remember the allocated page... */
393 		list_add(&pages->lru, &image->control_pages);
394 
395 		/* Because the page is already in it's destination
396 		 * location we will never allocate another page at
397 		 * that address.  Therefore kimage_alloc_pages
398 		 * will not return it (again) and we don't need
399 		 * to give it an entry in image->segment[].
400 		 */
401 	}
402 	/* Deal with the destination pages I have inadvertently allocated.
403 	 *
404 	 * Ideally I would convert multi-page allocations into single
405 	 * page allocations, and add everything to image->dest_pages.
406 	 *
407 	 * For now it is simpler to just free the pages.
408 	 */
409 	kimage_free_page_list(&extra_pages);
410 
411 	return pages;
412 }
413 
414 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
415 						      unsigned int order)
416 {
417 	/* Control pages are special, they are the intermediaries
418 	 * that are needed while we copy the rest of the pages
419 	 * to their final resting place.  As such they must
420 	 * not conflict with either the destination addresses
421 	 * or memory the kernel is already using.
422 	 *
423 	 * Control pages are also the only pags we must allocate
424 	 * when loading a crash kernel.  All of the other pages
425 	 * are specified by the segments and we just memcpy
426 	 * into them directly.
427 	 *
428 	 * The only case where we really need more than one of
429 	 * these are for architectures where we cannot disable
430 	 * the MMU and must instead generate an identity mapped
431 	 * page table for all of the memory.
432 	 *
433 	 * Given the low demand this implements a very simple
434 	 * allocator that finds the first hole of the appropriate
435 	 * size in the reserved memory region, and allocates all
436 	 * of the memory up to and including the hole.
437 	 */
438 	unsigned long hole_start, hole_end, size;
439 	struct page *pages;
440 
441 	pages = NULL;
442 	size = (1 << order) << PAGE_SHIFT;
443 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
444 	hole_end   = hole_start + size - 1;
445 	while (hole_end <= crashk_res.end) {
446 		unsigned long i;
447 
448 		cond_resched();
449 
450 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
451 			break;
452 		/* See if I overlap any of the segments */
453 		for (i = 0; i < image->nr_segments; i++) {
454 			unsigned long mstart, mend;
455 
456 			mstart = image->segment[i].mem;
457 			mend   = mstart + image->segment[i].memsz - 1;
458 			if ((hole_end >= mstart) && (hole_start <= mend)) {
459 				/* Advance the hole to the end of the segment */
460 				hole_start = (mend + (size - 1)) & ~(size - 1);
461 				hole_end   = hole_start + size - 1;
462 				break;
463 			}
464 		}
465 		/* If I don't overlap any segments I have found my hole! */
466 		if (i == image->nr_segments) {
467 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
468 			image->control_page = hole_end;
469 			break;
470 		}
471 	}
472 
473 	/* Ensure that these pages are decrypted if SME is enabled. */
474 	if (pages)
475 		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
476 
477 	return pages;
478 }
479 
480 
481 struct page *kimage_alloc_control_pages(struct kimage *image,
482 					 unsigned int order)
483 {
484 	struct page *pages = NULL;
485 
486 	switch (image->type) {
487 	case KEXEC_TYPE_DEFAULT:
488 		pages = kimage_alloc_normal_control_pages(image, order);
489 		break;
490 	case KEXEC_TYPE_CRASH:
491 		pages = kimage_alloc_crash_control_pages(image, order);
492 		break;
493 	}
494 
495 	return pages;
496 }
497 
498 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
499 {
500 	struct page *vmcoreinfo_page;
501 	void *safecopy;
502 
503 	if (image->type != KEXEC_TYPE_CRASH)
504 		return 0;
505 
506 	/*
507 	 * For kdump, allocate one vmcoreinfo safe copy from the
508 	 * crash memory. as we have arch_kexec_protect_crashkres()
509 	 * after kexec syscall, we naturally protect it from write
510 	 * (even read) access under kernel direct mapping. But on
511 	 * the other hand, we still need to operate it when crash
512 	 * happens to generate vmcoreinfo note, hereby we rely on
513 	 * vmap for this purpose.
