1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fscrypt.h: declarations for per-file encryption 4 * 5 * Filesystems that implement per-file encryption must include this header 6 * file. 7 * 8 * Copyright (C) 2015, Google, Inc. 9 * 10 * Written by Michael Halcrow, 2015. 11 * Modified by Jaegeuk Kim, 2015. 12 */ 13 #ifndef _LINUX_FSCRYPT_H 14 #define _LINUX_FSCRYPT_H 15 16 #include <linux/fs.h> 17 #include <linux/mm.h> 18 #include <linux/slab.h> 19 #include <uapi/linux/fscrypt.h> 20 21 /* 22 * The lengths of all file contents blocks must be divisible by this value. 23 * This is needed to ensure that all contents encryption modes will work, as 24 * some of the supported modes don't support arbitrarily byte-aligned messages. 25 * 26 * Since the needed alignment is 16 bytes, most filesystems will meet this 27 * requirement naturally, as typical block sizes are powers of 2. However, if a 28 * filesystem can generate arbitrarily byte-aligned block lengths (e.g., via 29 * compression), then it will need to pad to this alignment before encryption. 30 */ 31 #define FSCRYPT_CONTENTS_ALIGNMENT 16 32 33 union fscrypt_policy; 34 struct fscrypt_info; 35 struct fs_parameter; 36 struct seq_file; 37 38 struct fscrypt_str { 39 unsigned char *name; 40 u32 len; 41 }; 42 43 struct fscrypt_name { 44 const struct qstr *usr_fname; 45 struct fscrypt_str disk_name; 46 u32 hash; 47 u32 minor_hash; 48 struct fscrypt_str crypto_buf; 49 bool is_nokey_name; 50 }; 51 52 #define FSTR_INIT(n, l) { .name = n, .len = l } 53 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) 54 #define fname_name(p) ((p)->disk_name.name) 55 #define fname_len(p) ((p)->disk_name.len) 56 57 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */ 58 #define FSCRYPT_SET_CONTEXT_MAX_SIZE 40 59 60 #ifdef CONFIG_FS_ENCRYPTION 61 62 /* 63 * If set, the fscrypt bounce page pool won't be allocated (unless another 64 * filesystem needs it). Set this if the filesystem always uses its own bounce 65 * pages for writes and therefore won't need the fscrypt bounce page pool. 66 */ 67 #define FS_CFLG_OWN_PAGES (1U << 1) 68 69 /* Crypto operations for filesystems */ 70 struct fscrypt_operations { 71 72 /* Set of optional flags; see above for allowed flags */ 73 unsigned int flags; 74 75 /* 76 * If set, this is a filesystem-specific key description prefix that 77 * will be accepted for "logon" keys for v1 fscrypt policies, in 78 * addition to the generic prefix "fscrypt:". This functionality is 79 * deprecated, so new filesystems shouldn't set this field. 80 */ 81 const char *key_prefix; 82 83 /* 84 * Get the fscrypt context of the given inode. 85 * 86 * @inode: the inode whose context to get 87 * @ctx: the buffer into which to get the context 88 * @len: length of the @ctx buffer in bytes 89 * 90 * Return: On success, returns the length of the context in bytes; this 91 * may be less than @len. On failure, returns -ENODATA if the 92 * inode doesn't have a context, -ERANGE if the context is 93 * longer than @len, or another -errno code. 94 */ 95 int (*get_context)(struct inode *inode, void *ctx, size_t len); 96 97 /* 98 * Set an fscrypt context on the given inode. 99 * 100 * @inode: the inode whose context to set. The inode won't already have 101 * an fscrypt context. 102 * @ctx: the context to set 103 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE) 104 * @fs_data: If called from fscrypt_set_context(), this will be the 105 * value the filesystem passed to fscrypt_set_context(). 106 * Otherwise (i.e. when called from 107 * FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL. 108 * 109 * i_rwsem will be held for write. 110 * 111 * Return: 0 on success, -errno on failure. 112 */ 113 int (*set_context)(struct inode *inode, const void *ctx, size_t len, 114 void *fs_data); 115 116 /* 117 * Get the dummy fscrypt policy in use on the filesystem (if any). 118 * 119 * Filesystems only need to implement this function if they support the 120 * test_dummy_encryption mount option. 121 * 122 * Return: A pointer to the dummy fscrypt policy, if the filesystem is 123 * mounted with test_dummy_encryption; otherwise NULL. 124 */ 125 const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb); 126 127 /* 128 * Check whether a directory is empty. i_rwsem will be held for write. 