xref: /openbmc/linux/fs/xfs/libxfs/xfs_defer.c (revision fadbafc1)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_inode.h"
17 #include "xfs_inode_item.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_log.h"
21 #include "xfs_rmap.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap.h"
24 #include "xfs_alloc.h"
25 #include "xfs_buf.h"
26 #include "xfs_da_format.h"
27 #include "xfs_da_btree.h"
28 #include "xfs_attr.h"
29 
30 static struct kmem_cache	*xfs_defer_pending_cache;
31 
32 /*
33  * Deferred Operations in XFS
34  *
35  * Due to the way locking rules work in XFS, certain transactions (block
36  * mapping and unmapping, typically) have permanent reservations so that
37  * we can roll the transaction to adhere to AG locking order rules and
38  * to unlock buffers between metadata updates.  Prior to rmap/reflink,
39  * the mapping code had a mechanism to perform these deferrals for
40  * extents that were going to be freed; this code makes that facility
41  * more generic.
42  *
43  * When adding the reverse mapping and reflink features, it became
44  * necessary to perform complex remapping multi-transactions to comply
45  * with AG locking order rules, and to be able to spread a single
46  * refcount update operation (an operation on an n-block extent can
47  * update as many as n records!) among multiple transactions.  XFS can
48  * roll a transaction to facilitate this, but using this facility
49  * requires us to log "intent" items in case log recovery needs to
50  * redo the operation, and to log "done" items to indicate that redo
51  * is not necessary.
52  *
53  * Deferred work is tracked in xfs_defer_pending items.  Each pending
54  * item tracks one type of deferred work.  Incoming work items (which
55  * have not yet had an intent logged) are attached to a pending item
56  * on the dop_intake list, where they wait for the caller to finish
57  * the deferred operations.
58  *
59  * Finishing a set of deferred operations is an involved process.  To
60  * start, we define "rolling a deferred-op transaction" as follows:
61  *
62  * > For each xfs_defer_pending item on the dop_intake list,
63  *   - Sort the work items in AG order.  XFS locking
64  *     order rules require us to lock buffers in AG order.
65  *   - Create a log intent item for that type.
66  *   - Attach it to the pending item.
67  *   - Move the pending item from the dop_intake list to the
68  *     dop_pending list.
69  * > Roll the transaction.
70  *
71  * NOTE: To avoid exceeding the transaction reservation, we limit the
72  * number of items that we attach to a given xfs_defer_pending.
73  *
74  * The actual finishing process looks like this:
75  *
76  * > For each xfs_defer_pending in the dop_pending list,
77  *   - Roll the deferred-op transaction as above.
78  *   - Create a log done item for that type, and attach it to the
79  *     log intent item.
80  *   - For each work item attached to the log intent item,
81  *     * Perform the described action.
82  *     * Attach the work item to the log done item.
83  *     * If the result of doing the work was -EAGAIN, ->finish work
84  *       wants a new transaction.  See the "Requesting a Fresh
85  *       Transaction while Finishing Deferred Work" section below for
86  *       details.
87  *
88  * The key here is that we must log an intent item for all pending
89  * work items every time we roll the transaction, and that we must log
90  * a done item as soon as the work is completed.  With this mechanism
91  * we can perform complex remapping operations, chaining intent items
92  * as needed.
93  *
94  * Requesting a Fresh Transaction while Finishing Deferred Work
95  *
96  * If ->finish_item decides that it needs a fresh transaction to
97  * finish the work, it must ask its caller (xfs_defer_finish) for a
98  * continuation.  The most likely cause of this circumstance are the
99  * refcount adjust functions deciding that they've logged enough items
100  * to be at risk of exceeding the transaction reservation.
101  *
102  * To get a fresh transaction, we want to log the existing log done
103  * item to prevent the log intent item from replaying, immediately log
104  * a new log intent item with the unfinished work items, roll the
105  * transaction, and re-call ->finish_item wherever it left off.  The
106  * log done item and the new log intent item must be in the same
107  * transaction or atomicity cannot be guaranteed; defer_finish ensures
108  * that this happens.
109  *
110  * This requires some coordination between ->finish_item and
111  * defer_finish.  Upon deciding to request a new transaction,
112  * ->finish_item should update the current work item to reflect the
113  * unfinished work.  Next, it should reset the log done item's list
114  * count to the number of items finished, and return -EAGAIN.
115  * defer_finish sees the -EAGAIN, logs the new log intent item
116  * with the remaining work items, and leaves the xfs_defer_pending
117  * item at the head of the dop_work queue.  Then it rolls the
118  * transaction and picks up processing where it left off.  It is
119  * required that ->finish_item must be careful to leave enough
120  * transaction reservation to fit the new log intent item.
