xref: /openbmc/linux/include/linux/usb.h (revision 110e6f26)
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6 
7 #define USB_MAJOR			180
8 #define USB_DEVICE_MAJOR		189
9 
10 
11 #ifdef __KERNEL__
12 
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>	/* for mdelay() */
15 #include <linux/interrupt.h>	/* for in_interrupt() */
16 #include <linux/list.h>		/* for struct list_head */
17 #include <linux/kref.h>		/* for struct kref */
18 #include <linux/device.h>	/* for struct device */
19 #include <linux/fs.h>		/* for struct file_operations */
20 #include <linux/completion.h>	/* for struct completion */
21 #include <linux/sched.h>	/* for current && schedule_timeout */
22 #include <linux/mutex.h>	/* for struct mutex */
23 #include <linux/pm_runtime.h>	/* for runtime PM */
24 
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28 
29 /*-------------------------------------------------------------------------*/
30 
31 /*
32  * Host-side wrappers for standard USB descriptors ... these are parsed
33  * from the data provided by devices.  Parsing turns them from a flat
34  * sequence of descriptors into a hierarchy:
35  *
36  *  - devices have one (usually) or more configs;
37  *  - configs have one (often) or more interfaces;
38  *  - interfaces have one (usually) or more settings;
39  *  - each interface setting has zero or (usually) more endpoints.
40  *  - a SuperSpeed endpoint has a companion descriptor
41  *
42  * And there might be other descriptors mixed in with those.
43  *
44  * Devices may also have class-specific or vendor-specific descriptors.
45  */
46 
47 struct ep_device;
48 
49 /**
50  * struct usb_host_endpoint - host-side endpoint descriptor and queue
51  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53  * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
54  * @urb_list: urbs queued to this endpoint; maintained by usbcore
55  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
56  *	with one or more transfer descriptors (TDs) per urb
57  * @ep_dev: ep_device for sysfs info
58  * @extra: descriptors following this endpoint in the configuration
59  * @extralen: how many bytes of "extra" are valid
60  * @enabled: URBs may be submitted to this endpoint
61  * @streams: number of USB-3 streams allocated on the endpoint
62  *
63  * USB requests are always queued to a given endpoint, identified by a
64  * descriptor within an active interface in a given USB configuration.
65  */
66 struct usb_host_endpoint {
67 	struct usb_endpoint_descriptor		desc;
68 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
69 	struct usb_ssp_isoc_ep_comp_descriptor	ssp_isoc_ep_comp;
70 	struct list_head		urb_list;
71 	void				*hcpriv;
72 	struct ep_device		*ep_dev;	/* For sysfs info */
73 
74 	unsigned char *extra;   /* Extra descriptors */
75 	int extralen;
76 	int enabled;
77 	int streams;
78 };
79 
80 /* host-side wrapper for one interface setting's parsed descriptors */
81 struct usb_host_interface {
82 	struct usb_interface_descriptor	desc;
83 
84 	int extralen;
85 	unsigned char *extra;   /* Extra descriptors */
86 
87 	/* array of desc.bNumEndpoints endpoints associated with this
88 	 * interface setting.  these will be in no particular order.
89 	 */
90 	struct usb_host_endpoint *endpoint;
91 
92 	char *string;		/* iInterface string, if present */
93 };
94 
95 enum usb_interface_condition {
96 	USB_INTERFACE_UNBOUND = 0,
97 	USB_INTERFACE_BINDING,
98 	USB_INTERFACE_BOUND,
99 	USB_INTERFACE_UNBINDING,
100 };
101 
102 /**
103  * struct usb_interface - what usb device drivers talk to
104  * @altsetting: array of interface structures, one for each alternate
105  *	setting that may be selected.  Each one includes a set of
106  *	endpoint configurations.  They will be in no particular order.
107  * @cur_altsetting: the current altsetting.
108  * @num_altsetting: number of altsettings defined.
109  * @intf_assoc: interface association descriptor
110  * @minor: the minor number assigned to this interface, if this
111  *	interface is bound to a driver that uses the USB major number.
112  *	If this interface does not use the USB major, this field should
113  *	be unused.  The driver should set this value in the probe()
114  *	function of the driver, after it has been assigned a minor
115  *	number from the USB core by calling usb_register_dev().
116  * @condition: binding state of the interface: not bound, binding
117  *	(in probe()), bound to a driver, or unbinding (in disconnect())
118  * @sysfs_files_created: sysfs attributes exist
119  * @ep_devs_created: endpoint child pseudo-devices exist
120  * @unregistering: flag set when the interface is being unregistered
121  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
122  *	capability during autosuspend.
123  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
124  *	has been deferred.
125  * @needs_binding: flag set when the driver should be re-probed or unbound
126  *	following a reset or suspend operation it doesn't support.
127  * @authorized: This allows to (de)authorize individual interfaces instead
128  *	a whole device in contrast to the device authorization.
129  * @dev: driver model's view of this device
130  * @usb_dev: if an interface is bound to the USB major, this will point
131  *	to the sysfs representation for that device.
132  * @pm_usage_cnt: PM usage counter for this interface
133  * @reset_ws: Used for scheduling resets from atomic context.
134  * @resetting_device: USB core reset the device, so use alt setting 0 as
135  *	current; needs bandwidth alloc after reset.
136  *
137  * USB device drivers attach to interfaces on a physical device.  Each
138  * interface encapsulates a single high level function, such as feeding
139  * an audio stream to a speaker or reporting a change in a volume control.
140  * Many USB devices only have one interface.  The protocol used to talk to
141  * an interface's endpoints can be defined in a usb "class" specification,
142  * or by a product's vendor.  The (default) control endpoint is part of
143  * every interface, but is never listed among the interface's descriptors.
144  *
145  * The driver that is bound to the interface can use standard driver model
146  * calls such as dev_get_drvdata() on the dev member of this structure.
147  *
148  * Each interface may have alternate settings.  The initial configuration
149  * of a device sets altsetting 0, but the device driver can change
150  * that setting using usb_set_interface().  Alternate settings are often
151  * used to control the use of periodic endpoints, such as by having
152  * different endpoints use different amounts of reserved USB bandwidth.
153  * All standards-conformant USB devices that use isochronous endpoints
154  * will use them in non-default settings.
155  *
156  * The USB specification says that alternate setting numbers must run from
157  * 0 to one less than the total number of alternate settings.  But some
158  * devices manage to mess this up, and the structures aren't necessarily
159  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
160  * look up an alternate setting in the altsetting array based on its number.
161  */
162 struct usb_interface {
163 	/* array of alternate settings for this interface,
164 	 * stored in no particular order */
165 	struct usb_host_interface *altsetting;
166 
167 	struct usb_host_interface *cur_altsetting;	/* the currently
168 					 * active alternate setting */
169 	unsigned num_altsetting;	/* number of alternate settings */
170 
171 	/* If there is an interface association descriptor then it will list
172 	 * the associated interfaces */
173 	struct usb_interface_assoc_descriptor *intf_assoc;
174 
175 	int minor;			/* minor number this interface is
176 					 * bound to */
177 	enum usb_interface_condition condition;		/* state of binding */
178 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
179 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
180 	unsigned unregistering:1;	/* unregistration is in progress */
181 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
182 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
183 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
184 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
185 	unsigned authorized:1;		/* used for interface authorization */
186 
187 	struct device dev;		/* interface specific device info */
188 	struct device *usb_dev;
189 	atomic_t pm_usage_cnt;		/* usage counter for autosuspend */
190 	struct work_struct reset_ws;	/* for resets in atomic context */
191 };
192 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
193 
194 static inline void *usb_get_intfdata(struct usb_interface *intf)
195 {
196 	return dev_get_drvdata(&intf->dev);
197 }
198 
199 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
200 {
201 	dev_set_drvdata(&intf->dev, data);
202 }
203 
204 struct usb_interface *usb_get_intf(struct usb_interface *intf);
205 void usb_put_intf(struct usb_interface *intf);
206 
207 /* Hard limit */
208 #define USB_MAXENDPOINTS	30
209 /* this maximum is arbitrary */
210 #define USB_MAXINTERFACES	32
211 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
212 
213 /*
214  * USB Resume Timer: Every Host controller driver should drive the resume
215  * signalling on the bus for the amount of time defined by this macro.
216  *
217  * That way we will have a 'stable' behavior among all HCDs supported by Linux.