129 */ 130 bool (*empty_dir)(struct inode *inode); 131 132 /* 133 * Check whether the filesystem's inode numbers and UUID are stable, 134 * meaning that they will never be changed even by offline operations 135 * such as filesystem shrinking and therefore can be used in the 136 * encryption without the possibility of files becoming unreadable. 137 * 138 * Filesystems only need to implement this function if they want to 139 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags. These 140 * flags are designed to work around the limitations of UFS and eMMC 141 * inline crypto hardware, and they shouldn't be used in scenarios where 142 * such hardware isn't being used. 143 * 144 * Leaving this NULL is equivalent to always returning false. 145 */ 146 bool (*has_stable_inodes)(struct super_block *sb); 147 148 /* 149 * Get the number of bits that the filesystem uses to represent inode 150 * numbers and file logical block numbers. 151 * 152 * By default, both of these are assumed to be 64-bit. This function 153 * can be implemented to declare that either or both of these numbers is 154 * shorter, which may allow the use of the 155 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags and/or the use of 156 * inline crypto hardware whose maximum DUN length is less than 64 bits 157 * (e.g., eMMC v5.2 spec compliant hardware). This function only needs 158 * to be implemented if support for one of these features is needed. 159 */ 160 void (*get_ino_and_lblk_bits)(struct super_block *sb, 161 int *ino_bits_ret, int *lblk_bits_ret); 162 163 /* 164 * Return an array of pointers to the block devices to which the 165 * filesystem may write encrypted file contents, NULL if the filesystem 166 * only has a single such block device, or an ERR_PTR() on error. 167 * 168 * On successful non-NULL return, *num_devs is set to the number of 169 * devices in the returned array. The caller must free the returned 170 * array using kfree(). 171 * 172 * If the filesystem can use multiple block devices (other than block 173 * devices that aren't used for encrypted file contents, such as 174 * external journal devices), and wants to support inline encryption, 175 * then it must implement this function. Otherwise it's not needed. 176 */ 177 struct block_device **(*get_devices)(struct super_block *sb, 178 unsigned int *num_devs); 179 }; 180 181 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) 182 { 183 /* 184 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info(). 185 * I.e., another task may publish ->i_crypt_info concurrently, executing 186 * a RELEASE barrier. We need to use smp_load_acquire() here to safely 187 * ACQUIRE the memory the other task published. 188 */ 189 return smp_load_acquire(&inode->i_crypt_info); 190 } 191 192 /** 193 * fscrypt_needs_contents_encryption() - check whether an inode needs 194 * contents encryption 195 * @inode: the inode to check 196 * 197 * Return: %true iff the inode is an encrypted regular file and the kernel was 198 * built with fscrypt support. 199 * 200 * If you need to know whether the encrypt bit is set even when the kernel was 201 * built without fscrypt support, you must use IS_ENCRYPTED() directly instead. 202 */ 203 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) 204 { 205 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 206 } 207 208 /* 209 * When d_splice_alias() moves a directory's no-key alias to its plaintext alias 210 * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be 211 * cleared. Note that we don't have to support arbitrary moves of this flag 212 * because fscrypt doesn't allow no-key names to be the source or target of a 213 * rename(). 214 */ 215 static inline void fscrypt_handle_d_move(struct dentry *dentry) 216 { 217 dentry->d_flags &= ~DCACHE_NOKEY_NAME; 218 } 219 220 /** 221 * fscrypt_is_nokey_name() - test whether a dentry is a no-key name 222 * @dentry: the dentry to check 223 * 224 * This returns true if the dentry is a no-key dentry. A no-key dentry is a 225 * dentry that was created in an encrypted directory that hasn't had its 226 * encryption key added yet. Such dentries may be either positive or negative. 