1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fscrypt.h: declarations for per-file encryption 4 * 5 * Filesystems that implement per-file encryption must include this header 6 * file. 7 * 8 * Copyright (C) 2015, Google, Inc. 9 * 10 * Written by Michael Halcrow, 2015. 11 * Modified by Jaegeuk Kim, 2015. 12 */ 13 #ifndef _LINUX_FSCRYPT_H 14 #define _LINUX_FSCRYPT_H 15 16 #include <linux/fs.h> 17 #include <linux/mm.h> 18 #include <linux/slab.h> 19 #include <uapi/linux/fscrypt.h> 20 21 #define FS_CRYPTO_BLOCK_SIZE 16 22 23 union fscrypt_policy; 24 struct fscrypt_info; 25 struct seq_file; 26 27 struct fscrypt_str { 28 unsigned char *name; 29 u32 len; 30 }; 31 32 struct fscrypt_name { 33 const struct qstr *usr_fname; 34 struct fscrypt_str disk_name; 35 u32 hash; 36 u32 minor_hash; 37 struct fscrypt_str crypto_buf; 38 bool is_nokey_name; 39 }; 40 41 #define FSTR_INIT(n, l) { .name = n, .len = l } 42 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) 43 #define fname_name(p) ((p)->disk_name.name) 44 #define fname_len(p) ((p)->disk_name.len) 45 46 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */ 47 #define FSCRYPT_SET_CONTEXT_MAX_SIZE 40 48 49 #ifdef CONFIG_FS_ENCRYPTION 50 51 /* 52 * If set, the fscrypt bounce page pool won't be allocated (unless another 53 * filesystem needs it). Set this if the filesystem always uses its own bounce 54 * pages for writes and therefore won't need the fscrypt bounce page pool. 55 */ 56 #define FS_CFLG_OWN_PAGES (1U << 1) 57 58 /* Crypto operations for filesystems */ 59 struct fscrypt_operations { 60 61 /* Set of optional flags; see above for allowed flags */ 62 unsigned int flags; 63 64 /* 65 * If set, this is a filesystem-specific key description prefix that 66 * will be accepted for "logon" keys for v1 fscrypt policies, in 67 * addition to the generic prefix "fscrypt:". This functionality is 68 * deprecated, so new filesystems shouldn't set this field. 69 */ 70 const char *key_prefix; 71 72 /* 73 * Get the fscrypt context of the given inode. 74 * 75 * @inode: the inode whose context to get 76 * @ctx: the buffer into which to get the context 77 * @len: length of the @ctx buffer in bytes 78 * 79 * Return: On success, returns the length of the context in bytes; this 80 * may be less than @len. On failure, returns -ENODATA if the 81 * inode doesn't have a context, -ERANGE if the context is 82 * longer than @len, or another -errno code. 83 */ 84 int (*get_context)(struct inode *inode, void *ctx, size_t len); 85 86 /* 87 * Set an fscrypt context on the given inode. 88 * 89 * @inode: the inode whose context to set. The inode won't already have 90 * an fscrypt context. 91 * @ctx: the context to set 92 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE) 93 * @fs_data: If called from fscrypt_set_context(), this will be the 94 * value the filesystem passed to fscrypt_set_context(). 95 * Otherwise (i.e. when called from 96 * FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL. 97 * 98 * i_rwsem will be held for write. 99 * 100 * Return: 0 on success, -errno on failure. 101 */ 102 int (*set_context)(struct inode *inode, const void *ctx, size_t len, 103 void *fs_data); 104 105 /* 106 * Get the dummy fscrypt policy in use on the filesystem (if any). 107 * 108 * Filesystems only need to implement this function if they support the 109 * test_dummy_encryption mount option. 110 * 111 * Return: A pointer to the dummy fscrypt policy, if the filesystem is 112 * mounted with test_dummy_encryption; otherwise NULL. 113 */ 114 const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb); 115 116 /* 117 * Check whether a directory is empty. i_rwsem will be held for write. 118 */ 119 bool (*empty_dir)(struct inode *inode); 120 121 /* 122 * Check whether the filesystem's inode numbers and UUID are stable, 123 * meaning that they will never be changed even by offline operations 124 * such as filesystem shrinking and therefore can be used in the 125 * encryption without the possibility of files becoming unreadable. 126 * 127 * Filesystems only need to implement this function if they want to 128 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags. These 129 * flags are designed to work around the limitations of UFS and eMMC 130 * inline crypto hardware, and they shouldn't be used in scenarios where 131 * such hardware isn't being used. 132 * 133 * Leaving this NULL is equivalent to always returning false. 