xref: /openbmc/linux/include/linux/fscrypt.h (revision e142bd91)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fscrypt.h: declarations for per-file encryption
4  *
5  * Filesystems that implement per-file encryption must include this header
6  * file.
7  *
8  * Copyright (C) 2015, Google, Inc.
9  *
10  * Written by Michael Halcrow, 2015.
11  * Modified by Jaegeuk Kim, 2015.
12  */
13 #ifndef _LINUX_FSCRYPT_H
14 #define _LINUX_FSCRYPT_H
15 
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <uapi/linux/fscrypt.h>
20 
21 #define FS_CRYPTO_BLOCK_SIZE		16
22 
23 union fscrypt_policy;
24 struct fscrypt_info;
25 struct seq_file;
26 
27 struct fscrypt_str {
28 	unsigned char *name;
29 	u32 len;
30 };
31 
32 struct fscrypt_name {
33 	const struct qstr *usr_fname;
34 	struct fscrypt_str disk_name;
35 	u32 hash;
36 	u32 minor_hash;
37 	struct fscrypt_str crypto_buf;
38 	bool is_nokey_name;
39 };
40 
41 #define FSTR_INIT(n, l)		{ .name = n, .len = l }
42 #define FSTR_TO_QSTR(f)		QSTR_INIT((f)->name, (f)->len)
43 #define fname_name(p)		((p)->disk_name.name)
44 #define fname_len(p)		((p)->disk_name.len)
45 
46 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */
47 #define FSCRYPT_SET_CONTEXT_MAX_SIZE	40
48 
49 #ifdef CONFIG_FS_ENCRYPTION
50 
51 /*
52  * If set, the fscrypt bounce page pool won't be allocated (unless another
53  * filesystem needs it).  Set this if the filesystem always uses its own bounce
54  * pages for writes and therefore won't need the fscrypt bounce page pool.
55  */
56 #define FS_CFLG_OWN_PAGES (1U << 1)
57 
58 /* Crypto operations for filesystems */
59 struct fscrypt_operations {
60 
61 	/* Set of optional flags; see above for allowed flags */
62 	unsigned int flags;
63 
64 	/*
65 	 * If set, this is a filesystem-specific key description prefix that
66 	 * will be accepted for "logon" keys for v1 fscrypt policies, in
67 	 * addition to the generic prefix "fscrypt:".  This functionality is
68 	 * deprecated, so new filesystems shouldn't set this field.
69 	 */
70 	const char *key_prefix;
71 
72 	/*
73 	 * Get the fscrypt context of the given inode.
74 	 *
75 	 * @inode: the inode whose context to get
76 	 * @ctx: the buffer into which to get the context
77 	 * @len: length of the @ctx buffer in bytes
78 	 *
79 	 * Return: On success, returns the length of the context in bytes; this
80 	 *	   may be less than @len.  On failure, returns -ENODATA if the
81 	 *	   inode doesn't have a context, -ERANGE if the context is
82 	 *	   longer than @len, or another -errno code.
83 	 */
84 	int (*get_context)(struct inode *inode, void *ctx, size_t len);
85 
86 	/*
87 	 * Set an fscrypt context on the given inode.
88 	 *
89 	 * @inode: the inode whose context to set.  The inode won't already have
90 	 *	   an fscrypt context.
91 	 * @ctx: the context to set
92 	 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE)
93 	 * @fs_data: If called from fscrypt_set_context(), this will be the
94 	 *	     value the filesystem passed to fscrypt_set_context().
95 	 *	     Otherwise (i.e. when called from
96 	 *	     FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL.
97 	 *
98 	 * i_rwsem will be held for write.
99 	 *
100 	 * Return: 0 on success, -errno on failure.
101 	 */
102 	int (*set_context)(struct inode *inode, const void *ctx, size_t len,
103 			   void *fs_data);
104 
105 	/*
106 	 * Get the dummy fscrypt policy in use on the filesystem (if any).
107 	 *
108 	 * Filesystems only need to implement this function if they support the
109 	 * test_dummy_encryption mount option.