121  *
122  * This is an example of remapping the extent (E, E+B) into file X at
123  * offset A and dealing with the extent (C, C+B) already being mapped
124  * there:
125  * +-------------------------------------------------+
126  * | Unmap file X startblock C offset A length B     | t0
127  * | Intent to reduce refcount for extent (C, B)     |
128  * | Intent to remove rmap (X, C, A, B)              |
129  * | Intent to free extent (D, 1) (bmbt block)       |
130  * | Intent to map (X, A, B) at startblock E         |
131  * +-------------------------------------------------+
132  * | Map file X startblock E offset A length B       | t1
133  * | Done mapping (X, E, A, B)                       |
134  * | Intent to increase refcount for extent (E, B)   |
135  * | Intent to add rmap (X, E, A, B)                 |
136  * +-------------------------------------------------+
137  * | Reduce refcount for extent (C, B)               | t2
138  * | Done reducing refcount for extent (C, 9)        |
139  * | Intent to reduce refcount for extent (C+9, B-9) |
140  * | (ran out of space after 9 refcount updates)     |
141  * +-------------------------------------------------+
142  * | Reduce refcount for extent (C+9, B+9)           | t3
143  * | Done reducing refcount for extent (C+9, B-9)    |
144  * | Increase refcount for extent (E, B)             |
145  * | Done increasing refcount for extent (E, B)      |
146  * | Intent to free extent (C, B)                    |
147  * | Intent to free extent (F, 1) (refcountbt block) |
148  * | Intent to remove rmap (F, 1, REFC)              |
149  * +-------------------------------------------------+
150  * | Remove rmap (X, C, A, B)                        | t4
151  * | Done removing rmap (X, C, A, B)                 |
152  * | Add rmap (X, E, A, B)                           |
153  * | Done adding rmap (X, E, A, B)                   |
154  * | Remove rmap (F, 1, REFC)                        |
155  * | Done removing rmap (F, 1, REFC)                 |
156  * +-------------------------------------------------+
157  * | Free extent (C, B)                              | t5
158  * | Done freeing extent (C, B)                      |
159  * | Free extent (D, 1)                              |
160  * | Done freeing extent (D, 1)                      |
161  * | Free extent (F, 1)                              |
162  * | Done freeing extent (F, 1)                      |
163  * +-------------------------------------------------+
164  *
165  * If we should crash before t2 commits, log recovery replays
166  * the following intent items:
167  *
168  * - Intent to reduce refcount for extent (C, B)
169  * - Intent to remove rmap (X, C, A, B)
170  * - Intent to free extent (D, 1) (bmbt block)
171  * - Intent to increase refcount for extent (E, B)
172  * - Intent to add rmap (X, E, A, B)
173  *
174  * In the process of recovering, it should also generate and take care
175  * of these intent items:
176  *
177  * - Intent to free extent (C, B)
178  * - Intent to free extent (F, 1) (refcountbt block)
179  * - Intent to remove rmap (F, 1, REFC)
180  *
181  * Note that the continuation requested between t2 and t3 is likely to
182  * reoccur.
183  */
184 
185 static const struct xfs_defer_op_type *defer_op_types[] = {
186 	[XFS_DEFER_OPS_TYPE_BMAP]	= &xfs_bmap_update_defer_type,
187 	[XFS_DEFER_OPS_TYPE_REFCOUNT]	= &xfs_refcount_update_defer_type,
188 	[XFS_DEFER_OPS_TYPE_RMAP]	= &xfs_rmap_update_defer_type,
189 	[XFS_DEFER_OPS_TYPE_FREE]	= &xfs_extent_free_defer_type,
190 	[XFS_DEFER_OPS_TYPE_AGFL_FREE]	= &xfs_agfl_free_defer_type,
191 	[XFS_DEFER_OPS_TYPE_ATTR]	= &xfs_attr_defer_type,
192 };
193 
194 /*
195  * Ensure there's a log intent item associated with this deferred work item if
196  * the operation must be restarted on crash.  Returns 1 if there's a log item;
197  * 0 if there isn't; or a negative errno.
