xref: /openbmc/linux/include/linux/energy_model.h (revision ae6ccaa6)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_ENERGY_MODEL_H
3 #define _LINUX_ENERGY_MODEL_H
4 #include <linux/cpumask.h>
5 #include <linux/device.h>
6 #include <linux/jump_label.h>
7 #include <linux/kobject.h>
8 #include <linux/rcupdate.h>
9 #include <linux/sched/cpufreq.h>
10 #include <linux/sched/topology.h>
11 #include <linux/types.h>
12 
13 /**
14  * struct em_perf_state - Performance state of a performance domain
15  * @frequency:	The frequency in KHz, for consistency with CPUFreq
16  * @power:	The power consumed at this level (by 1 CPU or by a registered
17  *		device). It can be a total power: static and dynamic.
18  * @cost:	The cost coefficient associated with this level, used during
19  *		energy calculation. Equal to: power * max_frequency / frequency
20  * @flags:	see "em_perf_state flags" description below.
21  */
22 struct em_perf_state {
23 	unsigned long frequency;
24 	unsigned long power;
25 	unsigned long cost;
26 	unsigned long flags;
27 };
28 
29 /*
30  * em_perf_state flags:
31  *
32  * EM_PERF_STATE_INEFFICIENT: The performance state is inefficient. There is
33  * in this em_perf_domain, another performance state with a higher frequency
34  * but a lower or equal power cost. Such inefficient states are ignored when
35  * using em_pd_get_efficient_*() functions.
36  */
37 #define EM_PERF_STATE_INEFFICIENT BIT(0)
38 
39 /**
40  * struct em_perf_domain - Performance domain
41  * @table:		List of performance states, in ascending order
42  * @nr_perf_states:	Number of performance states
43  * @flags:		See "em_perf_domain flags"
44  * @cpus:		Cpumask covering the CPUs of the domain. It's here
45  *			for performance reasons to avoid potential cache
46  *			misses during energy calculations in the scheduler
47  *			and simplifies allocating/freeing that memory region.
48  *
49  * In case of CPU device, a "performance domain" represents a group of CPUs
50  * whose performance is scaled together. All CPUs of a performance domain
51  * must have the same micro-architecture. Performance domains often have
52  * a 1-to-1 mapping with CPUFreq policies. In case of other devices the @cpus
53  * field is unused.
54  */
55 struct em_perf_domain {
56 	struct em_perf_state *table;
57 	int nr_perf_states;
58 	unsigned long flags;
59 	unsigned long cpus[];
60 };
61 
62 /*
63  *  em_perf_domain flags:
64  *
65  *  EM_PERF_DOMAIN_MICROWATTS: The power values are in micro-Watts or some
66  *  other scale.
67  *
68  *  EM_PERF_DOMAIN_SKIP_INEFFICIENCIES: Skip inefficient states when estimating
69  *  energy consumption.
70  *
71  *  EM_PERF_DOMAIN_ARTIFICIAL: The power values are artificial and might be
72  *  created by platform missing real power information
73  */
74 #define EM_PERF_DOMAIN_MICROWATTS BIT(0)
75 #define EM_PERF_DOMAIN_SKIP_INEFFICIENCIES BIT(1)
76 #define EM_PERF_DOMAIN_ARTIFICIAL BIT(2)
77 
78 #define em_span_cpus(em) (to_cpumask((em)->cpus))
79 #define em_is_artificial(em) ((em)->flags & EM_PERF_DOMAIN_ARTIFICIAL)
80 
81 #ifdef CONFIG_ENERGY_MODEL
82 /*
83  * The max power value in micro-Watts. The limit of 64 Watts is set as
84  * a safety net to not overflow multiplications on 32bit platforms. The
85  * 32bit value limit for total Perf Domain power implies a limit of
86  * maximum CPUs in such domain to 64.
87  */
88 #define EM_MAX_POWER (64000000) /* 64 Watts */
89 
90 /*
91  * To avoid possible energy estimation overflow on 32bit machines add
92  * limits to number of CPUs in the Perf. Domain.
93  * We are safe on 64bit machine, thus some big number.
94  */
95 #ifdef CONFIG_64BIT
96 #define EM_MAX_NUM_CPUS 4096
97 #else
98 #define EM_MAX_NUM_CPUS 16
99 #endif
100 
101 /*
102  * To avoid an overflow on 32bit machines while calculating the energy
103  * use a different order in the operation. First divide by the 'cpu_scale'
104  * which would reduce big value stored in the 'cost' field, then multiply by
105  * the 'sum_util'. This would allow to handle existing platforms, which have
106  * e.g. power ~1.3 Watt at max freq, so the 'cost' value > 1mln micro-Watts.
107  * In such scenario, where there are 4 CPUs in the Perf. Domain the 'sum_util'
108  * could be 4096, then multiplication: 'cost' * 'sum_util'  would overflow.
109  * This reordering of operations has some limitations, we lose small
110  * precision in the estimation (comparing to 64bit platform w/o reordering).
