xref: /openbmc/linux/include/linux/fscrypt.h (revision d40d48e1)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fscrypt.h: declarations for per-file encryption
4  *
5  * Filesystems that implement per-file encryption must include this header
6  * file.
7  *
8  * Copyright (C) 2015, Google, Inc.
9  *
10  * Written by Michael Halcrow, 2015.
11  * Modified by Jaegeuk Kim, 2015.
12  */
13 #ifndef _LINUX_FSCRYPT_H
14 #define _LINUX_FSCRYPT_H
15 
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <uapi/linux/fscrypt.h>
20 
21 #define FS_CRYPTO_BLOCK_SIZE		16
22 
23 union fscrypt_policy;
24 struct fscrypt_info;
25 struct seq_file;
26 
27 struct fscrypt_str {
28 	unsigned char *name;
29 	u32 len;
30 };
31 
32 struct fscrypt_name {
33 	const struct qstr *usr_fname;
34 	struct fscrypt_str disk_name;
35 	u32 hash;
36 	u32 minor_hash;
37 	struct fscrypt_str crypto_buf;
38 	bool is_nokey_name;
39 };
40 
41 #define FSTR_INIT(n, l)		{ .name = n, .len = l }
42 #define FSTR_TO_QSTR(f)		QSTR_INIT((f)->name, (f)->len)
43 #define fname_name(p)		((p)->disk_name.name)
44 #define fname_len(p)		((p)->disk_name.len)
45 
46 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */
47 #define FSCRYPT_SET_CONTEXT_MAX_SIZE	40
48 
49 #ifdef CONFIG_FS_ENCRYPTION
50 
51 /*
52  * If set, the fscrypt bounce page pool won't be allocated (unless another
53  * filesystem needs it).  Set this if the filesystem always uses its own bounce
54  * pages for writes and therefore won't need the fscrypt bounce page pool.
55  */
56 #define FS_CFLG_OWN_PAGES (1U << 1)
57 
58 /* Crypto operations for filesystems */
59 struct fscrypt_operations {
60 
61 	/* Set of optional flags; see above for allowed flags */
62 	unsigned int flags;
63 
64 	/*
65 	 * If set, this is a filesystem-specific key description prefix that
66 	 * will be accepted for "logon" keys for v1 fscrypt policies, in
67 	 * addition to the generic prefix "fscrypt:".  This functionality is
68 	 * deprecated, so new filesystems shouldn't set this field.
69 	 */
70 	const char *key_prefix;
71 
72 	/*
73 	 * Get the fscrypt context of the given inode.
74 	 *
75 	 * @inode: the inode whose context to get
76 	 * @ctx: the buffer into which to get the context
77 	 * @len: length of the @ctx buffer in bytes
78 	 *
79 	 * Return: On success, returns the length of the context in bytes; this
80 	 *	   may be less than @len.  On failure, returns -ENODATA if the
81 	 *	   inode doesn't have a context, -ERANGE if the context is
82 	 *	   longer than @len, or another -errno code.
83 	 */
84 	int (*get_context)(struct inode *inode, void *ctx, size_t len);
85 
86 	/*
87 	 * Set an fscrypt context on the given inode.
88 	 *
89 	 * @inode: the inode whose context to set.  The inode won't already have
90 	 *	   an fscrypt context.
91 	 * @ctx: the context to set
92 	 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE)
93 	 * @fs_data: If called from fscrypt_set_context(), this will be the
94 	 *	     value the filesystem passed to fscrypt_set_context().
95 	 *	     Otherwise (i.e. when called from
96 	 *	     FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL.
97 	 *
98 	 * i_rwsem will be held for write.
99 	 *
100 	 * Return: 0 on success, -errno on failure.
101 	 */
102 	int (*set_context)(struct inode *inode, const void *ctx, size_t len,
103 			   void *fs_data);
104 
105 	/*
106 	 * Get the dummy fscrypt policy in use on the filesystem (if any).
107 	 *
108 	 * Filesystems only need to implement this function if they support the
109 	 * test_dummy_encryption mount option.