198  */
199 static int
200 xfs_defer_create_intent(
201 	struct xfs_trans		*tp,
202 	struct xfs_defer_pending	*dfp,
203 	bool				sort)
204 {
205 	const struct xfs_defer_op_type	*ops = defer_op_types[dfp->dfp_type];
206 	struct xfs_log_item		*lip;
207 
208 	if (dfp->dfp_intent)
209 		return 1;
210 
211 	lip = ops->create_intent(tp, &dfp->dfp_work, dfp->dfp_count, sort);
212 	if (!lip)
213 		return 0;
214 	if (IS_ERR(lip))
215 		return PTR_ERR(lip);
216 
217 	dfp->dfp_intent = lip;
218 	return 1;
219 }
220 
221 /*
222  * For each pending item in the intake list, log its intent item and the
223  * associated extents, then add the entire intake list to the end of
224  * the pending list.
225  *
226  * Returns 1 if at least one log item was associated with the deferred work;
227  * 0 if there are no log items; or a negative errno.
228  */
229 static int
230 xfs_defer_create_intents(
231 	struct xfs_trans		*tp)
232 {
233 	struct xfs_defer_pending	*dfp;
234 	int				ret = 0;
235 
236 	list_for_each_entry(dfp, &tp->t_dfops, dfp_list) {
237 		int			ret2;
238 
239 		trace_xfs_defer_create_intent(tp->t_mountp, dfp);
240 		ret2 = xfs_defer_create_intent(tp, dfp, true);
241 		if (ret2 < 0)
242 			return ret2;
243 		ret |= ret2;
244 	}
245 	return ret;
246 }
247 
248 /* Abort all the intents that were committed. */
249 STATIC void
250 xfs_defer_trans_abort(
251 	struct xfs_trans		*tp,
252 	struct list_head		*dop_pending)
253 {
254 	struct xfs_defer_pending	*dfp;
255 	const struct xfs_defer_op_type	*ops;
256 
257 	trace_xfs_defer_trans_abort(tp, _RET_IP_);
258 
259 	/* Abort intent items that don't have a done item. */
260 	list_for_each_entry(dfp, dop_pending, dfp_list) {
261 		ops = defer_op_types[dfp->dfp_type];
262 		trace_xfs_defer_pending_abort(tp->t_mountp, dfp);
263 		if (dfp->dfp_intent && !dfp->dfp_done) {
264 			ops->abort_intent(dfp->dfp_intent);
265 			dfp->dfp_intent = NULL;
266 		}
267 	}
268 }
269 
270 /*
271  * Capture resources that the caller said not to release ("held") when the
272  * transaction commits.  Caller is responsible for zero-initializing @dres.
273  */
274 static int
275 xfs_defer_save_resources(
276 	struct xfs_defer_resources	*dres,
277 	struct xfs_trans		*tp)
278 {
279 	struct xfs_buf_log_item		*bli;
280 	struct xfs_inode_log_item	*ili;
281 	struct xfs_log_item		*lip;
282 
283 	BUILD_BUG_ON(NBBY * sizeof(dres->dr_ordered) < XFS_DEFER_OPS_NR_BUFS);
284 
285 	list_for_each_entry(lip, &tp->t_items, li_trans) {
286 		switch (lip->li_type) {
287 		case XFS_LI_BUF:
288 			bli = container_of(lip, struct xfs_buf_log_item,
289 					   bli_item);
290 			if (bli->bli_flags & XFS_BLI_HOLD) {
291 				if (dres->dr_bufs >= XFS_DEFER_OPS_NR_BUFS) {
292 					ASSERT(0);
293 					return -EFSCORRUPTED;
294 				}
295 				if (bli->bli_flags & XFS_BLI_ORDERED)
296 					dres->dr_ordered |=
297 							(1U << dres->dr_bufs);
298 				else
299 					xfs_trans_dirty_buf(tp, bli->bli_buf);
300 				dres->dr_bp[dres->dr_bufs++] = bli->bli_buf;
301 			}
302 			break;
303 		case XFS_LI_INODE:
304 			ili = container_of(lip, struct xfs_inode_log_item,
305 					   ili_item);
306 			if (ili->ili_lock_flags == 0) {
307 				if (dres->dr_inos >= XFS_DEFER_OPS_NR_INODES) {
308 					ASSERT(0);
309 					return -EFSCORRUPTED;
310 				}
311 				xfs_trans_log_inode(tp, ili->ili_inode,
312 						    XFS_ILOG_CORE);
313 				dres->dr_ip[dres->dr_inos++] = ili->ili_inode;
314 			}
315 			break;
316 		default:
317 			break;
318 		}
319 	}
320 
321 	return 0;
322 }
323 
324 /* Attach the held resources to the transaction. */
325 static void