218  *
219  * Note that the USB Specification states we should drive resume for *at least*
220  * 20 ms, but it doesn't give an upper bound. This creates two possible
221  * situations which we want to avoid:
222  *
223  * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
224  * us to fail USB Electrical Tests, thus failing Certification
225  *
226  * (b) Some (many) devices actually need more than 20 ms of resume signalling,
227  * and while we can argue that's against the USB Specification, we don't have
228  * control over which devices a certification laboratory will be using for
229  * certification. If CertLab uses a device which was tested against Windows and
230  * that happens to have relaxed resume signalling rules, we might fall into
231  * situations where we fail interoperability and electrical tests.
232  *
233  * In order to avoid both conditions, we're using a 40 ms resume timeout, which
234  * should cope with both LPJ calibration errors and devices not following every
235  * detail of the USB Specification.
236  */
237 #define USB_RESUME_TIMEOUT	40 /* ms */
238 
239 /**
240  * struct usb_interface_cache - long-term representation of a device interface
241  * @num_altsetting: number of altsettings defined.
242  * @ref: reference counter.
243  * @altsetting: variable-length array of interface structures, one for
244  *	each alternate setting that may be selected.  Each one includes a
245  *	set of endpoint configurations.  They will be in no particular order.
246  *
247  * These structures persist for the lifetime of a usb_device, unlike
248  * struct usb_interface (which persists only as long as its configuration
249  * is installed).  The altsetting arrays can be accessed through these
250  * structures at any time, permitting comparison of configurations and
251  * providing support for the /proc/bus/usb/devices pseudo-file.
252  */
253 struct usb_interface_cache {
254 	unsigned num_altsetting;	/* number of alternate settings */
255 	struct kref ref;		/* reference counter */
256 
257 	/* variable-length array of alternate settings for this interface,
258 	 * stored in no particular order */
259 	struct usb_host_interface altsetting[0];
260 };
261 #define	ref_to_usb_interface_cache(r) \
262 		container_of(r, struct usb_interface_cache, ref)
263 #define	altsetting_to_usb_interface_cache(a) \
264 		container_of(a, struct usb_interface_cache, altsetting[0])
265 
266 /**
267  * struct usb_host_config - representation of a device's configuration
268  * @desc: the device's configuration descriptor.
269  * @string: pointer to the cached version of the iConfiguration string, if
270  *	present for this configuration.
271  * @intf_assoc: list of any interface association descriptors in this config
272  * @interface: array of pointers to usb_interface structures, one for each
273  *	interface in the configuration.  The number of interfaces is stored
274  *	in desc.bNumInterfaces.  These pointers are valid only while the
275  *	the configuration is active.
276  * @intf_cache: array of pointers to usb_interface_cache structures, one
277  *	for each interface in the configuration.  These structures exist
278  *	for the entire life of the device.
279  * @extra: pointer to buffer containing all extra descriptors associated
280  *	with this configuration (those preceding the first interface
281  *	descriptor).
282  * @extralen: length of the extra descriptors buffer.
283  *
284  * USB devices may have multiple configurations, but only one can be active
285  * at any time.  Each encapsulates a different operational environment;
286  * for example, a dual-speed device would have separate configurations for
287  * full-speed and high-speed operation.  The number of configurations
288  * available is stored in the device descriptor as bNumConfigurations.
289  *
290  * A configuration can contain multiple interfaces.  Each corresponds to
291  * a different function of the USB device, and all are available whenever
292  * the configuration is active.  The USB standard says that interfaces
293  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
294  * of devices get this wrong.  In addition, the interface array is not
295  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
296  * look up an interface entry based on its number.
297  *
298  * Device drivers should not attempt to activate configurations.  The choice
299  * of which configuration to install is a policy decision based on such
300  * considerations as available power, functionality provided, and the user's
301  * desires (expressed through userspace tools).  However, drivers can call
302  * usb_reset_configuration() to reinitialize the current configuration and
303  * all its interfaces.
304  */
305 struct usb_host_config {
306 	struct usb_config_descriptor	desc;
307 
308 	char *string;		/* iConfiguration string, if present */
309 
310 	/* List of any Interface Association Descriptors in this
311 	 * configuration. */
312 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
313 
314 	/* the interfaces associated with this configuration,
315 	 * stored in no particular order */
316 	struct usb_interface *interface[USB_MAXINTERFACES];
317 
318 	/* Interface information available even when this is not the
319 	 * active configuration */
320 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
321 
322 	unsigned char *extra;   /* Extra descriptors */
323 	int extralen;
324 };
325 
326 /* USB2.0 and USB3.0 device BOS descriptor set */
327 struct usb_host_bos {
328 	struct usb_bos_descriptor	*desc;
329 
330 	/* wireless cap descriptor is handled by wusb */
331 	struct usb_ext_cap_descriptor	*ext_cap;
332 	struct usb_ss_cap_descriptor	*ss_cap;
333 	struct usb_ssp_cap_descriptor	*ssp_cap;
334 	struct usb_ss_container_id_descriptor	*ss_id;
335 	struct usb_ptm_cap_descriptor	*ptm_cap;
336 };
337 
338 int __usb_get_extra_descriptor(char *buffer, unsigned size,
339 	unsigned char type, void **ptr);
340 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
341 				__usb_get_extra_descriptor((ifpoint)->extra, \
342 				(ifpoint)->extralen, \
343 				type, (void **)ptr)
344 
345 /* ----------------------------------------------------------------------- */
346 
347 /* USB device number allocation bitmap */
348 struct usb_devmap {
349 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
350 };
351 
352 /*
353  * Allocated per bus (tree of devices) we have:
354  */
355 struct usb_bus {
356 	struct device *controller;	/* host/master side hardware */
357 	int busnum;			/* Bus number (in order of reg) */
358 	const char *bus_name;		/* stable id (PCI slot_name etc) */
359 	u8 uses_dma;			/* Does the host controller use DMA? */
360 	u8 uses_pio_for_control;	/*
361 					 * Does the host controller use PIO
362 					 * for control transfers?
363 					 */
364 	u8 otg_port;			/* 0, or number of OTG/HNP port */
365 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
366 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
367 	unsigned no_stop_on_short:1;    /*
368 					 * Quirk: some controllers don't stop
369 					 * the ep queue on a short transfer
370 					 * with the URB_SHORT_NOT_OK flag set.
371 					 */
372 	unsigned no_sg_constraint:1;	/* no sg constraint */
373 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
374 
375 	int devnum_next;		/* Next open device number in
376 					 * round-robin allocation */
377 
378 	struct usb_devmap devmap;	/* device address allocation map */
379 	struct usb_device *root_hub;	/* Root hub */
380 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
381 
382 	struct mutex usb_address0_mutex; /* unaddressed device mutex */
383 
384 	int bandwidth_allocated;	/* on this bus: how much of the time
385 					 * reserved for periodic (intr/iso)
386 					 * requests is used, on average?
387 					 * Units: microseconds/frame.
388 					 * Limits: Full/low speed reserve 90%,
389 					 * while high speed reserves 80%.
390 					 */
391 	int bandwidth_int_reqs;		/* number of Interrupt requests */
392 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
393 
394 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
395 
396 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
397 	struct mon_bus *mon_bus;	/* non-null when associated */
398 	int monitored;			/* non-zero when monitored */
399 #endif
400 };
401 
402 struct usb_dev_state;
403 
404 /* ----------------------------------------------------------------------- */
405 
406 struct usb_tt;
407 
408 enum usb_device_removable {
409 	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
410 	USB_DEVICE_REMOVABLE,
411 	USB_DEVICE_FIXED,
412 };
413 
414 enum usb_port_connect_type {
415 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
416 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
417 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
418 	USB_PORT_NOT_USED,
419 };
420 
421 /*
422  * USB 2.0 Link Power Management (LPM) parameters.
423  */
424 struct usb2_lpm_parameters {
425 	/* Best effort service latency indicate how long the host will drive
426 	 * resume on an exit from L1.
427 	 */
428 	unsigned int besl;
429 
430 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
431 	 * When the timer counts to zero, the parent hub will initiate a LPM
432 	 * transition to L1.
433 	 */
434 	int timeout;
435 };
436 
437 /*
438  * USB 3.0 Link Power Management (LPM) parameters.
439  *
440  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
441  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
442  * All three are stored in nanoseconds.
443  */
444 struct usb3_lpm_parameters {
445 	/*
446 	 * Maximum exit latency (MEL) for the host to send a packet to the
447 	 * device (either a Ping for isoc endpoints, or a data packet for
448 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
449 	 * in the path to transition the links to U0.
450 	 */
451 	unsigned int mel;
452 	/*
453 	 * Maximum exit latency for a device-initiated LPM transition to bring
454 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
455 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
456 	 */
457 	unsigned int pel;
458 
459 	/*
460 	 * The System Exit Latency (SEL) includes PEL, and three other
461 	 * latencies.  After a device initiates a U0 transition, it will take
462 	 * some time from when the device sends the ERDY to when it will finally
463 	 * receive the data packet.  Basically, SEL should be the worse-case
464 	 * latency from when a device starts initiating a U0 transition to when
465 	 * it will get data.
