1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fscrypt.h: declarations for per-file encryption 4 * 5 * Filesystems that implement per-file encryption must include this header 6 * file. 7 * 8 * Copyright (C) 2015, Google, Inc. 9 * 10 * Written by Michael Halcrow, 2015. 11 * Modified by Jaegeuk Kim, 2015. 12 */ 13 #ifndef _LINUX_FSCRYPT_H 14 #define _LINUX_FSCRYPT_H 15 16 #include <linux/fs.h> 17 #include <linux/mm.h> 18 #include <linux/slab.h> 19 #include <uapi/linux/fscrypt.h> 20 21 #define FS_CRYPTO_BLOCK_SIZE 16 22 23 struct fscrypt_ctx; 24 struct fscrypt_info; 25 26 struct fscrypt_str { 27 unsigned char *name; 28 u32 len; 29 }; 30 31 struct fscrypt_name { 32 const struct qstr *usr_fname; 33 struct fscrypt_str disk_name; 34 u32 hash; 35 u32 minor_hash; 36 struct fscrypt_str crypto_buf; 37 bool is_ciphertext_name; 38 }; 39 40 #define FSTR_INIT(n, l) { .name = n, .len = l } 41 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) 42 #define fname_name(p) ((p)->disk_name.name) 43 #define fname_len(p) ((p)->disk_name.len) 44 45 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */ 46 #define FSCRYPT_SET_CONTEXT_MAX_SIZE 40 47 48 #ifdef CONFIG_FS_ENCRYPTION 49 /* 50 * fscrypt superblock flags 51 */ 52 #define FS_CFLG_OWN_PAGES (1U << 1) 53 54 /* 55 * crypto operations for filesystems 56 */ 57 struct fscrypt_operations { 58 unsigned int flags; 59 const char *key_prefix; 60 int (*get_context)(struct inode *, void *, size_t); 61 int (*set_context)(struct inode *, const void *, size_t, void *); 62 bool (*dummy_context)(struct inode *); 63 bool (*empty_dir)(struct inode *); 64 unsigned int max_namelen; 65 }; 66 67 /* Decryption work */ 68 struct fscrypt_ctx { 69 union { 70 struct { 71 struct bio *bio; 72 struct work_struct work; 73 }; 74 struct list_head free_list; /* Free list */ 75 }; 76 u8 flags; /* Flags */ 77 }; 78 79 static inline bool fscrypt_has_encryption_key(const struct inode *inode) 80 { 81 /* pairs with cmpxchg_release() in fscrypt_get_encryption_info() */ 82 return READ_ONCE(inode->i_crypt_info) != NULL; 83 } 84 85 static inline bool fscrypt_dummy_context_enabled(struct inode *inode) 86 { 87 return inode->i_sb->s_cop->dummy_context && 88 inode->i_sb->s_cop->dummy_context(inode); 89 } 90 91 /* 92 * When d_splice_alias() moves a directory's encrypted alias to its decrypted 93 * alias as a result of the encryption key being added, DCACHE_ENCRYPTED_NAME 94 * must be cleared. Note that we don't have to support arbitrary moves of this 95 * flag because fscrypt doesn't allow encrypted aliases to be the source or 96 * target of a rename(). 97 */ 98 static inline void fscrypt_handle_d_move(struct dentry *dentry) 99 { 100 dentry->d_flags &= ~DCACHE_ENCRYPTED_NAME; 101 } 102 103 /* crypto.c */ 104 extern void fscrypt_enqueue_decrypt_work(struct work_struct *); 105 extern struct fscrypt_ctx *fscrypt_get_ctx(gfp_t); 106 extern void fscrypt_release_ctx(struct fscrypt_ctx *); 107 108 extern struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 109 unsigned int len, 110 unsigned int offs, 111 gfp_t gfp_flags); 112 extern int fscrypt_encrypt_block_inplace(const struct inode *inode, 113 struct page *page, unsigned int len, 114 unsigned int offs, u64 lblk_num, 115 gfp_t gfp_flags); 116 117 extern int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len, 118 unsigned int offs); 119 extern int fscrypt_decrypt_block_inplace(const struct inode *inode, 120 struct page *page, unsigned int len, 121 unsigned int offs, u64 lblk_num); 122 123 static inline bool fscrypt_is_bounce_page(struct page *page) 124 { 125 return page->mapping == NULL; 126 } 127 128 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 129 { 130 return (struct