1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fscrypt.h: declarations for per-file encryption 4 * 5 * Filesystems that implement per-file encryption must include this header 6 * file. 7 * 8 * Copyright (C) 2015, Google, Inc. 9 * 10 * Written by Michael Halcrow, 2015. 11 * Modified by Jaegeuk Kim, 2015. 12 */ 13 #ifndef _LINUX_FSCRYPT_H 14 #define _LINUX_FSCRYPT_H 15 16 #include <linux/fs.h> 17 #include <linux/mm.h> 18 #include <linux/slab.h> 19 #include <uapi/linux/fscrypt.h> 20 21 /* 22 * The lengths of all file contents blocks must be divisible by this value. 23 * This is needed to ensure that all contents encryption modes will work, as 24 * some of the supported modes don't support arbitrarily byte-aligned messages. 25 * 26 * Since the needed alignment is 16 bytes, most filesystems will meet this 27 * requirement naturally, as typical block sizes are powers of 2. However, if a 28 * filesystem can generate arbitrarily byte-aligned block lengths (e.g., via 29 * compression), then it will need to pad to this alignment before encryption. 30 */ 31 #define FSCRYPT_CONTENTS_ALIGNMENT 16 32 33 union fscrypt_policy; 34 struct fscrypt_info; 35 struct fs_parameter; 36 struct seq_file; 37 38 struct fscrypt_str { 39 unsigned char *name; 40 u32 len; 41 }; 42 43 struct fscrypt_name { 44 const struct qstr *usr_fname; 45 struct fscrypt_str disk_name; 46 u32 hash; 47 u32 minor_hash; 48 struct fscrypt_str crypto_buf; 49 bool is_nokey_name; 50 }; 51 52 #define FSTR_INIT(n, l) { .name = n, .len = l } 53 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) 54 #define fname_name(p) ((p)->disk_name.name) 55 #define fname_len(p) ((p)->disk_name.len) 56 57 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */ 58 #define FSCRYPT_SET_CONTEXT_MAX_SIZE 40 59 60 #ifdef CONFIG_FS_ENCRYPTION 61 62 /* 63 * If set, the fscrypt bounce page pool won't be allocated (unless another 64 * filesystem needs it). Set this if the filesystem always uses its own bounce 65 * pages for writes and therefore won't need the fscrypt bounce page pool. 66 */ 67 #define FS_CFLG_OWN_PAGES (1U << 1) 68 69 /* Crypto operations for filesystems */ 70 struct fscrypt_operations { 71 72 /* Set of optional flags; see above for allowed flags */ 73 unsigned int flags; 74 75 /* 76 * If set, this is a filesystem-specific key description prefix that 77 * will be accepted for "logon" keys for v1 fscrypt policies, in 78 * addition to the generic prefix "fscrypt:". This functionality is 79 * deprecated, so new filesystems shouldn't set this field. 80 */ 81 const char *key_prefix; 82 83 /* 84 * Get the fscrypt context of the given inode. 85 * 86 * @inode: the inode whose context to get 87 * @ctx: the buffer into which to get the context 88 * @len: length of the @ctx buffer in bytes 89 * 90 * Return: On success, returns the length of the context in bytes; this 91 * may be less than @len. On failure, returns -ENODATA if the 92 * inode doesn't have a context, -ERANGE if the context is 93 * longer than @len, or another -errno code. 94 */ 95 int (*get_context)(struct inode *inode, void *ctx, size_t len); 96 97 /* 98 * Set an fscrypt context on the given inode. 99 * 100 * @inode: the inode whose context to set. The inode won't already have 101 * an fscrypt context. 102 * @ctx: the context to set 103 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE) 104 * @fs_data: If called from fscrypt_set_context(), this will be the 105 * value the filesystem passed to fscrypt_set_context(). 106 * Otherwise (i.e. when called from 107 * FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL. 108 * 109 * i_rwsem will be held for write. 110 * 111 * Return: 0 on success, -errno on failure. 112 */ 113 int (*set_context)(struct inode *inode, const void *ctx, size_t len, 114 void *fs_data); 115 116 /* 117 * Get the dummy fscrypt policy in use on the filesystem (if any). 118 * 119 * Filesystems only need to implement this function if they support the 120 * test_dummy_encryption mount option. 121 * 122 * Return: A pointer to the dummy fscrypt policy, if the filesystem is 123 * mounted with test_dummy_encryption; otherwise NULL. 124 */ 125 const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb); 126 127 /* 128 * Check whether a directory is empty. i_rwsem will be held for write. 