110 	 *
111 	 * Return: A pointer to the dummy fscrypt policy, if the filesystem is
112 	 *	   mounted with test_dummy_encryption; otherwise NULL.
113 	 */
114 	const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb);
115 
116 	/*
117 	 * Check whether a directory is empty.  i_rwsem will be held for write.
118 	 */
119 	bool (*empty_dir)(struct inode *inode);
120 
121 	/* The filesystem's maximum ciphertext filename length, in bytes */
122 	unsigned int max_namelen;
123 
124 	/*
125 	 * Check whether the filesystem's inode numbers and UUID are stable,
126 	 * meaning that they will never be changed even by offline operations
127 	 * such as filesystem shrinking and therefore can be used in the
128 	 * encryption without the possibility of files becoming unreadable.
129 	 *
130 	 * Filesystems only need to implement this function if they want to
131 	 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags.  These
132 	 * flags are designed to work around the limitations of UFS and eMMC
133 	 * inline crypto hardware, and they shouldn't be used in scenarios where
134 	 * such hardware isn't being used.
135 	 *
136 	 * Leaving this NULL is equivalent to always returning false.
137 	 */
138 	bool (*has_stable_inodes)(struct super_block *sb);
139 
140 	/*
141 	 * Get the number of bits that the filesystem uses to represent inode
142 	 * numbers and file logical block numbers.
143 	 *
144 	 * By default, both of these are assumed to be 64-bit.  This function
145 	 * can be implemented to declare that either or both of these numbers is
146 	 * shorter, which may allow the use of the
147 	 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags and/or the use of
148 	 * inline crypto hardware whose maximum DUN length is less than 64 bits
149 	 * (e.g., eMMC v5.2 spec compliant hardware).  This function only needs
150 	 * to be implemented if support for one of these features is needed.
151 	 */
152 	void (*get_ino_and_lblk_bits)(struct super_block *sb,
153 				      int *ino_bits_ret, int *lblk_bits_ret);
154 
155 	/*
156 	 * Return the number of block devices to which the filesystem may write
157 	 * encrypted file contents.
158 	 *
159 	 * If the filesystem can use multiple block devices (other than block
160 	 * devices that aren't used for encrypted file contents, such as
161 	 * external journal devices), and wants to support inline encryption,
162 	 * then it must implement this function.  Otherwise it's not needed.
163 	 */
164 	int (*get_num_devices)(struct super_block *sb);
165 
166 	/*
167 	 * If ->get_num_devices() returns a value greater than 1, then this
168 	 * function is called to get the array of request_queues that the
169 	 * filesystem is using -- one per block device.  (There may be duplicate
170 	 * entries in this array, as block devices can share a request_queue.)
171 	 */
172 	void (*get_devices)(struct super_block *sb,
173 			    struct request_queue **devs);
174 };
175 
176 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
177 {
178 	/*
179 	 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info().
180 	 * I.e., another task may publish ->i_crypt_info concurrently, executing
181 	 * a RELEASE barrier.  We need to use smp_load_acquire() here to safely
182 	 * ACQUIRE the memory the other task published.
183 	 */
184 	return smp_load_acquire(&inode->i_crypt_info);
185 }
186 
187 /**
188  * fscrypt_needs_contents_encryption() - check whether an inode needs
189  *					 contents encryption
190  * @inode: the inode to check
191  *
192  * Return: %true iff the inode is an encrypted regular file and the kernel was
193  * built with fscrypt support.
194  *
195  * If you need to know whether the encrypt bit is set even when the kernel was
196  * built without fscrypt support, you must use IS_ENCRYPTED() directly instead.
197  */
198 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
199 {
200 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
201 }
202 
203 /*
204  * When d_splice_alias() moves a directory's no-key alias to its plaintext alias
205  * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be
206  * cleared.  Note that we don't have to support arbitrary moves of this flag
207  * because fscrypt doesn't allow no-key names to be the source or target of a
208  * rename().
