xref: /openbmc/linux/fs/xfs/xfs_dquot.c (revision 022dacdd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2003 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_inode.h"
16 #include "xfs_bmap.h"
17 #include "xfs_quota.h"
18 #include "xfs_trans.h"
19 #include "xfs_buf_item.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans_priv.h"
22 #include "xfs_qm.h"
23 #include "xfs_trace.h"
24 #include "xfs_log.h"
25 #include "xfs_bmap_btree.h"
26 
27 /*
28  * Lock order:
29  *
30  * ip->i_lock
31  *   qi->qi_tree_lock
32  *     dquot->q_qlock (xfs_dqlock() and friends)
33  *       dquot->q_flush (xfs_dqflock() and friends)
34  *       qi->qi_lru_lock
35  *
36  * If two dquots need to be locked the order is user before group/project,
37  * otherwise by the lowest id first, see xfs_dqlock2.
38  */
39 
40 struct kmem_zone		*xfs_qm_dqtrxzone;
41 static struct kmem_zone		*xfs_qm_dqzone;
42 
43 static struct lock_class_key xfs_dquot_group_class;
44 static struct lock_class_key xfs_dquot_project_class;
45 
46 /*
47  * This is called to free all the memory associated with a dquot
48  */
49 void
50 xfs_qm_dqdestroy(
51 	struct xfs_dquot	*dqp)
52 {
53 	ASSERT(list_empty(&dqp->q_lru));
54 
55 	kmem_free(dqp->q_logitem.qli_item.li_lv_shadow);
56 	mutex_destroy(&dqp->q_qlock);
57 
58 	XFS_STATS_DEC(dqp->q_mount, xs_qm_dquot);
59 	kmem_cache_free(xfs_qm_dqzone, dqp);
60 }
61 
62 /*
63  * If default limits are in force, push them into the dquot now.
64  * We overwrite the dquot limits only if they are zero and this
65  * is not the root dquot.
66  */
67 void
68 xfs_qm_adjust_dqlimits(
69 	struct xfs_mount	*mp,
70 	struct xfs_dquot	*dq)
71 {
72 	struct xfs_quotainfo	*q = mp->m_quotainfo;
73 	struct xfs_disk_dquot	*d = &dq->q_core;
74 	struct xfs_def_quota	*defq;
75 	int			prealloc = 0;
76 
77 	ASSERT(d->d_id);
78 	defq = xfs_get_defquota(dq, q);
79 
80 	if (defq->bsoftlimit && !d->d_blk_softlimit) {
81 		d->d_blk_softlimit = cpu_to_be64(defq->bsoftlimit);
82 		prealloc = 1;
83 	}
84 	if (defq->bhardlimit && !d->d_blk_hardlimit) {
85 		d->d_blk_hardlimit = cpu_to_be64(defq->bhardlimit);
86 		prealloc = 1;
87 	}
88 	if (defq->isoftlimit && !d->d_ino_softlimit)
89 		d->d_ino_softlimit = cpu_to_be64(defq->isoftlimit);
90 	if (defq->ihardlimit && !d->d_ino_hardlimit)
91 		d->d_ino_hardlimit = cpu_to_be64(defq->ihardlimit);
92 	if (defq->rtbsoftlimit && !d->d_rtb_softlimit)
93 		d->d_rtb_softlimit = cpu_to_be64(defq->rtbsoftlimit);
94 	if (defq->rtbhardlimit && !d->d_rtb_hardlimit)
95 		d->d_rtb_hardlimit = cpu_to_be64(defq->rtbhardlimit);
96 
97 	if (prealloc)
98 		xfs_dquot_set_prealloc_limits(dq);
99 }
100 
101 /*
102  * Check the limits and timers of a dquot and start or reset timers
103  * if necessary.
104  * This gets called even when quota enforcement is OFF, which makes our
105  * life a little less complicated. (We just don't reject any quota
106  * reservations in that case, when enforcement is off).
107  * We also return 0 as the values of the timers in Q_GETQUOTA calls, when
108  * enforcement's off.
109  * In contrast, warnings are a little different in that they don't
110  * 'automatically' get started when limits get exceeded.  They do
111  * get reset to zero, however, when we find the count to be under
112  * the soft limit (they are only ever set non-zero via userspace).
113  */
114 void
115 xfs_qm_adjust_dqtimers(
116 	struct xfs_mount	*mp,
117 	struct xfs_disk_dquot	*d)
118 {
119 	ASSERT(d->d_id);
120 
121 #ifdef DEBUG
122 	if (d->d_blk_hardlimit)
123 		ASSERT(be64_to_cpu(d->d_blk_softlimit) <=
124 		       be64_to_cpu(d->d_blk_hardlimit));
125 	if (d->d_ino_hardlimit)
126 		ASSERT(be64_to_cpu(d->d_ino_softlimit) <=
127 		       be64_to_cpu(d->d_ino_hardlimit));
128 	if (d->d_rtb_hardlimit)
129 		ASSERT(be64_to_cpu(d->d_rtb_softlimit) <=
130 		       be64_to_cpu(d->d_rtb_hardlimit));
131 #endif
132 
133 	if (!d->d_btimer) {
134 		if ((d->d_blk_softlimit &&
135 		     (be64_to_cpu(d->d_bcount) >
136 		      be64_to_cpu(d->d_blk_softlimit))) ||
137 		    (d->d_blk_hardlimit &&
138 		     (be64_to_cpu(d->d_bcount) >
139 		      be64_to_cpu(d->d_blk_hardlimit)))) {
140 			d->d_btimer = cpu_to_be32(ktime_get_real_seconds() +
141 					mp->m_quotainfo->qi_btimelimit);