227 * 228 * When a filesystem is asked to create a new filename in an encrypted directory 229 * and the new filename's dentry is a no-key dentry, it must fail the operation 230 * with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(), 231 * ->rename(), and ->link(). (However, ->rename() and ->link() are already 232 * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().) 233 * 234 * This is necessary because creating a filename requires the directory's 235 * encryption key, but just checking for the key on the directory inode during 236 * the final filesystem operation doesn't guarantee that the key was available 237 * during the preceding dentry lookup. And the key must have already been 238 * available during the dentry lookup in order for it to have been checked 239 * whether the filename already exists in the directory and for the new file's 240 * dentry not to be invalidated due to it incorrectly having the no-key flag. 241 * 242 * Return: %true if the dentry is a no-key name 243 */ 244 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) 245 { 246 return dentry->d_flags & DCACHE_NOKEY_NAME; 247 } 248 249 /* crypto.c */ 250 void fscrypt_enqueue_decrypt_work(struct work_struct *); 251 252 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 253 unsigned int len, 254 unsigned int offs, 255 gfp_t gfp_flags); 256 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page, 257 unsigned int len, unsigned int offs, 258 u64 lblk_num, gfp_t gfp_flags); 259 260 int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len, 261 size_t offs); 262 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page, 263 unsigned int len, unsigned int offs, 264 u64 lblk_num); 265 266 static inline bool fscrypt_is_bounce_page(struct page *page) 267 { 268 return page->mapping == NULL; 269 } 270 271 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 272 { 273 return (struct page *)page_private(bounce_page); 274 } 275 276 void fscrypt_free_bounce_page(struct page *bounce_page); 277 278 /* policy.c */ 279 int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg); 280 int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg); 281 int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg); 282 int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg); 283 int fscrypt_has_permitted_context(struct inode *parent, struct inode *child); 284 int fscrypt_context_for_new_inode(void *ctx, struct inode *inode); 285 int fscrypt_set_context(struct inode *inode, void *fs_data); 286 287 struct fscrypt_dummy_policy { 288 const union fscrypt_policy *policy; 289 }; 290 291 int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param, 292 struct fscrypt_dummy_policy *dummy_policy); 293 bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1, 294 const struct fscrypt_dummy_policy *p2); 295 void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep, 296 struct super_block *sb); 297 static inline bool 298 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy) 299 { 300 return dummy_policy->policy != NULL; 301 } 302 static inline void 303 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) 304 { 305 kfree(dummy_policy->policy); 306 dummy_policy->policy = NULL; 307 } 308 309 /* keyring.c */ 310 void fscrypt_destroy_keyring(struct super_block *sb); 311 int fscrypt_ioctl_add_key(struct file *filp, void __user *arg); 312 int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg); 313 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg); 314 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg); 315 316 /* keysetup.c */ 317 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, 318 bool *encrypt_ret); 319 void fscrypt_put_encryption_info(struct inode *inode); 320 void fscrypt_free_inode(struct inode *inode); 321 int fscrypt_drop_inode(struct inode *inode); 322 323 /* fname.c */ 324 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname, 325 u8 *out, unsigned int olen); 326 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len, 327 u32 max_len, u32 *encrypted_len_ret); 328 int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname, 