134 */ 135 bool (*has_stable_inodes)(struct super_block *sb); 136 137 /* 138 * Get the number of bits that the filesystem uses to represent inode 139 * numbers and file logical block numbers. 140 * 141 * By default, both of these are assumed to be 64-bit. This function 142 * can be implemented to declare that either or both of these numbers is 143 * shorter, which may allow the use of the 144 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags and/or the use of 145 * inline crypto hardware whose maximum DUN length is less than 64 bits 146 * (e.g., eMMC v5.2 spec compliant hardware). This function only needs 147 * to be implemented if support for one of these features is needed. 148 */ 149 void (*get_ino_and_lblk_bits)(struct super_block *sb, 150 int *ino_bits_ret, int *lblk_bits_ret); 151 152 /* 153 * Return the number of block devices to which the filesystem may write 154 * encrypted file contents. 155 * 156 * If the filesystem can use multiple block devices (other than block 157 * devices that aren't used for encrypted file contents, such as 158 * external journal devices), and wants to support inline encryption, 159 * then it must implement this function. Otherwise it's not needed. 160 */ 161 int (*get_num_devices)(struct super_block *sb); 162 163 /* 164 * If ->get_num_devices() returns a value greater than 1, then this 165 * function is called to get the array of request_queues that the 166 * filesystem is using -- one per block device. (There may be duplicate 167 * entries in this array, as block devices can share a request_queue.) 168 */ 169 void (*get_devices)(struct super_block *sb, 170 struct request_queue **devs); 171 }; 172 173 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) 174 { 175 /* 176 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info(). 177 * I.e., another task may publish ->i_crypt_info concurrently, executing 178 * a RELEASE barrier. We need to use smp_load_acquire() here to safely 179 * ACQUIRE the memory the other task published. 180 */ 181 return smp_load_acquire(&inode->i_crypt_info); 182 } 183 184 /** 185 * fscrypt_needs_contents_encryption() - check whether an inode needs 186 * contents encryption 187 * @inode: the inode to check 188 * 189 * Return: %true iff the inode is an encrypted regular file and the kernel was 190 * built with fscrypt support. 191 * 192 * If you need to know whether the encrypt bit is set even when the kernel was 193 * built without fscrypt support, you must use IS_ENCRYPTED() directly instead. 194 */ 195 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) 196 { 197 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 198 } 199 200 /* 201 * When d_splice_alias() moves a directory's no-key alias to its plaintext alias 202 * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be 203 * cleared. Note that we don't have to support arbitrary moves of this flag 204 * because fscrypt doesn't allow no-key names to be the source or target of a 205 * rename(). 206 */ 207 static inline void fscrypt_handle_d_move(struct dentry *dentry) 208 { 209 dentry->d_flags &= ~DCACHE_NOKEY_NAME; 210 } 211 212 /** 213 * fscrypt_is_nokey_name() - test whether a dentry is a no-key name 214 * @dentry: the dentry to check 215 * 216 * This returns true if the dentry is a no-key dentry. A no-key dentry is a 217 * dentry that was created in an encrypted directory that hasn't had its 218 * encryption key added yet. Such dentries may be either positive or negative. 219 * 220 * When a filesystem is asked to create a new filename in an encrypted directory 221 * and the new filename's dentry is a no-key dentry, it must fail the operation 222 * with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(), 223 * ->rename(), and ->link(). (However, ->rename() and ->link() are already 224 * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().) 225 * 226 * This is necessary because creating a filename requires the directory's 227 * encryption key, but just checking for the key on the directory inode during 228 * the final filesystem operation doesn't guarantee that the key was available 229 * during the preceding dentry lookup. And the key must have already been 230 * available during the dentry lookup in order for it to have been checked 231 * whether the filename already exists in the directory and for the new file's 232 * dentry not to be invalidated due to it incorrectly having the no-key flag. 233 * 234 * Return: %true if the dentry is a no-key name 235 */ 236 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) 237 { 238 return dentry->d_flags & DCACHE_NOKEY_NAME; 239 } 240 241 /* crypto.c */ 242 void fscrypt_enqueue_decrypt_work(struct work_struct *); 243 244 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 245 unsigned int len, 246 unsigned int offs, 247 gfp_t gfp_flags); 248 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page, 249 unsigned int len, unsigned int offs, 250 u64 lblk_num, gfp_t gfp_flags); 251 252 int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len, 253 unsigned int offs); 254 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page, 255 unsigned int len, unsigned int offs, 256 u64 lblk_num); 257 258 static inline bool fscrypt_is_bounce_page(struct page *page) 259 { 260 return page->mapping == NULL; 261 } 262 263 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 264 { 265 return (struct page *)page_private(bounce_page); 266 } 267 268 void fscrypt_free_bounce_page(struct page *bounce_page); 269 270 /* policy.c */ 271 int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg); 272 int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg); 273 int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg); 274 int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg); 275 int fscrypt_has_permitted_context(struct inode *parent, struct inode *child); 276 int fscrypt_set_context(struct inode *inode, void *fs_data); 277 278 struct fscrypt_dummy_policy { 279 const union fscrypt_policy *policy; 280 }; 281 282 int fscrypt_set_test_dummy_encryption(struct super_block *sb, const char *arg, 283 struct fscrypt_dummy_policy *dummy_policy); 284 void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep, 285 struct super_block *sb); 286 static inline void 287 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) 288 { 289 kfree(dummy_policy->policy); 290 dummy_policy->policy = NULL; 291 } 292 293 /* keyring.c */ 294 void fscrypt_sb_free(struct super_block *sb); 295 int fscrypt_ioctl_add_key(struct file *filp, void __user *arg); 296 int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg); 297 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg); 298 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg); 299 300 /* keysetup.c */ 301 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, 302 bool *encrypt_ret); 303 void fscrypt_put_encryption_info(struct inode *inode); 304 void fscrypt_free_inode(struct inode *inode); 305 int fscrypt_drop_inode(struct inode *inode); 306 307 /* fname.c */ 308 int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname, 309 int lookup, struct fscrypt_name *fname); 310 311 static inline void fscrypt_free_filename(struct fscrypt_name *fname) 312 { 313 kfree(fname->crypto_buf.name); 314 } 315 316 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 317 struct fscrypt_str *crypto_str); 318 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str); 319 int fscrypt_fname_disk_to_usr(const struct inode *inode, 320 u32 hash, u32 minor_hash, 321 const struct fscrypt_str *iname, 322 struct fscrypt_str *oname); 323 bool fscrypt_match_name(const struct fscrypt_name *fname, 324 const u8 *de_name, u32 de_name_len); 325 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name); 326 int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags); 327 328 /* bio.c */ 329 void fscrypt_decrypt_bio(struct bio *bio); 330 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 331 sector_t pblk, unsigned int len); 332 333 /* hooks.c */ 334 int fscrypt_file_open(struct inode *inode, struct file *filp); 335 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 336 struct dentry *dentry); 337 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, 338 struct inode *new_dir, struct dentry *new_dentry, 339 unsigned int flags); 340 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, 341 struct fscrypt_name *fname); 342 int __fscrypt_prepare_readdir(struct inode *dir); 343 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr); 344 int fscrypt_prepare_setflags(struct inode *inode, 345 unsigned int oldflags, unsigned int flags); 346 int fscrypt_prepare_symlink(struct inode *dir, const char *target, 347 unsigned int len, unsigned int max_len, 348 struct fscrypt_str *disk_link); 349 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, 350 unsigned int len, struct fscrypt_str *disk_link); 351 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, 352 unsigned int max_size, 353 struct delayed_call *done); 354 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat); 355 static inline void fscrypt_set_ops(struct super_block *sb, 356 const struct fscrypt_operations *s_cop) 357 { 358 sb->s_cop = s_cop; 359 } 360 #else /* !CONFIG_FS_ENCRYPTION */ 361 362 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) 363 { 364 return NULL; 365 } 366 367 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) 368 { 369 return false; 370 } 371 372 static inline void fscrypt_handle_d_move(struct dentry *dentry) 373 { 374 } 375 376 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) 377 { 378 return false; 379 } 380 381 /* crypto.c */ 382 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work) 383 { 384 } 385 386 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 387 unsigned int len, 388 unsigned int offs, 389 gfp_t gfp_flags) 390 { 391 return ERR_PTR(-EOPNOTSUPP); 392 } 393 394 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode, 395 struct page *page, 396 unsigned int len, 397 unsigned int offs, u64 lblk_num, 398 gfp_t gfp_flags) 399 { 400 return -EOPNOTSUPP; 401 } 402 403 static inline int fscrypt_decrypt_pagecache_blocks(struct page *page, 404 unsigned int len, 405 unsigned int offs) 406 { 407 return -EOPNOTSUPP; 408 } 409 410 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode, 411 struct page *page, 412 unsigned int len, 413 unsigned int offs, u64 lblk_num) 414 { 415 return -EOPNOTSUPP; 416 } 417 418 static inline bool fscrypt_is_bounce_page(struct page *page) 419 { 420 return false; 421 } 422 423 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 424 { 425 WARN_ON_ONCE(1); 426 return ERR_PTR(-EINVAL); 427 } 428 429 static inline void fscrypt_free_bounce_page(struct page *bounce_page) 430 { 431 } 432 433 /* policy.c */ 434 static inline int fscrypt_ioctl_set_policy(struct file *filp, 435 const void __user *arg) 436 { 437 return -EOPNOTSUPP; 438 } 439 440 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg) 441 { 442 return -EOPNOTSUPP; 443 } 444 445 static inline int fscrypt_ioctl_get_policy_ex(struct file *filp, 446 void __user *arg) 447 { 448 return -EOPNOTSUPP; 449 } 450 451 static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg) 452 { 453 return -EOPNOTSUPP; 454 } 455 456 static inline int fscrypt_has_permitted_context(struct inode *parent, 457 struct inode *child) 458 { 459 return 0; 460 } 461 462 static inline int fscrypt_set_context(struct inode *inode, void *fs_data) 463 { 464 return -EOPNOTSUPP; 465 } 466 467 struct fscrypt_dummy_policy { 468 }; 469 470 static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq, 471 char sep, 472 struct super_block *sb) 473 { 474 } 475 476 static inline void 477 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) 478 { 479 } 480 481 /* keyring.c */ 482 static inline void fscrypt_sb_free(struct super_block *sb) 483 { 484 } 485 486 static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg) 487 { 488 return -EOPNOTSUPP; 489 } 490 491 static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg) 492 { 493 return -EOPNOTSUPP; 494 } 495 496 static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp, 497 void __user *arg) 498 { 499 return -EOPNOTSUPP; 500 } 501 502 static inline int fscrypt_ioctl_get_key_status(struct file *filp, 503 void __user *arg) 504 { 505 return -EOPNOTSUPP; 506 } 507 508 /* keysetup.c */ 509 510 static inline int fscrypt_prepare_new_inode(struct inode *dir, 511 struct inode *inode, 512 bool *encrypt_ret) 513 { 514 if (IS_ENCRYPTED(dir)) 515 return -EOPNOTSUPP; 516 return 0; 517 } 518 519 static inline void fscrypt_put_encryption_info(struct inode *inode) 520 { 521 return; 522 } 523 524 static inline void fscrypt_free_inode(struct inode *inode) 525 { 526 } 527 528 static inline int fscrypt_drop_inode(struct inode *inode) 529 { 530 return 0; 531 } 532 533 /* fname.c */ 534 static inline int fscrypt_setup_filename(struct inode *dir, 535 const struct qstr *iname, 536 int lookup, struct fscrypt_name *fname) 537 { 538 if (IS_ENCRYPTED(dir)) 539 return -EOPNOTSUPP; 540 541 memset(fname, 0, sizeof(*fname)); 542 fname->usr_fname = iname; 543 fname->disk_name.name = (unsigned char *)iname->name; 544 fname->disk_name.len = iname->len; 545 return 0; 546 } 547 548 static inline void fscrypt_free_filename(struct fscrypt_name *fname) 549 { 550 return; 551 } 552 553 static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 554 struct fscrypt_str *crypto_str) 555 { 556 return -EOPNOTSUPP; 557 } 558 559 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) 560 { 561 return; 562 } 563 564 static inline int fscrypt_fname_disk_to_usr(const struct inode *inode, 565 u32 hash, u32 minor_hash, 566 const struct fscrypt_str *iname, 567 struct fscrypt_str *oname) 568 { 569 return -EOPNOTSUPP; 570 } 571 572 static inline bool fscrypt_match_name(const struct fscrypt_name *fname, 573 const u8 *de_name, u32 de_name_len) 574 { 575 /* Encryption support disabled; use standard comparison */ 576 if (de_name_len != fname->disk_name.len) 577 return false; 578 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len); 579 } 580 581 static inline u64 fscrypt_fname_siphash(const struct inode *dir, 582 const struct qstr *name) 583 { 584 WARN_ON_ONCE(1); 585 return 0; 586 } 587 588 static inline int fscrypt_d_revalidate(struct dentry *dentry, 589 unsigned int flags) 590 { 591 return 1; 592 } 593 594 /* bio.c */ 595 static inline void fscrypt_decrypt_bio(struct bio *bio) 596 { 597 } 598 599 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 600 sector_t pblk, unsigned int len) 601 { 602 return -EOPNOTSUPP; 603 } 604 605 /* hooks.c */ 606 607 static inline int fscrypt_file_open(struct inode *inode, struct file *filp) 608 { 609 if (IS_ENCRYPTED(inode)) 610 return -EOPNOTSUPP; 611 return 0; 612 } 613 614 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 615 struct dentry *dentry) 616 { 617 return -EOPNOTSUPP; 618 } 619 620 static inline int __fscrypt_prepare_rename(struct inode *old_dir, 621 struct dentry *old_dentry, 622 struct inode *new_dir, 623 struct dentry *new_dentry, 624 unsigned int flags) 625 { 626 return -EOPNOTSUPP; 627 } 628 629 static inline int __fscrypt_prepare_lookup(struct inode *dir, 630 struct dentry *dentry, 631 struct fscrypt_name *fname) 632 { 633 return -EOPNOTSUPP; 634 } 635 636 static inline int __fscrypt_prepare_readdir(struct inode *dir) 637 { 638 return -EOPNOTSUPP; 639 } 640 641 static inline int __fscrypt_prepare_setattr(struct dentry *dentry, 642 struct iattr *attr) 643 { 644 return -EOPNOTSUPP; 645 } 646 647 static inline int fscrypt_prepare_setflags(struct inode *inode, 648 unsigned int oldflags, 649 unsigned int flags) 650 { 651 return 0; 652 } 653 654 static inline int fscrypt_prepare_symlink(struct inode *dir, 655 const char *target, 656 unsigned int len, 657 unsigned int max_len, 658 struct fscrypt_str *disk_link) 659 { 660 if (IS_ENCRYPTED(dir)) 661 return -EOPNOTSUPP; 662 disk_link->name = (unsigned char *)target; 663 disk_link->len = len + 1; 664 if (disk_link->len > max_len) 665 return -ENAMETOOLONG; 666 return 0; 667 } 668 669 static inline int __fscrypt_encrypt_symlink(struct inode *inode, 670 const char *target, 671 unsigned int len, 672 struct fscrypt_str *disk_link) 673 { 674 return -EOPNOTSUPP; 675 } 676 677 static inline const char *fscrypt_get_symlink(struct inode *inode, 678 const void *caddr, 679 unsigned int max_size, 680 struct delayed_call *done) 681 { 682 return ERR_PTR(-EOPNOTSUPP); 683 } 684 685 static inline int fscrypt_symlink_getattr(const struct path *path, 686 struct kstat *stat) 687 { 688 return -EOPNOTSUPP; 689 } 690 691 static inline void fscrypt_set_ops(struct super_block *sb, 692 const struct fscrypt_operations *s_cop) 693 { 694 } 695 696 #endif /* !CONFIG_FS_ENCRYPTION */ 697 698 /* inline_crypt.c */ 699 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 700 701 bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode); 702 703 void fscrypt_set_bio_crypt_ctx(struct bio *bio, 704 const struct inode *inode, u64 first_lblk, 705 gfp_t gfp_mask); 706 707 void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio, 708 const struct buffer_head *first_bh, 709 gfp_t gfp_mask); 710 711 bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode, 712 u64 next_lblk); 713 714 bool fscrypt_mergeable_bio_bh(struct bio *bio, 715 const struct buffer_head *next_bh); 716 717 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 718 719 static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode) 720 { 721 return false; 722 } 723 724 static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio, 725 const struct inode *inode, 726 u64 first_lblk, gfp_t gfp_mask) { } 727 728 static inline void fscrypt_set_bio_crypt_ctx_bh( 729 struct bio *bio, 730 const struct buffer_head *first_bh, 731 gfp_t gfp_mask) { } 732 733 static inline bool fscrypt_mergeable_bio(struct bio *bio, 734 const struct inode *inode, 735 u64 next_lblk) 736 { 737 return true; 738 } 739 740 static inline bool fscrypt_mergeable_bio_bh(struct bio *bio, 741 const struct buffer_head *next_bh) 742 { 743 return true; 744 } 745 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 746 747 /** 748 * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline 749 * encryption 750 * @inode: an inode. If encrypted, its key must be set up. 751 * 752 * Return: true if the inode requires file contents encryption and if the 753 * encryption should be done in the block layer via blk-crypto rather 754 * than in the filesystem layer. 