466 	 */
467 	unsigned int sel;
468 	/*
469 	 * The idle timeout value that is currently programmed into the parent
470 	 * hub for this device.  When the timer counts to zero, the parent hub
471 	 * will initiate an LPM transition to either U1 or U2.
472 	 */
473 	int timeout;
474 };
475 
476 /**
477  * struct usb_device - kernel's representation of a USB device
478  * @devnum: device number; address on a USB bus
479  * @devpath: device ID string for use in messages (e.g., /port/...)
480  * @route: tree topology hex string for use with xHCI
481  * @state: device state: configured, not attached, etc.
482  * @speed: device speed: high/full/low (or error)
483  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
484  * @ttport: device port on that tt hub
485  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
486  * @parent: our hub, unless we're the root
487  * @bus: bus we're part of
488  * @ep0: endpoint 0 data (default control pipe)
489  * @dev: generic device interface
490  * @descriptor: USB device descriptor
491  * @bos: USB device BOS descriptor set
492  * @config: all of the device's configs
493  * @actconfig: the active configuration
494  * @ep_in: array of IN endpoints
495  * @ep_out: array of OUT endpoints
496  * @rawdescriptors: raw descriptors for each config
497  * @bus_mA: Current available from the bus
498  * @portnum: parent port number (origin 1)
499  * @level: number of USB hub ancestors
500  * @can_submit: URBs may be submitted
501  * @persist_enabled:  USB_PERSIST enabled for this device
502  * @have_langid: whether string_langid is valid
503  * @authorized: policy has said we can use it;
504  *	(user space) policy determines if we authorize this device to be
505  *	used or not. By default, wired USB devices are authorized.
506  *	WUSB devices are not, until we authorize them from user space.
507  *	FIXME -- complete doc
508  * @authenticated: Crypto authentication passed
509  * @wusb: device is Wireless USB
510  * @lpm_capable: device supports LPM
511  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
512  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
513  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
514  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
515  * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
516  * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
517  * @string_langid: language ID for strings
518  * @product: iProduct string, if present (static)
519  * @manufacturer: iManufacturer string, if present (static)
520  * @serial: iSerialNumber string, if present (static)
521  * @filelist: usbfs files that are open to this device
522  * @maxchild: number of ports if hub
523  * @quirks: quirks of the whole device
524  * @urbnum: number of URBs submitted for the whole device
525  * @active_duration: total time device is not suspended
526  * @connect_time: time device was first connected
527  * @do_remote_wakeup:  remote wakeup should be enabled
528  * @reset_resume: needs reset instead of resume
529  * @port_is_suspended: the upstream port is suspended (L2 or U3)
530  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
531  *	specific data for the device.
532  * @slot_id: Slot ID assigned by xHCI
533  * @removable: Device can be physically removed from this port
534  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
535  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
536  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
537  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
538  *	to keep track of the number of functions that require USB 3.0 Link Power
539  *	Management to be disabled for this usb_device.  This count should only
540  *	be manipulated by those functions, with the bandwidth_mutex is held.
541  *
542  * Notes:
543  * Usbcore drivers should not set usbdev->state directly.  Instead use
544  * usb_set_device_state().
545  */
546 struct usb_device {
547 	int		devnum;
548 	char		devpath[16];
549 	u32		route;
550 	enum usb_device_state	state;
551 	enum usb_device_speed	speed;
552 
553 	struct usb_tt	*tt;
554 	int		ttport;
555 
556 	unsigned int toggle[2];
557 
558 	struct usb_device *parent;
559 	struct usb_bus *bus;
560 	struct usb_host_endpoint ep0;
561 
562 	struct device dev;
563 
564 	struct usb_device_descriptor descriptor;
565 	struct usb_host_bos *bos;
566 	struct usb_host_config *config;
567 
568 	struct usb_host_config *actconfig;
569 	struct usb_host_endpoint *ep_in[16];
570 	struct usb_host_endpoint *ep_out[16];
571 
572 	char **rawdescriptors;
573 
574 	unsigned short bus_mA;
575 	u8 portnum;
576 	u8 level;
577 
578 	unsigned can_submit:1;
579 	unsigned persist_enabled:1;
580 	unsigned have_langid:1;
581 	unsigned authorized:1;
582 	unsigned authenticated:1;
583 	unsigned wusb:1;
584 	unsigned lpm_capable:1;
585 	unsigned usb2_hw_lpm_capable:1;
586 	unsigned usb2_hw_lpm_besl_capable:1;
587 	unsigned usb2_hw_lpm_enabled:1;
588 	unsigned usb2_hw_lpm_allowed:1;
589 	unsigned usb3_lpm_u1_enabled:1;
590 	unsigned usb3_lpm_u2_enabled:1;
591 	int string_langid;
592 
593 	/* static strings from the device */
594 	char *product;
595 	char *manufacturer;
596 	char *serial;
597 
598 	struct list_head filelist;
599 
600 	int maxchild;
601 
602 	u32 quirks;
603 	atomic_t urbnum;
604 
605 	unsigned long active_duration;
606 
607 #ifdef CONFIG_PM
608 	unsigned long connect_time;
609 
610 	unsigned do_remote_wakeup:1;
611 	unsigned reset_resume:1;
612 	unsigned port_is_suspended:1;
613 #endif
614 	struct wusb_dev *wusb_dev;
615 	int slot_id;
616 	enum usb_device_removable removable;
617 	struct usb2_lpm_parameters l1_params;
618 	struct usb3_lpm_parameters u1_params;
619 	struct usb3_lpm_parameters u2_params;
620 	unsigned lpm_disable_count;
621 };
622 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
623 
624 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
625 {
626 	return to_usb_device(intf->dev.parent);
627 }
628 
629 extern struct usb_device *usb_get_dev(struct usb_device *dev);
630 extern void usb_put_dev(struct usb_device *dev);
631 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
632 	int port1);
633 
634 /**
635  * usb_hub_for_each_child - iterate over all child devices on the hub
636  * @hdev:  USB device belonging to the usb hub
637  * @port1: portnum associated with child device
638  * @child: child device pointer
639  */
640 #define usb_hub_for_each_child(hdev, port1, child) \
641 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
642 			port1 <= hdev->maxchild; \
643 			child = usb_hub_find_child(hdev, ++port1)) \
644 		if (!child) continue; else
645 
646 /* USB device locking */
647 #define usb_lock_device(udev)			device_lock(&(udev)->dev)
648 #define usb_unlock_device(udev)			device_unlock(&(udev)->dev)
649 #define usb_lock_device_interruptible(udev)	device_lock_interruptible(&(udev)->dev)
650 #define usb_trylock_device(udev)		device_trylock(&(udev)->dev)
651 extern int usb_lock_device_for_reset(struct usb_device *udev,
652 				     const struct usb_interface *iface);
653 
654 /* USB port reset for device reinitialization */
655 extern int usb_reset_device(struct usb_device *dev);
656 extern void usb_queue_reset_device(struct usb_interface *dev);
657 
658 #ifdef CONFIG_ACPI
659 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
660 	bool enable);
661 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
662 #else
663 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
664 	bool enable) { return 0; }
665 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
666 	{ return true; }
667 #endif
668 
669 /* USB autosuspend and autoresume */
670 #ifdef CONFIG_PM
671 extern void usb_enable_autosuspend(struct usb_device *udev);
672 extern void usb_disable_autosuspend(struct usb_device *udev);
673 
674 extern int usb_autopm_get_interface(struct usb_interface *intf);
675 extern void usb_autopm_put_interface(struct usb_interface *intf);
676 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
677 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
678 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
679 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
680 
681 static inline void usb_mark_last_busy(struct usb_device *udev)
682 {
683 	pm_runtime_mark_last_busy(&udev->dev);
684 }
685 
686 #else
687 
688 static inline int usb_enable_autosuspend(struct usb_device *udev)
689 { return 0; }
690 static inline int usb_disable_autosuspend(struct usb_device *udev)
691 { return 0; }
692 
693 static inline int usb_autopm_get_interface(struct usb_interface *intf)
694 { return 0; }
695 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
696 { return 0; }
697 
698 static inline void usb_autopm_put_interface(struct usb_interface *intf)
699 { }
700 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
701 { }
702 static inline void usb_autopm_get_interface_no_resume(
703 		struct usb_interface *intf)
704 { }
705 static inline void usb_autopm_put_interface_no_suspend(
706 		struct usb_interface *intf)
707 { }
708 static inline void usb_mark_last_busy(struct usb_device *udev)
709 { }
710 #endif
711 
712 extern int usb_disable_lpm(struct usb_device *udev);
713 extern void usb_enable_lpm(struct usb_device *udev);
714 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
715 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
716 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
717 
718 extern int usb_disable_ltm(struct usb_device *udev);
719 extern void usb_enable_ltm(struct usb_device *udev);
720 
721 static inline bool usb_device_supports_ltm(struct usb_device *udev)
722 {
723 	if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
724 		return false;
725 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
726 }
727 
728 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
729 {
730 	return udev && udev->bus && udev->bus->no_sg_constraint;
731 }
732 
733 
734 /*-------------------------------------------------------------------------*/
735 
736 /* for drivers using iso endpoints */
737 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
738 
739 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
740 extern int usb_alloc_streams(struct usb_interface *interface,
741 		struct usb_host_endpoint **eps, unsigned int num_eps,
742 		unsigned int num_streams, gfp_t mem_flags);
743 
744 /* Reverts a group of bulk endpoints back to not using stream IDs. */
745 extern int usb_free_streams(struct usb_interface *interface,
746 		struct usb_host_endpoint **eps, unsigned int num_eps,
747 		gfp_t mem_flags);
748 
749 /* used these for multi-interface device registration */
750 extern int usb_driver_claim_interface(struct usb_driver *driver,
751 			struct usb_interface *iface, void *priv);
752 
753 /**
754  * usb_interface_claimed - returns true iff an interface is claimed
755  * @iface: the interface being checked
756  *
757  * Return: %true (nonzero) iff the interface is claimed, else %false
758  * (zero).