329 int lookup, struct fscrypt_name *fname); 330 331 static inline void fscrypt_free_filename(struct fscrypt_name *fname) 332 { 333 kfree(fname->crypto_buf.name); 334 } 335 336 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 337 struct fscrypt_str *crypto_str); 338 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str); 339 int fscrypt_fname_disk_to_usr(const struct inode *inode, 340 u32 hash, u32 minor_hash, 341 const struct fscrypt_str *iname, 342 struct fscrypt_str *oname); 343 bool fscrypt_match_name(const struct fscrypt_name *fname, 344 const u8 *de_name, u32 de_name_len); 345 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name); 346 int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags); 347 348 /* bio.c */ 349 bool fscrypt_decrypt_bio(struct bio *bio); 350 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 351 sector_t pblk, unsigned int len); 352 353 /* hooks.c */ 354 int fscrypt_file_open(struct inode *inode, struct file *filp); 355 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 356 struct dentry *dentry); 357 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, 358 struct inode *new_dir, struct dentry *new_dentry, 359 unsigned int flags); 360 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, 361 struct fscrypt_name *fname); 362 int __fscrypt_prepare_readdir(struct inode *dir); 363 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr); 364 int fscrypt_prepare_setflags(struct inode *inode, 365 unsigned int oldflags, unsigned int flags); 366 int fscrypt_prepare_symlink(struct inode *dir, const char *target, 367 unsigned int len, unsigned int max_len, 368 struct fscrypt_str *disk_link); 369 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, 370 unsigned int len, struct fscrypt_str *disk_link); 371 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, 372 unsigned int max_size, 373 struct delayed_call *done); 374 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat); 375 static inline void fscrypt_set_ops(struct super_block *sb, 376 const struct fscrypt_operations *s_cop) 377 { 378 sb->s_cop = s_cop; 379 } 380 #else /* !CONFIG_FS_ENCRYPTION */ 381 382 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) 383 { 384 return NULL; 385 } 386 387 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) 388 { 389 return false; 390 } 391 392 static inline void fscrypt_handle_d_move(struct dentry *dentry) 393 { 394 } 395 396 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) 397 { 398 return false; 399 } 400 401 /* crypto.c */ 402 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work) 403 { 404 } 405 406 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 407 unsigned int len, 408 unsigned int offs, 409 gfp_t gfp_flags) 410 { 411 return ERR_PTR(-EOPNOTSUPP); 412 } 413 414 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode, 415 struct page *page, 416 unsigned int len, 417 unsigned int offs, u64 lblk_num, 418 gfp_t gfp_flags) 419 { 420 return -EOPNOTSUPP; 421 } 422 423 static inline int fscrypt_decrypt_pagecache_blocks(struct folio *folio, 424 size_t len, size_t offs) 425 { 426 return -EOPNOTSUPP; 427 } 428 429 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode, 430 struct page *page, 431 unsigned int len, 432 unsigned int offs, u64 lblk_num) 433 { 434 return -EOPNOTSUPP; 435 } 436 437 static inline bool fscrypt_is_bounce_page(struct page *page) 438 { 439 return false; 440 } 441 442 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 443 { 444 WARN_ON_ONCE(1); 445 return ERR_PTR(-EINVAL); 446 } 447 448 static inline void fscrypt_free_bounce_page(struct page *bounce_page) 449 { 450 } 451 452 /* policy.c */ 453 static inline int fscrypt_ioctl_set_policy(struct file *filp, 454 const void __user *arg) 455 { 456 return -EOPNOTSUPP; 457 } 458 459 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg) 460 { 461 return -EOPNOTSUPP; 462 } 463 464 static inline int fscrypt_ioctl_get_policy_ex(struct file *filp, 465 void __user *arg) 466 { 467 return -EOPNOTSUPP; 468 } 469 470 static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg) 471 { 472 return -EOPNOTSUPP; 473 } 474 475 static inline int fscrypt_has_permitted_context(struct