142 		} else {
143 			d->d_bwarns = 0;
144 		}
145 	} else {
146 		if ((!d->d_blk_softlimit ||
147 		     (be64_to_cpu(d->d_bcount) <=
148 		      be64_to_cpu(d->d_blk_softlimit))) &&
149 		    (!d->d_blk_hardlimit ||
150 		    (be64_to_cpu(d->d_bcount) <=
151 		     be64_to_cpu(d->d_blk_hardlimit)))) {
152 			d->d_btimer = 0;
153 		}
154 	}
155 
156 	if (!d->d_itimer) {
157 		if ((d->d_ino_softlimit &&
158 		     (be64_to_cpu(d->d_icount) >
159 		      be64_to_cpu(d->d_ino_softlimit))) ||
160 		    (d->d_ino_hardlimit &&
161 		     (be64_to_cpu(d->d_icount) >
162 		      be64_to_cpu(d->d_ino_hardlimit)))) {
163 			d->d_itimer = cpu_to_be32(ktime_get_real_seconds() +
164 					mp->m_quotainfo->qi_itimelimit);
165 		} else {
166 			d->d_iwarns = 0;
167 		}
168 	} else {
169 		if ((!d->d_ino_softlimit ||
170 		     (be64_to_cpu(d->d_icount) <=
171 		      be64_to_cpu(d->d_ino_softlimit)))  &&
172 		    (!d->d_ino_hardlimit ||
173 		     (be64_to_cpu(d->d_icount) <=
174 		      be64_to_cpu(d->d_ino_hardlimit)))) {
175 			d->d_itimer = 0;
176 		}
177 	}
178 
179 	if (!d->d_rtbtimer) {
180 		if ((d->d_rtb_softlimit &&
181 		     (be64_to_cpu(d->d_rtbcount) >
182 		      be64_to_cpu(d->d_rtb_softlimit))) ||
183 		    (d->d_rtb_hardlimit &&
184 		     (be64_to_cpu(d->d_rtbcount) >
185 		      be64_to_cpu(d->d_rtb_hardlimit)))) {
186 			d->d_rtbtimer = cpu_to_be32(ktime_get_real_seconds() +
187 					mp->m_quotainfo->qi_rtbtimelimit);
188 		} else {
189 			d->d_rtbwarns = 0;
190 		}
191 	} else {
192 		if ((!d->d_rtb_softlimit ||
193 		     (be64_to_cpu(d->d_rtbcount) <=
194 		      be64_to_cpu(d->d_rtb_softlimit))) &&
195 		    (!d->d_rtb_hardlimit ||
196 		     (be64_to_cpu(d->d_rtbcount) <=
197 		      be64_to_cpu(d->d_rtb_hardlimit)))) {
198 			d->d_rtbtimer = 0;
199 		}
200 	}
201 }
202 
203 /*
204  * initialize a buffer full of dquots and log the whole thing
205  */
206 STATIC void
207 xfs_qm_init_dquot_blk(
208 	xfs_trans_t	*tp,
209 	xfs_mount_t	*mp,
210 	xfs_dqid_t	id,
211 	uint		type,
212 	xfs_buf_t	*bp)
213 {
214 	struct xfs_quotainfo	*q = mp->m_quotainfo;
215 	xfs_dqblk_t	*d;
216 	xfs_dqid_t	curid;
217 	int		i;
218 
219 	ASSERT(tp);
220 	ASSERT(xfs_buf_islocked(bp));
221 
222 	d = bp->b_addr;
223 
224 	/*
225 	 * ID of the first dquot in the block - id's are zero based.
226 	 */
227 	curid = id - (id % q->qi_dqperchunk);
228 	memset(d, 0, BBTOB(q->qi_dqchunklen));
229 	for (i = 0; i < q->qi_dqperchunk; i++, d++, curid++) {
230 		d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
231 		d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
232 		d->dd_diskdq.d_id = cpu_to_be32(curid);
233 		d->dd_diskdq.d_flags = type;
234 		if (xfs_sb_version_hascrc(&mp->m_sb)) {
235 			uuid_copy(&d->dd_uuid, &mp->m_sb.sb_meta_uuid);
236 			xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk),
237 					 XFS_DQUOT_CRC_OFF);
238 		}
239 	}
240 
241 	xfs_trans_dquot_buf(tp, bp,
242 			    (type & XFS_DQ_USER ? XFS_BLF_UDQUOT_BUF :
243 			    ((type & XFS_DQ_PROJ) ? XFS_BLF_PDQUOT_BUF :
244 			     XFS_BLF_GDQUOT_BUF)));
245 	xfs_trans_log_buf(tp, bp, 0, BBTOB(q->qi_dqchunklen) - 1);
246 }
247 
248 /*
249  * Initialize the dynamic speculative preallocation thresholds. The lo/hi
250  * watermarks correspond to the soft and hard limits by default. If a soft limit
251  * is not specified, we use 95% of the hard limit.
252  */
253 void
254 xfs_dquot_set_prealloc_limits(struct xfs_dquot *dqp)
255 {
256 	uint64_t space;
257 
258 	dqp->q_prealloc_hi_wmark = be64_to_cpu(dqp->q_core.d_blk_hardlimit);
259 	dqp->q_prealloc_lo_wmark = be64_to_cpu(dqp->q_core.d_blk_softlimit);
260 	if (!dqp->q_prealloc_lo_wmark) {
261 		dqp->q_prealloc_lo_wmark = dqp->q_prealloc_hi_wmark;
262 		do_div(dqp->q_prealloc_lo_wmark, 100);
263 		dqp->q_prealloc_lo_wmark *= 95;
264 	}
265 
266 	space = dqp->q_prealloc_hi_wmark;
267 
268 	do_div(space, 100);
269 	dqp->q_low_space[XFS_QLOWSP_1_PCNT] = space;
270 	dqp->q_low_space[XFS_QLOWSP_3_PCNT] = space * 3;
271 	dqp->q_low_space[XFS_QLOWSP_5_PCNT] = space * 5;
272 }
273 
274 /*
275  * Ensure that the given in-core dquot has a buffer on disk backing it, and
276  * return the buffer locked and held. This is called when the bmapi finds a
277  * hole.