759  *
760  * Note:
761  * Callers must own the driver model's usb bus readlock.  So driver
762  * probe() entries don't need extra locking, but other call contexts
763  * may need to explicitly claim that lock.
764  *
765  */
766 static inline int usb_interface_claimed(struct usb_interface *iface)
767 {
768 	return (iface->dev.driver != NULL);
769 }
770 
771 extern void usb_driver_release_interface(struct usb_driver *driver,
772 			struct usb_interface *iface);
773 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
774 					 const struct usb_device_id *id);
775 extern int usb_match_one_id(struct usb_interface *interface,
776 			    const struct usb_device_id *id);
777 
778 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
779 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
780 		int minor);
781 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
782 		unsigned ifnum);
783 extern struct usb_host_interface *usb_altnum_to_altsetting(
784 		const struct usb_interface *intf, unsigned int altnum);
785 extern struct usb_host_interface *usb_find_alt_setting(
786 		struct usb_host_config *config,
787 		unsigned int iface_num,
788 		unsigned int alt_num);
789 
790 /* port claiming functions */
791 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
792 		struct usb_dev_state *owner);
793 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
794 		struct usb_dev_state *owner);
795 
796 /**
797  * usb_make_path - returns stable device path in the usb tree
798  * @dev: the device whose path is being constructed
799  * @buf: where to put the string
800  * @size: how big is "buf"?
801  *
802  * Return: Length of the string (> 0) or negative if size was too small.
803  *
804  * Note:
805  * This identifier is intended to be "stable", reflecting physical paths in
806  * hardware such as physical bus addresses for host controllers or ports on
807  * USB hubs.  That makes it stay the same until systems are physically
808  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
809  * controllers.  Adding and removing devices, including virtual root hubs
810  * in host controller driver modules, does not change these path identifiers;
811  * neither does rebooting or re-enumerating.  These are more useful identifiers
812  * than changeable ("unstable") ones like bus numbers or device addresses.
813  *
814  * With a partial exception for devices connected to USB 2.0 root hubs, these
815  * identifiers are also predictable.  So long as the device tree isn't changed,
816  * plugging any USB device into a given hub port always gives it the same path.
817  * Because of the use of "companion" controllers, devices connected to ports on
818  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
819  * high speed, and a different one if they are full or low speed.
820  */
821 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
822 {
823 	int actual;
824 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
825 			  dev->devpath);
826 	return (actual >= (int)size) ? -1 : actual;
827 }
828 
829 /*-------------------------------------------------------------------------*/
830 
831 #define USB_DEVICE_ID_MATCH_DEVICE \
832 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
833 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
834 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
835 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
836 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
837 #define USB_DEVICE_ID_MATCH_DEV_INFO \
838 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
839 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
840 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
841 #define USB_DEVICE_ID_MATCH_INT_INFO \
842 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
843 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
844 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
845 
846 /**
847  * USB_DEVICE - macro used to describe a specific usb device
848  * @vend: the 16 bit USB Vendor ID
849  * @prod: the 16 bit USB Product ID
850  *
851  * This macro is used to create a struct usb_device_id that matches a
852  * specific device.
853  */
854 #define USB_DEVICE(vend, prod) \
855 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
856 	.idVendor = (vend), \
857 	.idProduct = (prod)
858 /**
859  * USB_DEVICE_VER - describe a specific usb device with a version range
860  * @vend: the 16 bit USB Vendor ID
861  * @prod: the 16 bit USB Product ID
862  * @lo: the bcdDevice_lo value
863  * @hi: the bcdDevice_hi value
864  *
865  * This macro is used to create a struct usb_device_id that matches a
866  * specific device, with a version range.
867  */
868 #define USB_DEVICE_VER(vend, prod, lo, hi) \
869 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
870 	.idVendor = (vend), \
871 	.idProduct = (prod), \
872 	.bcdDevice_lo = (lo), \
873 	.bcdDevice_hi = (hi)
874 
875 /**
876  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
877  * @vend: the 16 bit USB Vendor ID
878  * @prod: the 16 bit USB Product ID
879  * @cl: bInterfaceClass value
880  *
881  * This macro is used to create a struct usb_device_id that matches a
882  * specific interface class of devices.
883  */
884 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
885 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
886 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
887 	.idVendor = (vend), \
888 	.idProduct = (prod), \
889 	.bInterfaceClass = (cl)
890 
891 /**
892  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
893  * @vend: the 16 bit USB Vendor ID
894  * @prod: the 16 bit USB Product ID
895  * @pr: bInterfaceProtocol value
896  *
897  * This macro is used to create a struct usb_device_id that matches a
898  * specific interface protocol of devices.
899  */
900 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
901 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
902 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
903 	.idVendor = (vend), \
904 	.idProduct = (prod), \
905 	.bInterfaceProtocol = (pr)
906 
907 /**
908  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
909  * @vend: the 16 bit USB Vendor ID
910  * @prod: the 16 bit USB Product ID
911  * @num: bInterfaceNumber value
912  *
913  * This macro is used to create a struct usb_device_id that matches a
914  * specific interface number of devices.
915  */
916 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
917 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
918 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
919 	.idVendor = (vend), \
920 	.idProduct = (prod), \
921 	.bInterfaceNumber = (num)
922 
923 /**
924  * USB_DEVICE_INFO - macro used to describe a class of usb devices
925  * @cl: bDeviceClass value
926  * @sc: bDeviceSubClass value
927  * @pr: bDeviceProtocol value
928  *
929  * This macro is used to create a struct usb_device_id that matches a
930  * specific class of devices.
931  */
932 #define USB_DEVICE_INFO(cl, sc, pr) \
933 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
934 	.bDeviceClass = (cl), \
935 	.bDeviceSubClass = (sc), \
936 	.bDeviceProtocol = (pr)
937 
938 /**
939  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
940  * @cl: bInterfaceClass value
941  * @sc: bInterfaceSubClass value
942  * @pr: bInterfaceProtocol value
943  *
944  * This macro is used to create a struct usb_device_id that matches a
945  * specific class of interfaces.
946  */
947 #define USB_INTERFACE_INFO(cl, sc, pr) \
948 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
949 	.bInterfaceClass = (cl), \
950 	.bInterfaceSubClass = (sc), \
951 	.bInterfaceProtocol = (pr)
952 
953 /**
954  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
955  * @vend: the 16 bit USB Vendor ID
956  * @prod: the 16 bit USB Product ID
957  * @cl: bInterfaceClass value
958  * @sc: bInterfaceSubClass value
959  * @pr: bInterfaceProtocol value
960  *
961  * This macro is used to create a struct usb_device_id that matches a
962  * specific device with a specific class of interfaces.
963  *
964  * This is especially useful when explicitly matching devices that have
965  * vendor specific bDeviceClass values, but standards-compliant interfaces.