inode *parent, 476 struct inode *child) 477 { 478 return 0; 479 } 480 481 static inline int fscrypt_set_context(struct inode *inode, void *fs_data) 482 { 483 return -EOPNOTSUPP; 484 } 485 486 struct fscrypt_dummy_policy { 487 }; 488 489 static inline int 490 fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param, 491 struct fscrypt_dummy_policy *dummy_policy) 492 { 493 return -EINVAL; 494 } 495 496 static inline bool 497 fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1, 498 const struct fscrypt_dummy_policy *p2) 499 { 500 return true; 501 } 502 503 static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq, 504 char sep, 505 struct super_block *sb) 506 { 507 } 508 509 static inline bool 510 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy) 511 { 512 return false; 513 } 514 515 static inline void 516 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) 517 { 518 } 519 520 /* keyring.c */ 521 static inline void fscrypt_destroy_keyring(struct super_block *sb) 522 { 523 } 524 525 static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg) 526 { 527 return -EOPNOTSUPP; 528 } 529 530 static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg) 531 { 532 return -EOPNOTSUPP; 533 } 534 535 static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp, 536 void __user *arg) 537 { 538 return -EOPNOTSUPP; 539 } 540 541 static inline int fscrypt_ioctl_get_key_status(struct file *filp, 542 void __user *arg) 543 { 544 return -EOPNOTSUPP; 545 } 546 547 /* keysetup.c */ 548 549 static inline int fscrypt_prepare_new_inode(struct inode *dir, 550 struct inode *inode, 551 bool *encrypt_ret) 552 { 553 if (IS_ENCRYPTED(dir)) 554 return -EOPNOTSUPP; 555 return 0; 556 } 557 558 static inline void fscrypt_put_encryption_info(struct inode *inode) 559 { 560 return; 561 } 562 563 static inline void fscrypt_free_inode(struct inode *inode) 564 { 565 } 566 567 static inline int fscrypt_drop_inode(struct inode *inode) 568 { 569 return 0; 570 } 571 572 /* fname.c */ 573 static inline int fscrypt_setup_filename(struct inode *dir, 574 const struct qstr *iname, 575 int lookup, struct fscrypt_name *fname) 576 { 577 if (IS_ENCRYPTED(dir)) 578 return -EOPNOTSUPP; 579 580 memset(fname, 0, sizeof(*fname)); 581 fname->usr_fname = iname; 582 fname->disk_name.name = (unsigned char *)iname->name; 583 fname->disk_name.len = iname->len; 584 return 0; 585 } 586 587 static inline void fscrypt_free_filename(struct fscrypt_name *fname) 588 { 589 return; 590 } 591 592 static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 593 struct fscrypt_str *crypto_str) 594 { 595 return -EOPNOTSUPP; 596 } 597 598 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) 599 { 600 return; 601 } 602 603 static inline int fscrypt_fname_disk_to_usr(const struct inode *inode, 604 u32 hash, u32 minor_hash, 605 const struct fscrypt_str *iname, 606 struct fscrypt_str *oname) 607 { 608 return -EOPNOTSUPP; 609 } 610 611 static inline bool fscrypt_match_name(const struct fscrypt_name *fname, 612 const u8 *de_name, u32 de_name_len) 613 { 614 /* Encryption support disabled; use standard comparison */ 615 if (de_name_len != fname->disk_name.len) 616 return false; 617 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len); 618 } 619 620 static inline u64 fscrypt_fname_siphash(const struct inode *dir, 621 const struct qstr *name) 622 { 623 WARN_ON_ONCE(1); 624 return 0; 625 } 626 627 static inline int fscrypt_d_revalidate(struct dentry *dentry, 628 unsigned int flags) 629 { 630 return 1; 631 } 632 633 /* bio.c */ 634 static inline bool fscrypt_decrypt_bio(struct bio *bio) 635 { 636 return true; 637 } 638 639 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 640 sector_t pblk, unsigned int len) 641 { 642 return -EOPNOTSUPP; 643 } 644 645 /* hooks.c */ 646 647 static inline int fscrypt_file_open(struct inode *inode, struct file *filp) 648 { 649 if (IS_ENCRYPTED(inode)) 650 return -EOPNOTSUPP; 651 return 0; 652 } 653 654 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 655 struct dentry *dentry) 656 { 657 return -EOPNOTSUPP; 658 } 659 660 static inline int __fscrypt_prepare_rename(struct inode *old_dir, 661 struct dentry *old_dentry, 