326 xfs_defer_restore_resources(
327 	struct xfs_trans		*tp,
328 	struct xfs_defer_resources	*dres)
329 {
330 	unsigned short			i;
331 
332 	/* Rejoin the joined inodes. */
333 	for (i = 0; i < dres->dr_inos; i++)
334 		xfs_trans_ijoin(tp, dres->dr_ip[i], 0);
335 
336 	/* Rejoin the buffers and dirty them so the log moves forward. */
337 	for (i = 0; i < dres->dr_bufs; i++) {
338 		xfs_trans_bjoin(tp, dres->dr_bp[i]);
339 		if (dres->dr_ordered & (1U << i))
340 			xfs_trans_ordered_buf(tp, dres->dr_bp[i]);
341 		xfs_trans_bhold(tp, dres->dr_bp[i]);
342 	}
343 }
344 
345 /* Roll a transaction so we can do some deferred op processing. */
346 STATIC int
347 xfs_defer_trans_roll(
348 	struct xfs_trans		**tpp)
349 {
350 	struct xfs_defer_resources	dres = { };
351 	int				error;
352 
353 	error = xfs_defer_save_resources(&dres, *tpp);
354 	if (error)
355 		return error;
356 
357 	trace_xfs_defer_trans_roll(*tpp, _RET_IP_);
358 
359 	/*
360 	 * Roll the transaction.  Rolling always given a new transaction (even
361 	 * if committing the old one fails!) to hand back to the caller, so we
362 	 * join the held resources to the new transaction so that we always
363 	 * return with the held resources joined to @tpp, no matter what
364 	 * happened.
365 	 */
366 	error = xfs_trans_roll(tpp);
367 
368 	xfs_defer_restore_resources(*tpp, &dres);
369 
370 	if (error)
371 		trace_xfs_defer_trans_roll_error(*tpp, error);
372 	return error;
373 }
374 
375 /*
376  * Free up any items left in the list.
377  */
378 static void
379 xfs_defer_cancel_list(
380 	struct xfs_mount		*mp,
381 	struct list_head		*dop_list)
382 {
383 	struct xfs_defer_pending	*dfp;
384 	struct xfs_defer_pending	*pli;
385 	struct list_head		*pwi;
386 	struct list_head		*n;
387 	const struct xfs_defer_op_type	*ops;
388 
389 	/*
390 	 * Free the pending items.  Caller should already have arranged
391 	 * for the intent items to be released.
392 	 */
393 	list_for_each_entry_safe(dfp, pli, dop_list, dfp_list) {
394 		ops = defer_op_types[dfp->dfp_type];
395 		trace_xfs_defer_cancel_list(mp, dfp);
396 		list_del(&dfp->dfp_list);
397 		list_for_each_safe(pwi, n, &dfp->dfp_work) {
398 			list_del(pwi);
399 			dfp->dfp_count--;
400 			ops->cancel_item(pwi);
401 		}
402 		ASSERT(dfp->dfp_count == 0);
403 		kmem_cache_free(xfs_defer_pending_cache, dfp);
404 	}
405 }
406 
407 /*
408  * Prevent a log intent item from pinning the tail of the log by logging a
409  * done item to release the intent item; and then log a new intent item.
410  * The caller should provide a fresh transaction and roll it after we're done.
411  */
412 static int
413 xfs_defer_relog(
414 	struct xfs_trans		**tpp,
415 	struct list_head		*dfops)
416 {
417 	struct xlog			*log = (*tpp)->t_mountp->m_log;
418 	struct xfs_defer_pending	*dfp;
419 	xfs_lsn_t			threshold_lsn = NULLCOMMITLSN;
420 
421 
422 	ASSERT((*tpp)->t_flags & XFS_TRANS_PERM_LOG_RES);
423 
424 	list_for_each_entry(dfp, dfops, dfp_list) {
425 		/*
426 		 * If the log intent item for this deferred op is not a part of
427 		 * the current log checkpoint, relog the intent item to keep
428 		 * the log tail moving forward.  We're ok with this being racy
429 		 * because an incorrect decision means we'll be a little slower
430 		 * at pushing the tail.
431 		 */
432 		if (dfp->dfp_intent == NULL ||
433 		    xfs_log_item_in_current_chkpt(dfp->dfp_intent))
434 			continue;
435 
436 		/*
437 		 * Figure out where we need the tail to be in order to maintain
438 		 * the minimum required free space in the log.  Only sample
439 		 * the log threshold once per call.