209  */
210 static inline void fscrypt_handle_d_move(struct dentry *dentry)
211 {
212 	dentry->d_flags &= ~DCACHE_NOKEY_NAME;
213 }
214 
215 /**
216  * fscrypt_is_nokey_name() - test whether a dentry is a no-key name
217  * @dentry: the dentry to check
218  *
219  * This returns true if the dentry is a no-key dentry.  A no-key dentry is a
220  * dentry that was created in an encrypted directory that hasn't had its
221  * encryption key added yet.  Such dentries may be either positive or negative.
222  *
223  * When a filesystem is asked to create a new filename in an encrypted directory
224  * and the new filename's dentry is a no-key dentry, it must fail the operation
225  * with ENOKEY.  This includes ->create(), ->mkdir(), ->mknod(), ->symlink(),
226  * ->rename(), and ->link().  (However, ->rename() and ->link() are already
227  * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().)
228  *
229  * This is necessary because creating a filename requires the directory's
230  * encryption key, but just checking for the key on the directory inode during
231  * the final filesystem operation doesn't guarantee that the key was available
232  * during the preceding dentry lookup.  And the key must have already been
233  * available during the dentry lookup in order for it to have been checked
234  * whether the filename already exists in the directory and for the new file's
235  * dentry not to be invalidated due to it incorrectly having the no-key flag.
236  *
237  * Return: %true if the dentry is a no-key name
238  */
239 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
240 {
241 	return dentry->d_flags & DCACHE_NOKEY_NAME;
242 }
243 
244 /* crypto.c */
245 void fscrypt_enqueue_decrypt_work(struct work_struct *);
246 
247 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
248 					      unsigned int len,
249 					      unsigned int offs,
250 					      gfp_t gfp_flags);
251 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
252 				  unsigned int len, unsigned int offs,
253 				  u64 lblk_num, gfp_t gfp_flags);
254 
255 int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
256 				     unsigned int offs);
257 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
258 				  unsigned int len, unsigned int offs,
259 				  u64 lblk_num);
260 
261 static inline bool fscrypt_is_bounce_page(struct page *page)
262 {
263 	return page->mapping == NULL;
264 }
265 
266 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
267 {
268 	return (struct page *)page_private(bounce_page);
269 }
270 
271 void fscrypt_free_bounce_page(struct page *bounce_page);
272 
273 /* policy.c */
274 int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg);
275 int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg);
276 int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg);
277 int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg);
278 int fscrypt_has_permitted_context(struct inode *parent, struct inode *child);
279 int fscrypt_set_context(struct inode *inode, void *fs_data);
280 
281 struct fscrypt_dummy_policy {
282 	const union fscrypt_policy *policy;
283 };
284 
285 int fscrypt_set_test_dummy_encryption(struct super_block *sb, const char *arg,
286 				struct fscrypt_dummy_policy *dummy_policy);
287 void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep,
288 					struct super_block *sb);
289 static inline void
290 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
291 {
292 	kfree(dummy_policy->policy);
293 	dummy_policy->policy = NULL;
294 }
295 
296 /* keyring.c */
297 void fscrypt_sb_free(struct super_block *sb);
298 int fscrypt_ioctl_add_key(struct file *filp, void __user *arg);
299 int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg);
300 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg);
301 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg);
302 
303 /* keysetup.c */
304 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
305 			      bool *encrypt_ret);
306 void fscrypt_put_encryption_info(struct inode *inode);
307 void fscrypt_free_inode(struct inode *inode);
308 int fscrypt_drop_inode(struct inode *inode);
309 
310 /* fname.c */
311 int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname,