662 struct inode *new_dir, 663 struct dentry *new_dentry, 664 unsigned int flags) 665 { 666 return -EOPNOTSUPP; 667 } 668 669 static inline int __fscrypt_prepare_lookup(struct inode *dir, 670 struct dentry *dentry, 671 struct fscrypt_name *fname) 672 { 673 return -EOPNOTSUPP; 674 } 675 676 static inline int __fscrypt_prepare_readdir(struct inode *dir) 677 { 678 return -EOPNOTSUPP; 679 } 680 681 static inline int __fscrypt_prepare_setattr(struct dentry *dentry, 682 struct iattr *attr) 683 { 684 return -EOPNOTSUPP; 685 } 686 687 static inline int fscrypt_prepare_setflags(struct inode *inode, 688 unsigned int oldflags, 689 unsigned int flags) 690 { 691 return 0; 692 } 693 694 static inline int fscrypt_prepare_symlink(struct inode *dir, 695 const char *target, 696 unsigned int len, 697 unsigned int max_len, 698 struct fscrypt_str *disk_link) 699 { 700 if (IS_ENCRYPTED(dir)) 701 return -EOPNOTSUPP; 702 disk_link->name = (unsigned char *)target; 703 disk_link->len = len + 1; 704 if (disk_link->len > max_len) 705 return -ENAMETOOLONG; 706 return 0; 707 } 708 709 static inline int __fscrypt_encrypt_symlink(struct inode *inode, 710 const char *target, 711 unsigned int len, 712 struct fscrypt_str *disk_link) 713 { 714 return -EOPNOTSUPP; 715 } 716 717 static inline const char *fscrypt_get_symlink(struct inode *inode, 718 const void *caddr, 719 unsigned int max_size, 720 struct delayed_call *done) 721 { 722 return ERR_PTR(-EOPNOTSUPP); 723 } 724 725 static inline int fscrypt_symlink_getattr(const struct path *path, 726 struct kstat *stat) 727 { 728 return -EOPNOTSUPP; 729 } 730 731 static inline void fscrypt_set_ops(struct super_block *sb, 732 const struct fscrypt_operations *s_cop) 733 { 734 } 735 736 #endif /* !CONFIG_FS_ENCRYPTION */ 737 738 /* inline_crypt.c */ 739 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 740 741 bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode); 742 743 void fscrypt_set_bio_crypt_ctx(struct bio *bio, 744 const struct inode *inode, u64 first_lblk, 745 gfp_t gfp_mask); 746 747 void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio, 748 const struct buffer_head *first_bh, 749 gfp_t gfp_mask); 750 751 bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode, 752 u64 next_lblk); 753 754 bool fscrypt_mergeable_bio_bh(struct bio *bio, 755 const struct buffer_head *next_bh); 756 757 bool fscrypt_dio_supported(struct inode *inode); 758 759 u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks); 760 761 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 762 763 static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode) 764 { 765 return false; 766 } 767 768 static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio, 769 const struct inode *inode, 770 u64 first_lblk, gfp_t gfp_mask) { } 771 772 static inline void fscrypt_set_bio_crypt_ctx_bh( 773 struct bio *bio, 774 const struct buffer_head *first_bh, 775 gfp_t gfp_mask) { } 776 777 static inline bool fscrypt_mergeable_bio(struct bio *bio, 778 const struct inode *inode, 779 u64 next_lblk) 780 { 781 return true; 782 } 783 784 static inline bool fscrypt_mergeable_bio_bh(struct bio *bio, 785 const struct buffer_head *next_bh) 786 { 787 return true; 788 } 789 790 static inline bool fscrypt_dio_supported(struct inode *inode) 791 { 792 return !fscrypt_needs_contents_encryption(inode); 793 } 794 795 static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, 796 u64 nr_blocks) 797 { 798 return nr_blocks; 799 } 800 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 801 802 /** 803 * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline 804 * encryption 805 * @inode: an inode. If encrypted, its key must be set up. 806 * 807 * Return: true if the inode requires file contents encryption and if the 808 * encryption should be done in the block layer via blk-crypto rather 809 * than in the filesystem layer. 810 */ 811 static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode) 812 { 813 return fscrypt_needs_contents_encryption(inode) && 814 __fscrypt_inode_uses_inline_crypto(inode); 815 } 816 817 /** 818 * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer 819 * encryption 820 * @inode: an inode. If encrypted, its key must be set up. 821 * 822 * Return: true if the inode requires file contents encryption and if the 823 * encryption should be done in the filesystem layer rather than in the 824 * block layer via blk-crypto. 