514 	 */
515 	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
516 	if (!vmcoreinfo_page) {
517 		pr_warn("Could not allocate vmcoreinfo buffer\n");
518 		return -ENOMEM;
519 	}
520 	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
521 	if (!safecopy) {
522 		pr_warn("Could not vmap vmcoreinfo buffer\n");
523 		return -ENOMEM;
524 	}
525 
526 	image->vmcoreinfo_data_copy = safecopy;
527 	crash_update_vmcoreinfo_safecopy(safecopy);
528 
529 	return 0;
530 }
531 
532 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
533 {
534 	if (*image->entry != 0)
535 		image->entry++;
536 
537 	if (image->entry == image->last_entry) {
538 		kimage_entry_t *ind_page;
539 		struct page *page;
540 
541 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
542 		if (!page)
543 			return -ENOMEM;
544 
545 		ind_page = page_address(page);
546 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
547 		image->entry = ind_page;
548 		image->last_entry = ind_page +
549 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
550 	}
551 	*image->entry = entry;
552 	image->entry++;
553 	*image->entry = 0;
554 
555 	return 0;
556 }
557 
558 static int kimage_set_destination(struct kimage *image,
559 				   unsigned long destination)
560 {
561 	int result;
562 
563 	destination &= PAGE_MASK;
564 	result = kimage_add_entry(image, destination | IND_DESTINATION);
565 
566 	return result;
567 }
568 
569 
570 static int kimage_add_page(struct kimage *image, unsigned long page)
571 {
572 	int result;
573 
574 	page &= PAGE_MASK;
575 	result = kimage_add_entry(image, page | IND_SOURCE);
576 
577 	return result;
578 }
579 
580 
581 static void kimage_free_extra_pages(struct kimage *image)
582 {
583 	/* Walk through and free any extra destination pages I may have */
584 	kimage_free_page_list(&image->dest_pages);
585 
586 	/* Walk through and free any unusable pages I have cached */
587 	kimage_free_page_list(&image->unusable_pages);
588 
589 }
590 void kimage_terminate(struct kimage *image)
591 {
592 	if (*image->entry != 0)
593 		image->entry++;
594 
595 	*image->entry = IND_DONE;
596 }
597 
598 #define for_each_kimage_entry(image, ptr, entry) \
599 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
600 		ptr = (entry & IND_INDIRECTION) ? \
601 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
602 
603 static void kimage_free_entry(kimage_entry_t entry)
604 {
605 	struct page *page;
606 
607 	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
608 	kimage_free_pages(page);
609 }
610 
611 void kimage_free(struct kimage *image)
612 {
613 	kimage_entry_t *ptr, entry;
614 	kimage_entry_t ind = 0;
615 
616 	if (!image)
617 		return;
618 
619 	if (image->vmcoreinfo_data_copy) {
620 		crash_update_vmcoreinfo_safecopy(NULL);
621 		vunmap(image->vmcoreinfo_data_copy);
622 	}
623 
624 	kimage_free_extra_pages(image);
625 	for_each_kimage_entry(image, ptr, entry) {
626 		if (entry & IND_INDIRECTION) {
627 			/* Free the previous indirection page */
628 			if (ind & IND_INDIRECTION)
629 				kimage_free_entry(ind);
630 			/* Save this indirection page until we are
631 			 * done with it.
632 			 */
633 			ind = entry;
634 		} else if (entry & IND_SOURCE)
635 			kimage_free_entry(entry);
636 	}
637 	/* Free the final indirection page */
638 	if (ind & IND_INDIRECTION)
639 		kimage_free_entry(ind);
640 
641 	/* Handle any machine specific cleanup */
642 	machine_kexec_cleanup(image);
643 
644 	/* Free the kexec control pages... */
645 	kimage_free_page_list(&image->control_pages);
646 
647 	/*
648 	 * Free up any temporary buffers allocated. This might hit if
649 	 * error occurred much later after buffer allocation.
650 	 */
651 	if (image->file_mode)
652 		kimage_file_post_load_cleanup(image);
653 
654 	kfree(image);
655 }
656 
657 static kimage_entry_t *kimage_dst_used(struct kimage *image,
658 					unsigned long page)
659 {
660 	kimage_entry_t *ptr, entry;
661 	unsigned long destination = 0;
662 
663 	for_each_kimage_entry(image, ptr, entry) {
664 		if (entry & IND_DESTINATION)
665 			destination = entry & PAGE_MASK;
666 		else if (entry & IND_SOURCE) {
667 			if (page == destination)
668 				return ptr;
669 			destination += PAGE_SIZE;
670 		}
671 	}
672 
673 	return NULL;
674 }
675 
676 static struct page *kimage_alloc_page(struct kimage *image,
677 					gfp_t gfp_mask,
678 					unsigned long destination)
679 {
680 	/*
681 	 * Here we implement safeguards to ensure that a source page
682 	 * is not copied to its destination page before the data on
683 	 * the destination page is no longer useful.