129 */ 130 bool (*empty_dir)(struct inode *inode); 131 132 /* 133 * Check whether the filesystem's inode numbers and UUID are stable, 134 * meaning that they will never be changed even by offline operations 135 * such as filesystem shrinking and therefore can be used in the 136 * encryption without the possibility of files becoming unreadable. 137 * 138 * Filesystems only need to implement this function if they want to 139 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags. These 140 * flags are designed to work around the limitations of UFS and eMMC 141 * inline crypto hardware, and they shouldn't be used in scenarios where 142 * such hardware isn't being used. 143 * 144 * Leaving this NULL is equivalent to always returning false. 145 */ 146 bool (*has_stable_inodes)(struct super_block *sb); 147 148 /* 149 * Get the number of bits that the filesystem uses to represent inode 150 * numbers and file logical block numbers. 151 * 152 * By default, both of these are assumed to be 64-bit. This function 153 * can be implemented to declare that either or both of these numbers is 154 * shorter, which may allow the use of the 155 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags and/or the use of 156 * inline crypto hardware whose maximum DUN length is less than 64 bits 157 * (e.g., eMMC v5.2 spec compliant hardware). This function only needs 158 * to be implemented if support for one of these features is needed. 159 */ 160 void (*get_ino_and_lblk_bits)(struct super_block *sb, 161 int *ino_bits_ret, int *lblk_bits_ret); 162 163 /* 164 * Return an array of pointers to the block devices to which the 165 * filesystem may write encrypted file contents, NULL if the filesystem 166 * only has a single such block device, or an ERR_PTR() on error. 167 * 168 * On successful non-NULL return, *num_devs is set to the number of 169 * devices in the returned array. The caller must free the returned 170 * array using kfree(). 171 * 172 * If the filesystem can use multiple block devices (other than block 173 * devices that aren't used for encrypted file contents, such as 174 * external journal devices), and wants to support inline encryption, 175 * then it must implement this function. Otherwise it's not needed. 176 */ 177 struct block_device **(*get_devices)(struct super_block *sb, 178 unsigned int *num_devs); 179 }; 180 181 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) 182 { 183 /* 184 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info(). 185 * I.e., another task may publish ->i_crypt_info concurrently, executing 186 * a RELEASE barrier. We need to use smp_load_acquire() here to safely 187 * ACQUIRE the memory the other task published. 188 */ 189 return smp_load_acquire(&inode->i_crypt_info); 190 } 191 192 /** 193 * fscrypt_needs_contents_encryption() - check whether an inode needs 194 * contents encryption 195 * @inode: the inode to check 196 * 197 * Return: %true iff the inode is an encrypted regular file and the kernel was 198 * built with fscrypt support. 199 * 200 * If you need to know whether the encrypt bit is set even when the kernel was 201 * built without fscrypt support, you must use IS_ENCRYPTED() directly instead. 202 */ 203 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) 204 { 205 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 206 } 207 208 /* 209 * When d_splice_alias() moves a directory's no-key alias to its plaintext alias 210 * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be 211 * cleared. Note that we don't have to support arbitrary moves of this flag 212 * because fscrypt doesn't allow no-key names to be the source or target of a 213 * rename(). 214 */ 215 static inline void fscrypt_handle_d_move(struct dentry *dentry) 216 { 217 dentry->d_flags &= ~DCACHE_NOKEY_NAME; 218 } 219 220 /** 221 * fscrypt_is_nokey_name() - test whether a dentry is a no-key name 222 * @dentry: the dentry to check 223 * 224 * This returns true if the dentry is a no-key dentry. A no-key dentry is a 225 * dentry that was created in an encrypted directory that hasn't had its 226 * encryption key added yet. Such dentries may be either positive or negative. 