825 */ 826 static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode) 827 { 828 return fscrypt_needs_contents_encryption(inode) && 829 !__fscrypt_inode_uses_inline_crypto(inode); 830 } 831 832 /** 833 * fscrypt_has_encryption_key() - check whether an inode has had its key set up 834 * @inode: the inode to check 835 * 836 * Return: %true if the inode has had its encryption key set up, else %false. 837 * 838 * Usually this should be preceded by fscrypt_get_encryption_info() to try to 839 * set up the key first. 840 */ 841 static inline bool fscrypt_has_encryption_key(const struct inode *inode) 842 { 843 return fscrypt_get_info(inode) != NULL; 844 } 845 846 /** 847 * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted 848 * directory 849 * @old_dentry: an existing dentry for the inode being linked 850 * @dir: the target directory 851 * @dentry: negative dentry for the target filename 852 * 853 * A new link can only be added to an encrypted directory if the directory's 854 * encryption key is available --- since otherwise we'd have no way to encrypt 855 * the filename. 856 * 857 * We also verify that the link will not violate the constraint that all files 858 * in an encrypted directory tree use the same encryption policy. 859 * 860 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing, 861 * -EXDEV if the link would result in an inconsistent encryption policy, or 862 * another -errno code. 863 */ 864 static inline int fscrypt_prepare_link(struct dentry *old_dentry, 865 struct inode *dir, 866 struct dentry *dentry) 867 { 868 if (IS_ENCRYPTED(dir)) 869 return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry); 870 return 0; 871 } 872 873 /** 874 * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted 875 * directories 876 * @old_dir: source directory 877 * @old_dentry: dentry for source file 878 * @new_dir: target directory 879 * @new_dentry: dentry for target location (may be negative unless exchanging) 880 * @flags: rename flags (we care at least about %RENAME_EXCHANGE) 881 * 882 * Prepare for ->rename() where the source and/or target directories may be 883 * encrypted. A new link can only be added to an encrypted directory if the 884 * directory's encryption key is available --- since otherwise we'd have no way 885 * to encrypt the filename. A rename to an existing name, on the other hand, 886 * *is* cryptographically possible without the key. However, we take the more 887 * conservative approach and just forbid all no-key renames. 888 * 889 * We also verify that the rename will not violate the constraint that all files 890 * in an encrypted directory tree use the same encryption policy. 891 * 892 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the 893 * rename would cause inconsistent encryption policies, or another -errno code. 894 */ 895 static inline int fscrypt_prepare_rename(struct inode *old_dir, 896 struct dentry *old_dentry, 897 struct inode *new_dir, 898 struct dentry *new_dentry, 899 unsigned int flags) 900 { 901 if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir)) 902 return __fscrypt_prepare_rename(old_dir, old_dentry, 903 new_dir, new_dentry, flags); 904 return 0; 905 } 906 907 /** 908 * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted 909 * directory 910 * @dir: directory being searched 911 * @dentry: filename being looked up 912 * @fname: (output) the name to use to search the on-disk directory 913 * 914 * Prepare for ->lookup() in a directory which may be encrypted by determining 915 * the name that will actually be used to search the directory on-disk. If the 916 * directory's encryption policy is supported by this kernel and its encryption 917 * key is available, then the lookup is assumed to be by plaintext name; 918 * otherwise, it is assumed to be by no-key name. 919 * 920 * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key 921 * name. In this case the filesystem must assign the dentry a dentry_operations 922 * which contains fscrypt_d_revalidate (or contains a d_revalidate method that 923 * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the 924 * directory's encryption key is later added. 