440 		 */
441 		if (threshold_lsn == NULLCOMMITLSN) {
442 			threshold_lsn = xlog_grant_push_threshold(log, 0);
443 			if (threshold_lsn == NULLCOMMITLSN)
444 				break;
445 		}
446 		if (XFS_LSN_CMP(dfp->dfp_intent->li_lsn, threshold_lsn) >= 0)
447 			continue;
448 
449 		trace_xfs_defer_relog_intent((*tpp)->t_mountp, dfp);
450 		XFS_STATS_INC((*tpp)->t_mountp, defer_relog);
451 		dfp->dfp_intent = xfs_trans_item_relog(dfp->dfp_intent, *tpp);
452 	}
453 
454 	if ((*tpp)->t_flags & XFS_TRANS_DIRTY)
455 		return xfs_defer_trans_roll(tpp);
456 	return 0;
457 }
458 
459 /*
460  * Log an intent-done item for the first pending intent, and finish the work
461  * items.
462  */
463 static int
464 xfs_defer_finish_one(
465 	struct xfs_trans		*tp,
466 	struct xfs_defer_pending	*dfp)
467 {
468 	const struct xfs_defer_op_type	*ops = defer_op_types[dfp->dfp_type];
469 	struct xfs_btree_cur		*state = NULL;
470 	struct list_head		*li, *n;
471 	int				error;
472 
473 	trace_xfs_defer_pending_finish(tp->t_mountp, dfp);
474 
475 	dfp->dfp_done = ops->create_done(tp, dfp->dfp_intent, dfp->dfp_count);
476 	list_for_each_safe(li, n, &dfp->dfp_work) {
477 		list_del(li);
478 		dfp->dfp_count--;
479 		error = ops->finish_item(tp, dfp->dfp_done, li, &state);
480 		if (error == -EAGAIN) {
481 			int		ret;
482 
483 			/*
484 			 * Caller wants a fresh transaction; put the work item
485 			 * back on the list and log a new log intent item to
486 			 * replace the old one.  See "Requesting a Fresh
487 			 * Transaction while Finishing Deferred Work" above.
488 			 */
489 			list_add(li, &dfp->dfp_work);
490 			dfp->dfp_count++;
491 			dfp->dfp_done = NULL;
492 			dfp->dfp_intent = NULL;
493 			ret = xfs_defer_create_intent(tp, dfp, false);
494 			if (ret < 0)
495 				error = ret;
496 		}
497 
498 		if (error)
499 			goto out;
500 	}
501 
502 	/* Done with the dfp, free it. */
503 	list_del(&dfp->dfp_list);
504 	kmem_cache_free(xfs_defer_pending_cache, dfp);
505 out:
506 	if (ops->finish_cleanup)
507 		ops->finish_cleanup(tp, state, error);
508 	return error;
509 }
510 
511 /*
512  * Finish all the pending work.  This involves logging intent items for
513  * any work items that wandered in since the last transaction roll (if
514  * one has even happened), rolling the transaction, and finishing the
515  * work items in the first item on the logged-and-pending list.
516  *
517  * If an inode is provided, relog it to the new transaction.
518  */
519 int
520 xfs_defer_finish_noroll(
521 	struct xfs_trans		**tp)
522 {
523 	struct xfs_defer_pending	*dfp = NULL;
524 	int				error = 0;
525 	LIST_HEAD(dop_pending);
526 
527 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
528 
529 	trace_xfs_defer_finish(*tp, _RET_IP_);
530 
531 	/* Until we run out of pending work to finish... */
532 	while (!list_empty(&dop_pending) || !list_empty(&(*tp)->t_dfops)) {
533 		/*
534 		 * Deferred items that are created in the process of finishing
535 		 * other deferred work items should be queued at the head of
536 		 * the pending list, which puts them ahead of the deferred work
537 		 * that was created by the caller.  This keeps the number of
538 		 * pending work items to a minimum, which decreases the amount
539 		 * of time that any one intent item can stick around in memory,
540 		 * pinning the log tail.