312 			   int lookup, struct fscrypt_name *fname);
313 
314 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
315 {
316 	kfree(fname->crypto_buf.name);
317 }
318 
319 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
320 			       struct fscrypt_str *crypto_str);
321 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str);
322 int fscrypt_fname_disk_to_usr(const struct inode *inode,
323 			      u32 hash, u32 minor_hash,
324 			      const struct fscrypt_str *iname,
325 			      struct fscrypt_str *oname);
326 bool fscrypt_match_name(const struct fscrypt_name *fname,
327 			const u8 *de_name, u32 de_name_len);
328 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name);
329 int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags);
330 
331 /* bio.c */
332 void fscrypt_decrypt_bio(struct bio *bio);
333 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
334 			  sector_t pblk, unsigned int len);
335 
336 /* hooks.c */
337 int fscrypt_file_open(struct inode *inode, struct file *filp);
338 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
339 			   struct dentry *dentry);
340 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
341 			     struct inode *new_dir, struct dentry *new_dentry,
342 			     unsigned int flags);
343 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
344 			     struct fscrypt_name *fname);
345 int __fscrypt_prepare_readdir(struct inode *dir);
346 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr);
347 int fscrypt_prepare_setflags(struct inode *inode,
348 			     unsigned int oldflags, unsigned int flags);
349 int fscrypt_prepare_symlink(struct inode *dir, const char *target,
350 			    unsigned int len, unsigned int max_len,
351 			    struct fscrypt_str *disk_link);
352 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
353 			      unsigned int len, struct fscrypt_str *disk_link);
354 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
355 				unsigned int max_size,
356 				struct delayed_call *done);
357 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat);
358 static inline void fscrypt_set_ops(struct super_block *sb,
359 				   const struct fscrypt_operations *s_cop)
360 {
361 	sb->s_cop = s_cop;
362 }
363 #else  /* !CONFIG_FS_ENCRYPTION */
364 
365 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
366 {
367 	return NULL;
368 }
369 
370 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
371 {
372 	return false;
373 }
374 
375 static inline void fscrypt_handle_d_move(struct dentry *dentry)
376 {
377 }
378 
379 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
380 {
381 	return false;
382 }
383 
384 /* crypto.c */
385 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work)
386 {
387 }
388 
389 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
390 							    unsigned int len,
391 							    unsigned int offs,
392 							    gfp_t gfp_flags)
393 {
394 	return ERR_PTR(-EOPNOTSUPP);
395 }
396 
397 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode,
398 						struct page *page,
399 						unsigned int len,
400 						unsigned int offs, u64 lblk_num,
401 						gfp_t gfp_flags)
402 {
403 	return -EOPNOTSUPP;
404 }
405 
406 static inline int fscrypt_decrypt_pagecache_blocks(struct page *page,
407 						   unsigned int len,
408 						   unsigned int offs)
409 {
410 	return -EOPNOTSUPP;
411 }
412 
413 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode,
414 						struct page *page,
415 						unsigned int len,
416 						unsigned int offs, u64 lblk_num)
417 {
418 	return -EOPNOTSUPP;
419 }
420 
421 static inline bool fscrypt_is_bounce_page(struct page *page)
422 {
423 	return false;
424 }
425 
426 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
427 {
428 	WARN_ON_ONCE(1);
429 	return ERR_PTR(-EINVAL);
430 }
431 
432 static inline void fscrypt_free_bounce_page(struct page *bounce_page)
433 {
434 }
435 
436 /* policy.c */
437 static inline int fscrypt_ioctl_set_policy(struct file *filp,
438 					   const void __user *arg)
439 {
440 	return -EOPNOTSUPP;
441 }
442 
443 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
444 {
445 	return -EOPNOTSUPP;
446 }
447 