111  *
112  * We are safe on 64bit machine.
113  */
114 #ifdef CONFIG_64BIT
115 #define em_estimate_energy(cost, sum_util, scale_cpu) \
116 	(((cost) * (sum_util)) / (scale_cpu))
117 #else
118 #define em_estimate_energy(cost, sum_util, scale_cpu) \
119 	(((cost) / (scale_cpu)) * (sum_util))
120 #endif
121 
122 struct em_data_callback {
123 	/**
124 	 * active_power() - Provide power at the next performance state of
125 	 *		a device
126 	 * @dev		: Device for which we do this operation (can be a CPU)
127 	 * @power	: Active power at the performance state
128 	 *		(modified)
129 	 * @freq	: Frequency at the performance state in kHz
130 	 *		(modified)
131 	 *
132 	 * active_power() must find the lowest performance state of 'dev' above
133 	 * 'freq' and update 'power' and 'freq' to the matching active power
134 	 * and frequency.
135 	 *
136 	 * In case of CPUs, the power is the one of a single CPU in the domain,
137 	 * expressed in micro-Watts or an abstract scale. It is expected to
138 	 * fit in the [0, EM_MAX_POWER] range.
139 	 *
140 	 * Return 0 on success.
141 	 */
142 	int (*active_power)(struct device *dev, unsigned long *power,
143 			    unsigned long *freq);
144 
145 	/**
146 	 * get_cost() - Provide the cost at the given performance state of
147 	 *		a device
148 	 * @dev		: Device for which we do this operation (can be a CPU)
149 	 * @freq	: Frequency at the performance state in kHz
150 	 * @cost	: The cost value for the performance state
151 	 *		(modified)
152 	 *
153 	 * In case of CPUs, the cost is the one of a single CPU in the domain.
154 	 * It is expected to fit in the [0, EM_MAX_POWER] range due to internal
155 	 * usage in EAS calculation.
156 	 *
157 	 * Return 0 on success, or appropriate error value in case of failure.
158 	 */
159 	int (*get_cost)(struct device *dev, unsigned long freq,
160 			unsigned long *cost);
161 };
162 #define EM_SET_ACTIVE_POWER_CB(em_cb, cb) ((em_cb).active_power = cb)
163 #define EM_ADV_DATA_CB(_active_power_cb, _cost_cb)	\
164 	{ .active_power = _active_power_cb,		\
165 	  .get_cost = _cost_cb }
166 #define EM_DATA_CB(_active_power_cb)			\
167 		EM_ADV_DATA_CB(_active_power_cb, NULL)
168 
169 struct em_perf_domain *em_cpu_get(int cpu);
170 struct em_perf_domain *em_pd_get(struct device *dev);
171 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
172 				struct em_data_callback *cb, cpumask_t *span,
173 				bool microwatts);
174 void em_dev_unregister_perf_domain(struct device *dev);
175 
176 /**
177  * em_pd_get_efficient_state() - Get an efficient performance state from the EM
178  * @pd   : Performance domain for which we want an efficient frequency
179  * @freq : Frequency to map with the EM
180  *
181  * It is called from the scheduler code quite frequently and as a consequence
182  * doesn't implement any check.
183  *
184  * Return: An efficient performance state, high enough to meet @freq
185  * requirement.
186  */
187 static inline
em_pd_get_efficient_state(struct em_perf_domain * pd,unsigned long freq)188 struct em_perf_state *em_pd_get_efficient_state(struct em_perf_domain *pd,
189 						unsigned long freq)
190 {
191 	struct em_perf_state *ps;
192 	int i;
193 
194 	for (i = 0; i < pd->nr_perf_states; i++) {
195 		ps = &pd->table[i];
196 		if (ps->frequency >= freq) {
197 			if (pd->flags & EM_PERF_DOMAIN_SKIP_INEFFICIENCIES &&
198 			    ps->flags & EM_PERF_STATE_INEFFICIENT)
199 				continue;
200 			break;
201 		}
202 	}
203 
204 	return ps;
205 }
206 
207 /**
208  * em_cpu_energy() - Estimates the energy consumed by the CPUs of a
209  *		performance domain
210  * @pd		: performance domain for which energy has to be estimated
211  * @max_util	: highest utilization among CPUs of the domain
212  * @sum_util	: sum of the utilization of all CPUs in the domain
213  * @allowed_cpu_cap	: maximum allowed CPU capacity for the @pd, which
214  *			  might reflect reduced frequency (due to thermal)
215  *
216  * This function must be used only for CPU devices. There is no validation,
217  * i.e. if the EM is a CPU type and has cpumask allocated. It is called from
218  * the scheduler code quite frequently and that is why there is not checks.
219  *
220  * Return: the sum of the energy consumed by the CPUs of the domain assuming
221  * a capacity state satisfying the max utilization of the domain.