227 * 228 * When a filesystem is asked to create a new filename in an encrypted directory 229 * and the new filename's dentry is a no-key dentry, it must fail the operation 230 * with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(), 231 * ->rename(), and ->link(). (However, ->rename() and ->link() are already 232 * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().) 233 * 234 * This is necessary because creating a filename requires the directory's 235 * encryption key, but just checking for the key on the directory inode during 236 * the final filesystem operation doesn't guarantee that the key was available 237 * during the preceding dentry lookup. And the key must have already been 238 * available during the dentry lookup in order for it to have been checked 239 * whether the filename already exists in the directory and for the new file's 240 * dentry not to be invalidated due to it incorrectly having the no-key flag. 241 * 242 * Return: %true if the dentry is a no-key name 243 */ 244 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) 245 { 246 return dentry->d_flags & DCACHE_NOKEY_NAME; 247 } 248 249 /* crypto.c */ 250 void fscrypt_enqueue_decrypt_work(struct work_struct *); 251 252 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 253 unsigned int len, 254 unsigned int offs, 255 gfp_t gfp_flags); 256 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page, 257 unsigned int len, unsigned int offs, 258 u64 lblk_num, gfp_t gfp_flags); 259 260 int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len, 261 size_t offs); 262 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page, 263 unsigned int len, unsigned int offs, 264 u64 lblk_num); 265 266 static inline bool fscrypt_is_bounce_page(struct page *page) 267 { 268 return page->mapping == NULL; 269 } 270 271 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 272 { 273 return (struct page *)page_private(bounce_page); 274 } 275 276 static inline bool fscrypt_is_bounce_folio(struct folio *folio) 277 { 278 return folio->mapping == NULL; 279 } 280 281 static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio) 282 { 283 return bounce_folio->private; 284 } 285 286 void fscrypt_free_bounce_page(struct page *bounce_page); 287 288 /* policy.c */ 289 int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg); 290 int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg); 291 int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg); 292 int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg); 293 int fscrypt_has_permitted_context(struct inode *parent, struct inode *child); 294 int fscrypt_context_for_new_inode(void *ctx, struct inode *inode); 295 int fscrypt_set_context(struct inode *inode, void *fs_data); 296 297 struct fscrypt_dummy_policy { 298 const union fscrypt_policy *policy; 299 }; 300 301 int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param, 302 struct fscrypt_dummy_policy *dummy_policy); 303 bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1, 304 const struct fscrypt_dummy_policy *p2); 305 void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep, 306 struct super_block *sb); 307 static inline bool 308 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy) 309 { 310 return dummy_policy->policy != NULL; 311 } 312 static inline void 313 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) 314 { 315 kfree(dummy_policy->policy); 316 dummy_policy->policy = NULL; 317 } 318 319 /* keyring.c */ 320 void fscrypt_destroy_keyring(struct super_block *sb); 321 int fscrypt_ioctl_add_key(struct file *filp, void __user *arg); 322 int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg); 323 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg); 324 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg); 325 326 /* keysetup.c */ 327 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, 328 bool *encrypt_ret); 329 void fscrypt_put_encryption_info(struct inode *inode); 330 void fscrypt_free_inode(struct inode *inode); 331 int fscrypt_drop_inode(struct inode *inode); 332 333 /* fname.c */ 334 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname, 335 u8 *out, unsigned int olen); 336 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len, 337 u32 max_len, u32 *encrypted_len_ret); 338 int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname, 339 int lookup, struct