966  */
967 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
968 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
969 		| USB_DEVICE_ID_MATCH_DEVICE, \
970 	.idVendor = (vend), \
971 	.idProduct = (prod), \
972 	.bInterfaceClass = (cl), \
973 	.bInterfaceSubClass = (sc), \
974 	.bInterfaceProtocol = (pr)
975 
976 /**
977  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
978  * @vend: the 16 bit USB Vendor ID
979  * @cl: bInterfaceClass value
980  * @sc: bInterfaceSubClass value
981  * @pr: bInterfaceProtocol value
982  *
983  * This macro is used to create a struct usb_device_id that matches a
984  * specific vendor with a specific class of interfaces.
985  *
986  * This is especially useful when explicitly matching devices that have
987  * vendor specific bDeviceClass values, but standards-compliant interfaces.
988  */
989 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
990 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
991 		| USB_DEVICE_ID_MATCH_VENDOR, \
992 	.idVendor = (vend), \
993 	.bInterfaceClass = (cl), \
994 	.bInterfaceSubClass = (sc), \
995 	.bInterfaceProtocol = (pr)
996 
997 /* ----------------------------------------------------------------------- */
998 
999 /* Stuff for dynamic usb ids */
1000 struct usb_dynids {
1001 	spinlock_t lock;
1002 	struct list_head list;
1003 };
1004 
1005 struct usb_dynid {
1006 	struct list_head node;
1007 	struct usb_device_id id;
1008 };
1009 
1010 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1011 				const struct usb_device_id *id_table,
1012 				struct device_driver *driver,
1013 				const char *buf, size_t count);
1014 
1015 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1016 
1017 /**
1018  * struct usbdrv_wrap - wrapper for driver-model structure
1019  * @driver: The driver-model core driver structure.
1020  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1021  */
1022 struct usbdrv_wrap {
1023 	struct device_driver driver;
1024 	int for_devices;
1025 };
1026 
1027 /**
1028  * struct usb_driver - identifies USB interface driver to usbcore
1029  * @name: The driver name should be unique among USB drivers,
1030  *	and should normally be the same as the module name.
1031  * @probe: Called to see if the driver is willing to manage a particular
1032  *	interface on a device.  If it is, probe returns zero and uses
1033  *	usb_set_intfdata() to associate driver-specific data with the
1034  *	interface.  It may also use usb_set_interface() to specify the
1035  *	appropriate altsetting.  If unwilling to manage the interface,
1036  *	return -ENODEV, if genuine IO errors occurred, an appropriate
1037  *	negative errno value.
1038  * @disconnect: Called when the interface is no longer accessible, usually
1039  *	because its device has been (or is being) disconnected or the
1040  *	driver module is being unloaded.
1041  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1042  *	the "usbfs" filesystem.  This lets devices provide ways to
1043  *	expose information to user space regardless of where they
1044  *	do (or don't) show up otherwise in the filesystem.
1045  * @suspend: Called when the device is going to be suspended by the
1046  *	system either from system sleep or runtime suspend context. The
1047  *	return value will be ignored in system sleep context, so do NOT
1048  *	try to continue using the device if suspend fails in this case.
1049  *	Instead, let the resume or reset-resume routine recover from
1050  *	the failure.
1051  * @resume: Called when the device is being resumed by the system.
1052  * @reset_resume: Called when the suspended device has been reset instead
1053  *	of being resumed.
1054  * @pre_reset: Called by usb_reset_device() when the device is about to be
1055  *	reset.  This routine must not return until the driver has no active
1056  *	URBs for the device, and no more URBs may be submitted until the
1057  *	post_reset method is called.
1058  * @post_reset: Called by usb_reset_device() after the device
1059  *	has been reset
1060  * @id_table: USB drivers use ID table to support hotplugging.
1061  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1062  *	or your driver's probe function will never get called.
1063  * @dynids: used internally to hold the list of dynamically added device
1064  *	ids for this driver.
1065  * @drvwrap: Driver-model core structure wrapper.
1066  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1067  *	added to this driver by preventing the sysfs file from being created.
1068  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1069  *	for interfaces bound to this driver.
1070  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1071  *	endpoints before calling the driver's disconnect method.
1072  * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1073  *	to initiate lower power link state transitions when an idle timeout
1074  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1075  *
1076  * USB interface drivers must provide a name, probe() and disconnect()
1077  * methods, and an id_table.  Other driver fields are optional.
1078  *
1079  * The id_table is used in hotplugging.  It holds a set of descriptors,
1080  * and specialized data may be associated with each entry.  That table
1081  * is used by both user and kernel mode hotplugging support.
1082  *
1083  * The probe() and disconnect() methods are called in a context where
1084  * they can sleep, but they should avoid abusing the privilege.  Most
1085  * work to connect to a device should be done when the device is opened,
1086  * and undone at the last close.  The disconnect code needs to address
1087  * concurrency issues with respect to open() and close() methods, as
1088  * well as forcing all pending I/O requests to complete (by unlinking
1089  * them as necessary, and blocking until the unlinks complete).
1090  */
1091 struct usb_driver {
1092 	const char *name;
1093 
1094 	int (*probe) (struct usb_interface *intf,
1095 		      const struct usb_device_id *id);
1096 
1097 	void (*disconnect) (struct usb_interface *intf);
1098 
1099 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1100 			void *buf);
1101 
1102 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1103 	int (*resume) (struct usb_interface *intf);
1104 	int (*reset_resume)(struct usb_interface *intf);
1105 
1106 	int (*pre_reset)(struct usb_interface *intf);
1107 	int (*post_reset)(struct usb_interface *intf);
1108 
1109 	const struct usb_device_id *id_table;
1110 
1111 	struct usb_dynids dynids;
1112 	struct usbdrv_wrap drvwrap;
1113 	unsigned int no_dynamic_id:1;
1114 	unsigned int supports_autosuspend:1;
1115 	unsigned int disable_hub_initiated_lpm:1;
1116 	unsigned int soft_unbind:1;
1117 };
1118 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1119 
1120 /**
1121  * struct usb_device_driver - identifies USB device driver to usbcore
1122  * @name: The driver name should be unique among USB drivers,
1123  *	and should normally be the same as the module name.
1124  * @probe: Called to see if the driver is willing to manage a particular
1125  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1126  *	to associate driver-specific data with the device.  If unwilling
1127  *	to manage the device, return a negative errno value.
1128  * @disconnect: Called when the device is no longer accessible, usually
1129  *	because it has been (or is being) disconnected or the driver's
1130  *	module is being unloaded.
1131  * @suspend: Called when the device is going to be suspended by the system.
1132  * @resume: Called when the device is being resumed by the system.
1133  * @drvwrap: Driver-model core structure wrapper.
1134  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1135  *	for devices bound to this driver.
1136  *
1137  * USB drivers must provide all the fields listed above except drvwrap.
1138  */
1139 struct usb_device_driver {
1140 	const char *name;
1141 
1142 	int (*probe) (struct usb_device *udev);
1143 	void (*disconnect) (struct usb_device *udev);
1144 
1145 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1146 	int (*resume) (struct usb_device *udev, pm_message_t message);
1147 	struct usbdrv_wrap drvwrap;
1148 	unsigned int supports_autosuspend:1;
1149 };
1150 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1151 		drvwrap.driver)
1152 
1153 extern struct bus_type usb_bus_type;
1154 
1155 /**
1156  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1157  * @name: the usb class device name for this driver.  Will show up in sysfs.
1158  * @devnode: Callback to provide a naming hint for a possible
1159  *	device node to create.
1160  * @fops: pointer to the struct file_operations of this driver.
1161  * @minor_base: the start of the minor range for this driver.
1162  *
1163  * This structure is used for the usb_register_dev() and
1164  * usb_unregister_dev() functions, to consolidate a number of the
1165  * parameters used for them.