110 	 *
111 	 * Return: A pointer to the dummy fscrypt policy, if the filesystem is
112 	 *	   mounted with test_dummy_encryption; otherwise NULL.
113 	 */
114 	const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb);
115 
116 	/*
117 	 * Check whether a directory is empty.  i_rwsem will be held for write.
118 	 */
119 	bool (*empty_dir)(struct inode *inode);
120 
121 	/*
122 	 * Check whether the filesystem's inode numbers and UUID are stable,
123 	 * meaning that they will never be changed even by offline operations
124 	 * such as filesystem shrinking and therefore can be used in the
125 	 * encryption without the possibility of files becoming unreadable.
126 	 *
127 	 * Filesystems only need to implement this function if they want to
128 	 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags.  These
129 	 * flags are designed to work around the limitations of UFS and eMMC
130 	 * inline crypto hardware, and they shouldn't be used in scenarios where
131 	 * such hardware isn't being used.
132 	 *
133 	 * Leaving this NULL is equivalent to always returning false.
134 	 */
135 	bool (*has_stable_inodes)(struct super_block *sb);
136 
137 	/*
138 	 * Get the number of bits that the filesystem uses to represent inode
139 	 * numbers and file logical block numbers.
140 	 *
141 	 * By default, both of these are assumed to be 64-bit.  This function
142 	 * can be implemented to declare that either or both of these numbers is
143 	 * shorter, which may allow the use of the
144 	 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags and/or the use of
145 	 * inline crypto hardware whose maximum DUN length is less than 64 bits
146 	 * (e.g., eMMC v5.2 spec compliant hardware).  This function only needs
147 	 * to be implemented if support for one of these features is needed.
148 	 */
149 	void (*get_ino_and_lblk_bits)(struct super_block *sb,
150 				      int *ino_bits_ret, int *lblk_bits_ret);
151 
152 	/*
153 	 * Return the number of block devices to which the filesystem may write
154 	 * encrypted file contents.
155 	 *
156 	 * If the filesystem can use multiple block devices (other than block
157 	 * devices that aren't used for encrypted file contents, such as
158 	 * external journal devices), and wants to support inline encryption,
159 	 * then it must implement this function.  Otherwise it's not needed.
160 	 */
161 	int (*get_num_devices)(struct super_block *sb);
162 
163 	/*
164 	 * If ->get_num_devices() returns a value greater than 1, then this
165 	 * function is called to get the array of request_queues that the
166 	 * filesystem is using -- one per block device.  (There may be duplicate
167 	 * entries in this array, as block devices can share a request_queue.)
168 	 */
169 	void (*get_devices)(struct super_block *sb,
170 			    struct request_queue **devs);
171 };
172 
173 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
174 {
175 	/*
176 	 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info().
177 	 * I.e., another task may publish ->i_crypt_info concurrently, executing
178 	 * a RELEASE barrier.  We need to use smp_load_acquire() here to safely
179 	 * ACQUIRE the memory the other task published.
180 	 */
181 	return smp_load_acquire(&inode->i_crypt_info);
182 }
183 
184 /**
185  * fscrypt_needs_contents_encryption() - check whether an inode needs
186  *					 contents encryption
187  * @inode: the inode to check
188  *
189  * Return: %true iff the inode is an encrypted regular file and the kernel was
190  * built with fscrypt support.
191  *
192  * If you need to know whether the encrypt bit is set even when the kernel was
193  * built without fscrypt support, you must use IS_ENCRYPTED() directly instead.
194  */
195 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
196 {
197 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
198 }
199 
200 /*
201  * When d_splice_alias() moves a directory's no-key alias to its plaintext alias
202  * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be
203  * cleared.  Note that we don't have to support arbitrary moves of this flag
204  * because fscrypt doesn't allow no-key names to be the source or target of a
205  * rename().
