xref: /openbmc/linux/include/linux/energy_model.h (revision 0cabf991)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_ENERGY_MODEL_H
3 #define _LINUX_ENERGY_MODEL_H
4 #include <linux/cpumask.h>
5 #include <linux/device.h>
6 #include <linux/jump_label.h>
7 #include <linux/kobject.h>
8 #include <linux/rcupdate.h>
9 #include <linux/sched/cpufreq.h>
10 #include <linux/sched/topology.h>
11 #include <linux/types.h>
12 
13 /**
14  * em_perf_state - Performance state of a performance domain
15  * @frequency:	The frequency in KHz, for consistency with CPUFreq
16  * @power:	The power consumed at this level, in milli-watts (by 1 CPU or
17 		by a registered device). It can be a total power: static and
18 		dynamic.
19  * @cost:	The cost coefficient associated with this level, used during
20  *		energy calculation. Equal to: power * max_frequency / frequency
21  */
22 struct em_perf_state {
23 	unsigned long frequency;
24 	unsigned long power;
25 	unsigned long cost;
26 };
27 
28 /**
29  * em_perf_domain - Performance domain
30  * @table:		List of performance states, in ascending order
31  * @nr_perf_states:	Number of performance states
32  * @cpus:		Cpumask covering the CPUs of the domain. It's here
33  *			for performance reasons to avoid potential cache
34  *			misses during energy calculations in the scheduler
35  *			and simplifies allocating/freeing that memory region.
36  *
37  * In case of CPU device, a "performance domain" represents a group of CPUs
38  * whose performance is scaled together. All CPUs of a performance domain
39  * must have the same micro-architecture. Performance domains often have
40  * a 1-to-1 mapping with CPUFreq policies. In case of other devices the @cpus
41  * field is unused.
42  */
43 struct em_perf_domain {
44 	struct em_perf_state *table;
45 	int nr_perf_states;
46 	unsigned long cpus[];
47 };
48 
49 #define em_span_cpus(em) (to_cpumask((em)->cpus))
50 
51 #ifdef CONFIG_ENERGY_MODEL
52 #define EM_MAX_POWER 0xFFFF
53 
54 struct em_data_callback {
55 	/**
56 	 * active_power() - Provide power at the next performance state of
57 	 *		a device
58 	 * @power	: Active power at the performance state in mW
59 	 *		(modified)
60 	 * @freq	: Frequency at the performance state in kHz
61 	 *		(modified)
62 	 * @dev		: Device for which we do this operation (can be a CPU)
63 	 *
64 	 * active_power() must find the lowest performance state of 'dev' above
65 	 * 'freq' and update 'power' and 'freq' to the matching active power
66 	 * and frequency.
67 	 *
68 	 * In case of CPUs, the power is the one of a single CPU in the domain,
69 	 * expressed in milli-watts. It is expected to fit in the
70 	 * [0, EM_MAX_POWER] range.
71 	 *
72 	 * Return 0 on success.
73 	 */
74 	int (*active_power)(unsigned long *power, unsigned long *freq,
75 			    struct device *dev);
76 };
77 #define EM_DATA_CB(_active_power_cb) { .active_power = &_active_power_cb }
78 
79 struct em_perf_domain *em_cpu_get(int cpu);
80 struct em_perf_domain *em_pd_get(struct device *dev);
81 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
82 				struct em_data_callback *cb, cpumask_t *span);
83 void em_dev_unregister_perf_domain(struct device *dev);
84 
85 /**
86  * em_cpu_energy() - Estimates the energy consumed by the CPUs of a
87 		performance domain
88  * @pd		: performance domain for which energy has to be estimated
89  * @max_util	: highest utilization among CPUs of the domain
90  * @sum_util	: sum of the utilization of all CPUs in the domain
91  *
92  * This function must be used only for CPU devices. There is no validation,
93  * i.e. if the EM is a CPU type and has cpumask allocated. It is called from
94  * the scheduler code quite frequently and that is why there is not checks.