1166  */
1167 struct usb_class_driver {
1168 	char *name;
1169 	char *(*devnode)(struct device *dev, umode_t *mode);
1170 	const struct file_operations *fops;
1171 	int minor_base;
1172 };
1173 
1174 /*
1175  * use these in module_init()/module_exit()
1176  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1177  */
1178 extern int usb_register_driver(struct usb_driver *, struct module *,
1179 			       const char *);
1180 
1181 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1182 #define usb_register(driver) \
1183 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1184 
1185 extern void usb_deregister(struct usb_driver *);
1186 
1187 /**
1188  * module_usb_driver() - Helper macro for registering a USB driver
1189  * @__usb_driver: usb_driver struct
1190  *
1191  * Helper macro for USB drivers which do not do anything special in module
1192  * init/exit. This eliminates a lot of boilerplate. Each module may only
1193  * use this macro once, and calling it replaces module_init() and module_exit()
1194  */
1195 #define module_usb_driver(__usb_driver) \
1196 	module_driver(__usb_driver, usb_register, \
1197 		       usb_deregister)
1198 
1199 extern int usb_register_device_driver(struct usb_device_driver *,
1200 			struct module *);
1201 extern void usb_deregister_device_driver(struct usb_device_driver *);
1202 
1203 extern int usb_register_dev(struct usb_interface *intf,
1204 			    struct usb_class_driver *class_driver);
1205 extern void usb_deregister_dev(struct usb_interface *intf,
1206 			       struct usb_class_driver *class_driver);
1207 
1208 extern int usb_disabled(void);
1209 
1210 /* ----------------------------------------------------------------------- */
1211 
1212 /*
1213  * URB support, for asynchronous request completions
1214  */
1215 
1216 /*
1217  * urb->transfer_flags:
1218  *
1219  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1220  */
1221 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1222 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1223 					 * slot in the schedule */
1224 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1225 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
1226 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1227 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1228 					 * needed */
1229 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1230 
1231 /* The following flags are used internally by usbcore and HCDs */
1232 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1233 #define URB_DIR_OUT		0
1234 #define URB_DIR_MASK		URB_DIR_IN
1235 
1236 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1237 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1238 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1239 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1240 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1241 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1242 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1243 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1244 
1245 struct usb_iso_packet_descriptor {
1246 	unsigned int offset;
1247 	unsigned int length;		/* expected length */
1248 	unsigned int actual_length;
1249 	int status;
1250 };
1251 
1252 struct urb;
1253 
1254 struct usb_anchor {
1255 	struct list_head urb_list;
1256 	wait_queue_head_t wait;
1257 	spinlock_t lock;
1258 	atomic_t suspend_wakeups;
1259 	unsigned int poisoned:1;
1260 };
1261 
1262 static inline void init_usb_anchor(struct usb_anchor *anchor)
1263 {
1264 	memset(anchor, 0, sizeof(*anchor));
1265 	INIT_LIST_HEAD(&anchor->urb_list);
1266 	init_waitqueue_head(&anchor->wait);
1267 	spin_lock_init(&anchor->lock);
1268 }
1269 
1270 typedef void (*usb_complete_t)(struct urb *);
1271 
1272 /**
1273  * struct urb - USB Request Block
1274  * @urb_list: For use by current owner of the URB.
1275  * @anchor_list: membership in the list of an anchor
1276  * @anchor: to anchor URBs to a common mooring
1277  * @ep: Points to the endpoint's data structure.  Will eventually
1278  *	replace @pipe.
1279  * @pipe: Holds endpoint number, direction, type, and more.
1280  *	Create these values with the eight macros available;
1281  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1282  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1283  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1284  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1285  *	is a different endpoint (and pipe) from "out" endpoint two.
1286  *	The current configuration controls the existence, type, and
1287  *	maximum packet size of any given endpoint.
1288  * @stream_id: the endpoint's stream ID for bulk streams
1289  * @dev: Identifies the USB device to perform the request.
1290  * @status: This is read in non-iso completion functions to get the
1291  *	status of the particular request.  ISO requests only use it
1292  *	to tell whether the URB was unlinked; detailed status for
1293  *	each frame is in the fields of the iso_frame-desc.
1294  * @transfer_flags: A variety of flags may be used to affect how URB
1295  *	submission, unlinking, or operation are handled.  Different
1296  *	kinds of URB can use different flags.
1297  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1298  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1299  *	(however, do not leave garbage in transfer_buffer even then).
1300  *	This buffer must be suitable for DMA; allocate it with
1301  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1302  *	of this buffer will be modified.  This buffer is used for the data
1303  *	stage of control transfers.
1304  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1305  *	the device driver is saying that it provided this DMA address,
1306  *	which the host controller driver should use in preference to the
1307  *	transfer_buffer.
1308  * @sg: scatter gather buffer list, the buffer size of each element in
1309  * 	the list (except the last) must be divisible by the endpoint's
1310  * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1311  * @num_mapped_sgs: (internal) number of mapped sg entries
1312  * @num_sgs: number of entries in the sg list
1313  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1314  *	be broken up into chunks according to the current maximum packet
1315  *	size for the endpoint, which is a function of the configuration
1316  *	and is encoded in the pipe.  When the length is zero, neither
1317  *	transfer_buffer nor transfer_dma is used.
1318  * @actual_length: This is read in non-iso completion functions, and
1319  *	it tells how many bytes (out of transfer_buffer_length) were
1320  *	transferred.  It will normally be the same as requested, unless
1321  *	either an error was reported or a short read was performed.
1322  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1323  *	short reads be reported as errors.
1324  * @setup_packet: Only used for control transfers, this points to eight bytes
1325  *	of setup data.  Control transfers always start by sending this data
1326  *	to the device.  Then transfer_buffer is read or written, if needed.
1327  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1328  *	this field; setup_packet must point to a valid buffer.
1329  * @start_frame: Returns the initial frame for isochronous transfers.
1330  * @number_of_packets: Lists the number of ISO transfer buffers.
1331  * @interval: Specifies the polling interval for interrupt or isochronous
1332  *	transfers.  The units are frames (milliseconds) for full and low
1333  *	speed devices, and microframes (1/8 millisecond) for highspeed
1334  *	and SuperSpeed devices.
1335  * @error_count: Returns the number of ISO transfers that reported errors.
1336  * @context: For use in completion functions.  This normally points to
1337  *	request-specific driver context.
1338  * @complete: Completion handler. This URB is passed as the parameter to the
1339  *	completion function.  The completion function may then do what
1340  *	it likes with the URB, including resubmitting or freeing it.
1341  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1342  *	collect the transfer status for each buffer.
1343  *
1344  * This structure identifies USB transfer requests.  URBs must be allocated by
1345  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1346  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1347  * are submitted using usb_submit_urb(), and pending requests may be canceled
1348  * using usb_unlink_urb() or usb_kill_urb().
1349  *
1350  * Data Transfer Buffers:
1351  *
1352  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1353  * taken from the general page pool.  That is provided by transfer_buffer
1354  * (control requests also use setup_packet), and host controller drivers
1355  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1356  * mapping operations can be expensive on some platforms (perhaps using a dma
1357  * bounce buffer or talking to an IOMMU),
1358  * although they're cheap on commodity x86 and ppc hardware.
1359  *
1360  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1361  * which tells the host controller driver that no such mapping is needed for
1362  * the transfer_buffer since
1363  * the device driver is DMA-aware.  For example, a device driver might
1364  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1365  * When this transfer flag is provided, host controller drivers will
1366  * attempt to use the dma address found in the transfer_dma
1367  * field rather than determining a dma address themselves.
1368  *
1369  * Note that transfer_buffer must still be set if the controller
1370  * does not support DMA (as indicated by bus.uses_dma) and when talking
1371  * to root hub. If you have to trasfer between highmem zone and the device
1372  * on such controller, create a bounce buffer or bail out with an error.
1373  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1374  * capable, assign NULL to it, so that usbmon knows not to use the value.
1375  * The setup_packet must always be set, so it cannot be located in highmem.
1376  *
1377  * Initialization:
1378  *
1379  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1380  * zero), and complete fields.  All URBs must also initialize
1381  * transfer_buffer and transfer_buffer_length.  They may provide the
1382  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1383  * to be treated as errors; that flag is invalid for write requests.
1384  *
1385  * Bulk URBs may
1386  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1387  * should always terminate with a short packet, even if it means adding an
1388  * extra zero length packet.
1389  *
1390  * Control URBs must provide a valid pointer in the setup_packet field.
1391  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1392  * beforehand.
1393  *
1394  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1395  * or, for highspeed devices, 125 microsecond units)
1396  * to poll for transfers.  After the URB has been submitted, the interval
1397  * field reflects how the transfer was actually scheduled.
1398  * The polling interval may be more frequent than requested.
1399  * For example, some controllers have a maximum interval of 32 milliseconds,
1400  * while others support intervals of up to 1024 milliseconds.
1401  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1402  * endpoints, as well as high speed interrupt endpoints, the encoding of
1403  * the transfer interval in the endpoint descriptor is logarithmic.
1404  * Device drivers must convert that value to linear units themselves.)
1405  *
1406  * If an isochronous endpoint queue isn't already running, the host
1407  * controller will schedule a new URB to start as soon as bandwidth
1408  * utilization allows.  If the queue is running then a new URB will be
1409  * scheduled to start in the first transfer slot following the end of the
1410  * preceding URB, if that slot has not already expired.  If the slot has
1411  * expired (which can happen when IRQ delivery is delayed for a long time),
1412  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1413  * is clear then the URB will be scheduled to start in the expired slot,
1414  * implying that some of its packets will not be transferred; if the flag
1415  * is set then the URB will be scheduled in the first unexpired slot,
1416  * breaking the queue's synchronization.  Upon URB completion, the
1417  * start_frame field will be set to the (micro)frame number in which the
1418  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1419  * and can go from as low as 256 to as high as 65536 frames.