206  */
207 static inline void fscrypt_handle_d_move(struct dentry *dentry)
208 {
209 	dentry->d_flags &= ~DCACHE_NOKEY_NAME;
210 }
211 
212 /**
213  * fscrypt_is_nokey_name() - test whether a dentry is a no-key name
214  * @dentry: the dentry to check
215  *
216  * This returns true if the dentry is a no-key dentry.  A no-key dentry is a
217  * dentry that was created in an encrypted directory that hasn't had its
218  * encryption key added yet.  Such dentries may be either positive or negative.
219  *
220  * When a filesystem is asked to create a new filename in an encrypted directory
221  * and the new filename's dentry is a no-key dentry, it must fail the operation
222  * with ENOKEY.  This includes ->create(), ->mkdir(), ->mknod(), ->symlink(),
223  * ->rename(), and ->link().  (However, ->rename() and ->link() are already
224  * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().)
225  *
226  * This is necessary because creating a filename requires the directory's
227  * encryption key, but just checking for the key on the directory inode during
228  * the final filesystem operation doesn't guarantee that the key was available
229  * during the preceding dentry lookup.  And the key must have already been
230  * available during the dentry lookup in order for it to have been checked
231  * whether the filename already exists in the directory and for the new file's
232  * dentry not to be invalidated due to it incorrectly having the no-key flag.
233  *
234  * Return: %true if the dentry is a no-key name
235  */
236 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
237 {
238 	return dentry->d_flags & DCACHE_NOKEY_NAME;
239 }
240 
241 /* crypto.c */
242 void fscrypt_enqueue_decrypt_work(struct work_struct *);
243 
244 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
245 					      unsigned int len,
246 					      unsigned int offs,
247 					      gfp_t gfp_flags);
248 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
249 				  unsigned int len, unsigned int offs,
250 				  u64 lblk_num, gfp_t gfp_flags);
251 
252 int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
253 				     unsigned int offs);
254 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
255 				  unsigned int len, unsigned int offs,
256 				  u64 lblk_num);
257 
258 static inline bool fscrypt_is_bounce_page(struct page *page)
259 {
260 	return page->mapping == NULL;
261 }
262 
263 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
264 {
265 	return (struct page *)page_private(bounce_page);
266 }
267 
268 void fscrypt_free_bounce_page(struct page *bounce_page);
269 
270 /* policy.c */
271 int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg);
272 int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg);
273 int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg);
274 int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg);
275 int fscrypt_has_permitted_context(struct inode *parent, struct inode *child);
276 int fscrypt_set_context(struct inode *inode, void *fs_data);
277 
278 struct fscrypt_dummy_policy {
279 	const union fscrypt_policy *policy;
280 };
281 
282 int fscrypt_set_test_dummy_encryption(struct super_block *sb, const char *arg,
283 				struct fscrypt_dummy_policy *dummy_policy);
284 void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep,
285 					struct super_block *sb);
286 static inline void
287 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
288 {
289 	kfree(dummy_policy->policy);
290 	dummy_policy->policy = NULL;
291 }
292 
293 /* keyring.c */
294 void fscrypt_sb_free(struct super_block *sb);
295 int fscrypt_ioctl_add_key(struct file *filp, void __user *arg);
296 int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg);
297 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg);
298 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg);
299 
300 /* keysetup.c */
301 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
302 			      bool *encrypt_ret);
303 void fscrypt_put_encryption_info(struct inode *inode);
304 void fscrypt_free_inode(struct inode *inode);
305 int fscrypt_drop_inode(struct inode *inode);
306 
307 /* fname.c */
308 int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname,