278  */
279 STATIC int
280 xfs_dquot_disk_alloc(
281 	struct xfs_trans	**tpp,
282 	struct xfs_dquot	*dqp,
283 	struct xfs_buf		**bpp)
284 {
285 	struct xfs_bmbt_irec	map;
286 	struct xfs_trans	*tp = *tpp;
287 	struct xfs_mount	*mp = tp->t_mountp;
288 	struct xfs_buf		*bp;
289 	struct xfs_inode	*quotip = xfs_quota_inode(mp, dqp->dq_flags);
290 	int			nmaps = 1;
291 	int			error;
292 
293 	trace_xfs_dqalloc(dqp);
294 
295 	xfs_ilock(quotip, XFS_ILOCK_EXCL);
296 	if (!xfs_this_quota_on(dqp->q_mount, dqp->dq_flags)) {
297 		/*
298 		 * Return if this type of quotas is turned off while we didn't
299 		 * have an inode lock
300 		 */
301 		xfs_iunlock(quotip, XFS_ILOCK_EXCL);
302 		return -ESRCH;
303 	}
304 
305 	/* Create the block mapping. */
306 	xfs_trans_ijoin(tp, quotip, XFS_ILOCK_EXCL);
307 	error = xfs_bmapi_write(tp, quotip, dqp->q_fileoffset,
308 			XFS_DQUOT_CLUSTER_SIZE_FSB, XFS_BMAPI_METADATA, 0, &map,
309 			&nmaps);
310 	if (error)
311 		return error;
312 	ASSERT(map.br_blockcount == XFS_DQUOT_CLUSTER_SIZE_FSB);
313 	ASSERT(nmaps == 1);
314 	ASSERT((map.br_startblock != DELAYSTARTBLOCK) &&
315 	       (map.br_startblock != HOLESTARTBLOCK));
316 
317 	/*
318 	 * Keep track of the blkno to save a lookup later
319 	 */
320 	dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock);
321 
322 	/* now we can just get the buffer (there's nothing to read yet) */
323 	error = xfs_trans_get_buf(tp, mp->m_ddev_targp, dqp->q_blkno,
324 			mp->m_quotainfo->qi_dqchunklen, 0, &bp);
325 	if (error)
326 		return error;
327 	bp->b_ops = &xfs_dquot_buf_ops;
328 
329 	/*
330 	 * Make a chunk of dquots out of this buffer and log
331 	 * the entire thing.
332 	 */
333 	xfs_qm_init_dquot_blk(tp, mp, be32_to_cpu(dqp->q_core.d_id),
334 			      dqp->dq_flags & XFS_DQ_ALLTYPES, bp);
335 	xfs_buf_set_ref(bp, XFS_DQUOT_REF);
336 
337 	/*
338 	 * Hold the buffer and join it to the dfops so that we'll still own
339 	 * the buffer when we return to the caller.  The buffer disposal on
340 	 * error must be paid attention to very carefully, as it has been
341 	 * broken since commit efa092f3d4c6 "[XFS] Fixes a bug in the quota
342 	 * code when allocating a new dquot record" in 2005, and the later
343 	 * conversion to xfs_defer_ops in commit 310a75a3c6c747 failed to keep
344 	 * the buffer locked across the _defer_finish call.  We can now do
345 	 * this correctly with xfs_defer_bjoin.
346 	 *
347 	 * Above, we allocated a disk block for the dquot information and used
348 	 * get_buf to initialize the dquot. If the _defer_finish fails, the old
349 	 * transaction is gone but the new buffer is not joined or held to any
350 	 * transaction, so we must _buf_relse it.
351 	 *
352 	 * If everything succeeds, the caller of this function is returned a
353 	 * buffer that is locked and held to the transaction.  The caller
354 	 * is responsible for unlocking any buffer passed back, either
355 	 * manually or by committing the transaction.  On error, the buffer is
356 	 * released and not passed back.
357 	 */
358 	xfs_trans_bhold(tp, bp);
359 	error = xfs_defer_finish(tpp);
360 	if (error) {
361 		xfs_trans_bhold_release(*tpp, bp);
362 		xfs_trans_brelse(*tpp, bp);
363 		return error;
364 	}
365 	*bpp = bp;
366 	return 0;
367 }
368 
369 /*
370  * Read in the in-core dquot's on-disk metadata and return the buffer.
371  * Returns ENOENT to signal a hole.
372  */
373 STATIC int
374 xfs_dquot_disk_read(
375 	struct xfs_mount	*mp,
376 	struct xfs_dquot	*dqp,
377 	struct xfs_buf		**bpp)
378 {
379 	struct xfs_bmbt_irec	map;
380 	struct xfs_buf		*bp;
381 	struct xfs_inode	*quotip = xfs_quota_inode(mp, dqp->dq_flags);
382 	uint			lock_mode;
383 	int			nmaps = 1;
384 	int			error;
385 
386 	lock_mode = xfs_ilock_data_map_shared(quotip);
387 	if (!xfs_this_quota_on(mp, dqp->dq_flags)) {
388 		/*
389 		 * Return if this type of quotas is turned off while we
390 		 * didn't have the quota inode lock.
391 		 */
392 		xfs_iunlock(quotip, lock_mode);
393 		return -ESRCH;
394 	}
395 
396 	/*
397 	 * Find the block map; no allocations yet
398 	 */
399 	error = xfs_bmapi_read(quotip, dqp->q_fileoffset,
400 			XFS_DQUOT_CLUSTER_SIZE_FSB, &map, &nmaps, 0);
401 	xfs_iunlock(quotip, lock_mode);
402 	if (error)
403 		return error;
404 
405 	ASSERT(nmaps == 1);
406 	ASSERT(map.br_blockcount >= 1);
407 	ASSERT(map.br_startblock != DELAYSTARTBLOCK);
408 	if (map.br_startblock == HOLESTARTBLOCK)
409 		return -ENOENT;
410 
411 	trace_xfs_dqtobp_read(dqp);
412 
413 	/*
414 	 * store the blkno etc so that we don't have to do the
415 	 * mapping all the time
416 	 */
417 	dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock);
418 
419 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno,
420 			mp->m_quotainfo->qi_dqchunklen, 0, &bp,
421 			&xfs_dquot_buf_ops);
422 	if (error) {
423 		ASSERT(bp == NULL);
424 		return error;
425 	}
426 
427 	ASSERT(xfs_buf_islocked(bp));
428 	xfs_buf_set_ref(bp, XFS_DQUOT_REF);
429 	*bpp = bp;
430 
431 	return 0;
432 }
433 
434 /* Allocate and initialize everything we need for an incore dquot. */
435 STATIC struct xfs_dquot *
436 xfs_dquot_alloc(
437 	struct xfs_mount	*mp,
438 	xfs_dqid_t		id,
439 	uint			type)
440 {
441 	struct xfs_dquot	*dqp;
442 
443 	dqp = kmem_zone_zalloc(xfs_qm_dqzone, 0);
444 
445 	dqp->dq_flags = type;
446 	dqp->q_core.d_id = cpu_to_be32(id);
447 	dqp->q_mount = mp;
448 	INIT_LIST_HEAD(&dqp->q_lru);
449 	mutex_init(&dqp->q_qlock);
450 	init_waitqueue_head(&dqp->q_pinwait);
451 	dqp->q_fileoffset = (xfs_fileoff_t)id / mp->m_quotainfo->qi_dqperchunk;
452 	/*
453 	 * Offset of dquot in the (fixed sized) dquot chunk.