fscrypt_name *fname); 340 341 static inline void fscrypt_free_filename(struct fscrypt_name *fname) 342 { 343 kfree(fname->crypto_buf.name); 344 } 345 346 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 347 struct fscrypt_str *crypto_str); 348 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str); 349 int fscrypt_fname_disk_to_usr(const struct inode *inode, 350 u32 hash, u32 minor_hash, 351 const struct fscrypt_str *iname, 352 struct fscrypt_str *oname); 353 bool fscrypt_match_name(const struct fscrypt_name *fname, 354 const u8 *de_name, u32 de_name_len); 355 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name); 356 int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags); 357 358 /* bio.c */ 359 bool fscrypt_decrypt_bio(struct bio *bio); 360 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 361 sector_t pblk, unsigned int len); 362 363 /* hooks.c */ 364 int fscrypt_file_open(struct inode *inode, struct file *filp); 365 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 366 struct dentry *dentry); 367 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, 368 struct inode *new_dir, struct dentry *new_dentry, 369 unsigned int flags); 370 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, 371 struct fscrypt_name *fname); 372 int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry); 373 int __fscrypt_prepare_readdir(struct inode *dir); 374 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr); 375 int fscrypt_prepare_setflags(struct inode *inode, 376 unsigned int oldflags, unsigned int flags); 377 int fscrypt_prepare_symlink(struct inode *dir, const char *target, 378 unsigned int len, unsigned int max_len, 379 struct fscrypt_str *disk_link); 380 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, 381 unsigned int len, struct fscrypt_str *disk_link); 382 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, 383 unsigned int max_size, 384 struct delayed_call *done); 385 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat); 386 static inline void fscrypt_set_ops(struct super_block *sb, 387 const struct fscrypt_operations *s_cop) 388 { 389 sb->s_cop = s_cop; 390 } 391 #else /* !CONFIG_FS_ENCRYPTION */ 392 393 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) 394 { 395 return NULL; 396 } 397 398 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) 399 { 400 return false; 401 } 402 403 static inline void fscrypt_handle_d_move(struct dentry *dentry) 404 { 405 } 406 407 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) 408 { 409 return false; 410 } 411 412 /* crypto.c */ 413 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work) 414 { 415 } 416 417 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 418 unsigned int len, 419 unsigned int offs, 420 gfp_t gfp_flags) 421 { 422 return ERR_PTR(-EOPNOTSUPP); 423 } 424 425 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode, 426 struct page *page, 427 unsigned int len, 428 unsigned int offs, u64 lblk_num, 429 gfp_t gfp_flags) 430 { 431 return -EOPNOTSUPP; 432 } 433 434 static inline int fscrypt_decrypt_pagecache_blocks(struct folio *folio, 435 size_t len, size_t offs) 436 { 437 return -EOPNOTSUPP; 438 } 439 440 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode, 441 struct page *page, 442 unsigned int len, 443 unsigned int offs, u64 lblk_num) 444 { 445 return -EOPNOTSUPP; 446 } 447 448 static inline bool fscrypt_is_bounce_page(struct page *page) 449 { 450 return false; 451 } 452 453 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 454 { 455 WARN_ON_ONCE(1); 456 return ERR_PTR(-EINVAL); 457 } 458 459 static inline bool fscrypt_is_bounce_folio(struct folio *folio) 460 { 461 return false; 462 } 463 464 static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio) 465 { 466 WARN_ON_ONCE(1); 467 return ERR_PTR(-EINVAL); 468 } 469 470 static inline void fscrypt_free_bounce_page(struct page *bounce_page) 471 { 472 } 473 474 /* policy.c */ 475 static inline int fscrypt_ioctl_set_policy(struct file *filp, 476 const void __user *arg) 477 { 478 return -EOPNOTSUPP; 479 } 480 481 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg) 482 { 483 return -EOPNOTSUPP; 484 } 485 486 static inline int fscrypt_ioctl_get_policy_ex(struct file *filp, 487 void __user *arg) 488 { 489 return -EOPNOTSUPP; 490 } 491 492 static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg) 493 { 494 return -EOPNOTSUPP; 495 } 496 497 static inline int fscrypt_has_permitted_context(struct inode *parent, 498 struct inode *child) 499 { 500 return 0; 501 } 502 503 static inline int fscrypt_set_context(struct inode *inode, void *fs_data) 504 { 505 return -EOPNOTSUPP; 506 } 507 508 struct fscrypt_dummy_policy { 509 }; 510 511 static inline int 512 fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param, 513 struct fscrypt_dummy_policy *dummy_policy) 514 { 515 return -EINVAL; 516 } 517 518 static inline bool 519 fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1, 520 const struct fscrypt_dummy_policy *p2) 521 { 522 return true; 523 } 524 525 static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq, 526 char sep, 527 struct super_block *sb) 528 { 529 } 530 531 static inline bool 532 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy) 533 { 534 return false; 535 } 536 537 static inline void 538 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) 539 { 540 } 541 542 /* keyring.c */ 543 static inline void fscrypt_destroy_keyring(struct super_block *sb) 544 { 545 } 546 547 static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg) 548 { 549 return -EOPNOTSUPP; 550 } 551 552 static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg) 553 { 554 return -EOPNOTSUPP; 555 } 556 557 static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp, 558 void __user *arg) 559 { 560 return -EOPNOTSUPP; 561 } 562 563 static inline int fscrypt_ioctl_get_key_status(struct file *filp, 564 void __user *arg) 565 { 566 return -EOPNOTSUPP; 567 } 568 569 /* keysetup.c */ 570 571 static inline int fscrypt_prepare_new_inode(struct inode *dir, 572 struct inode *inode, 573 bool *encrypt_ret) 574 { 575 if (IS_ENCRYPTED(dir)) 576 return -EOPNOTSUPP; 577 return 0; 578 } 579 580 static inline void fscrypt_put_encryption_info(struct inode *inode) 581 { 582 return; 583 } 584 585 static inline void fscrypt_free_inode(struct inode *inode) 586 { 587 } 588 589 static inline int fscrypt_drop_inode(struct inode *inode) 590 { 591 return 0; 592 } 593 594 /* fname.c */ 595 static inline int fscrypt_setup_filename(struct inode *dir, 596 const struct qstr *iname, 597 int lookup, struct fscrypt_name *fname) 598 { 599 if (IS_ENCRYPTED(dir)) 600 return -EOPNOTSUPP; 601 602 memset(fname, 0, sizeof(*fname)); 603 fname->usr_fname = iname; 604 fname->disk_name.name = (unsigned char *)iname->name; 605 fname->disk_name.len = iname->len; 606 return 0; 607 } 608 609 static inline void fscrypt_free_filename(struct fscrypt_name *fname) 610 { 611 return; 612 } 613 614 static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 615 struct fscrypt_str *crypto_str) 616 { 617 return -EOPNOTSUPP; 618 } 619 620 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) 621 { 622 return; 623 } 624 625 static inline int fscrypt_fname_disk_to_usr(const struct inode *inode, 626 u32 hash, u32 minor_hash, 627 const struct fscrypt_str *iname, 628 struct fscrypt_str *oname) 629 { 630 return -EOPNOTSUPP; 631 } 632 633 static inline bool fscrypt_match_name(const struct fscrypt_name *fname, 634 const u8 *de_name, u32 de_name_len) 635 { 636 /* Encryption support disabled; use standard comparison */ 637 if (de_name_len != fname->disk_name.len) 638 return false; 639 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len); 640 } 641 642 static inline u64 fscrypt_fname_siphash(const struct inode *dir, 643 const struct qstr *name) 644 { 645 WARN_ON_ONCE(1); 646 return 0; 647 } 648 649 static inline int fscrypt_d_revalidate(struct dentry *dentry, 650 unsigned int flags) 651 { 652 return 1; 653 } 654 655 /* bio.c */ 656 static inline bool fscrypt_decrypt_bio(struct bio *bio) 657 { 658 return true; 659 } 660 661 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 662 sector_t pblk, unsigned int len) 663 { 664 return -EOPNOTSUPP; 665 } 666 667 /* hooks.c */ 668 669 static inline int fscrypt_file_open(struct inode *inode, struct file *filp) 670 { 671 if (IS_ENCRYPTED(inode)) 672 return -EOPNOTSUPP; 673 return 0; 674 } 675 676 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 677 struct dentry *dentry) 678 { 679 return -EOPNOTSUPP; 680 } 681 682 