309 			   int lookup, struct fscrypt_name *fname);
310 
311 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
312 {
313 	kfree(fname->crypto_buf.name);
314 }
315 
316 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
317 			       struct fscrypt_str *crypto_str);
318 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str);
319 int fscrypt_fname_disk_to_usr(const struct inode *inode,
320 			      u32 hash, u32 minor_hash,
321 			      const struct fscrypt_str *iname,
322 			      struct fscrypt_str *oname);
323 bool fscrypt_match_name(const struct fscrypt_name *fname,
324 			const u8 *de_name, u32 de_name_len);
325 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name);
326 int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags);
327 
328 /* bio.c */
329 void fscrypt_decrypt_bio(struct bio *bio);
330 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
331 			  sector_t pblk, unsigned int len);
332 
333 /* hooks.c */
334 int fscrypt_file_open(struct inode *inode, struct file *filp);
335 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
336 			   struct dentry *dentry);
337 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
338 			     struct inode *new_dir, struct dentry *new_dentry,
339 			     unsigned int flags);
340 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
341 			     struct fscrypt_name *fname);
342 int __fscrypt_prepare_readdir(struct inode *dir);
343 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr);
344 int fscrypt_prepare_setflags(struct inode *inode,
345 			     unsigned int oldflags, unsigned int flags);
346 int fscrypt_prepare_symlink(struct inode *dir, const char *target,
347 			    unsigned int len, unsigned int max_len,
348 			    struct fscrypt_str *disk_link);
349 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
350 			      unsigned int len, struct fscrypt_str *disk_link);
351 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
352 				unsigned int max_size,
353 				struct delayed_call *done);
354 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat);
355 static inline void fscrypt_set_ops(struct super_block *sb,
356 				   const struct fscrypt_operations *s_cop)
357 {
358 	sb->s_cop = s_cop;
359 }
360 #else  /* !CONFIG_FS_ENCRYPTION */
361 
362 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
363 {
364 	return NULL;
365 }
366 
367 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
368 {
369 	return false;
370 }
371 
372 static inline void fscrypt_handle_d_move(struct dentry *dentry)
373 {
374 }
375 
376 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
377 {
378 	return false;
379 }
380 
381 /* crypto.c */
382 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work)
383 {
384 }
385 
386 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
387 							    unsigned int len,
388 							    unsigned int offs,
389 							    gfp_t gfp_flags)
390 {
391 	return ERR_PTR(-EOPNOTSUPP);
392 }
393 
394 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode,
395 						struct page *page,
396 						unsigned int len,
397 						unsigned int offs, u64 lblk_num,
398 						gfp_t gfp_flags)
399 {
400 	return -EOPNOTSUPP;
401 }
402 
403 static inline int fscrypt_decrypt_pagecache_blocks(struct page *page,
404 						   unsigned int len,
405 						   unsigned int offs)
406 {
407 	return -EOPNOTSUPP;
408 }
409 
410 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode,
411 						struct page *page,
412 						unsigned int len,
413 						unsigned int offs, u64 lblk_num)
414 {
415 	return -EOPNOTSUPP;
416 }
417 
418 static inline bool fscrypt_is_bounce_page(struct page *page)
419 {
420 	return false;
421 }
422 
423 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
424 {
425 	WARN_ON_ONCE(1);
426 	return ERR_PTR(-EINVAL);
427 }
428 
429 static inline void fscrypt_free_bounce_page(struct page *bounce_page)
430 {
431 }
432 
433 /* policy.c */
434 static inline int fscrypt_ioctl_set_policy(struct file *filp,
435 					   const void __user *arg)
436 {
437 	return -EOPNOTSUPP;
438 }
439 
440 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
441 {
442 	return -EOPNOTSUPP;
443 }
444 