222  */
em_cpu_energy(struct em_perf_domain * pd,unsigned long max_util,unsigned long sum_util,unsigned long allowed_cpu_cap)223 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
224 				unsigned long max_util, unsigned long sum_util,
225 				unsigned long allowed_cpu_cap)
226 {
227 	unsigned long freq, scale_cpu;
228 	struct em_perf_state *ps;
229 	int cpu;
230 
231 	if (!sum_util)
232 		return 0;
233 
234 	/*
235 	 * In order to predict the performance state, map the utilization of
236 	 * the most utilized CPU of the performance domain to a requested
237 	 * frequency, like schedutil. Take also into account that the real
238 	 * frequency might be set lower (due to thermal capping). Thus, clamp
239 	 * max utilization to the allowed CPU capacity before calculating
240 	 * effective frequency.
241 	 */
242 	cpu = cpumask_first(to_cpumask(pd->cpus));
243 	scale_cpu = arch_scale_cpu_capacity(cpu);
244 	ps = &pd->table[pd->nr_perf_states - 1];
245 
246 	max_util = map_util_perf(max_util);
247 	max_util = min(max_util, allowed_cpu_cap);
248 	freq = map_util_freq(max_util, ps->frequency, scale_cpu);
249 
250 	/*
251 	 * Find the lowest performance state of the Energy Model above the
252 	 * requested frequency.
253 	 */
254 	ps = em_pd_get_efficient_state(pd, freq);
255 
256 	/*
257 	 * The capacity of a CPU in the domain at the performance state (ps)
258 	 * can be computed as:
259 	 *
260 	 *             ps->freq * scale_cpu
261 	 *   ps->cap = --------------------                          (1)
262 	 *                 cpu_max_freq
263 	 *
264 	 * So, ignoring the costs of idle states (which are not available in
265 	 * the EM), the energy consumed by this CPU at that performance state
266 	 * is estimated as:
267 	 *
268 	 *             ps->power * cpu_util
269 	 *   cpu_nrg = --------------------                          (2)
270 	 *                   ps->cap
271 	 *
272 	 * since 'cpu_util / ps->cap' represents its percentage of busy time.
273 	 *
274 	 *   NOTE: Although the result of this computation actually is in
275 	 *         units of power, it can be manipulated as an energy value
276 	 *         over a scheduling period, since it is assumed to be
277 	 *         constant during that interval.
278 	 *
279 	 * By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product
280 	 * of two terms:
281 	 *
282 	 *             ps->power * cpu_max_freq   cpu_util
283 	 *   cpu_nrg = ------------------------ * ---------          (3)
284 	 *                    ps->freq            scale_cpu
285 	 *
286 	 * The first term is static, and is stored in the em_perf_state struct
287 	 * as 'ps->cost'.
288 	 *
289 	 * Since all CPUs of the domain have the same micro-architecture, they
290 	 * share the same 'ps->cost', and the same CPU capacity. Hence, the
291 	 * total energy of the domain (which is the simple sum of the energy of
292 	 * all of its CPUs) can be factorized as:
293 	 *
294 	 *            ps->cost * \Sum cpu_util
295 	 *   pd_nrg = ------------------------                       (4)
296 	 *                  scale_cpu
297 	 */
298 	return em_estimate_energy(ps->cost, sum_util, scale_cpu);
299 }
300 
301 /**
302  * em_pd_nr_perf_states() - Get the number of performance states of a perf.
303  *				domain
304  * @pd		: performance domain for which this must be done
305  *
306  * Return: the number of performance states in the performance domain table
307  */
em_pd_nr_perf_states(struct em_perf_domain * pd)308 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
309 {
310 	return pd->nr_perf_states;
311 }
312 
313 #else
314 struct em_data_callback {};
315 #define EM_ADV_DATA_CB(_active_power_cb, _cost_cb) { }
316 #define EM_DATA_CB(_active_power_cb) { }
317 #define EM_SET_ACTIVE_POWER_CB(em_cb, cb) do { } while (0)
318 
319 static inline
em_dev_register_perf_domain(struct device * dev,unsigned int nr_states,struct em_data_callback * cb,cpumask_t * span,bool microwatts)320 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
321 				struct em_data_callback *cb, cpumask_t *span,
322 				bool microwatts)
323 {
324 	return -EINVAL;
325 }
em_dev_unregister_perf_domain(struct device * dev)326 static inline void em_dev_unregister_perf_domain(struct device *dev)
327 {
328 }
em_cpu_get(int cpu)329 static inline struct em_perf_domain *em_cpu_get(int cpu)
330 {
331 	return NULL;
332 }
em_pd_get(struct device * dev)333 static inline struct em_perf_domain *em_pd_get(struct device *dev)
334 {
335 	return NULL;
336 }
em_cpu_energy(struct em_perf_domain * pd,unsigned long max_util,unsigned long sum_util,unsigned long allowed_cpu_cap)337 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
338 			unsigned long max_util, unsigned long sum_util,
339 			unsigned long allowed_cpu_cap)
340 {
341 	return 0;
342 }
em_pd_nr_perf_states(struct em_perf_domain * pd)343 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
344 {
345 	return 0;
346 }
347 #endif
348 
349 #endif
350