static inline int __fscrypt_prepare_rename(struct inode *old_dir, 683 struct dentry *old_dentry, 684 struct inode *new_dir, 685 struct dentry *new_dentry, 686 unsigned int flags) 687 { 688 return -EOPNOTSUPP; 689 } 690 691 static inline int __fscrypt_prepare_lookup(struct inode *dir, 692 struct dentry *dentry, 693 struct fscrypt_name *fname) 694 { 695 return -EOPNOTSUPP; 696 } 697 698 static inline int fscrypt_prepare_lookup_partial(struct inode *dir, 699 struct dentry *dentry) 700 { 701 return -EOPNOTSUPP; 702 } 703 704 static inline int __fscrypt_prepare_readdir(struct inode *dir) 705 { 706 return -EOPNOTSUPP; 707 } 708 709 static inline int __fscrypt_prepare_setattr(struct dentry *dentry, 710 struct iattr *attr) 711 { 712 return -EOPNOTSUPP; 713 } 714 715 static inline int fscrypt_prepare_setflags(struct inode *inode, 716 unsigned int oldflags, 717 unsigned int flags) 718 { 719 return 0; 720 } 721 722 static inline int fscrypt_prepare_symlink(struct inode *dir, 723 const char *target, 724 unsigned int len, 725 unsigned int max_len, 726 struct fscrypt_str *disk_link) 727 { 728 if (IS_ENCRYPTED(dir)) 729 return -EOPNOTSUPP; 730 disk_link->name = (unsigned char *)target; 731 disk_link->len = len + 1; 732 if (disk_link->len > max_len) 733 return -ENAMETOOLONG; 734 return 0; 735 } 736 737 static inline int __fscrypt_encrypt_symlink(struct inode *inode, 738 const char *target, 739 unsigned int len, 740 struct fscrypt_str *disk_link) 741 { 742 return -EOPNOTSUPP; 743 } 744 745 static inline const char *fscrypt_get_symlink(struct inode *inode, 746 const void *caddr, 747 unsigned int max_size, 748 struct delayed_call *done) 749 { 750 return ERR_PTR(-EOPNOTSUPP); 751 } 752 753 static inline int fscrypt_symlink_getattr(const struct path *path, 754 struct kstat *stat) 755 { 756 return -EOPNOTSUPP; 757 } 758 759 static inline void fscrypt_set_ops(struct super_block *sb, 760 const struct fscrypt_operations *s_cop) 761 { 762 } 763 764 #endif /* !CONFIG_FS_ENCRYPTION */ 765 766 /* inline_crypt.c */ 767 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 768 769 bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode); 770 771 void fscrypt_set_bio_crypt_ctx(struct bio *bio, 772 const struct inode *inode, u64 first_lblk, 773 gfp_t gfp_mask); 774 775 void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio, 776 const struct buffer_head *first_bh, 777 gfp_t gfp_mask); 778 779 bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode, 780 u64 next_lblk); 781 782 bool fscrypt_mergeable_bio_bh(struct bio *bio, 783 const struct buffer_head *next_bh); 784 785 bool fscrypt_dio_supported(struct inode *inode); 786 787 u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks); 788 789 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 790 791 static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode) 792 { 793 return false; 794 } 795 796 static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio, 797 const struct inode *inode, 798 u64 first_lblk, gfp_t gfp_mask) { } 799 800 static inline void fscrypt_set_bio_crypt_ctx_bh( 801 struct bio *bio, 802 const struct buffer_head *first_bh, 803 gfp_t gfp_mask) { } 804 805 static inline bool fscrypt_mergeable_bio(struct bio *bio, 806 const struct inode *inode, 807 u64 next_lblk) 808 { 809 return true; 810 } 811 812 static inline bool fscrypt_mergeable_bio_bh(struct bio *bio, 813 const struct buffer_head *next_bh) 814 { 815 return true; 816 } 817 818 static inline bool fscrypt_dio_supported(struct inode *inode) 819 { 820 return !fscrypt_needs_contents_encryption(inode); 821 } 822 823 static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, 824 u64 nr_blocks) 825 { 826 return nr_blocks; 827 } 828 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 829 830 /** 831 * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline 832 * encryption 833 * @inode: an inode. If encrypted, its key must be set up. 834 * 835 * Return: true if the inode requires file contents encryption and if the 836 * encryption should be done in the block layer via blk-crypto rather 837 * than in the filesystem layer. 