1420  *
1421  * Isochronous URBs have a different data transfer model, in part because
1422  * the quality of service is only "best effort".  Callers provide specially
1423  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1424  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1425  * URBs are normally queued, submitted by drivers to arrange that
1426  * transfers are at least double buffered, and then explicitly resubmitted
1427  * in completion handlers, so
1428  * that data (such as audio or video) streams at as constant a rate as the
1429  * host controller scheduler can support.
1430  *
1431  * Completion Callbacks:
1432  *
1433  * The completion callback is made in_interrupt(), and one of the first
1434  * things that a completion handler should do is check the status field.
1435  * The status field is provided for all URBs.  It is used to report
1436  * unlinked URBs, and status for all non-ISO transfers.  It should not
1437  * be examined before the URB is returned to the completion handler.
1438  *
1439  * The context field is normally used to link URBs back to the relevant
1440  * driver or request state.
1441  *
1442  * When the completion callback is invoked for non-isochronous URBs, the
1443  * actual_length field tells how many bytes were transferred.  This field
1444  * is updated even when the URB terminated with an error or was unlinked.
1445  *
1446  * ISO transfer status is reported in the status and actual_length fields
1447  * of the iso_frame_desc array, and the number of errors is reported in
1448  * error_count.  Completion callbacks for ISO transfers will normally
1449  * (re)submit URBs to ensure a constant transfer rate.
1450  *
1451  * Note that even fields marked "public" should not be touched by the driver
1452  * when the urb is owned by the hcd, that is, since the call to
1453  * usb_submit_urb() till the entry into the completion routine.
1454  */
1455 struct urb {
1456 	/* private: usb core and host controller only fields in the urb */
1457 	struct kref kref;		/* reference count of the URB */
1458 	void *hcpriv;			/* private data for host controller */
1459 	atomic_t use_count;		/* concurrent submissions counter */
1460 	atomic_t reject;		/* submissions will fail */
1461 	int unlinked;			/* unlink error code */
1462 
1463 	/* public: documented fields in the urb that can be used by drivers */
1464 	struct list_head urb_list;	/* list head for use by the urb's
1465 					 * current owner */
1466 	struct list_head anchor_list;	/* the URB may be anchored */
1467 	struct usb_anchor *anchor;
1468 	struct usb_device *dev;		/* (in) pointer to associated device */
1469 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1470 	unsigned int pipe;		/* (in) pipe information */
1471 	unsigned int stream_id;		/* (in) stream ID */
1472 	int status;			/* (return) non-ISO status */
1473 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1474 	void *transfer_buffer;		/* (in) associated data buffer */
1475 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1476 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1477 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1478 	int num_sgs;			/* (in) number of entries in the sg list */
1479 	u32 transfer_buffer_length;	/* (in) data buffer length */
1480 	u32 actual_length;		/* (return) actual transfer length */
1481 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1482 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1483 	int start_frame;		/* (modify) start frame (ISO) */
1484 	int number_of_packets;		/* (in) number of ISO packets */
1485 	int interval;			/* (modify) transfer interval
1486 					 * (INT/ISO) */
1487 	int error_count;		/* (return) number of ISO errors */
1488 	void *context;			/* (in) context for completion */
1489 	usb_complete_t complete;	/* (in) completion routine */
1490 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1491 					/* (in) ISO ONLY */
1492 };
1493 
1494 /* ----------------------------------------------------------------------- */
1495 
1496 /**
1497  * usb_fill_control_urb - initializes a control urb
1498  * @urb: pointer to the urb to initialize.
1499  * @dev: pointer to the struct usb_device for this urb.
1500  * @pipe: the endpoint pipe
1501  * @setup_packet: pointer to the setup_packet buffer
1502  * @transfer_buffer: pointer to the transfer buffer
1503  * @buffer_length: length of the transfer buffer
1504  * @complete_fn: pointer to the usb_complete_t function
1505  * @context: what to set the urb context to.
1506  *
1507  * Initializes a control urb with the proper information needed to submit
1508  * it to a device.
1509  */
1510 static inline void usb_fill_control_urb(struct urb *urb,
1511 					struct usb_device *dev,
1512 					unsigned int pipe,
1513 					unsigned char *setup_packet,
1514 					void *transfer_buffer,
1515 					int buffer_length,
1516 					usb_complete_t complete_fn,
1517 					void *context)
1518 {
1519 	urb->dev = dev;
1520 	urb->pipe = pipe;
1521 	urb->setup_packet = setup_packet;
1522 	urb->transfer_buffer = transfer_buffer;
1523 	urb->transfer_buffer_length = buffer_length;
1524 	urb->complete = complete_fn;
1525 	urb->context = context;
1526 }
1527 
1528 /**
1529  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1530  * @urb: pointer to the urb to initialize.
1531  * @dev: pointer to the struct usb_device for this urb.
1532  * @pipe: the endpoint pipe
1533  * @transfer_buffer: pointer to the transfer buffer
1534  * @buffer_length: length of the transfer buffer
1535  * @complete_fn: pointer to the usb_complete_t function
1536  * @context: what to set the urb context to.
1537  *
1538  * Initializes a bulk urb with the proper information needed to submit it
1539  * to a device.
1540  */
1541 static inline void usb_fill_bulk_urb(struct urb *urb,
1542 				     struct usb_device *dev,
1543 				     unsigned int pipe,
1544 				     void *transfer_buffer,
1545 				     int buffer_length,
1546 				     usb_complete_t complete_fn,
1547 				     void *context)
1548 {
1549 	urb->dev = dev;
1550 	urb->pipe = pipe;
1551 	urb->transfer_buffer = transfer_buffer;
1552 	urb->transfer_buffer_length = buffer_length;
1553 	urb->complete = complete_fn;
1554 	urb->context = context;
1555 }
1556 
1557 /**
1558  * usb_fill_int_urb - macro to help initialize a interrupt urb
1559  * @urb: pointer to the urb to initialize.
1560  * @dev: pointer to the struct usb_device for this urb.
1561  * @pipe: the endpoint pipe
1562  * @transfer_buffer: pointer to the transfer buffer
1563  * @buffer_length: length of the transfer buffer
1564  * @complete_fn: pointer to the usb_complete_t function
1565  * @context: what to set the urb context to.
1566  * @interval: what to set the urb interval to, encoded like
1567  *	the endpoint descriptor's bInterval value.
1568  *
1569  * Initializes a interrupt urb with the proper information needed to submit
1570  * it to a device.
1571  *
1572  * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1573  * encoding of the endpoint interval, and express polling intervals in
1574  * microframes (eight per millisecond) rather than in frames (one per
1575  * millisecond).
1576  *
1577  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1578  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1579  * through to the host controller, rather than being translated into microframe
1580  * units.
1581  */
1582 static inline void usb_fill_int_urb(struct urb *urb,
1583 				    struct usb_device *dev,
1584 				    unsigned int pipe,
1585 				    void *transfer_buffer,
1586 				    int buffer_length,
1587 				    usb_complete_t complete_fn,
1588 				    void *context,
1589 				    int interval)
1590 {
1591 	urb->dev = dev;
1592 	urb->pipe = pipe;
1593 	urb->transfer_buffer = transfer_buffer;
1594 	urb->transfer_buffer_length = buffer_length;
1595 	urb->complete = complete_fn;
1596 	urb->context = context;
1597 
1598 	if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) {
1599 		/* make sure interval is within allowed range */
1600 		interval = clamp(interval, 1, 16);
1601 
1602 		urb->interval = 1 << (interval - 1);
1603 	} else {
1604 		urb->interval = interval;
1605 	}
1606 
1607 	urb->start_frame = -1;
1608 }
1609 
1610 extern void usb_init_urb(struct urb *urb);
1611 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1612 extern void usb_free_urb(struct urb *urb);
1613 #define usb_put_urb usb_free_urb
1614 extern struct urb *usb_get_urb(struct urb *urb);
1615 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1616 extern int usb_unlink_urb(struct urb *urb);
1617 extern void usb_kill_urb(struct urb *urb);
1618 extern void usb_poison_urb(struct urb *urb);
1619 extern void usb_unpoison_urb(struct urb *urb);
1620 extern void usb_block_urb(struct urb *urb);
1621 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1622 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1623 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1624 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1625 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1626 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1627 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1628 extern void usb_unanchor_urb(struct urb *urb);
1629 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1630 					 unsigned int timeout);
1631 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1632 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1633 extern int usb_anchor_empty(struct usb_anchor *anchor);
1634 
1635 #define usb_unblock_urb	usb_unpoison_urb
1636 
1637 /**
1638  * usb_urb_dir_in - check if an URB describes an IN transfer
1639  * @urb: URB to be checked
1640  *
1641  * Return: 1 if @urb describes an IN transfer (device-to-host),
1642  * otherwise 0.