684 	 *
685 	 * To do this we maintain the invariant that a source page is
686 	 * either its own destination page, or it is not a
687 	 * destination page at all.
688 	 *
689 	 * That is slightly stronger than required, but the proof
690 	 * that no problems will not occur is trivial, and the
691 	 * implementation is simply to verify.
692 	 *
693 	 * When allocating all pages normally this algorithm will run
694 	 * in O(N) time, but in the worst case it will run in O(N^2)
695 	 * time.   If the runtime is a problem the data structures can
696 	 * be fixed.
697 	 */
698 	struct page *page;
699 	unsigned long addr;
700 
701 	/*
702 	 * Walk through the list of destination pages, and see if I
703 	 * have a match.
704 	 */
705 	list_for_each_entry(page, &image->dest_pages, lru) {
706 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
707 		if (addr == destination) {
708 			list_del(&page->lru);
709 			return page;
710 		}
711 	}
712 	page = NULL;
713 	while (1) {
714 		kimage_entry_t *old;
715 
716 		/* Allocate a page, if we run out of memory give up */
717 		page = kimage_alloc_pages(gfp_mask, 0);
718 		if (!page)
719 			return NULL;
720 		/* If the page cannot be used file it away */
721 		if (page_to_boot_pfn(page) >
722 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
723 			list_add(&page->lru, &image->unusable_pages);
724 			continue;
725 		}
726 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
727 
728 		/* If it is the destination page we want use it */
729 		if (addr == destination)
730 			break;
731 
732 		/* If the page is not a destination page use it */
733 		if (!kimage_is_destination_range(image, addr,
734 						  addr + PAGE_SIZE))
735 			break;
736 
737 		/*
738 		 * I know that the page is someones destination page.
739 		 * See if there is already a source page for this
740 		 * destination page.  And if so swap the source pages.
741 		 */
742 		old = kimage_dst_used(image, addr);
743 		if (old) {
744 			/* If so move it */
745 			unsigned long old_addr;
746 			struct page *old_page;
747 
748 			old_addr = *old & PAGE_MASK;
749 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
750 			copy_highpage(page, old_page);
751 			*old = addr | (*old & ~PAGE_MASK);
752 
753 			/* The old page I have found cannot be a
754 			 * destination page, so return it if it's
755 			 * gfp_flags honor the ones passed in.
756 			 */
757 			if (!(gfp_mask & __GFP_HIGHMEM) &&
758 			    PageHighMem(old_page)) {
759 				kimage_free_pages(old_page);
760 				continue;
761 			}
762 			addr = old_addr;
763 			page = old_page;
764 			break;
765 		}
766 		/* Place the page on the destination list, to be used later */
767 		list_add(&page->lru, &image->dest_pages);
768 	}
769 
770 	return page;
771 }
772 
773 static int kimage_load_normal_segment(struct kimage *image,
774 					 struct kexec_segment *segment)
775 {
776 	unsigned long maddr;
777 	size_t ubytes, mbytes;
778 	int result;
779 	unsigned char __user *buf = NULL;
780 	unsigned char *kbuf = NULL;
781 
782 	result = 0;
783 	if (image->file_mode)
784 		kbuf = segment->kbuf;
785 	else
786 		buf = segment->buf;
787 	ubytes = segment->bufsz;
788 	mbytes = segment->memsz;
789 	maddr = segment->mem;
790 
791 	result = kimage_set_destination(image, maddr);
792 	if (result < 0)
793 		goto out;
794 
795 	while (mbytes) {
796 		struct page *page;
797 		char *ptr;
798 		size_t uchunk, mchunk;
799 
800 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
801 		if (!page) {
802 			result  = -ENOMEM;
803 			goto out;
804 		}
805 		result = kimage_add_page(image, page_to_boot_pfn(page)
806 								<< PAGE_SHIFT);
807 		if (result < 0)
808 			goto out;
809 
810 		ptr = kmap(page);
811 		/* Start with a clear page */
812 		clear_page(ptr);
813 		ptr += maddr & ~PAGE_MASK;
814 		mchunk = min_t(size_t, mbytes,
815 				PAGE_SIZE - (maddr & ~PAGE_MASK));
816 		uchunk = min(ubytes, mchunk);
817 
818 		/* For file based kexec, source pages are in kernel memory */
819 		if (image->file_mode)
820 			memcpy(ptr, kbuf, uchunk);
821 		else
822 			result = copy_from_user(ptr, buf, uchunk);
823 		kunmap(page);
824 		if (result) {
825 			result = -EFAULT;
826 			goto out;
827 		}
828 		ubytes -= uchunk;
829 		maddr  += mchunk;
830 		if (image->file_mode)
831 			kbuf += mchunk;
832 		else
833 			buf += mchunk;
834 		mbytes -= mchunk;
835 
836 		cond_resched();
837 	}
838 out:
839 	return result;
840 }
841 
842 static int kimage_load_crash_segment(struct kimage *image,
843 					struct kexec_segment *segment)
844 {
845 	/* For crash dumps kernels we simply copy the data from
846 	 * user space to it's destination.