838 */ 839 static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode) 840 { 841 return fscrypt_needs_contents_encryption(inode) && 842 __fscrypt_inode_uses_inline_crypto(inode); 843 } 844 845 /** 846 * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer 847 * encryption 848 * @inode: an inode. If encrypted, its key must be set up. 849 * 850 * Return: true if the inode requires file contents encryption and if the 851 * encryption should be done in the filesystem layer rather than in the 852 * block layer via blk-crypto. 853 */ 854 static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode) 855 { 856 return fscrypt_needs_contents_encryption(inode) && 857 !__fscrypt_inode_uses_inline_crypto(inode); 858 } 859 860 /** 861 * fscrypt_has_encryption_key() - check whether an inode has had its key set up 862 * @inode: the inode to check 863 * 864 * Return: %true if the inode has had its encryption key set up, else %false. 865 * 866 * Usually this should be preceded by fscrypt_get_encryption_info() to try to 867 * set up the key first. 868 */ 869 static inline bool fscrypt_has_encryption_key(const struct inode *inode) 870 { 871 return fscrypt_get_info(inode) != NULL; 872 } 873 874 /** 875 * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted 876 * directory 877 * @old_dentry: an existing dentry for the inode being linked 878 * @dir: the target directory 879 * @dentry: negative dentry for the target filename 880 * 881 * A new link can only be added to an encrypted directory if the directory's 882 * encryption key is available --- since otherwise we'd have no way to encrypt 883 * the filename. 884 * 885 * We also verify that the link will not violate the constraint that all files 886 * in an encrypted directory tree use the same encryption policy. 887 * 888 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing, 889 * -EXDEV if the link would result in an inconsistent encryption policy, or 890 * another -errno code. 891 */ 892 static inline int fscrypt_prepare_link(struct dentry *old_dentry, 893 struct inode *dir, 894 struct dentry *dentry) 895 { 896 if (IS_ENCRYPTED(dir)) 897 return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry); 898 return 0; 899 } 900 901 /** 902 * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted 903 * directories 904 * @old_dir: source directory 905 * @old_dentry: dentry for source file 906 * @new_dir: target directory 907 * @new_dentry: dentry for target location (may be negative unless exchanging) 908 * @flags: rename flags (we care at least about %RENAME_EXCHANGE) 909 * 910 * Prepare for ->rename() where the source and/or target directories may be 911 * encrypted. A new link can only be added to an encrypted directory if the 912 * directory's encryption key is available --- since otherwise we'd have no way 913 * to encrypt the filename. A rename to an existing name, on the other hand, 914 * *is* cryptographically possible without the key. However, we take the more 915 * conservative approach and just forbid all no-key renames. 916 * 917 * We also verify that the rename will not violate the constraint that all files 918 * in an encrypted directory tree use the same encryption policy. 919 * 920 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the 921 * rename would cause inconsistent encryption policies, or another -errno code. 922 */ 923 static inline int fscrypt_prepare_rename(struct inode *old_dir, 924 struct dentry *old_dentry, 925 struct inode *new_dir, 926 struct dentry *new_dentry, 927 unsigned int flags) 928 { 929 if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir)) 930 return __fscrypt_prepare_rename(old_dir, old_dentry, 931 new_dir, new_dentry, flags); 932 return 0; 933 } 934 935 /** 936 * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted 937 * directory 938 * @dir: directory being searched 939 * @dentry: filename being looked up 940 * @fname: (output) the name to use to search the on-disk directory 941 * 942 * Prepare for ->lookup() in a directory which may be encrypted by determining 943 * the name that will actually be used to search the directory on-disk. If the 944 * directory's encryption policy is supported by this kernel and its encryption 945 * key is available, then the lookup is assumed to be by plaintext name; 946 * otherwise, it is assumed to be by no-key name. 947 * 948 * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key 949 * name. In this case the filesystem must assign the dentry a dentry_operations 950 * which contains fscrypt_d_revalidate (or contains a d_revalidate method that 951 * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the 952 * directory's encryption key is later added. 