755 */ 756 static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode) 757 { 758 return fscrypt_needs_contents_encryption(inode) && 759 __fscrypt_inode_uses_inline_crypto(inode); 760 } 761 762 /** 763 * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer 764 * encryption 765 * @inode: an inode. If encrypted, its key must be set up. 766 * 767 * Return: true if the inode requires file contents encryption and if the 768 * encryption should be done in the filesystem layer rather than in the 769 * block layer via blk-crypto. 770 */ 771 static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode) 772 { 773 return fscrypt_needs_contents_encryption(inode) && 774 !__fscrypt_inode_uses_inline_crypto(inode); 775 } 776 777 /** 778 * fscrypt_has_encryption_key() - check whether an inode has had its key set up 779 * @inode: the inode to check 780 * 781 * Return: %true if the inode has had its encryption key set up, else %false. 782 * 783 * Usually this should be preceded by fscrypt_get_encryption_info() to try to 784 * set up the key first. 785 */ 786 static inline bool fscrypt_has_encryption_key(const struct inode *inode) 787 { 788 return fscrypt_get_info(inode) != NULL; 789 } 790 791 /** 792 * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted 793 * directory 794 * @old_dentry: an existing dentry for the inode being linked 795 * @dir: the target directory 796 * @dentry: negative dentry for the target filename 797 * 798 * A new link can only be added to an encrypted directory if the directory's 799 * encryption key is available --- since otherwise we'd have no way to encrypt 800 * the filename. 801 * 802 * We also verify that the link will not violate the constraint that all files 803 * in an encrypted directory tree use the same encryption policy. 804 * 805 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing, 806 * -EXDEV if the link would result in an inconsistent encryption policy, or 807 * another -errno code. 808 */ 809 static inline int fscrypt_prepare_link(struct dentry *old_dentry, 810 struct inode *dir, 811 struct dentry *dentry) 812 { 813 if (IS_ENCRYPTED(dir)) 814 return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry); 815 return 0; 816 } 817 818 /** 819 * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted 820 * directories 821 * @old_dir: source directory 822 * @old_dentry: dentry for source file 823 * @new_dir: target directory 824 * @new_dentry: dentry for target location (may be negative unless exchanging) 825 * @flags: rename flags (we care at least about %RENAME_EXCHANGE) 826 * 827 * Prepare for ->rename() where the source and/or target directories may be 828 * encrypted. A new link can only be added to an encrypted directory if the 829 * directory's encryption key is available --- since otherwise we'd have no way 830 * to encrypt the filename. A rename to an existing name, on the other hand, 831 * *is* cryptographically possible without the key. However, we take the more 832 * conservative approach and just forbid all no-key renames. 833 * 834 * We also verify that the rename will not violate the constraint that all files 835 * in an encrypted directory tree use the same encryption policy. 836 * 837 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the 838 * rename would cause inconsistent encryption policies, or another -errno code. 839 */ 840 static inline int fscrypt_prepare_rename(struct inode *old_dir, 841 struct dentry *old_dentry, 842 struct inode *new_dir, 843 struct dentry *new_dentry, 844 unsigned int flags) 845 { 846 if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir)) 847 return __fscrypt_prepare_rename(old_dir, old_dentry, 848 new_dir, new_dentry, flags); 849 return 0; 850 } 851 852 /** 853 * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted 854 * directory 855 * @dir: directory being searched 856 * @dentry: filename being looked up 857 * @fname: (output) the name to use to search the on-disk directory 858 * 859 * Prepare for ->lookup() in a directory which may be encrypted by determining 860 * the name that will actually be used to search the directory on-disk. If the 861 * directory's encryption policy is supported by this kernel and its encryption 862 * key is available, then the lookup is assumed to be by plaintext name; 863 * otherwise, it is assumed to be by no-key name. 864 * 865 * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key 866 * name. In this case the filesystem must assign the dentry a dentry_operations 867 * which contains fscrypt_d_revalidate (or contains a d_revalidate method that 868 * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the 869 * directory's encryption key is later added. 