445 static inline int fscrypt_ioctl_get_policy_ex(struct file *filp,
446 					      void __user *arg)
447 {
448 	return -EOPNOTSUPP;
449 }
450 
451 static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg)
452 {
453 	return -EOPNOTSUPP;
454 }
455 
456 static inline int fscrypt_has_permitted_context(struct inode *parent,
457 						struct inode *child)
458 {
459 	return 0;
460 }
461 
462 static inline int fscrypt_set_context(struct inode *inode, void *fs_data)
463 {
464 	return -EOPNOTSUPP;
465 }
466 
467 struct fscrypt_dummy_policy {
468 };
469 
470 static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq,
471 						      char sep,
472 						      struct super_block *sb)
473 {
474 }
475 
476 static inline void
477 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
478 {
479 }
480 
481 /* keyring.c */
482 static inline void fscrypt_sb_free(struct super_block *sb)
483 {
484 }
485 
486 static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg)
487 {
488 	return -EOPNOTSUPP;
489 }
490 
491 static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg)
492 {
493 	return -EOPNOTSUPP;
494 }
495 
496 static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp,
497 						     void __user *arg)
498 {
499 	return -EOPNOTSUPP;
500 }
501 
502 static inline int fscrypt_ioctl_get_key_status(struct file *filp,
503 					       void __user *arg)
504 {
505 	return -EOPNOTSUPP;
506 }
507 
508 /* keysetup.c */
509 
510 static inline int fscrypt_prepare_new_inode(struct inode *dir,
511 					    struct inode *inode,
512 					    bool *encrypt_ret)
513 {
514 	if (IS_ENCRYPTED(dir))
515 		return -EOPNOTSUPP;
516 	return 0;
517 }
518 
519 static inline void fscrypt_put_encryption_info(struct inode *inode)
520 {
521 	return;
522 }
523 
524 static inline void fscrypt_free_inode(struct inode *inode)
525 {
526 }
527 
528 static inline int fscrypt_drop_inode(struct inode *inode)
529 {
530 	return 0;
531 }
532 
533  /* fname.c */
534 static inline int fscrypt_setup_filename(struct inode *dir,
535 					 const struct qstr *iname,
536 					 int lookup, struct fscrypt_name *fname)
537 {
538 	if (IS_ENCRYPTED(dir))
539 		return -EOPNOTSUPP;
540 
541 	memset(fname, 0, sizeof(*fname));
542 	fname->usr_fname = iname;
543 	fname->disk_name.name = (unsigned char *)iname->name;
544 	fname->disk_name.len = iname->len;
545 	return 0;
546 }
547 
548 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
549 {
550 	return;
551 }
552 
553 static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
554 					     struct fscrypt_str *crypto_str)
555 {
556 	return -EOPNOTSUPP;
557 }
558 
559 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
560 {
561 	return;
562 }
563 
564 static inline int fscrypt_fname_disk_to_usr(const struct inode *inode,
565 					    u32 hash, u32 minor_hash,
566 					    const struct fscrypt_str *iname,
567 					    struct fscrypt_str *oname)
568 {
569 	return -EOPNOTSUPP;
570 }
571 
572 static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
573 				      const u8 *de_name, u32 de_name_len)
574 {
575 	/* Encryption support disabled; use standard comparison */
576 	if (de_name_len != fname->disk_name.len)
577 		return false;
578 	return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
579 }
580 
581 static inline u64 fscrypt_fname_siphash(const struct inode *dir,
582 					const struct qstr *name)
583 {
584 	WARN_ON_ONCE(1);
585 	return 0;
586 }
587 
588 static inline int fscrypt_d_revalidate(struct dentry *dentry,
589 				       unsigned int flags)
590 {
591 	return 1;
592 }
593 
594 /* bio.c */
595 static inline void fscrypt_decrypt_bio(struct bio *bio)
596 {
597 }
598 
599 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
600 					sector_t pblk, unsigned int len)
601 {
602 	return -EOPNOTSUPP;
603 }
604 
605 /* hooks.c */
606 
607 static inline int fscrypt_file_open(struct inode *inode, struct file *filp)
608 {
609 	if (IS_ENCRYPTED(inode))
610 		return -EOPNOTSUPP;
611 	return 0;
612 }
613 
614 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
615 					 struct dentry *dentry)
616 {
617 	return -EOPNOTSUPP;
618 }
619 
620 static inline int __fscrypt_prepare_rename(struct inode *old_dir,
621 					   struct dentry *old_dentry,