page *)page_private(bounce_page); 131 } 132 133 extern void fscrypt_free_bounce_page(struct page *bounce_page); 134 135 /* policy.c */ 136 extern int fscrypt_ioctl_set_policy(struct file *, const void __user *); 137 extern int fscrypt_ioctl_get_policy(struct file *, void __user *); 138 extern int fscrypt_ioctl_get_policy_ex(struct file *, void __user *); 139 extern int fscrypt_has_permitted_context(struct inode *, struct inode *); 140 extern int fscrypt_inherit_context(struct inode *, struct inode *, 141 void *, bool); 142 /* keyring.c */ 143 extern void fscrypt_sb_free(struct super_block *sb); 144 extern int fscrypt_ioctl_add_key(struct file *filp, void __user *arg); 145 extern int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg); 146 extern int fscrypt_ioctl_remove_key_all_users(struct file *filp, 147 void __user *arg); 148 extern int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg); 149 150 /* keysetup.c */ 151 extern int fscrypt_get_encryption_info(struct inode *); 152 extern void fscrypt_put_encryption_info(struct inode *); 153 extern void fscrypt_free_inode(struct inode *); 154 extern int fscrypt_drop_inode(struct inode *inode); 155 156 /* fname.c */ 157 extern int fscrypt_setup_filename(struct inode *, const struct qstr *, 158 int lookup, struct fscrypt_name *); 159 160 static inline void fscrypt_free_filename(struct fscrypt_name *fname) 161 { 162 kfree(fname->crypto_buf.name); 163 } 164 165 extern int fscrypt_fname_alloc_buffer(const struct inode *, u32, 166 struct fscrypt_str *); 167 extern void fscrypt_fname_free_buffer(struct fscrypt_str *); 168 extern int fscrypt_fname_disk_to_usr(struct inode *, u32, u32, 169 const struct fscrypt_str *, struct fscrypt_str *); 170 171 #define FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE 32 172 173 /* Extracts the second-to-last ciphertext block; see explanation below */ 174 #define FSCRYPT_FNAME_DIGEST(name, len) \ 175 ((name) + round_down((len) - FS_CRYPTO_BLOCK_SIZE - 1, \ 176 FS_CRYPTO_BLOCK_SIZE)) 177 178 #define FSCRYPT_FNAME_DIGEST_SIZE FS_CRYPTO_BLOCK_SIZE 179 180 /** 181 * fscrypt_digested_name - alternate identifier for an on-disk filename 182 * 183 * When userspace lists an encrypted directory without access to the key, 184 * filenames whose ciphertext is longer than FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE 185 * bytes are shown in this abbreviated form (base64-encoded) rather than as the 186 * full ciphertext (base64-encoded). This is necessary to allow supporting 187 * filenames up to NAME_MAX bytes, since base64 encoding expands the length. 188 * 189 * To make it possible for filesystems to still find the correct directory entry 190 * despite not knowing the full on-disk name, we encode any filesystem-specific 191 * 'hash' and/or 'minor_hash' which the filesystem may need for its lookups, 192 * followed by the second-to-last ciphertext block of the filename. Due to the 193 * use of the CBC-CTS encryption mode, the second-to-last ciphertext block 194 * depends on the full plaintext. (Note that ciphertext stealing causes the 195 * last two blocks to appear "flipped".) This makes accidental collisions very 196 * unlikely: just a 1 in 2^128 chance for two filenames to collide even if they 197 * share the same filesystem-specific hashes. 198 * 199 * However, this scheme isn't immune to intentional collisions, which can be 200 * created by anyone able to create arbitrary plaintext filenames and view them 201 * without the key. Making the "digest" be a real cryptographic hash like 202 * SHA-256 over the full ciphertext would prevent this, although it would be 203 * less efficient and harder to implement, especially since the filesystem would 204 * need to calculate it for each directory entry examined during a search. 