448 static inline int fscrypt_ioctl_get_policy_ex(struct file *filp,
449 					      void __user *arg)
450 {
451 	return -EOPNOTSUPP;
452 }
453 
454 static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg)
455 {
456 	return -EOPNOTSUPP;
457 }
458 
459 static inline int fscrypt_has_permitted_context(struct inode *parent,
460 						struct inode *child)
461 {
462 	return 0;
463 }
464 
465 static inline int fscrypt_set_context(struct inode *inode, void *fs_data)
466 {
467 	return -EOPNOTSUPP;
468 }
469 
470 struct fscrypt_dummy_policy {
471 };
472 
473 static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq,
474 						      char sep,
475 						      struct super_block *sb)
476 {
477 }
478 
479 static inline void
480 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
481 {
482 }
483 
484 /* keyring.c */
485 static inline void fscrypt_sb_free(struct super_block *sb)
486 {
487 }
488 
489 static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg)
490 {
491 	return -EOPNOTSUPP;
492 }
493 
494 static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg)
495 {
496 	return -EOPNOTSUPP;
497 }
498 
499 static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp,
500 						     void __user *arg)
501 {
502 	return -EOPNOTSUPP;
503 }
504 
505 static inline int fscrypt_ioctl_get_key_status(struct file *filp,
506 					       void __user *arg)
507 {
508 	return -EOPNOTSUPP;
509 }
510 
511 /* keysetup.c */
512 
513 static inline int fscrypt_prepare_new_inode(struct inode *dir,
514 					    struct inode *inode,
515 					    bool *encrypt_ret)
516 {
517 	if (IS_ENCRYPTED(dir))
518 		return -EOPNOTSUPP;
519 	return 0;
520 }
521 
522 static inline void fscrypt_put_encryption_info(struct inode *inode)
523 {
524 	return;
525 }
526 
527 static inline void fscrypt_free_inode(struct inode *inode)
528 {
529 }
530 
531 static inline int fscrypt_drop_inode(struct inode *inode)
532 {
533 	return 0;
534 }
535 
536  /* fname.c */
537 static inline int fscrypt_setup_filename(struct inode *dir,
538 					 const struct qstr *iname,
539 					 int lookup, struct fscrypt_name *fname)
540 {
541 	if (IS_ENCRYPTED(dir))
542 		return -EOPNOTSUPP;
543 
544 	memset(fname, 0, sizeof(*fname));
545 	fname->usr_fname = iname;
546 	fname->disk_name.name = (unsigned char *)iname->name;
547 	fname->disk_name.len = iname->len;
548 	return 0;
549 }
550 
551 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
552 {
553 	return;
554 }
555 
556 static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
557 					     struct fscrypt_str *crypto_str)
558 {
559 	return -EOPNOTSUPP;
560 }
561 
562 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
563 {
564 	return;
565 }
566 
567 static inline int fscrypt_fname_disk_to_usr(const struct inode *inode,
568 					    u32 hash, u32 minor_hash,
569 					    const struct fscrypt_str *iname,
570 					    struct fscrypt_str *oname)
571 {
572 	return -EOPNOTSUPP;
573 }
574 
575 static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
576 				      const u8 *de_name, u32 de_name_len)
577 {
578 	/* Encryption support disabled; use standard comparison */
579 	if (de_name_len != fname->disk_name.len)
580 		return false;
581 	return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
582 }
583 
584 static inline u64 fscrypt_fname_siphash(const struct inode *dir,
585 					const struct qstr *name)
586 {
587 	WARN_ON_ONCE(1);
588 	return 0;
589 }
590 
591 static inline int fscrypt_d_revalidate(struct dentry *dentry,
592 				       unsigned int flags)
593 {
594 	return 1;
595 }
596 
597 /* bio.c */
598 static inline void fscrypt_decrypt_bio(struct bio *bio)
599 {
600 }
601 
602 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
603 					sector_t pblk, unsigned int len)
604 {
605 	return -EOPNOTSUPP;
606 }
607 
608 /* hooks.c */
609 
610 static inline int fscrypt_file_open(struct inode *inode, struct file *filp)
611 {
612 	if (IS_ENCRYPTED(inode))
613 		return -EOPNOTSUPP;
614 	return 0;
615 }
616 
617 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
618 					 struct dentry *dentry)
619 {
620 	return -EOPNOTSUPP;
621 }
622 
623 static inline int __fscrypt_prepare_rename(struct inode *old_dir,
624 					   struct dentry *old_dentry,