622 					   struct inode *new_dir,
623 					   struct dentry *new_dentry,
624 					   unsigned int flags)
625 {
626 	return -EOPNOTSUPP;
627 }
628 
629 static inline int __fscrypt_prepare_lookup(struct inode *dir,
630 					   struct dentry *dentry,
631 					   struct fscrypt_name *fname)
632 {
633 	return -EOPNOTSUPP;
634 }
635 
636 static inline int __fscrypt_prepare_readdir(struct inode *dir)
637 {
638 	return -EOPNOTSUPP;
639 }
640 
641 static inline int __fscrypt_prepare_setattr(struct dentry *dentry,
642 					    struct iattr *attr)
643 {
644 	return -EOPNOTSUPP;
645 }
646 
647 static inline int fscrypt_prepare_setflags(struct inode *inode,
648 					   unsigned int oldflags,
649 					   unsigned int flags)
650 {
651 	return 0;
652 }
653 
654 static inline int fscrypt_prepare_symlink(struct inode *dir,
655 					  const char *target,
656 					  unsigned int len,
657 					  unsigned int max_len,
658 					  struct fscrypt_str *disk_link)
659 {
660 	if (IS_ENCRYPTED(dir))
661 		return -EOPNOTSUPP;
662 	disk_link->name = (unsigned char *)target;
663 	disk_link->len = len + 1;
664 	if (disk_link->len > max_len)
665 		return -ENAMETOOLONG;
666 	return 0;
667 }
668 
669 static inline int __fscrypt_encrypt_symlink(struct inode *inode,
670 					    const char *target,
671 					    unsigned int len,
672 					    struct fscrypt_str *disk_link)
673 {
674 	return -EOPNOTSUPP;
675 }
676 
677 static inline const char *fscrypt_get_symlink(struct inode *inode,
678 					      const void *caddr,
679 					      unsigned int max_size,
680 					      struct delayed_call *done)
681 {
682 	return ERR_PTR(-EOPNOTSUPP);
683 }
684 
685 static inline int fscrypt_symlink_getattr(const struct path *path,
686 					  struct kstat *stat)
687 {
688 	return -EOPNOTSUPP;
689 }
690 
691 static inline void fscrypt_set_ops(struct super_block *sb,
692 				   const struct fscrypt_operations *s_cop)
693 {
694 }
695 
696 #endif	/* !CONFIG_FS_ENCRYPTION */
697 
698 /* inline_crypt.c */
699 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
700 
701 bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode);
702 
703 void fscrypt_set_bio_crypt_ctx(struct bio *bio,
704 			       const struct inode *inode, u64 first_lblk,
705 			       gfp_t gfp_mask);
706 
707 void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
708 				  const struct buffer_head *first_bh,
709 				  gfp_t gfp_mask);
710 
711 bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
712 			   u64 next_lblk);
713 
714 bool fscrypt_mergeable_bio_bh(struct bio *bio,
715 			      const struct buffer_head *next_bh);
716 
717 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
718 
719 static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
720 {
721 	return false;
722 }
723 
724 static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio,
725 					     const struct inode *inode,
726 					     u64 first_lblk, gfp_t gfp_mask) { }
727 
728 static inline void fscrypt_set_bio_crypt_ctx_bh(
729 					 struct bio *bio,
730 					 const struct buffer_head *first_bh,
731 					 gfp_t gfp_mask) { }
732 
733 static inline bool fscrypt_mergeable_bio(struct bio *bio,
734 					 const struct inode *inode,
735 					 u64 next_lblk)
736 {
737 	return true;
738 }
739 
740 static inline bool fscrypt_mergeable_bio_bh(struct bio *bio,
741 					    const struct buffer_head *next_bh)
742 {
743 	return true;
744 }
745 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
746 
747 /**
748  * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline
749  *					encryption
750  * @inode: an inode. If encrypted, its key must be set up.
751  *
752  * Return: true if the inode requires file contents encryption and if the
753  *	   encryption should be done in the block layer via blk-crypto rather
754  *	   than in the filesystem layer.
755  */
756 static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode)
757 {
758 	return fscrypt_needs_contents_encryption(inode) &&
759 	       __fscrypt_inode_uses_inline_crypto(inode);
760 }
761 
762 /**
763  * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer
764  *					  encryption
765  * @inode: an inode. If encrypted, its key must be set up.