1643  */
1644 static inline int usb_urb_dir_in(struct urb *urb)
1645 {
1646 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1647 }
1648 
1649 /**
1650  * usb_urb_dir_out - check if an URB describes an OUT transfer
1651  * @urb: URB to be checked
1652  *
1653  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1654  * otherwise 0.
1655  */
1656 static inline int usb_urb_dir_out(struct urb *urb)
1657 {
1658 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1659 }
1660 
1661 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1662 	gfp_t mem_flags, dma_addr_t *dma);
1663 void usb_free_coherent(struct usb_device *dev, size_t size,
1664 	void *addr, dma_addr_t dma);
1665 
1666 #if 0
1667 struct urb *usb_buffer_map(struct urb *urb);
1668 void usb_buffer_dmasync(struct urb *urb);
1669 void usb_buffer_unmap(struct urb *urb);
1670 #endif
1671 
1672 struct scatterlist;
1673 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1674 		      struct scatterlist *sg, int nents);
1675 #if 0
1676 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1677 			   struct scatterlist *sg, int n_hw_ents);
1678 #endif
1679 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1680 			 struct scatterlist *sg, int n_hw_ents);
1681 
1682 /*-------------------------------------------------------------------*
1683  *                         SYNCHRONOUS CALL SUPPORT                  *
1684  *-------------------------------------------------------------------*/
1685 
1686 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1687 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1688 	void *data, __u16 size, int timeout);
1689 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1690 	void *data, int len, int *actual_length, int timeout);
1691 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1692 	void *data, int len, int *actual_length,
1693 	int timeout);
1694 
1695 /* wrappers around usb_control_msg() for the most common standard requests */
1696 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1697 	unsigned char descindex, void *buf, int size);
1698 extern int usb_get_status(struct usb_device *dev,
1699 	int type, int target, void *data);
1700 extern int usb_string(struct usb_device *dev, int index,
1701 	char *buf, size_t size);
1702 
1703 /* wrappers that also update important state inside usbcore */
1704 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1705 extern int usb_reset_configuration(struct usb_device *dev);
1706 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1707 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1708 
1709 /* this request isn't really synchronous, but it belongs with the others */
1710 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1711 
1712 /* choose and set configuration for device */
1713 extern int usb_choose_configuration(struct usb_device *udev);
1714 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1715 
1716 /*
1717  * timeouts, in milliseconds, used for sending/receiving control messages
1718  * they typically complete within a few frames (msec) after they're issued
1719  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1720  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1721  */
1722 #define USB_CTRL_GET_TIMEOUT	5000
1723 #define USB_CTRL_SET_TIMEOUT	5000
1724 
1725 
1726 /**
1727  * struct usb_sg_request - support for scatter/gather I/O
1728  * @status: zero indicates success, else negative errno
1729  * @bytes: counts bytes transferred.
1730  *
1731  * These requests are initialized using usb_sg_init(), and then are used
1732  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1733  * members of the request object aren't for driver access.
1734  *
1735  * The status and bytecount values are valid only after usb_sg_wait()
1736  * returns.  If the status is zero, then the bytecount matches the total
1737  * from the request.
1738  *
1739  * After an error completion, drivers may need to clear a halt condition
1740  * on the endpoint.
1741  */
1742 struct usb_sg_request {
1743 	int			status;
1744 	size_t			bytes;
1745 
1746 	/* private:
1747 	 * members below are private to usbcore,
1748 	 * and are not provided for driver access!
1749 	 */
1750 	spinlock_t		lock;
1751 
1752 	struct usb_device	*dev;
1753 	int			pipe;
1754 
1755 	int			entries;
1756 	struct urb		**urbs;
1757 
1758 	int			count;
1759 	struct completion	complete;
1760 };
1761 
1762 int usb_sg_init(
1763 	struct usb_sg_request	*io,
1764 	struct usb_device	*dev,
1765 	unsigned		pipe,
1766 	unsigned		period,
1767 	struct scatterlist	*sg,
1768 	int			nents,
1769 	size_t			length,
1770 	gfp_t			mem_flags
1771 );
1772 void usb_sg_cancel(struct usb_sg_request *io);
1773 void usb_sg_wait(struct usb_sg_request *io);
1774 
1775 
1776 /* ----------------------------------------------------------------------- */
1777 
1778 /*
1779  * For various legacy reasons, Linux has a small cookie that's paired with
1780  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1781  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1782  * an unsigned int encoded as:
1783  *
1784  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1785  *					 1 = Device-to-Host [In] ...
1786  *					like endpoint bEndpointAddress)
1787  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1788  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1789  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1790  *					 10 = control, 11 = bulk)
1791  *
1792  * Given the device address and endpoint descriptor, pipes are redundant.
1793  */
1794 
1795 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1796 /* (yet ... they're the values used by usbfs) */
1797 #define PIPE_ISOCHRONOUS		0
1798 #define PIPE_INTERRUPT			1
1799 #define PIPE_CONTROL			2
1800 #define PIPE_BULK			3
1801 
1802 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1803 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1804 
1805 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1806 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1807 
1808 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1809 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1810 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1811 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1812 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1813 
1814 static inline unsigned int __create_pipe(struct usb_device *dev,
1815 		unsigned int endpoint)
1816 {
1817 	return (dev->devnum << 8) | (endpoint << 15);
1818 }
1819 
1820 /* Create various pipes... */
1821 #define usb_sndctrlpipe(dev, endpoint)	\
1822 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1823 #define usb_rcvctrlpipe(dev, endpoint)	\
1824 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1825 #define usb_sndisocpipe(dev, endpoint)	\
1826 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1827 #define usb_rcvisocpipe(dev, endpoint)	\
1828 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1829 #define usb_sndbulkpipe(dev, endpoint)	\
1830 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1831 #define usb_rcvbulkpipe(dev, endpoint)	\
1832 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1833 #define usb_sndintpipe(dev, endpoint)	\
1834 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1835 #define usb_rcvintpipe(dev, endpoint)	\
1836 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1837 
1838 static inline struct usb_host_endpoint *
1839 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1840 {
1841 	struct usb_host_endpoint **eps;
1842 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1843 	return eps[usb_pipeendpoint(pipe)];
1844 }
1845 
1846 /*-------------------------------------------------------------------------*/
1847 
1848 static inline __u16
1849 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1850 {
1851 	struct usb_host_endpoint	*ep;
1852 	unsigned			epnum = usb_pipeendpoint(pipe);
1853 
1854 	if (is_out) {
1855 		WARN_ON(usb_pipein(pipe));
1856 		ep = udev->ep_out[epnum];
1857 	} else {
1858 		WARN_ON(usb_pipeout(pipe));
1859 		ep = udev->ep_in[epnum];
1860 	}
1861 	if (!ep)
1862 		return 0;
1863 
1864 	/* NOTE:  only 0x07ff bits are for packet size... */
1865 	return usb_endpoint_maxp(&ep->desc);
1866 }
1867 
1868 /* ----------------------------------------------------------------------- */
1869 
1870 /* translate USB error codes to codes user space understands */
1871 static inline int usb_translate_errors(int error_code)
1872 {
1873 	switch (error_code) {
1874 	case 0:
1875 	case -ENOMEM:
1876 	case -ENODEV:
1877 	case -EOPNOTSUPP:
1878 		return error_code;
1879 	default:
1880 		return -EIO;
1881 	}
1882 }
1883 
1884 /* Events from the usb core */
1885 #define USB_DEVICE_ADD		0x0001
1886 #define USB_DEVICE_REMOVE	0x0002
1887 #define USB_BUS_ADD		0x0003
1888 #define USB_BUS_REMOVE		0x0004
1889 extern void usb_register_notify(struct notifier_block *nb);
1890 extern void usb_unregister_notify(struct notifier_block *nb);
1891 
1892 /* debugfs stuff */
1893 extern struct dentry *usb_debug_root;
1894 
1895 /* LED triggers */
1896 enum usb_led_event {
1897 	USB_LED_EVENT_HOST = 0,
1898 	USB_LED_EVENT_GADGET = 1,
1899 };
1900 
1901 #ifdef CONFIG_USB_LED_TRIG
1902 extern void usb_led_activity(enum usb_led_event ev);
1903 #else
1904 static inline void usb_led_activity(enum usb_led_event ev) {}
1905 #endif
1906 
1907 #endif  /* __KERNEL__ */
1908 
1909 #endif
1910