541 		 */
542 		int has_intents = xfs_defer_create_intents(*tp);
543 
544 		list_splice_init(&(*tp)->t_dfops, &dop_pending);
545 
546 		if (has_intents < 0) {
547 			error = has_intents;
548 			goto out_shutdown;
549 		}
550 		if (has_intents || dfp) {
551 			error = xfs_defer_trans_roll(tp);
552 			if (error)
553 				goto out_shutdown;
554 
555 			/* Relog intent items to keep the log moving. */
556 			error = xfs_defer_relog(tp, &dop_pending);
557 			if (error)
558 				goto out_shutdown;
559 		}
560 
561 		dfp = list_first_entry(&dop_pending, struct xfs_defer_pending,
562 				       dfp_list);
563 		error = xfs_defer_finish_one(*tp, dfp);
564 		if (error && error != -EAGAIN)
565 			goto out_shutdown;
566 	}
567 
568 	trace_xfs_defer_finish_done(*tp, _RET_IP_);
569 	return 0;
570 
571 out_shutdown:
572 	xfs_defer_trans_abort(*tp, &dop_pending);
573 	xfs_force_shutdown((*tp)->t_mountp, SHUTDOWN_CORRUPT_INCORE);
574 	trace_xfs_defer_finish_error(*tp, error);
575 	xfs_defer_cancel_list((*tp)->t_mountp, &dop_pending);
576 	xfs_defer_cancel(*tp);
577 	return error;
578 }
579 
580 int
581 xfs_defer_finish(
582 	struct xfs_trans	**tp)
583 {
584 	int			error;
585 
586 	/*
587 	 * Finish and roll the transaction once more to avoid returning to the
588 	 * caller with a dirty transaction.
589 	 */
590 	error = xfs_defer_finish_noroll(tp);
591 	if (error)
592 		return error;
593 	if ((*tp)->t_flags & XFS_TRANS_DIRTY) {
594 		error = xfs_defer_trans_roll(tp);
595 		if (error) {
596 			xfs_force_shutdown((*tp)->t_mountp,
597 					   SHUTDOWN_CORRUPT_INCORE);
598 			return error;
599 		}
600 	}
601 
602 	/* Reset LOWMODE now that we've finished all the dfops. */
603 	ASSERT(list_empty(&(*tp)->t_dfops));
604 	(*tp)->t_flags &= ~XFS_TRANS_LOWMODE;
605 	return 0;
606 }
607 
608 void
609 xfs_defer_cancel(
610 	struct xfs_trans	*tp)
611 {
612 	struct xfs_mount	*mp = tp->t_mountp;
613 
614 	trace_xfs_defer_cancel(tp, _RET_IP_);
615 	xfs_defer_cancel_list(mp, &tp->t_dfops);
616 }
617 
618 /* Add an item for later deferred processing. */
619 void
620 xfs_defer_add(
621 	struct xfs_trans		*tp,
622 	enum xfs_defer_ops_type		type,
623 	struct list_head		*li)
624 {
625 	struct xfs_defer_pending	*dfp = NULL;
626 	const struct xfs_defer_op_type	*ops;
627 
628 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
629 	BUILD_BUG_ON(ARRAY_SIZE(defer_op_types) != XFS_DEFER_OPS_TYPE_MAX);
630 
631 	/*
632 	 * Add the item to a pending item at the end of the intake list.
633 	 * If the last pending item has the same type, reuse it.  Else,
634 	 * create a new pending item at the end of the intake list.
635 	 */
636 	if (!list_empty(&tp->t_dfops)) {
637 		dfp = list_last_entry(&tp->t_dfops,
638 				struct xfs_defer_pending, dfp_list);
639 		ops = defer_op_types[dfp->dfp_type];
640 		if (dfp->dfp_type != type ||
641 		    (ops->max_items && dfp->dfp_count >= ops->max_items))
642 			dfp = NULL;
643 	}
644 	if (!dfp) {
645 		dfp = kmem_cache_zalloc(xfs_defer_pending_cache,
646 				GFP_NOFS | __GFP_NOFAIL);
647 		dfp->dfp_type = type;
648 		dfp->dfp_intent = NULL;
649 		dfp->dfp_done = NULL;
650 		dfp->dfp_count = 0;
651 		INIT_LIST_HEAD(&dfp->dfp_work);
652 		list_add_tail(&dfp->dfp_list, &tp->t_dfops);
653 	}
654 
655 	list_add_tail(li, &dfp->dfp_work);
656 	dfp->dfp_count++;
657 }
658 
659 /*
660  * Move deferred ops from one transaction to another and reset the source to
661  * initial state. This is primarily used to carry state forward across
662  * transaction rolls with pending dfops.
663  */
664 void
665 xfs_defer_move(
666 	struct xfs_trans	*dtp,
667 	struct xfs_trans	*stp)
668 {
669 	list_splice_init(&stp->t_dfops, &dtp->t_dfops);
670 
671 	/*
672 	 * Low free space mode was historically controlled by a dfops field.
673 	 * This meant that low mode state potentially carried across multiple
674 	 * transaction rolls. Transfer low mode on a dfops move to preserve
675 	 * that behavior.
676 	 */
677 	dtp->t_flags |= (stp->t_flags & XFS_TRANS_LOWMODE);
678 	stp->t_flags &= ~XFS_TRANS_LOWMODE;
679 }
680 
681 /*
682  * Prepare a chain of fresh deferred ops work items to be completed later.  Log
683  * recovery requires the ability to put off until later the actual finishing
684  * work so that it can process unfinished items recovered from the log in
685  * correct order.