205 */ 206 struct fscrypt_digested_name { 207 u32 hash; 208 u32 minor_hash; 209 u8 digest[FSCRYPT_FNAME_DIGEST_SIZE]; 210 }; 211 212 /** 213 * fscrypt_match_name() - test whether the given name matches a directory entry 214 * @fname: the name being searched for 215 * @de_name: the name from the directory entry 216 * @de_name_len: the length of @de_name in bytes 217 * 218 * Normally @fname->disk_name will be set, and in that case we simply compare 219 * that to the name stored in the directory entry. The only exception is that 220 * if we don't have the key for an encrypted directory and a filename in it is 221 * very long, then we won't have the full disk_name and we'll instead need to 222 * match against the fscrypt_digested_name. 223 * 224 * Return: %true if the name matches, otherwise %false. 225 */ 226 static inline bool fscrypt_match_name(const struct fscrypt_name *fname, 227 const u8 *de_name, u32 de_name_len) 228 { 229 if (unlikely(!fname->disk_name.name)) { 230 const struct fscrypt_digested_name *n = 231 (const void *)fname->crypto_buf.name; 232 if (WARN_ON_ONCE(fname->usr_fname->name[0] != '_')) 233 return false; 234 if (de_name_len <= FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE) 235 return false; 236 return !memcmp(FSCRYPT_FNAME_DIGEST(de_name, de_name_len), 237 n->digest, FSCRYPT_FNAME_DIGEST_SIZE); 238 } 239 240 if (de_name_len != fname->disk_name.len) 241 return false; 242 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len); 243 } 244 245 /* bio.c */ 246 extern void fscrypt_decrypt_bio(struct bio *); 247 extern void fscrypt_enqueue_decrypt_bio(struct fscrypt_ctx *ctx, 248 struct bio *bio); 249 extern int fscrypt_zeroout_range(const struct inode *, pgoff_t, sector_t, 250 unsigned int); 251 252 /* hooks.c */ 253 extern int fscrypt_file_open(struct inode *inode, struct file *filp); 254 extern int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 255 struct dentry *dentry); 256 extern int __fscrypt_prepare_rename(struct inode *old_dir, 257 struct dentry *old_dentry, 258 struct inode *new_dir, 259 struct dentry *new_dentry, 260 unsigned int flags); 261 extern int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, 262 struct fscrypt_name *fname); 263 extern int __fscrypt_prepare_symlink(struct inode *dir, unsigned int len, 264 unsigned int max_len, 265 struct fscrypt_str *disk_link); 266 extern int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, 267 unsigned int len, 268 struct fscrypt_str *disk_link); 269 extern const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, 270 unsigned int max_size, 271 struct delayed_call *done); 272 static inline void fscrypt_set_ops(struct super_block *sb, 273 const struct fscrypt_operations *s_cop) 274 { 275 sb->s_cop = s_cop; 276 } 277 #else /* !CONFIG_FS_ENCRYPTION */ 278 279 static inline bool fscrypt_has_encryption_key(const struct inode *inode) 280 { 281 return false; 282 } 283 284 static inline bool fscrypt_dummy_context_enabled(struct inode *inode) 285 { 286 return false; 287 } 288 289 static inline void fscrypt_handle_d_move(struct dentry *dentry) 290 { 291 } 292 293 /* crypto.c */ 294 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work) 295 { 296 } 297 298 static inline struct fscrypt_ctx *fscrypt_get_ctx(gfp_t gfp_flags) 299 { 300 return ERR_PTR(-EOPNOTSUPP); 301 } 302 303 static inline void fscrypt_release_ctx(struct fscrypt_ctx *ctx) 304 { 305 return; 306 } 307 308 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 309 unsigned int len, 310 unsigned int offs, 311 gfp_t gfp_flags) 312 { 313 return ERR_PTR(-EOPNOTSUPP); 314 } 315 316 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode, 