454 	 */
455 	dqp->q_bufoffset = (id % mp->m_quotainfo->qi_dqperchunk) *
456 			sizeof(xfs_dqblk_t);
457 
458 	/*
459 	 * Because we want to use a counting completion, complete
460 	 * the flush completion once to allow a single access to
461 	 * the flush completion without blocking.
462 	 */
463 	init_completion(&dqp->q_flush);
464 	complete(&dqp->q_flush);
465 
466 	/*
467 	 * Make sure group quotas have a different lock class than user
468 	 * quotas.
469 	 */
470 	switch (type) {
471 	case XFS_DQ_USER:
472 		/* uses the default lock class */
473 		break;
474 	case XFS_DQ_GROUP:
475 		lockdep_set_class(&dqp->q_qlock, &xfs_dquot_group_class);
476 		break;
477 	case XFS_DQ_PROJ:
478 		lockdep_set_class(&dqp->q_qlock, &xfs_dquot_project_class);
479 		break;
480 	default:
481 		ASSERT(0);
482 		break;
483 	}
484 
485 	xfs_qm_dquot_logitem_init(dqp);
486 
487 	XFS_STATS_INC(mp, xs_qm_dquot);
488 	return dqp;
489 }
490 
491 /* Copy the in-core quota fields in from the on-disk buffer. */
492 STATIC void
493 xfs_dquot_from_disk(
494 	struct xfs_dquot	*dqp,
495 	struct xfs_buf		*bp)
496 {
497 	struct xfs_disk_dquot	*ddqp = bp->b_addr + dqp->q_bufoffset;
498 
499 	/* copy everything from disk dquot to the incore dquot */
500 	memcpy(&dqp->q_core, ddqp, sizeof(struct xfs_disk_dquot));
501 
502 	/*
503 	 * Reservation counters are defined as reservation plus current usage
504 	 * to avoid having to add every time.
505 	 */
506 	dqp->q_res_bcount = be64_to_cpu(ddqp->d_bcount);
507 	dqp->q_res_icount = be64_to_cpu(ddqp->d_icount);
508 	dqp->q_res_rtbcount = be64_to_cpu(ddqp->d_rtbcount);
509 
510 	/* initialize the dquot speculative prealloc thresholds */
511 	xfs_dquot_set_prealloc_limits(dqp);
512 }
513 
514 /* Allocate and initialize the dquot buffer for this in-core dquot. */
515 static int
516 xfs_qm_dqread_alloc(
517 	struct xfs_mount	*mp,
518 	struct xfs_dquot	*dqp,
519 	struct xfs_buf		**bpp)
520 {
521 	struct xfs_trans	*tp;
522 	int			error;
523 
524 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_qm_dqalloc,
525 			XFS_QM_DQALLOC_SPACE_RES(mp), 0, 0, &tp);
526 	if (error)
527 		goto err;
528 
529 	error = xfs_dquot_disk_alloc(&tp, dqp, bpp);
530 	if (error)
531 		goto err_cancel;
532 
533 	error = xfs_trans_commit(tp);
534 	if (error) {
535 		/*
536 		 * Buffer was held to the transaction, so we have to unlock it
537 		 * manually here because we're not passing it back.
538 		 */
539 		xfs_buf_relse(*bpp);
540 		*bpp = NULL;
541 		goto err;
542 	}
543 	return 0;
544 
545 err_cancel:
546 	xfs_trans_cancel(tp);
547 err:
548 	return error;
549 }
550 
551 /*
552  * Read in the ondisk dquot using dqtobp() then copy it to an incore version,
553  * and release the buffer immediately.  If @can_alloc is true, fill any
554  * holes in the on-disk metadata.
555  */
556 static int
557 xfs_qm_dqread(
558 	struct xfs_mount	*mp,
559 	xfs_dqid_t		id,
560 	uint			type,
561 	bool			can_alloc,
562 	struct xfs_dquot	**dqpp)
563 {
564 	struct xfs_dquot	*dqp;
565 	struct xfs_buf		*bp;
566 	int			error;
567 
568 	dqp = xfs_dquot_alloc(mp, id, type);
569 	trace_xfs_dqread(dqp);
570 
571 	/* Try to read the buffer, allocating if necessary. */
572 	error = xfs_dquot_disk_read(mp, dqp, &bp);
573 	if (error == -ENOENT && can_alloc)
574 		error = xfs_qm_dqread_alloc(mp, dqp, &bp);
575 	if (error)
576 		goto err;
577 
578 	/*
579 	 * At this point we should have a clean locked buffer.  Copy the data
580 	 * to the incore dquot and release the buffer since the incore dquot
581 	 * has its own locking protocol so we needn't tie up the buffer any
582 	 * further.
583 	 */
584 	ASSERT(xfs_buf_islocked(bp));
585 	xfs_dquot_from_disk(dqp, bp);
586 
587 	xfs_buf_relse(bp);
588 	*dqpp = dqp;
589 	return error;
590 
591 err:
592 	trace_xfs_dqread_fail(dqp);
593 	xfs_qm_dqdestroy(dqp);
594 	*dqpp = NULL;
595 	return error;
596 }
597 
598 /*
599  * Advance to the next id in the current chunk, or if at the
600  * end of the chunk, skip ahead to first id in next allocated chunk
601  * using the SEEK_DATA interface.