870 * 871 * Return: 0 on success; -ENOENT if the directory's key is unavailable but the 872 * filename isn't a valid no-key name, so a negative dentry should be created; 873 * or another -errno code. 874 */ 875 static inline int fscrypt_prepare_lookup(struct inode *dir, 876 struct dentry *dentry, 877 struct fscrypt_name *fname) 878 { 879 if (IS_ENCRYPTED(dir)) 880 return __fscrypt_prepare_lookup(dir, dentry, fname); 881 882 memset(fname, 0, sizeof(*fname)); 883 fname->usr_fname = &dentry->d_name; 884 fname->disk_name.name = (unsigned char *)dentry->d_name.name; 885 fname->disk_name.len = dentry->d_name.len; 886 return 0; 887 } 888 889 /** 890 * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory 891 * @dir: the directory inode 892 * 893 * If the directory is encrypted and it doesn't already have its encryption key 894 * set up, try to set it up so that the filenames will be listed in plaintext 895 * form rather than in no-key form. 896 * 897 * Return: 0 on success; -errno on error. Note that the encryption key being 898 * unavailable is not considered an error. It is also not an error if 899 * the encryption policy is unsupported by this kernel; that is treated 900 * like the key being unavailable, so that files can still be deleted. 901 */ 902 static inline int fscrypt_prepare_readdir(struct inode *dir) 903 { 904 if (IS_ENCRYPTED(dir)) 905 return __fscrypt_prepare_readdir(dir); 906 return 0; 907 } 908 909 /** 910 * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's 911 * attributes 912 * @dentry: dentry through which the inode is being changed 913 * @attr: attributes to change 914 * 915 * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file, 916 * most attribute changes are allowed even without the encryption key. However, 917 * without the encryption key we do have to forbid truncates. This is needed 918 * because the size being truncated to may not be a multiple of the filesystem 919 * block size, and in that case we'd have to decrypt the final block, zero the 920 * portion past i_size, and re-encrypt it. (We *could* allow truncating to a 921 * filesystem block boundary, but it's simpler to just forbid all truncates --- 922 * and we already forbid all other contents modifications without the key.) 923 * 924 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code 925 * if a problem occurred while setting up the encryption key. 926 */ 927 static inline int fscrypt_prepare_setattr(struct dentry *dentry, 928 struct iattr *attr) 929 { 930 if (IS_ENCRYPTED(d_inode(dentry))) 931 return __fscrypt_prepare_setattr(dentry, attr); 932 return 0; 933 } 934 935 /** 936 * fscrypt_encrypt_symlink() - encrypt the symlink target if needed 937 * @inode: symlink inode 938 * @target: plaintext symlink target 939 * @len: length of @target excluding null terminator 940 * @disk_link: (in/out) the on-disk symlink target being prepared 941 * 942 * If the symlink target needs to be encrypted, then this function encrypts it 943 * into @disk_link->name. fscrypt_prepare_symlink() must have been called 944 * previously to compute @disk_link->len. If the filesystem did not allocate a 945 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one 946 * will be kmalloc()'ed and the filesystem will be responsible for freeing it. 947 * 948 * Return: 0 on success, -errno on failure 949 */ 950 static inline int fscrypt_encrypt_symlink(struct inode *inode, 951 const char *target, 952 unsigned int len, 953 struct fscrypt_str *disk_link) 954 { 955 if (IS_ENCRYPTED(inode)) 956 return __fscrypt_encrypt_symlink(inode, target, len, disk_link); 957 return 0; 958 } 959 960 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */ 961 static inline void fscrypt_finalize_bounce_page(struct page **pagep) 962 { 963 struct page *page = *pagep; 964 965 if (fscrypt_is_bounce_page(page)) { 966 *pagep = fscrypt_pagecache_page(page); 967 fscrypt_free_bounce_page(page); 968 } 969 } 970 971 #endif /* _LINUX_FSCRYPT_H */ 972