925 * 926 * Return: 0 on success; -ENOENT if the directory's key is unavailable but the 927 * filename isn't a valid no-key name, so a negative dentry should be created; 928 * or another -errno code. 929 */ 930 static inline int fscrypt_prepare_lookup(struct inode *dir, 931 struct dentry *dentry, 932 struct fscrypt_name *fname) 933 { 934 if (IS_ENCRYPTED(dir)) 935 return __fscrypt_prepare_lookup(dir, dentry, fname); 936 937 memset(fname, 0, sizeof(*fname)); 938 fname->usr_fname = &dentry->d_name; 939 fname->disk_name.name = (unsigned char *)dentry->d_name.name; 940 fname->disk_name.len = dentry->d_name.len; 941 return 0; 942 } 943 944 /** 945 * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory 946 * @dir: the directory inode 947 * 948 * If the directory is encrypted and it doesn't already have its encryption key 949 * set up, try to set it up so that the filenames will be listed in plaintext 950 * form rather than in no-key form. 951 * 952 * Return: 0 on success; -errno on error. Note that the encryption key being 953 * unavailable is not considered an error. It is also not an error if 954 * the encryption policy is unsupported by this kernel; that is treated 955 * like the key being unavailable, so that files can still be deleted. 956 */ 957 static inline int fscrypt_prepare_readdir(struct inode *dir) 958 { 959 if (IS_ENCRYPTED(dir)) 960 return __fscrypt_prepare_readdir(dir); 961 return 0; 962 } 963 964 /** 965 * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's 966 * attributes 967 * @dentry: dentry through which the inode is being changed 968 * @attr: attributes to change 969 * 970 * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file, 971 * most attribute changes are allowed even without the encryption key. However, 972 * without the encryption key we do have to forbid truncates. This is needed 973 * because the size being truncated to may not be a multiple of the filesystem 974 * block size, and in that case we'd have to decrypt the final block, zero the 975 * portion past i_size, and re-encrypt it. (We *could* allow truncating to a 976 * filesystem block boundary, but it's simpler to just forbid all truncates --- 977 * and we already forbid all other contents modifications without the key.) 978 * 979 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code 980 * if a problem occurred while setting up the encryption key. 981 */ 982 static inline int fscrypt_prepare_setattr(struct dentry *dentry, 983 struct iattr *attr) 984 { 985 if (IS_ENCRYPTED(d_inode(dentry))) 986 return __fscrypt_prepare_setattr(dentry, attr); 987 return 0; 988 } 989 990 /** 991 * fscrypt_encrypt_symlink() - encrypt the symlink target if needed 992 * @inode: symlink inode 993 * @target: plaintext symlink target 994 * @len: length of @target excluding null terminator 995 * @disk_link: (in/out) the on-disk symlink target being prepared 996 * 997 * If the symlink target needs to be encrypted, then this function encrypts it 998 * into @disk_link->name. fscrypt_prepare_symlink() must have been called 999 * previously to compute @disk_link->len. If the filesystem did not allocate a 1000 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one 1001 * will be kmalloc()'ed and the filesystem will be responsible for freeing it. 1002 * 1003 * Return: 0 on success, -errno on failure 1004 */ 1005 static inline int fscrypt_encrypt_symlink(struct inode *inode, 1006 const char *target, 1007 unsigned int len, 1008 struct fscrypt_str *disk_link) 1009 { 1010 if (IS_ENCRYPTED(inode)) 1011 return __fscrypt_encrypt_symlink(inode, target, len, disk_link); 1012 return 0; 1013 } 1014 1015 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */ 1016 static inline void fscrypt_finalize_bounce_page(struct page **pagep) 1017 { 1018 struct page *page = *pagep; 1019 1020 if (fscrypt_is_bounce_page(page)) { 1021 *pagep = fscrypt_pagecache_page(page); 1022 fscrypt_free_bounce_page(page); 1023 } 1024 } 1025 1026 #endif /* _LINUX_FSCRYPT_H */ 1027