602  */
603 static int
604 xfs_dq_get_next_id(
605 	struct xfs_mount	*mp,
606 	uint			type,
607 	xfs_dqid_t		*id)
608 {
609 	struct xfs_inode	*quotip = xfs_quota_inode(mp, type);
610 	xfs_dqid_t		next_id = *id + 1; /* simple advance */
611 	uint			lock_flags;
612 	struct xfs_bmbt_irec	got;
613 	struct xfs_iext_cursor	cur;
614 	xfs_fsblock_t		start;
615 	int			error = 0;
616 
617 	/* If we'd wrap past the max ID, stop */
618 	if (next_id < *id)
619 		return -ENOENT;
620 
621 	/* If new ID is within the current chunk, advancing it sufficed */
622 	if (next_id % mp->m_quotainfo->qi_dqperchunk) {
623 		*id = next_id;
624 		return 0;
625 	}
626 
627 	/* Nope, next_id is now past the current chunk, so find the next one */
628 	start = (xfs_fsblock_t)next_id / mp->m_quotainfo->qi_dqperchunk;
629 
630 	lock_flags = xfs_ilock_data_map_shared(quotip);
631 	if (!(quotip->i_df.if_flags & XFS_IFEXTENTS)) {
632 		error = xfs_iread_extents(NULL, quotip, XFS_DATA_FORK);
633 		if (error)
634 			return error;
635 	}
636 
637 	if (xfs_iext_lookup_extent(quotip, &quotip->i_df, start, &cur, &got)) {
638 		/* contiguous chunk, bump startoff for the id calculation */
639 		if (got.br_startoff < start)
640 			got.br_startoff = start;
641 		*id = got.br_startoff * mp->m_quotainfo->qi_dqperchunk;
642 	} else {
643 		error = -ENOENT;
644 	}
645 
646 	xfs_iunlock(quotip, lock_flags);
647 
648 	return error;
649 }
650 
651 /*
652  * Look up the dquot in the in-core cache.  If found, the dquot is returned
653  * locked and ready to go.
654  */
655 static struct xfs_dquot *
656 xfs_qm_dqget_cache_lookup(
657 	struct xfs_mount	*mp,
658 	struct xfs_quotainfo	*qi,
659 	struct radix_tree_root	*tree,
660 	xfs_dqid_t		id)
661 {
662 	struct xfs_dquot	*dqp;
663 
664 restart:
665 	mutex_lock(&qi->qi_tree_lock);
666 	dqp = radix_tree_lookup(tree, id);
667 	if (!dqp) {
668 		mutex_unlock(&qi->qi_tree_lock);
669 		XFS_STATS_INC(mp, xs_qm_dqcachemisses);
670 		return NULL;
671 	}
672 
673 	xfs_dqlock(dqp);
674 	if (dqp->dq_flags & XFS_DQ_FREEING) {
675 		xfs_dqunlock(dqp);
676 		mutex_unlock(&qi->qi_tree_lock);
677 		trace_xfs_dqget_freeing(dqp);
678 		delay(1);
679 		goto restart;
680 	}
681 
682 	dqp->q_nrefs++;
683 	mutex_unlock(&qi->qi_tree_lock);
684 
685 	trace_xfs_dqget_hit(dqp);
686 	XFS_STATS_INC(mp, xs_qm_dqcachehits);
687 	return dqp;
688 }
689 
690 /*
691  * Try to insert a new dquot into the in-core cache.  If an error occurs the
692  * caller should throw away the dquot and start over.  Otherwise, the dquot
693  * is returned locked (and held by the cache) as if there had been a cache
694  * hit.
695  */
696 static int
697 xfs_qm_dqget_cache_insert(
698 	struct xfs_mount	*mp,
699 	struct xfs_quotainfo	*qi,
700 	struct radix_tree_root	*tree,
701 	xfs_dqid_t		id,
702 	struct xfs_dquot	*dqp)
703 {
704 	int			error;
705 
706 	mutex_lock(&qi->qi_tree_lock);
707 	error = radix_tree_insert(tree, id, dqp);
708 	if (unlikely(error)) {
709 		/* Duplicate found!  Caller must try again. */
710 		WARN_ON(error != -EEXIST);
711 		mutex_unlock(&qi->qi_tree_lock);
712 		trace_xfs_dqget_dup(dqp);
713 		return error;
714 	}
715 
716 	/* Return a locked dquot to the caller, with a reference taken. */
717 	xfs_dqlock(dqp);
718 	dqp->q_nrefs = 1;
719 
720 	qi->qi_dquots++;
721 	mutex_unlock(&qi->qi_tree_lock);
722 
723 	return 0;
724 }
725 
726 /* Check our input parameters. */
727 static int
728 xfs_qm_dqget_checks(
729 	struct xfs_mount	*mp,
730 	uint			type)
731 {
732 	if (WARN_ON_ONCE(!XFS_IS_QUOTA_RUNNING(mp)))
733 		return -ESRCH;
734 
735 	switch (type) {
736 	case XFS_DQ_USER:
737 		if (!XFS_IS_UQUOTA_ON(mp))
738 			return -ESRCH;
739 		return 0;
740 	case XFS_DQ_GROUP:
741 		if (!XFS_IS_GQUOTA_ON(mp))
742 			return -ESRCH;
743 		return 0;
744 	case XFS_DQ_PROJ:
745 		if (!XFS_IS_PQUOTA_ON(mp))
746 			return -ESRCH;
747 		return 0;
748 	default:
749 		WARN_ON_ONCE(0);
750 		return -EINVAL;
751 	}
752 }
753 
754 /*
755  * Given the file system, id, and type (UDQUOT/GDQUOT), return a a locked
756  * dquot, doing an allocation (if requested) as needed.
757  */
758 int
759 xfs_qm_dqget(
760 	struct xfs_mount	*mp,
761 	xfs_dqid_t		id,
762 	uint			type,
763 	bool			can_alloc,
764 	struct xfs_dquot	**O_dqpp)
765 {
766 	struct xfs_quotainfo	*qi = mp->m_quotainfo;
767 	struct radix_tree_root	*tree = xfs_dquot_tree(qi, type);
768 	struct xfs_dquot	*dqp;
769 	int			error;
770 
771 	error = xfs_qm_dqget_checks(mp, type);
772 	if (error)
773 		return error;
774 
775 restart:
776 	dqp = xfs_qm_dqget_cache_lookup(mp, qi, tree, id);
777 	if (dqp) {
778 		*O_dqpp = dqp;
779 		return 0;
780 	}
781 
782 	error = xfs_qm_dqread(mp, id, type, can_alloc, &dqp);
783 	if (error)
784 		return error;
785 
786 	error = xfs_qm_dqget_cache_insert(mp, qi, tree, id, dqp);
787 	if (error) {
788 		/*
789 		 * Duplicate found. Just throw away the new dquot and start
790 		 * over.