317 struct page *page, 318 unsigned int len, 319 unsigned int offs, u64 lblk_num, 320 gfp_t gfp_flags) 321 { 322 return -EOPNOTSUPP; 323 } 324 325 static inline int fscrypt_decrypt_pagecache_blocks(struct page *page, 326 unsigned int len, 327 unsigned int offs) 328 { 329 return -EOPNOTSUPP; 330 } 331 332 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode, 333 struct page *page, 334 unsigned int len, 335 unsigned int offs, u64 lblk_num) 336 { 337 return -EOPNOTSUPP; 338 } 339 340 static inline bool fscrypt_is_bounce_page(struct page *page) 341 { 342 return false; 343 } 344 345 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 346 { 347 WARN_ON_ONCE(1); 348 return ERR_PTR(-EINVAL); 349 } 350 351 static inline void fscrypt_free_bounce_page(struct page *bounce_page) 352 { 353 } 354 355 /* policy.c */ 356 static inline int fscrypt_ioctl_set_policy(struct file *filp, 357 const void __user *arg) 358 { 359 return -EOPNOTSUPP; 360 } 361 362 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg) 363 { 364 return -EOPNOTSUPP; 365 } 366 367 static inline int fscrypt_ioctl_get_policy_ex(struct file *filp, 368 void __user *arg) 369 { 370 return -EOPNOTSUPP; 371 } 372 373 static inline int fscrypt_has_permitted_context(struct inode *parent, 374 struct inode *child) 375 { 376 return 0; 377 } 378 379 static inline int fscrypt_inherit_context(struct inode *parent, 380 struct inode *child, 381 void *fs_data, bool preload) 382 { 383 return -EOPNOTSUPP; 384 } 385 386 /* keyring.c */ 387 static inline void fscrypt_sb_free(struct super_block *sb) 388 { 389 } 390 391 static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg) 392 { 393 return -EOPNOTSUPP; 394 } 395 396 static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg) 397 { 398 return -EOPNOTSUPP; 399 } 400 401 static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp, 402 void __user *arg) 403 { 404 return -EOPNOTSUPP; 405 } 406 407 static inline int fscrypt_ioctl_get_key_status(struct file *filp, 408 void __user *arg) 409 { 410 return -EOPNOTSUPP; 411 } 412 413 /* keysetup.c */ 414 static inline int fscrypt_get_encryption_info(struct inode *inode) 415 { 416 return -EOPNOTSUPP; 417 } 418 419 static inline void fscrypt_put_encryption_info(struct inode *inode) 420 { 421 return; 422 } 423 424 static inline void fscrypt_free_inode(struct inode *inode) 425 { 426 } 427 428 static inline int fscrypt_drop_inode(struct inode *inode) 429 { 430 return 0; 431 } 432 433 /* fname.c */ 434 static inline int fscrypt_setup_filename(struct inode *dir, 435 const struct qstr *iname, 436 int lookup, struct fscrypt_name *fname) 437 { 438 if (IS_ENCRYPTED(dir)) 439 return -EOPNOTSUPP; 440 441 memset(fname, 0, sizeof(*fname)); 442 fname->usr_fname = iname; 443 fname->disk_name.name = (unsigned char *)iname->name; 444 fname->disk_name.len = iname->len; 445 return 0; 446 } 447 448 static inline void fscrypt_free_filename(struct fscrypt_name *fname) 449 { 450 return; 451 } 452 453 static inline int fscrypt_fname_alloc_buffer(const struct inode *inode, 454 u32 max_encrypted_len, 455 struct fscrypt_str *crypto_str) 456 { 457 return -EOPNOTSUPP; 458 } 459 460 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) 461 { 462 return; 463 } 464 465 static inline int fscrypt_fname_disk_to_usr(struct inode *inode, 466 u32 hash, u32 minor_hash, 467 const struct fscrypt_str *iname, 468 struct fscrypt_str *oname) 469 { 470 return -EOPNOTSUPP; 471 } 472 473 static inline bool fscrypt_match_name(const struct fscrypt_name *fname, 474 const u8 *de_name, u32 de_name_len) 475 { 476 /* Encryption support disabled; use standard comparison */ 477 if (de_name_len != fname->disk_name.len) 478 