625 					   struct inode *new_dir,
626 					   struct dentry *new_dentry,
627 					   unsigned int flags)
628 {
629 	return -EOPNOTSUPP;
630 }
631 
632 static inline int __fscrypt_prepare_lookup(struct inode *dir,
633 					   struct dentry *dentry,
634 					   struct fscrypt_name *fname)
635 {
636 	return -EOPNOTSUPP;
637 }
638 
639 static inline int __fscrypt_prepare_readdir(struct inode *dir)
640 {
641 	return -EOPNOTSUPP;
642 }
643 
644 static inline int __fscrypt_prepare_setattr(struct dentry *dentry,
645 					    struct iattr *attr)
646 {
647 	return -EOPNOTSUPP;
648 }
649 
650 static inline int fscrypt_prepare_setflags(struct inode *inode,
651 					   unsigned int oldflags,
652 					   unsigned int flags)
653 {
654 	return 0;
655 }
656 
657 static inline int fscrypt_prepare_symlink(struct inode *dir,
658 					  const char *target,
659 					  unsigned int len,
660 					  unsigned int max_len,
661 					  struct fscrypt_str *disk_link)
662 {
663 	if (IS_ENCRYPTED(dir))
664 		return -EOPNOTSUPP;
665 	disk_link->name = (unsigned char *)target;
666 	disk_link->len = len + 1;
667 	if (disk_link->len > max_len)
668 		return -ENAMETOOLONG;
669 	return 0;
670 }
671 
672 static inline int __fscrypt_encrypt_symlink(struct inode *inode,
673 					    const char *target,
674 					    unsigned int len,
675 					    struct fscrypt_str *disk_link)
676 {
677 	return -EOPNOTSUPP;
678 }
679 
680 static inline const char *fscrypt_get_symlink(struct inode *inode,
681 					      const void *caddr,
682 					      unsigned int max_size,
683 					      struct delayed_call *done)
684 {
685 	return ERR_PTR(-EOPNOTSUPP);
686 }
687 
688 static inline int fscrypt_symlink_getattr(const struct path *path,
689 					  struct kstat *stat)
690 {
691 	return -EOPNOTSUPP;
692 }
693 
694 static inline void fscrypt_set_ops(struct super_block *sb,
695 				   const struct fscrypt_operations *s_cop)
696 {
697 }
698 
699 #endif	/* !CONFIG_FS_ENCRYPTION */
700 
701 /* inline_crypt.c */
702 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
703 
704 bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode);
705 
706 void fscrypt_set_bio_crypt_ctx(struct bio *bio,
707 			       const struct inode *inode, u64 first_lblk,
708 			       gfp_t gfp_mask);
709 
710 void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
711 				  const struct buffer_head *first_bh,
712 				  gfp_t gfp_mask);
713 
714 bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
715 			   u64 next_lblk);
716 
717 bool fscrypt_mergeable_bio_bh(struct bio *bio,
718 			      const struct buffer_head *next_bh);
719 
720 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
721 
722 static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
723 {
724 	return false;
725 }
726 
727 static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio,
728 					     const struct inode *inode,
729 					     u64 first_lblk, gfp_t gfp_mask) { }
730 
731 static inline void fscrypt_set_bio_crypt_ctx_bh(
732 					 struct bio *bio,
733 					 const struct buffer_head *first_bh,
734 					 gfp_t gfp_mask) { }
735 
736 static inline bool fscrypt_mergeable_bio(struct bio *bio,
737 					 const struct inode *inode,
738 					 u64 next_lblk)
739 {
740 	return true;
741 }
742 
743 static inline bool fscrypt_mergeable_bio_bh(struct bio *bio,
744 					    const struct buffer_head *next_bh)
745 {
746 	return true;
747 }
748 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
749 
750 /**
751  * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline
752  *					encryption
753  * @inode: an inode. If encrypted, its key must be set up.
754  *
755  * Return: true if the inode requires file contents encryption and if the
756  *	   encryption should be done in the block layer via blk-crypto rather
757  *	   than in the filesystem layer.
758  */
759 static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode)
760 {
761 	return fscrypt_needs_contents_encryption(inode) &&
762 	       __fscrypt_inode_uses_inline_crypto(inode);
763 }
764 
765 /**
766  * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer
767  *					  encryption
768  * @inode: an inode. If encrypted, its key must be set up.