791 		 */
792 		xfs_qm_dqdestroy(dqp);
793 		XFS_STATS_INC(mp, xs_qm_dquot_dups);
794 		goto restart;
795 	}
796 
797 	trace_xfs_dqget_miss(dqp);
798 	*O_dqpp = dqp;
799 	return 0;
800 }
801 
802 /*
803  * Given a dquot id and type, read and initialize a dquot from the on-disk
804  * metadata.  This function is only for use during quota initialization so
805  * it ignores the dquot cache assuming that the dquot shrinker isn't set up.
806  * The caller is responsible for _qm_dqdestroy'ing the returned dquot.
807  */
808 int
809 xfs_qm_dqget_uncached(
810 	struct xfs_mount	*mp,
811 	xfs_dqid_t		id,
812 	uint			type,
813 	struct xfs_dquot	**dqpp)
814 {
815 	int			error;
816 
817 	error = xfs_qm_dqget_checks(mp, type);
818 	if (error)
819 		return error;
820 
821 	return xfs_qm_dqread(mp, id, type, 0, dqpp);
822 }
823 
824 /* Return the quota id for a given inode and type. */
825 xfs_dqid_t
826 xfs_qm_id_for_quotatype(
827 	struct xfs_inode	*ip,
828 	uint			type)
829 {
830 	switch (type) {
831 	case XFS_DQ_USER:
832 		return i_uid_read(VFS_I(ip));
833 	case XFS_DQ_GROUP:
834 		return i_gid_read(VFS_I(ip));
835 	case XFS_DQ_PROJ:
836 		return ip->i_d.di_projid;
837 	}
838 	ASSERT(0);
839 	return 0;
840 }
841 
842 /*
843  * Return the dquot for a given inode and type.  If @can_alloc is true, then
844  * allocate blocks if needed.  The inode's ILOCK must be held and it must not
845  * have already had an inode attached.
846  */
847 int
848 xfs_qm_dqget_inode(
849 	struct xfs_inode	*ip,
850 	uint			type,
851 	bool			can_alloc,
852 	struct xfs_dquot	**O_dqpp)
853 {
854 	struct xfs_mount	*mp = ip->i_mount;
855 	struct xfs_quotainfo	*qi = mp->m_quotainfo;
856 	struct radix_tree_root	*tree = xfs_dquot_tree(qi, type);
857 	struct xfs_dquot	*dqp;
858 	xfs_dqid_t		id;
859 	int			error;
860 
861 	error = xfs_qm_dqget_checks(mp, type);
862 	if (error)
863 		return error;
864 
865 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
866 	ASSERT(xfs_inode_dquot(ip, type) == NULL);
867 
868 	id = xfs_qm_id_for_quotatype(ip, type);
869 
870 restart:
871 	dqp = xfs_qm_dqget_cache_lookup(mp, qi, tree, id);
872 	if (dqp) {
873 		*O_dqpp = dqp;
874 		return 0;
875 	}
876 
877 	/*
878 	 * Dquot cache miss. We don't want to keep the inode lock across
879 	 * a (potential) disk read. Also we don't want to deal with the lock
880 	 * ordering between quotainode and this inode. OTOH, dropping the inode
881 	 * lock here means dealing with a chown that can happen before
882 	 * we re-acquire the lock.
883 	 */
884 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
885 	error = xfs_qm_dqread(mp, id, type, can_alloc, &dqp);
886 	xfs_ilock(ip, XFS_ILOCK_EXCL);
887 	if (error)
888 		return error;
889 
890 	/*
891 	 * A dquot could be attached to this inode by now, since we had
892 	 * dropped the ilock.
893 	 */
894 	if (xfs_this_quota_on(mp, type)) {
895 		struct xfs_dquot	*dqp1;
896 
897 		dqp1 = xfs_inode_dquot(ip, type);
898 		if (dqp1) {
899 			xfs_qm_dqdestroy(dqp);
900 			dqp = dqp1;
901 			xfs_dqlock(dqp);
902 			goto dqret;
903 		}
904 	} else {
905 		/* inode stays locked on return */
906 		xfs_qm_dqdestroy(dqp);
907 		return -ESRCH;
908 	}
909 
910 	error = xfs_qm_dqget_cache_insert(mp, qi, tree, id, dqp);
911 	if (error) {
912 		/*
913 		 * Duplicate found. Just throw away the new dquot and start
914 		 * over.
915 		 */
916 		xfs_qm_dqdestroy(dqp);
917 		XFS_STATS_INC(mp, xs_qm_dquot_dups);
918 		goto restart;
919 	}
920 
921 dqret:
922 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
923 	trace_xfs_dqget_miss(dqp);
924 	*O_dqpp = dqp;
925 	return 0;
926 }
927 
928 /*
929  * Starting at @id and progressing upwards, look for an initialized incore
930  * dquot, lock it, and return it.
931  */
932 int
933 xfs_qm_dqget_next(
934 	struct xfs_mount	*mp,
935 	xfs_dqid_t		id,
936 	uint			type,
937 	struct xfs_dquot	**dqpp)
938 {
939 	struct xfs_dquot	*dqp;
940 	int			error = 0;
941 
942 	*dqpp = NULL;
943 	for (; !error; error = xfs_dq_get_next_id(mp, type, &id)) {
944 		error = xfs_qm_dqget(mp, id, type, false, &dqp);
945 		if (error == -ENOENT)
946 			continue;
947 		else if (error != 0)
948 			break;
949 
950 		if (!XFS_IS_DQUOT_UNINITIALIZED(dqp)) {
951 			*dqpp = dqp;
952 			return 0;
953 		}
954 
955 		xfs_qm_dqput(dqp);
956 	}
957 
958 	return error;
959 }
960 
961 /*
962  * Release a reference to the dquot (decrement ref-count) and unlock it.