686  *
687  * Create and log intent items for all the work that we're capturing so that we
688  * can be assured that the items will get replayed if the system goes down
689  * before log recovery gets a chance to finish the work it put off.  The entire
690  * deferred ops state is transferred to the capture structure and the
691  * transaction is then ready for the caller to commit it.  If there are no
692  * intent items to capture, this function returns NULL.
693  *
694  * If capture_ip is not NULL, the capture structure will obtain an extra
695  * reference to the inode.
696  */
697 static struct xfs_defer_capture *
698 xfs_defer_ops_capture(
699 	struct xfs_trans		*tp)
700 {
701 	struct xfs_defer_capture	*dfc;
702 	unsigned short			i;
703 	int				error;
704 
705 	if (list_empty(&tp->t_dfops))
706 		return NULL;
707 
708 	error = xfs_defer_create_intents(tp);
709 	if (error < 0)
710 		return ERR_PTR(error);
711 
712 	/* Create an object to capture the defer ops. */
713 	dfc = kmem_zalloc(sizeof(*dfc), KM_NOFS);
714 	INIT_LIST_HEAD(&dfc->dfc_list);
715 	INIT_LIST_HEAD(&dfc->dfc_dfops);
716 
717 	/* Move the dfops chain and transaction state to the capture struct. */
718 	list_splice_init(&tp->t_dfops, &dfc->dfc_dfops);
719 	dfc->dfc_tpflags = tp->t_flags & XFS_TRANS_LOWMODE;
720 	tp->t_flags &= ~XFS_TRANS_LOWMODE;
721 
722 	/* Capture the remaining block reservations along with the dfops. */
723 	dfc->dfc_blkres = tp->t_blk_res - tp->t_blk_res_used;
724 	dfc->dfc_rtxres = tp->t_rtx_res - tp->t_rtx_res_used;
725 
726 	/* Preserve the log reservation size. */
727 	dfc->dfc_logres = tp->t_log_res;
728 
729 	error = xfs_defer_save_resources(&dfc->dfc_held, tp);
730 	if (error) {
731 		/*
732 		 * Resource capture should never fail, but if it does, we
733 		 * still have to shut down the log and release things
734 		 * properly.
735 		 */
736 		xfs_force_shutdown(tp->t_mountp, SHUTDOWN_CORRUPT_INCORE);
737 	}
738 
739 	/*
740 	 * Grab extra references to the inodes and buffers because callers are
741 	 * expected to release their held references after we commit the
742 	 * transaction.
743 	 */
744 	for (i = 0; i < dfc->dfc_held.dr_inos; i++) {
745 		ASSERT(xfs_isilocked(dfc->dfc_held.dr_ip[i], XFS_ILOCK_EXCL));
746 		ihold(VFS_I(dfc->dfc_held.dr_ip[i]));
747 	}
748 
749 	for (i = 0; i < dfc->dfc_held.dr_bufs; i++)
750 		xfs_buf_hold(dfc->dfc_held.dr_bp[i]);
751 
752 	return dfc;
753 }
754 
755 /* Release all resources that we used to capture deferred ops. */
756 void
757 xfs_defer_ops_capture_free(
758 	struct xfs_mount		*mp,
759 	struct xfs_defer_capture	*dfc)
760 {
761 	unsigned short			i;
762 
763 	xfs_defer_cancel_list(mp, &dfc->dfc_dfops);
764 
765 	for (i = 0; i < dfc->dfc_held.dr_bufs; i++)
766 		xfs_buf_relse(dfc->dfc_held.dr_bp[i]);
767 
768 	for (i = 0; i < dfc->dfc_held.dr_inos; i++)
769 		xfs_irele(dfc->dfc_held.dr_ip[i]);
770 
771 	kmem_free(dfc);
772 }
773 
774 /*
775  * Capture any deferred ops and commit the transaction.  This is the last step
776  * needed to finish a log intent item that we recovered from the log.  If any
777  * of the deferred ops operate on an inode, the caller must pass in that inode
778  * so that the reference can be transferred to the capture structure.  The
779  * caller must hold ILOCK_EXCL on the inode, and must unlock it before calling
780  * xfs_defer_ops_continue.