769  *
770  * Return: true if the inode requires file contents encryption and if the
771  *	   encryption should be done in the filesystem layer rather than in the
772  *	   block layer via blk-crypto.
773  */
774 static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode)
775 {
776 	return fscrypt_needs_contents_encryption(inode) &&
777 	       !__fscrypt_inode_uses_inline_crypto(inode);
778 }
779 
780 /**
781  * fscrypt_has_encryption_key() - check whether an inode has had its key set up
782  * @inode: the inode to check
783  *
784  * Return: %true if the inode has had its encryption key set up, else %false.
785  *
786  * Usually this should be preceded by fscrypt_get_encryption_info() to try to
787  * set up the key first.
788  */
789 static inline bool fscrypt_has_encryption_key(const struct inode *inode)
790 {
791 	return fscrypt_get_info(inode) != NULL;
792 }
793 
794 /**
795  * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted
796  *			    directory
797  * @old_dentry: an existing dentry for the inode being linked
798  * @dir: the target directory
799  * @dentry: negative dentry for the target filename
800  *
801  * A new link can only be added to an encrypted directory if the directory's
802  * encryption key is available --- since otherwise we'd have no way to encrypt
803  * the filename.
804  *
805  * We also verify that the link will not violate the constraint that all files
806  * in an encrypted directory tree use the same encryption policy.
807  *
808  * Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
809  * -EXDEV if the link would result in an inconsistent encryption policy, or
810  * another -errno code.
811  */
812 static inline int fscrypt_prepare_link(struct dentry *old_dentry,
813 				       struct inode *dir,
814 				       struct dentry *dentry)
815 {
816 	if (IS_ENCRYPTED(dir))
817 		return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry);
818 	return 0;
819 }
820 
821 /**
822  * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted
823  *			      directories
824  * @old_dir: source directory
825  * @old_dentry: dentry for source file
826  * @new_dir: target directory
827  * @new_dentry: dentry for target location (may be negative unless exchanging)
828  * @flags: rename flags (we care at least about %RENAME_EXCHANGE)
829  *
830  * Prepare for ->rename() where the source and/or target directories may be
831  * encrypted.  A new link can only be added to an encrypted directory if the
832  * directory's encryption key is available --- since otherwise we'd have no way
833  * to encrypt the filename.  A rename to an existing name, on the other hand,
834  * *is* cryptographically possible without the key.  However, we take the more
835  * conservative approach and just forbid all no-key renames.
836  *
837  * We also verify that the rename will not violate the constraint that all files
838  * in an encrypted directory tree use the same encryption policy.
839  *
840  * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the
841  * rename would cause inconsistent encryption policies, or another -errno code.
842  */
843 static inline int fscrypt_prepare_rename(struct inode *old_dir,
844 					 struct dentry *old_dentry,
845 					 struct inode *new_dir,
846 					 struct dentry *new_dentry,
847 					 unsigned int flags)
848 {
849 	if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir))
850 		return __fscrypt_prepare_rename(old_dir, old_dentry,
851 						new_dir, new_dentry, flags);
852 	return 0;
853 }
854 
855 /**
856  * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted
857  *			      directory
858  * @dir: directory being searched
859  * @dentry: filename being looked up
860  * @fname: (output) the name to use to search the on-disk directory
861  *
862  * Prepare for ->lookup() in a directory which may be encrypted by determining
863  * the name that will actually be used to search the directory on-disk.  If the
864  * directory's encryption policy is supported by this kernel and its encryption
865  * key is available, then the lookup is assumed to be by plaintext name;
866  * otherwise, it is assumed to be by no-key name.
867  *
868  * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key
869  * name.  In this case the filesystem must assign the dentry a dentry_operations
870  * which contains fscrypt_d_revalidate (or contains a d_revalidate method that
871  * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the
872  * directory's encryption key is later added.