847 	 * We do things a page at a time for the sake of kmap.
848 	 */
849 	unsigned long maddr;
850 	size_t ubytes, mbytes;
851 	int result;
852 	unsigned char __user *buf = NULL;
853 	unsigned char *kbuf = NULL;
854 
855 	result = 0;
856 	if (image->file_mode)
857 		kbuf = segment->kbuf;
858 	else
859 		buf = segment->buf;
860 	ubytes = segment->bufsz;
861 	mbytes = segment->memsz;
862 	maddr = segment->mem;
863 	while (mbytes) {
864 		struct page *page;
865 		char *ptr;
866 		size_t uchunk, mchunk;
867 
868 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
869 		if (!page) {
870 			result  = -ENOMEM;
871 			goto out;
872 		}
873 		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
874 		ptr = kmap(page);
875 		ptr += maddr & ~PAGE_MASK;
876 		mchunk = min_t(size_t, mbytes,
877 				PAGE_SIZE - (maddr & ~PAGE_MASK));
878 		uchunk = min(ubytes, mchunk);
879 		if (mchunk > uchunk) {
880 			/* Zero the trailing part of the page */
881 			memset(ptr + uchunk, 0, mchunk - uchunk);
882 		}
883 
884 		/* For file based kexec, source pages are in kernel memory */
885 		if (image->file_mode)
886 			memcpy(ptr, kbuf, uchunk);
887 		else
888 			result = copy_from_user(ptr, buf, uchunk);
889 		kexec_flush_icache_page(page);
890 		kunmap(page);
891 		arch_kexec_pre_free_pages(page_address(page), 1);
892 		if (result) {
893 			result = -EFAULT;
894 			goto out;
895 		}
896 		ubytes -= uchunk;
897 		maddr  += mchunk;
898 		if (image->file_mode)
899 			kbuf += mchunk;
900 		else
901 			buf += mchunk;
902 		mbytes -= mchunk;
903 
904 		cond_resched();
905 	}
906 out:
907 	return result;
908 }
909 
910 int kimage_load_segment(struct kimage *image,
911 				struct kexec_segment *segment)
912 {
913 	int result = -ENOMEM;
914 
915 	switch (image->type) {
916 	case KEXEC_TYPE_DEFAULT:
917 		result = kimage_load_normal_segment(image, segment);
918 		break;
919 	case KEXEC_TYPE_CRASH:
920 		result = kimage_load_crash_segment(image, segment);
921 		break;
922 	}
923 
924 	return result;
925 }
926 
927 struct kimage *kexec_image;
928 struct kimage *kexec_crash_image;
929 int kexec_load_disabled;
930 
931 /*
932  * No panic_cpu check version of crash_kexec().  This function is called
933  * only when panic_cpu holds the current CPU number; this is the only CPU
934  * which processes crash_kexec routines.
935  */
936 void __noclone __crash_kexec(struct pt_regs *regs)
937 {
938 	/* Take the kexec_mutex here to prevent sys_kexec_load
939 	 * running on one cpu from replacing the crash kernel
940 	 * we are using after a panic on a different cpu.
941 	 *
942 	 * If the crash kernel was not located in a fixed area
943 	 * of memory the xchg(&kexec_crash_image) would be
944 	 * sufficient.  But since I reuse the memory...