963  *
964  * If there is a group quota attached to this dquot, carefully release that
965  * too without tripping over deadlocks'n'stuff.
966  */
967 void
968 xfs_qm_dqput(
969 	struct xfs_dquot	*dqp)
970 {
971 	ASSERT(dqp->q_nrefs > 0);
972 	ASSERT(XFS_DQ_IS_LOCKED(dqp));
973 
974 	trace_xfs_dqput(dqp);
975 
976 	if (--dqp->q_nrefs == 0) {
977 		struct xfs_quotainfo	*qi = dqp->q_mount->m_quotainfo;
978 		trace_xfs_dqput_free(dqp);
979 
980 		if (list_lru_add(&qi->qi_lru, &dqp->q_lru))
981 			XFS_STATS_INC(dqp->q_mount, xs_qm_dquot_unused);
982 	}
983 	xfs_dqunlock(dqp);
984 }
985 
986 /*
987  * Release a dquot. Flush it if dirty, then dqput() it.
988  * dquot must not be locked.
989  */
990 void
991 xfs_qm_dqrele(
992 	struct xfs_dquot	*dqp)
993 {
994 	if (!dqp)
995 		return;
996 
997 	trace_xfs_dqrele(dqp);
998 
999 	xfs_dqlock(dqp);
1000 	/*
1001 	 * We don't care to flush it if the dquot is dirty here.
1002 	 * That will create stutters that we want to avoid.
1003 	 * Instead we do a delayed write when we try to reclaim
1004 	 * a dirty dquot. Also xfs_sync will take part of the burden...
1005 	 */
1006 	xfs_qm_dqput(dqp);
1007 }
1008 
1009 /*
1010  * This is the dquot flushing I/O completion routine.  It is called
1011  * from interrupt level when the buffer containing the dquot is
1012  * flushed to disk.  It is responsible for removing the dquot logitem
1013  * from the AIL if it has not been re-logged, and unlocking the dquot's
1014  * flush lock. This behavior is very similar to that of inodes..
1015  */
1016 STATIC void
1017 xfs_qm_dqflush_done(
1018 	struct xfs_buf		*bp,
1019 	struct xfs_log_item	*lip)
1020 {
1021 	struct xfs_dq_logitem	*qip = (struct xfs_dq_logitem *)lip;
1022 	struct xfs_dquot	*dqp = qip->qli_dquot;
1023 	struct xfs_ail		*ailp = lip->li_ailp;
1024 
1025 	/*
1026 	 * We only want to pull the item from the AIL if its
1027 	 * location in the log has not changed since we started the flush.
1028 	 * Thus, we only bother if the dquot's lsn has
1029 	 * not changed. First we check the lsn outside the lock
1030 	 * since it's cheaper, and then we recheck while
1031 	 * holding the lock before removing the dquot from the AIL.
1032 	 */
1033 	if (test_bit(XFS_LI_IN_AIL, &lip->li_flags) &&
1034 	    ((lip->li_lsn == qip->qli_flush_lsn) ||
1035 	     test_bit(XFS_LI_FAILED, &lip->li_flags))) {
1036 
1037 		/* xfs_trans_ail_delete() drops the AIL lock. */
1038 		spin_lock(&ailp->ail_lock);
1039 		if (lip->li_lsn == qip->qli_flush_lsn) {
1040 			xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1041 		} else {
1042 			/*
1043 			 * Clear the failed state since we are about to drop the
1044 			 * flush lock
1045 			 */
1046 			xfs_clear_li_failed(lip);
1047 			spin_unlock(&ailp->ail_lock);
1048 		}
1049 	}
1050 
1051 	/*
1052 	 * Release the dq's flush lock since we're done with it.
1053 	 */
1054 	xfs_dqfunlock(dqp);
1055 }
1056 
1057 /*
1058  * Write a modified dquot to disk.
1059  * The dquot must be locked and the flush lock too taken by caller.
1060  * The flush lock will not be unlocked until the dquot reaches the disk,
1061  * but the dquot is free to be unlocked and modified by the caller
1062  * in the interim. Dquot is still locked on return. This behavior is
1063  * identical to that of inodes.
1064  */
1065 int
1066 xfs_qm_dqflush(
1067 	struct xfs_dquot	*dqp,
1068 	struct xfs_buf		**bpp)
1069 {
1070 	struct xfs_mount	*mp = dqp->q_mount;
1071 	struct xfs_buf		*bp;
1072 	struct xfs_dqblk	*dqb;
1073 	struct xfs_disk_dquot	*ddqp;
1074 	xfs_failaddr_t		fa;
1075 	int			error;
1076 
1077 	ASSERT(XFS_DQ_IS_LOCKED(dqp));
1078 	ASSERT(!completion_done(&dqp->q_flush));
1079 
1080 	trace_xfs_dqflush(dqp);
1081 
1082 	*bpp = NULL;
1083 
1084 	xfs_qm_dqunpin_wait(dqp);
1085 
1086 	/*
1087 	 * This may have been unpinned because the filesystem is shutting
1088 	 * down forcibly. If that's the case we must not write this dquot
1089 	 * to disk, because the log record didn't make it to disk.
1090 	 *
1091 	 * We also have to remove the log item from the AIL in this case,
1092 	 * as we wait for an emptry AIL as part of the unmount process.
1093 	 */
1094 	if (XFS_FORCED_SHUTDOWN(mp)) {
1095 		struct xfs_log_item	*lip = &dqp->q_logitem.qli_item;
1096 		dqp->dq_flags &= ~XFS_DQ_DIRTY;
1097 
1098 		xfs_trans_ail_remove(lip, SHUTDOWN_CORRUPT_INCORE);
1099 
1100 		error = -EIO;
1101 		goto out_unlock;
1102 	}
1103 
1104 	/*
1105 	 * Get the buffer containing the on-disk dquot
1106 	 */
1107 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno,
1108 				   mp->m_quotainfo->qi_dqchunklen, XBF_TRYLOCK,
1109 				   &bp, &xfs_dquot_buf_ops);
1110 	if (error)
1111 		goto out_unlock;
1112 
1113 	/*
1114 	 * Calculate the location of the dquot inside the buffer.