873  *
874  * Return: 0 on success; -ENOENT if the directory's key is unavailable but the
875  * filename isn't a valid no-key name, so a negative dentry should be created;
876  * or another -errno code.
877  */
878 static inline int fscrypt_prepare_lookup(struct inode *dir,
879 					 struct dentry *dentry,
880 					 struct fscrypt_name *fname)
881 {
882 	if (IS_ENCRYPTED(dir))
883 		return __fscrypt_prepare_lookup(dir, dentry, fname);
884 
885 	memset(fname, 0, sizeof(*fname));
886 	fname->usr_fname = &dentry->d_name;
887 	fname->disk_name.name = (unsigned char *)dentry->d_name.name;
888 	fname->disk_name.len = dentry->d_name.len;
889 	return 0;
890 }
891 
892 /**
893  * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory
894  * @dir: the directory inode
895  *
896  * If the directory is encrypted and it doesn't already have its encryption key
897  * set up, try to set it up so that the filenames will be listed in plaintext
898  * form rather than in no-key form.
899  *
900  * Return: 0 on success; -errno on error.  Note that the encryption key being
901  *	   unavailable is not considered an error.  It is also not an error if
902  *	   the encryption policy is unsupported by this kernel; that is treated
903  *	   like the key being unavailable, so that files can still be deleted.
904  */
905 static inline int fscrypt_prepare_readdir(struct inode *dir)
906 {
907 	if (IS_ENCRYPTED(dir))
908 		return __fscrypt_prepare_readdir(dir);
909 	return 0;
910 }
911 
912 /**
913  * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's
914  *			       attributes
915  * @dentry: dentry through which the inode is being changed
916  * @attr: attributes to change
917  *
918  * Prepare for ->setattr() on a possibly-encrypted inode.  On an encrypted file,
919  * most attribute changes are allowed even without the encryption key.  However,
920  * without the encryption key we do have to forbid truncates.  This is needed
921  * because the size being truncated to may not be a multiple of the filesystem
922  * block size, and in that case we'd have to decrypt the final block, zero the
923  * portion past i_size, and re-encrypt it.  (We *could* allow truncating to a
924  * filesystem block boundary, but it's simpler to just forbid all truncates ---
925  * and we already forbid all other contents modifications without the key.)
926  *
927  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
928  * if a problem occurred while setting up the encryption key.
929  */
930 static inline int fscrypt_prepare_setattr(struct dentry *dentry,
931 					  struct iattr *attr)
932 {
933 	if (IS_ENCRYPTED(d_inode(dentry)))
934 		return __fscrypt_prepare_setattr(dentry, attr);
935 	return 0;
936 }
937 
938 /**
939  * fscrypt_encrypt_symlink() - encrypt the symlink target if needed
940  * @inode: symlink inode
941  * @target: plaintext symlink target
942  * @len: length of @target excluding null terminator
943  * @disk_link: (in/out) the on-disk symlink target being prepared
944  *
945  * If the symlink target needs to be encrypted, then this function encrypts it
946  * into @disk_link->name.  fscrypt_prepare_symlink() must have been called
947  * previously to compute @disk_link->len.  If the filesystem did not allocate a
948  * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one
949  * will be kmalloc()'ed and the filesystem will be responsible for freeing it.
950  *
951  * Return: 0 on success, -errno on failure
952  */
953 static inline int fscrypt_encrypt_symlink(struct inode *inode,
954 					  const char *target,
955 					  unsigned int len,
956 					  struct fscrypt_str *disk_link)
957 {
958 	if (IS_ENCRYPTED(inode))
959 		return __fscrypt_encrypt_symlink(inode, target, len, disk_link);
960 	return 0;
961 }
962 
963 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */
964 static inline void fscrypt_finalize_bounce_page(struct page **pagep)
965 {
966 	struct page *page = *pagep;
967 
968 	if (fscrypt_is_bounce_page(page)) {
969 		*pagep = fscrypt_pagecache_page(page);
970 		fscrypt_free_bounce_page(page);
971 	}
972 }
973 
974 #endif	/* _LINUX_FSCRYPT_H */
975