return false; 479 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len); 480 } 481 482 /* bio.c */ 483 static inline void fscrypt_decrypt_bio(struct bio *bio) 484 { 485 } 486 487 static inline void fscrypt_enqueue_decrypt_bio(struct fscrypt_ctx *ctx, 488 struct bio *bio) 489 { 490 } 491 492 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 493 sector_t pblk, unsigned int len) 494 { 495 return -EOPNOTSUPP; 496 } 497 498 /* hooks.c */ 499 500 static inline int fscrypt_file_open(struct inode *inode, struct file *filp) 501 { 502 if (IS_ENCRYPTED(inode)) 503 return -EOPNOTSUPP; 504 return 0; 505 } 506 507 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 508 struct dentry *dentry) 509 { 510 return -EOPNOTSUPP; 511 } 512 513 static inline int __fscrypt_prepare_rename(struct inode *old_dir, 514 struct dentry *old_dentry, 515 struct inode *new_dir, 516 struct dentry *new_dentry, 517 unsigned int flags) 518 { 519 return -EOPNOTSUPP; 520 } 521 522 static inline int __fscrypt_prepare_lookup(struct inode *dir, 523 struct dentry *dentry, 524 struct fscrypt_name *fname) 525 { 526 return -EOPNOTSUPP; 527 } 528 529 static inline int __fscrypt_prepare_symlink(struct inode *dir, 530 unsigned int len, 531 unsigned int max_len, 532 struct fscrypt_str *disk_link) 533 { 534 return -EOPNOTSUPP; 535 } 536 537 538 static inline int __fscrypt_encrypt_symlink(struct inode *inode, 539 const char *target, 540 unsigned int len, 541 struct fscrypt_str *disk_link) 542 { 543 return -EOPNOTSUPP; 544 } 545 546 static inline const char *fscrypt_get_symlink(struct inode *inode, 547 const void *caddr, 548 unsigned int max_size, 549 struct delayed_call *done) 550 { 551 return ERR_PTR(-EOPNOTSUPP); 552 } 553 554 static inline void fscrypt_set_ops(struct super_block *sb, 555 const struct fscrypt_operations *s_cop) 556 { 557 } 558 559 #endif /* !CONFIG_FS_ENCRYPTION */ 560 561 /** 562 * fscrypt_require_key - require an inode's encryption key 563 * @inode: the inode we need the key for 564 * 565 * If the inode is encrypted, set up its encryption key if not already done. 566 * Then require that the key be present and return -ENOKEY otherwise. 567 * 568 * No locks are needed, and the key will live as long as the struct inode --- so 569 * it won't go away from under you. 570 * 571 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code 572 * if a problem occurred while setting up the encryption key. 573 */ 574 static inline int fscrypt_require_key(struct inode *inode) 575 { 576 if (IS_ENCRYPTED(inode)) { 577 int err = fscrypt_get_encryption_info(inode); 578 579 if (err) 580 return err; 581 if (!fscrypt_has_encryption_key(inode)) 582 return -ENOKEY; 583 } 584 return 0; 585 } 586 587 /** 588 * fscrypt_prepare_link - prepare to link an inode into a possibly-encrypted directory 589 * @old_dentry: an existing dentry for the inode being linked 590 * @dir: the target directory 591 * @dentry: negative dentry for the target filename 592 * 593 * A new link can only be added to an encrypted directory if the directory's 594 * encryption key is available --- since otherwise we'd have no way to encrypt 595 * the filename. Therefore, we first set up the directory's encryption key (if 596 * not already done) and return an error if it's unavailable. 597 * 598 * We also verify that the link will not violate the constraint that all files 599 * in an encrypted directory tree use the same encryption policy. 