95  *
96  * Return: the sum of the energy consumed by the CPUs of the domain assuming
97  * a capacity state satisfying the max utilization of the domain.
98  */
99 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
100 				unsigned long max_util, unsigned long sum_util)
101 {
102 	unsigned long freq, scale_cpu;
103 	struct em_perf_state *ps;
104 	int i, cpu;
105 
106 	/*
107 	 * In order to predict the performance state, map the utilization of
108 	 * the most utilized CPU of the performance domain to a requested
109 	 * frequency, like schedutil.
110 	 */
111 	cpu = cpumask_first(to_cpumask(pd->cpus));
112 	scale_cpu = arch_scale_cpu_capacity(cpu);
113 	ps = &pd->table[pd->nr_perf_states - 1];
114 	freq = map_util_freq(max_util, ps->frequency, scale_cpu);
115 
116 	/*
117 	 * Find the lowest performance state of the Energy Model above the
118 	 * requested frequency.
119 	 */
120 	for (i = 0; i < pd->nr_perf_states; i++) {
121 		ps = &pd->table[i];
122 		if (ps->frequency >= freq)
123 			break;
124 	}
125 
126 	/*
127 	 * The capacity of a CPU in the domain at the performance state (ps)
128 	 * can be computed as:
129 	 *
130 	 *             ps->freq * scale_cpu
131 	 *   ps->cap = --------------------                          (1)
132 	 *                 cpu_max_freq
133 	 *
134 	 * So, ignoring the costs of idle states (which are not available in
135 	 * the EM), the energy consumed by this CPU at that performance state
136 	 * is estimated as:
137 	 *
138 	 *             ps->power * cpu_util
139 	 *   cpu_nrg = --------------------                          (2)
140 	 *                   ps->cap
141 	 *
142 	 * since 'cpu_util / ps->cap' represents its percentage of busy time.
143 	 *
144 	 *   NOTE: Although the result of this computation actually is in
145 	 *         units of power, it can be manipulated as an energy value
146 	 *         over a scheduling period, since it is assumed to be
147 	 *         constant during that interval.
148 	 *
149 	 * By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product
150 	 * of two terms:
151 	 *
152 	 *             ps->power * cpu_max_freq   cpu_util
153 	 *   cpu_nrg = ------------------------ * ---------          (3)
154 	 *                    ps->freq            scale_cpu
155 	 *
156 	 * The first term is static, and is stored in the em_perf_state struct
157 	 * as 'ps->cost'.
158 	 *
159 	 * Since all CPUs of the domain have the same micro-architecture, they
160 	 * share the same 'ps->cost', and the same CPU capacity. Hence, the
161 	 * total energy of the domain (which is the simple sum of the energy of
162 	 * all of its CPUs) can be factorized as:
163 	 *
164 	 *            ps->cost * \Sum cpu_util
165 	 *   pd_nrg = ------------------------                       (4)
166 	 *                  scale_cpu
167 	 */
168 	return ps->cost * sum_util / scale_cpu;
169 }
170 
171 /**
172  * em_pd_nr_perf_states() - Get the number of performance states of a perf.
173  *				domain
174  * @pd		: performance domain for which this must be done
175  *
176  * Return: the number of performance states in the performance domain table
177  */
178 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
179 {
180 	return pd->nr_perf_states;
181 }
182 
183 #else
184 struct em_data_callback {};
185 #define EM_DATA_CB(_active_power_cb) { }
186 
187 static inline
188 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
189 				struct em_data_callback *cb, cpumask_t *span)
190 {
191 	return -EINVAL;
192 }
193 static inline void em_dev_unregister_perf_domain(struct device *dev)
194 {
195 }
196 static inline struct em_perf_domain *em_cpu_get(int cpu)
197 {
198 	return NULL;
199 }
200 static inline struct em_perf_domain *em_pd_get(struct device *dev)
201 {
202 	return NULL;
203 }
204 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
205 			unsigned long max_util, unsigned long sum_util)
206 {
207 	return 0;
208 }
209 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
210 {
211 	return 0;
212 }
213 #endif
214 
215 #endif
216