766  *
767  * Return: true if the inode requires file contents encryption and if the
768  *	   encryption should be done in the filesystem layer rather than in the
769  *	   block layer via blk-crypto.
770  */
771 static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode)
772 {
773 	return fscrypt_needs_contents_encryption(inode) &&
774 	       !__fscrypt_inode_uses_inline_crypto(inode);
775 }
776 
777 /**
778  * fscrypt_has_encryption_key() - check whether an inode has had its key set up
779  * @inode: the inode to check
780  *
781  * Return: %true if the inode has had its encryption key set up, else %false.
782  *
783  * Usually this should be preceded by fscrypt_get_encryption_info() to try to
784  * set up the key first.
785  */
786 static inline bool fscrypt_has_encryption_key(const struct inode *inode)
787 {
788 	return fscrypt_get_info(inode) != NULL;
789 }
790 
791 /**
792  * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted
793  *			    directory
794  * @old_dentry: an existing dentry for the inode being linked
795  * @dir: the target directory
796  * @dentry: negative dentry for the target filename
797  *
798  * A new link can only be added to an encrypted directory if the directory's
799  * encryption key is available --- since otherwise we'd have no way to encrypt
800  * the filename.
801  *
802  * We also verify that the link will not violate the constraint that all files
803  * in an encrypted directory tree use the same encryption policy.
804  *
805  * Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
806  * -EXDEV if the link would result in an inconsistent encryption policy, or
807  * another -errno code.
808  */
809 static inline int fscrypt_prepare_link(struct dentry *old_dentry,
810 				       struct inode *dir,
811 				       struct dentry *dentry)
812 {
813 	if (IS_ENCRYPTED(dir))
814 		return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry);
815 	return 0;
816 }
817 
818 /**
819  * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted
820  *			      directories
821  * @old_dir: source directory
822  * @old_dentry: dentry for source file
823  * @new_dir: target directory
824  * @new_dentry: dentry for target location (may be negative unless exchanging)
825  * @flags: rename flags (we care at least about %RENAME_EXCHANGE)
826  *
827  * Prepare for ->rename() where the source and/or target directories may be
828  * encrypted.  A new link can only be added to an encrypted directory if the
829  * directory's encryption key is available --- since otherwise we'd have no way
830  * to encrypt the filename.  A rename to an existing name, on the other hand,
831  * *is* cryptographically possible without the key.  However, we take the more
832  * conservative approach and just forbid all no-key renames.
833  *
834  * We also verify that the rename will not violate the constraint that all files
835  * in an encrypted directory tree use the same encryption policy.
836  *
837  * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the
838  * rename would cause inconsistent encryption policies, or another -errno code.
839  */
840 static inline int fscrypt_prepare_rename(struct inode *old_dir,
841 					 struct dentry *old_dentry,
842 					 struct inode *new_dir,
843 					 struct dentry *new_dentry,
844 					 unsigned int flags)
845 {
846 	if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir))
847 		return __fscrypt_prepare_rename(old_dir, old_dentry,
848 						new_dir, new_dentry, flags);
849 	return 0;
850 }
851 
852 /**
853  * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted
854  *			      directory
855  * @dir: directory being searched
856  * @dentry: filename being looked up
857  * @fname: (output) the name to use to search the on-disk directory
858  *
859  * Prepare for ->lookup() in a directory which may be encrypted by determining
860  * the name that will actually be used to search the directory on-disk.  If the
861  * directory's encryption policy is supported by this kernel and its encryption
862  * key is available, then the lookup is assumed to be by plaintext name;
863  * otherwise, it is assumed to be by no-key name.
864  *
865  * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key
866  * name.  In this case the filesystem must assign the dentry a dentry_operations
867  * which contains fscrypt_d_revalidate (or contains a d_revalidate method that
868  * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the
869  * directory's encryption key is later added.
870  *
871  * Return: 0 on success; -ENOENT if the directory's key is unavailable but the
872  * filename isn't a valid no-key name, so a negative dentry should be created;
873  * or another -errno code.