953 * 954 * Return: 0 on success; -ENOENT if the directory's key is unavailable but the 955 * filename isn't a valid no-key name, so a negative dentry should be created; 956 * or another -errno code. 957 */ 958 static inline int fscrypt_prepare_lookup(struct inode *dir, 959 struct dentry *dentry, 960 struct fscrypt_name *fname) 961 { 962 if (IS_ENCRYPTED(dir)) 963 return __fscrypt_prepare_lookup(dir, dentry, fname); 964 965 memset(fname, 0, sizeof(*fname)); 966 fname->usr_fname = &dentry->d_name; 967 fname->disk_name.name = (unsigned char *)dentry->d_name.name; 968 fname->disk_name.len = dentry->d_name.len; 969 return 0; 970 } 971 972 /** 973 * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory 974 * @dir: the directory inode 975 * 976 * If the directory is encrypted and it doesn't already have its encryption key 977 * set up, try to set it up so that the filenames will be listed in plaintext 978 * form rather than in no-key form. 979 * 980 * Return: 0 on success; -errno on error. Note that the encryption key being 981 * unavailable is not considered an error. It is also not an error if 982 * the encryption policy is unsupported by this kernel; that is treated 983 * like the key being unavailable, so that files can still be deleted. 984 */ 985 static inline int fscrypt_prepare_readdir(struct inode *dir) 986 { 987 if (IS_ENCRYPTED(dir)) 988 return __fscrypt_prepare_readdir(dir); 989 return 0; 990 } 991 992 /** 993 * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's 994 * attributes 995 * @dentry: dentry through which the inode is being changed 996 * @attr: attributes to change 997 * 998 * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file, 999 * most attribute changes are allowed even without the encryption key. However, 1000 * without the encryption key we do have to forbid truncates. This is needed 1001 * because the size being truncated to may not be a multiple of the filesystem 1002 * block size, and in that case we'd have to decrypt the final block, zero the 1003 * portion past i_size, and re-encrypt it. (We *could* allow truncating to a 1004 * filesystem block boundary, but it's simpler to just forbid all truncates --- 1005 * and we already forbid all other contents modifications without the key.) 1006 * 1007 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code 1008 * if a problem occurred while setting up the encryption key. 1009 */ 1010 static inline int fscrypt_prepare_setattr(struct dentry *dentry, 1011 struct iattr *attr) 1012 { 1013 if (IS_ENCRYPTED(d_inode(dentry))) 1014 return __fscrypt_prepare_setattr(dentry, attr); 1015 return 0; 1016 } 1017 1018 /** 1019 * fscrypt_encrypt_symlink() - encrypt the symlink target if needed 1020 * @inode: symlink inode 1021 * @target: plaintext symlink target 1022 * @len: length of @target excluding null terminator 1023 * @disk_link: (in/out) the on-disk symlink target being prepared 1024 * 1025 * If the symlink target needs to be encrypted, then this function encrypts it 1026 * into @disk_link->name. fscrypt_prepare_symlink() must have been called 1027 * previously to compute @disk_link->len. If the filesystem did not allocate a 1028 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one 1029 * will be kmalloc()'ed and the filesystem will be responsible for freeing it. 1030 * 1031 * Return: 0 on success, -errno on failure 1032 */ 1033 static inline int fscrypt_encrypt_symlink(struct inode *inode, 1034 const char *target, 1035 unsigned int len, 1036 struct fscrypt_str *disk_link) 1037 { 1038 if (IS_ENCRYPTED(inode)) 1039 return __fscrypt_encrypt_symlink(inode, target, len, disk_link); 1040 return 0; 1041 } 1042 1043 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */ 1044 static inline void fscrypt_finalize_bounce_page(struct page **pagep) 1045 { 1046 struct page *page = *pagep; 1047 1048 if (fscrypt_is_bounce_page(page)) { 1049 *pagep = fscrypt_pagecache_page(page); 1050 fscrypt_free_bounce_page(page); 1051 } 1052 } 1053 1054 #endif /* _LINUX_FSCRYPT_H */ 1055