945 	 */
946 	if (mutex_trylock(&kexec_mutex)) {
947 		if (kexec_crash_image) {
948 			struct pt_regs fixed_regs;
949 
950 			crash_setup_regs(&fixed_regs, regs);
951 			crash_save_vmcoreinfo();
952 			machine_crash_shutdown(&fixed_regs);
953 			machine_kexec(kexec_crash_image);
954 		}
955 		mutex_unlock(&kexec_mutex);
956 	}
957 }
958 STACK_FRAME_NON_STANDARD(__crash_kexec);
959 
960 void crash_kexec(struct pt_regs *regs)
961 {
962 	int old_cpu, this_cpu;
963 
964 	/*
965 	 * Only one CPU is allowed to execute the crash_kexec() code as with
966 	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
967 	 * may stop each other.  To exclude them, we use panic_cpu here too.
968 	 */
969 	this_cpu = raw_smp_processor_id();
970 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
971 	if (old_cpu == PANIC_CPU_INVALID) {
972 		/* This is the 1st CPU which comes here, so go ahead. */
973 		printk_safe_flush_on_panic();
974 		__crash_kexec(regs);
975 
976 		/*
977 		 * Reset panic_cpu to allow another panic()/crash_kexec()
978 		 * call.
979 		 */
980 		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
981 	}
982 }
983 
984 size_t crash_get_memory_size(void)
985 {
986 	size_t size = 0;
987 
988 	mutex_lock(&kexec_mutex);
989 	if (crashk_res.end != crashk_res.start)
990 		size = resource_size(&crashk_res);
991 	mutex_unlock(&kexec_mutex);
992 	return size;
993 }
994 
995 void __weak crash_free_reserved_phys_range(unsigned long begin,
996 					   unsigned long end)
997 {
998 	unsigned long addr;
999 
1000 	for (addr = begin; addr < end; addr += PAGE_SIZE)
1001 		free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
1002 }
1003 
1004 int crash_shrink_memory(unsigned long new_size)
1005 {
1006 	int ret = 0;
1007 	unsigned long start, end;
1008 	unsigned long old_size;
1009 	struct resource *ram_res;
1010 
1011 	mutex_lock(&kexec_mutex);
1012 
1013 	if (kexec_crash_image) {
1014 		ret = -ENOENT;
1015 		goto unlock;
1016 	}
1017 	start = crashk_res.start;
1018 	end = crashk_res.end;
1019 	old_size = (end == 0) ? 0 : end - start + 1;
1020 	if (new_size >= old_size) {
1021 		ret = (new_size == old_size) ? 0 : -EINVAL;
1022 		goto unlock;
1023 	}
1024 
1025 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1026 	if (!ram_res) {
1027 		ret = -ENOMEM;
1028 		goto unlock;
1029 	}
1030 
1031 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1032 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1033 
1034 	crash_free_reserved_phys_range(end, crashk_res.end);
1035 
1036 	if ((start == end) && (crashk_res.parent != NULL))
1037 		release_resource(&crashk_res);
1038 
1039 	ram_res->start = end;
1040 	ram_res->end = crashk_res.end;
1041 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1042 	ram_res->name = "System RAM";
1043 
1044 	crashk_res.end = end - 1;
1045 
1046 	insert_resource(&iomem_resource, ram_res);
1047 
1048 unlock:
1049 	mutex_unlock(&kexec_mutex);
1050 	return ret;
1051 }
1052 
1053 void crash_save_cpu(struct pt_regs *regs, int cpu)
1054 {
1055 	struct elf_prstatus prstatus;
1056 	u32 *buf;
1057 
1058 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1059 		return;
1060 
1061 	/* Using ELF notes here is opportunistic.
1062 	 * I need a well defined structure format
1063 	 * for the data I pass, and I need tags
1064 	 * on the data to indicate what information I have
1065 	 * squirrelled away.  ELF notes happen to provide
1066 	 * all of that, so there is no need to invent something new.
1067 	 */
1068 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1069 	if (!buf)
1070 		return;
1071 	memset(&prstatus, 0, sizeof(prstatus));
1072 	prstatus.pr_pid = current->pid;
1073 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1074 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1075 			      &prstatus, sizeof(prstatus));
1076 	final_note(buf);
1077 }
1078 
1079 static int __init crash_notes_memory_init(void)
1080 {
1081 	/* Allocate memory for saving cpu registers. */
1082 	size_t size, align;
1083 
1084 	/*
1085 	 * crash_notes could be allocated across 2 vmalloc pages when percpu
1086 	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1087 	 * pages are also on 2 continuous physical pages. In this case the
1088 	 * 2nd part of crash_notes in 2nd page could be lost since only the
1089 	 * starting address and size of crash_notes are exported through sysfs.