600 * 601 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing, 602 * -EXDEV if the link would result in an inconsistent encryption policy, or 603 * another -errno code. 604 */ 605 static inline int fscrypt_prepare_link(struct dentry *old_dentry, 606 struct inode *dir, 607 struct dentry *dentry) 608 { 609 if (IS_ENCRYPTED(dir)) 610 return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry); 611 return 0; 612 } 613 614 /** 615 * fscrypt_prepare_rename - prepare for a rename between possibly-encrypted directories 616 * @old_dir: source directory 617 * @old_dentry: dentry for source file 618 * @new_dir: target directory 619 * @new_dentry: dentry for target location (may be negative unless exchanging) 620 * @flags: rename flags (we care at least about %RENAME_EXCHANGE) 621 * 622 * Prepare for ->rename() where the source and/or target directories may be 623 * encrypted. A new link can only be added to an encrypted directory if the 624 * directory's encryption key is available --- since otherwise we'd have no way 625 * to encrypt the filename. A rename to an existing name, on the other hand, 626 * *is* cryptographically possible without the key. However, we take the more 627 * conservative approach and just forbid all no-key renames. 628 * 629 * We also verify that the rename will not violate the constraint that all files 630 * in an encrypted directory tree use the same encryption policy. 631 * 632 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the 633 * rename would cause inconsistent encryption policies, or another -errno code. 634 */ 635 static inline int fscrypt_prepare_rename(struct inode *old_dir, 636 struct dentry *old_dentry, 637 struct inode *new_dir, 638 struct dentry *new_dentry, 639 unsigned int flags) 640 { 641 if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir)) 642 return __fscrypt_prepare_rename(old_dir, old_dentry, 643 new_dir, new_dentry, flags); 644 return 0; 645 } 646 647 /** 648 * fscrypt_prepare_lookup - prepare to lookup a name in a possibly-encrypted directory 649 * @dir: directory being searched 650 * @dentry: filename being looked up 651 * @fname: (output) the name to use to search the on-disk directory 652 * 653 * Prepare for ->lookup() in a directory which may be encrypted by determining 654 * the name that will actually be used to search the directory on-disk. Lookups 655 * can be done with or without the directory's encryption key; without the key, 656 * filenames are presented in encrypted form. Therefore, we'll try to set up 657 * the directory's encryption key, but even without it the lookup can continue. 658 * 659 * This also installs a custom ->d_revalidate() method which will invalidate the 660 * dentry if it was created without the key and the key is later added. 661 * 662 * Return: 0 on success; -ENOENT if key is unavailable but the filename isn't a 663 * correctly formed encoded ciphertext name, so a negative dentry should be 664 * created; or another -errno code. 665 */ 666 static inline int fscrypt_prepare_lookup(struct inode *dir, 667 struct dentry *dentry, 668 struct fscrypt_name *fname) 669 { 670 if (IS_ENCRYPTED(dir)) 671 return __fscrypt_prepare_lookup(dir, dentry, fname); 672 673 memset(fname, 0, sizeof(*fname)); 674 fname->usr_fname = &dentry->d_name; 675 fname->disk_name.name = (unsigned char *)dentry->d_name.name; 676 fname->disk_name.len = dentry->d_name.len; 677 return 0; 678 } 679 680 /** 681 * fscrypt_prepare_setattr - prepare to change a possibly-encrypted inode's attributes 682 * @dentry: dentry through which the inode is being changed 683 * @attr: attributes to change 684 * 685 * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file, 686 * most attribute changes are allowed even without the encryption key. However, 687 * without the encryption key we do have to forbid truncates. This is needed 688 * because the size being truncated to may not be a multiple of the filesystem 689 * block size, and in that case we'd have to decrypt