874  */
875 static inline int fscrypt_prepare_lookup(struct inode *dir,
876 					 struct dentry *dentry,
877 					 struct fscrypt_name *fname)
878 {
879 	if (IS_ENCRYPTED(dir))
880 		return __fscrypt_prepare_lookup(dir, dentry, fname);
881 
882 	memset(fname, 0, sizeof(*fname));
883 	fname->usr_fname = &dentry->d_name;
884 	fname->disk_name.name = (unsigned char *)dentry->d_name.name;
885 	fname->disk_name.len = dentry->d_name.len;
886 	return 0;
887 }
888 
889 /**
890  * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory
891  * @dir: the directory inode
892  *
893  * If the directory is encrypted and it doesn't already have its encryption key
894  * set up, try to set it up so that the filenames will be listed in plaintext
895  * form rather than in no-key form.
896  *
897  * Return: 0 on success; -errno on error.  Note that the encryption key being
898  *	   unavailable is not considered an error.  It is also not an error if
899  *	   the encryption policy is unsupported by this kernel; that is treated
900  *	   like the key being unavailable, so that files can still be deleted.
901  */
902 static inline int fscrypt_prepare_readdir(struct inode *dir)
903 {
904 	if (IS_ENCRYPTED(dir))
905 		return __fscrypt_prepare_readdir(dir);
906 	return 0;
907 }
908 
909 /**
910  * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's
911  *			       attributes
912  * @dentry: dentry through which the inode is being changed
913  * @attr: attributes to change
914  *
915  * Prepare for ->setattr() on a possibly-encrypted inode.  On an encrypted file,
916  * most attribute changes are allowed even without the encryption key.  However,
917  * without the encryption key we do have to forbid truncates.  This is needed
918  * because the size being truncated to may not be a multiple of the filesystem
919  * block size, and in that case we'd have to decrypt the final block, zero the
920  * portion past i_size, and re-encrypt it.  (We *could* allow truncating to a
921  * filesystem block boundary, but it's simpler to just forbid all truncates ---
922  * and we already forbid all other contents modifications without the key.)
923  *
924  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
925  * if a problem occurred while setting up the encryption key.
926  */
927 static inline int fscrypt_prepare_setattr(struct dentry *dentry,
928 					  struct iattr *attr)
929 {
930 	if (IS_ENCRYPTED(d_inode(dentry)))
931 		return __fscrypt_prepare_setattr(dentry, attr);
932 	return 0;
933 }
934 
935 /**
936  * fscrypt_encrypt_symlink() - encrypt the symlink target if needed
937  * @inode: symlink inode
938  * @target: plaintext symlink target
939  * @len: length of @target excluding null terminator
940  * @disk_link: (in/out) the on-disk symlink target being prepared
941  *
942  * If the symlink target needs to be encrypted, then this function encrypts it
943  * into @disk_link->name.  fscrypt_prepare_symlink() must have been called
944  * previously to compute @disk_link->len.  If the filesystem did not allocate a
945  * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one
946  * will be kmalloc()'ed and the filesystem will be responsible for freeing it.
947  *
948  * Return: 0 on success, -errno on failure
949  */
950 static inline int fscrypt_encrypt_symlink(struct inode *inode,
951 					  const char *target,
952 					  unsigned int len,
953 					  struct fscrypt_str *disk_link)
954 {
955 	if (IS_ENCRYPTED(inode))
956 		return __fscrypt_encrypt_symlink(inode, target, len, disk_link);
957 	return 0;
958 }
959 
960 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */
961 static inline void fscrypt_finalize_bounce_page(struct page **pagep)
962 {
963 	struct page *page = *pagep;
964 
965 	if (fscrypt_is_bounce_page(page)) {
966 		*pagep = fscrypt_pagecache_page(page);
967 		fscrypt_free_bounce_page(page);
968 	}
969 }
970 
971 #endif	/* _LINUX_FSCRYPT_H */
972