1090 	 * Here round up the size of crash_notes to the nearest power of two
1091 	 * and pass it to __alloc_percpu as align value. This can make sure
1092 	 * crash_notes is allocated inside one physical page.
1093 	 */
1094 	size = sizeof(note_buf_t);
1095 	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1096 
1097 	/*
1098 	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1099 	 * definitely will be in 2 pages with that.
1100 	 */
1101 	BUILD_BUG_ON(size > PAGE_SIZE);
1102 
1103 	crash_notes = __alloc_percpu(size, align);
1104 	if (!crash_notes) {
1105 		pr_warn("Memory allocation for saving cpu register states failed\n");
1106 		return -ENOMEM;
1107 	}
1108 	return 0;
1109 }
1110 subsys_initcall(crash_notes_memory_init);
1111 
1112 
1113 /*
1114  * Move into place and start executing a preloaded standalone
1115  * executable.  If nothing was preloaded return an error.
1116  */
1117 int kernel_kexec(void)
1118 {
1119 	int error = 0;
1120 
1121 	if (!mutex_trylock(&kexec_mutex))
1122 		return -EBUSY;
1123 	if (!kexec_image) {
1124 		error = -EINVAL;
1125 		goto Unlock;
1126 	}
1127 
1128 #ifdef CONFIG_KEXEC_JUMP
1129 	if (kexec_image->preserve_context) {
1130 		lock_system_sleep();
1131 		pm_prepare_console();
1132 		error = freeze_processes();
1133 		if (error) {
1134 			error = -EBUSY;
1135 			goto Restore_console;
1136 		}
1137 		suspend_console();
1138 		error = dpm_suspend_start(PMSG_FREEZE);
1139 		if (error)
1140 			goto Resume_console;
1141 		/* At this point, dpm_suspend_start() has been called,
1142 		 * but *not* dpm_suspend_end(). We *must* call
1143 		 * dpm_suspend_end() now.  Otherwise, drivers for
1144 		 * some devices (e.g. interrupt controllers) become
1145 		 * desynchronized with the actual state of the
1146 		 * hardware at resume time, and evil weirdness ensues.
1147 		 */
1148 		error = dpm_suspend_end(PMSG_FREEZE);
1149 		if (error)
1150 			goto Resume_devices;
1151 		error = suspend_disable_secondary_cpus();
1152 		if (error)
1153 			goto Enable_cpus;
1154 		local_irq_disable();
1155 		error = syscore_suspend();
1156 		if (error)
1157 			goto Enable_irqs;
1158 	} else
1159 #endif
1160 	{
1161 		kexec_in_progress = true;
1162 		kernel_restart_prepare(NULL);
1163 		migrate_to_reboot_cpu();
1164 
1165 		/*
1166 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1167 		 * no further code needs to use CPU hotplug (which is true in
1168 		 * the reboot case). However, the kexec path depends on using
1169 		 * CPU hotplug again; so re-enable it here.
1170 		 */
1171 		cpu_hotplug_enable();
1172 		pr_emerg("Starting new kernel\n");
1173 		machine_shutdown();
1174 	}
1175 
1176 	machine_kexec(kexec_image);
1177 
1178 #ifdef CONFIG_KEXEC_JUMP
1179 	if (kexec_image->preserve_context) {
1180 		syscore_resume();
1181  Enable_irqs:
1182 		local_irq_enable();
1183  Enable_cpus:
1184 		suspend_enable_secondary_cpus();
1185 		dpm_resume_start(PMSG_RESTORE);
1186  Resume_devices:
1187 		dpm_resume_end(PMSG_RESTORE);
1188  Resume_console:
1189 		resume_console();
1190 		thaw_processes();
1191  Restore_console:
1192 		pm_restore_console();
1193 		unlock_system_sleep();
1194 	}
1195 #endif
1196 
1197  Unlock:
1198 	mutex_unlock(&kexec_mutex);
1199 	return error;
1200 }
1201 
1202 /*
1203  * Protection mechanism for crashkernel reserved memory after
1204  * the kdump kernel is loaded.
1205  *
1206  * Provide an empty default implementation here -- architecture
1207  * code may override this
1208  */
1209 void __weak arch_kexec_protect_crashkres(void)
1210 {}
1211 
1212 void __weak arch_kexec_unprotect_crashkres(void)
1213 {}
1214