the final block, zero the 690 * portion past i_size, and re-encrypt it. (We *could* allow truncating to a 691 * filesystem block boundary, but it's simpler to just forbid all truncates --- 692 * and we already forbid all other contents modifications without the key.) 693 * 694 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code 695 * if a problem occurred while setting up the encryption key. 696 */ 697 static inline int fscrypt_prepare_setattr(struct dentry *dentry, 698 struct iattr *attr) 699 { 700 if (attr->ia_valid & ATTR_SIZE) 701 return fscrypt_require_key(d_inode(dentry)); 702 return 0; 703 } 704 705 /** 706 * fscrypt_prepare_symlink - prepare to create a possibly-encrypted symlink 707 * @dir: directory in which the symlink is being created 708 * @target: plaintext symlink target 709 * @len: length of @target excluding null terminator 710 * @max_len: space the filesystem has available to store the symlink target 711 * @disk_link: (out) the on-disk symlink target being prepared 712 * 713 * This function computes the size the symlink target will require on-disk, 714 * stores it in @disk_link->len, and validates it against @max_len. An 715 * encrypted symlink may be longer than the original. 716 * 717 * Additionally, @disk_link->name is set to @target if the symlink will be 718 * unencrypted, but left NULL if the symlink will be encrypted. For encrypted 719 * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the 720 * on-disk target later. (The reason for the two-step process is that some 721 * filesystems need to know the size of the symlink target before creating the 722 * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.) 723 * 724 * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long, 725 * -ENOKEY if the encryption key is missing, or another -errno code if a problem 726 * occurred while setting up the encryption key. 727 */ 728 static inline int fscrypt_prepare_symlink(struct inode *dir, 729 const char *target, 730 unsigned int len, 731 unsigned int max_len, 732 struct fscrypt_str *disk_link) 733 { 734 if (IS_ENCRYPTED(dir) || fscrypt_dummy_context_enabled(dir)) 735 return __fscrypt_prepare_symlink(dir, len, max_len, disk_link); 736 737 disk_link->name = (unsigned char *)target; 738 disk_link->len = len + 1; 739 if (disk_link->len > max_len) 740 return -ENAMETOOLONG; 741 return 0; 742 } 743 744 /** 745 * fscrypt_encrypt_symlink - encrypt the symlink target if needed 746 * @inode: symlink inode 747 * @target: plaintext symlink target 748 * @len: length of @target excluding null terminator 749 * @disk_link: (in/out) the on-disk symlink target being prepared 750 * 751 * If the symlink target needs to be encrypted, then this function encrypts it 752 * into @disk_link->name. fscrypt_prepare_symlink() must have been called 753 * previously to compute @disk_link->len. If the filesystem did not allocate a 754 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one 755 * will be kmalloc()'ed and the filesystem will be responsible for freeing it. 756 * 757 * Return: 0 on success, -errno on failure 758 */ 759 static inline int fscrypt_encrypt_symlink(struct inode *inode, 760 const char *target, 761 unsigned int len, 762 struct fscrypt_str *disk_link) 763 { 764 if (IS_ENCRYPTED(inode)) 765 return __fscrypt_encrypt_symlink(inode, target, len, disk_link); 766 return 0; 767 } 768 769 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */ 770 static inline void fscrypt_finalize_bounce_page(struct page **pagep) 771 { 772 struct page *page = *pagep; 773 774 if (fscrypt_is_bounce_page(page)) { 775 *pagep = fscrypt_pagecache_page(page); 776 fscrypt_free_bounce_page(page); 777 } 778 } 779 780 #endif /* _LINUX_FSCRYPT_H */ 781