1115 	 */
1116 	dqb = bp->b_addr + dqp->q_bufoffset;
1117 	ddqp = &dqb->dd_diskdq;
1118 
1119 	/*
1120 	 * A simple sanity check in case we got a corrupted dquot.
1121 	 */
1122 	fa = xfs_dqblk_verify(mp, dqb, be32_to_cpu(ddqp->d_id), 0);
1123 	if (fa) {
1124 		xfs_alert(mp, "corrupt dquot ID 0x%x in memory at %pS",
1125 				be32_to_cpu(ddqp->d_id), fa);
1126 		xfs_buf_relse(bp);
1127 		xfs_dqfunlock(dqp);
1128 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1129 		return -EFSCORRUPTED;
1130 	}
1131 
1132 	/* This is the only portion of data that needs to persist */
1133 	memcpy(ddqp, &dqp->q_core, sizeof(struct xfs_disk_dquot));
1134 
1135 	/*
1136 	 * Clear the dirty field and remember the flush lsn for later use.
1137 	 */
1138 	dqp->dq_flags &= ~XFS_DQ_DIRTY;
1139 
1140 	xfs_trans_ail_copy_lsn(mp->m_ail, &dqp->q_logitem.qli_flush_lsn,
1141 					&dqp->q_logitem.qli_item.li_lsn);
1142 
1143 	/*
1144 	 * copy the lsn into the on-disk dquot now while we have the in memory
1145 	 * dquot here. This can't be done later in the write verifier as we
1146 	 * can't get access to the log item at that point in time.
1147 	 *
1148 	 * We also calculate the CRC here so that the on-disk dquot in the
1149 	 * buffer always has a valid CRC. This ensures there is no possibility
1150 	 * of a dquot without an up-to-date CRC getting to disk.
1151 	 */
1152 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
1153 		dqb->dd_lsn = cpu_to_be64(dqp->q_logitem.qli_item.li_lsn);
1154 		xfs_update_cksum((char *)dqb, sizeof(struct xfs_dqblk),
1155 				 XFS_DQUOT_CRC_OFF);
1156 	}
1157 
1158 	/*
1159 	 * Attach an iodone routine so that we can remove this dquot from the
1160 	 * AIL and release the flush lock once the dquot is synced to disk.
1161 	 */
1162 	xfs_buf_attach_iodone(bp, xfs_qm_dqflush_done,
1163 				  &dqp->q_logitem.qli_item);
1164 
1165 	/*
1166 	 * If the buffer is pinned then push on the log so we won't
1167 	 * get stuck waiting in the write for too long.
1168 	 */
1169 	if (xfs_buf_ispinned(bp)) {
1170 		trace_xfs_dqflush_force(dqp);
1171 		xfs_log_force(mp, 0);
1172 	}
1173 
1174 	trace_xfs_dqflush_done(dqp);
1175 	*bpp = bp;
1176 	return 0;
1177 
1178 out_unlock:
1179 	xfs_dqfunlock(dqp);
1180 	return error;
1181 }
1182 
1183 /*
1184  * Lock two xfs_dquot structures.
1185  *
1186  * To avoid deadlocks we always lock the quota structure with
1187  * the lowerd id first.
1188  */
1189 void
1190 xfs_dqlock2(
1191 	struct xfs_dquot	*d1,
1192 	struct xfs_dquot	*d2)
1193 {
1194 	if (d1 && d2) {
1195 		ASSERT(d1 != d2);
1196 		if (be32_to_cpu(d1->q_core.d_id) >
1197 		    be32_to_cpu(d2->q_core.d_id)) {
1198 			mutex_lock(&d2->q_qlock);
1199 			mutex_lock_nested(&d1->q_qlock, XFS_QLOCK_NESTED);
1200 		} else {
1201 			mutex_lock(&d1->q_qlock);
1202 			mutex_lock_nested(&d2->q_qlock, XFS_QLOCK_NESTED);
1203 		}
1204 	} else if (d1) {
1205 		mutex_lock(&d1->q_qlock);
1206 	} else if (d2) {
1207 		mutex_lock(&d2->q_qlock);
1208 	}
1209 }
1210 
1211 int __init
1212 xfs_qm_init(void)
1213 {
1214 	xfs_qm_dqzone = kmem_cache_create("xfs_dquot",
1215 					  sizeof(struct xfs_dquot),
1216 					  0, 0, NULL);
1217 	if (!xfs_qm_dqzone)
1218 		goto out;
1219 
1220 	xfs_qm_dqtrxzone = kmem_cache_create("xfs_dqtrx",
1221 					     sizeof(struct xfs_dquot_acct),
1222 					     0, 0, NULL);
1223 	if (!xfs_qm_dqtrxzone)
1224 		goto out_free_dqzone;
1225 
1226 	return 0;
1227 
1228 out_free_dqzone:
1229 	kmem_cache_destroy(xfs_qm_dqzone);
1230 out:
1231 	return -ENOMEM;
1232 }
1233 
1234 void
1235 xfs_qm_exit(void)
1236 {
1237 	kmem_cache_destroy(xfs_qm_dqtrxzone);
1238 	kmem_cache_destroy(xfs_qm_dqzone);
1239 }
1240 
1241 /*
1242  * Iterate every dquot of a particular type.  The caller must ensure that the
1243  * particular quota type is active.  iter_fn can return negative error codes,
1244  * or -ECANCELED to indicate that it wants to stop iterating.
1245  */
1246 int
1247 xfs_qm_dqiterate(
1248 	struct xfs_mount	*mp,
1249 	uint			dqtype,
1250 	xfs_qm_dqiterate_fn	iter_fn,
1251 	void			*priv)
1252 {
1253 	struct xfs_dquot	*dq;
1254 	xfs_dqid_t		id = 0;
1255 	int			error;
1256 
1257 	do {
1258 		error = xfs_qm_dqget_next(mp, id, dqtype, &dq);
1259 		if (error == -ENOENT)
1260 			return 0;
1261 		if (error)
1262 			return error;
1263 
1264 		error = iter_fn(dq, dqtype, priv);
1265 		id = be32_to_cpu(dq->q_core.d_id);
1266 		xfs_qm_dqput(dq);
1267 		id++;
1268 	} while (error == 0 && id != 0);
1269 
1270 	return error;
1271 }
1272