781  */
782 int
783 xfs_defer_ops_capture_and_commit(
784 	struct xfs_trans		*tp,
785 	struct list_head		*capture_list)
786 {
787 	struct xfs_mount		*mp = tp->t_mountp;
788 	struct xfs_defer_capture	*dfc;
789 	int				error;
790 
791 	/* If we don't capture anything, commit transaction and exit. */
792 	dfc = xfs_defer_ops_capture(tp);
793 	if (IS_ERR(dfc)) {
794 		xfs_trans_cancel(tp);
795 		return PTR_ERR(dfc);
796 	}
797 	if (!dfc)
798 		return xfs_trans_commit(tp);
799 
800 	/* Commit the transaction and add the capture structure to the list. */
801 	error = xfs_trans_commit(tp);
802 	if (error) {
803 		xfs_defer_ops_capture_free(mp, dfc);
804 		return error;
805 	}
806 
807 	list_add_tail(&dfc->dfc_list, capture_list);
808 	return 0;
809 }
810 
811 /*
812  * Attach a chain of captured deferred ops to a new transaction and free the
813  * capture structure.  If an inode was captured, it will be passed back to the
814  * caller with ILOCK_EXCL held and joined to the transaction with lockflags==0.
815  * The caller now owns the inode reference.
816  */
817 void
818 xfs_defer_ops_continue(
819 	struct xfs_defer_capture	*dfc,
820 	struct xfs_trans		*tp,
821 	struct xfs_defer_resources	*dres)
822 {
823 	unsigned int			i;
824 
825 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
826 	ASSERT(!(tp->t_flags & XFS_TRANS_DIRTY));
827 
828 	/* Lock the captured resources to the new transaction. */
829 	if (dfc->dfc_held.dr_inos == 2)
830 		xfs_lock_two_inodes(dfc->dfc_held.dr_ip[0], XFS_ILOCK_EXCL,
831 				    dfc->dfc_held.dr_ip[1], XFS_ILOCK_EXCL);
832 	else if (dfc->dfc_held.dr_inos == 1)
833 		xfs_ilock(dfc->dfc_held.dr_ip[0], XFS_ILOCK_EXCL);
834 
835 	for (i = 0; i < dfc->dfc_held.dr_bufs; i++)
836 		xfs_buf_lock(dfc->dfc_held.dr_bp[i]);
837 
838 	/* Join the captured resources to the new transaction. */
839 	xfs_defer_restore_resources(tp, &dfc->dfc_held);
840 	memcpy(dres, &dfc->dfc_held, sizeof(struct xfs_defer_resources));
841 	dres->dr_bufs = 0;
842 
843 	/* Move captured dfops chain and state to the transaction. */
844 	list_splice_init(&dfc->dfc_dfops, &tp->t_dfops);
845 	tp->t_flags |= dfc->dfc_tpflags;
846 
847 	kmem_free(dfc);
848 }
849 
850 /* Release the resources captured and continued during recovery. */
851 void
852 xfs_defer_resources_rele(
853 	struct xfs_defer_resources	*dres)
854 {
855 	unsigned short			i;
856 
857 	for (i = 0; i < dres->dr_inos; i++) {
858 		xfs_iunlock(dres->dr_ip[i], XFS_ILOCK_EXCL);
859 		xfs_irele(dres->dr_ip[i]);
860 		dres->dr_ip[i] = NULL;
861 	}
862 
863 	for (i = 0; i < dres->dr_bufs; i++) {
864 		xfs_buf_relse(dres->dr_bp[i]);
865 		dres->dr_bp[i] = NULL;
866 	}
867 
868 	dres->dr_inos = 0;
869 	dres->dr_bufs = 0;
870 	dres->dr_ordered = 0;
871 }
872 
873 static inline int __init
874 xfs_defer_init_cache(void)
875 {
876 	xfs_defer_pending_cache = kmem_cache_create("xfs_defer_pending",
877 			sizeof(struct xfs_defer_pending),
878 			0, 0, NULL);
879 
880 	return xfs_defer_pending_cache != NULL ? 0 : -ENOMEM;
881 }
882 
883 static inline void
884 xfs_defer_destroy_cache(void)
885 {
886 	kmem_cache_destroy(xfs_defer_pending_cache);
887 	xfs_defer_pending_cache = NULL;
888 }
889 
890 /* Set up caches for deferred work items. */
891 int __init
892 xfs_defer_init_item_caches(void)
893 {
894 	int				error;
895 
896 	error = xfs_defer_init_cache();
897 	if (error)
898 		return error;
899 	error = xfs_rmap_intent_init_cache();
900 	if (error)
901 		goto err;
902 	error = xfs_refcount_intent_init_cache();
903 	if (error)
904 		goto err;
905 	error = xfs_bmap_intent_init_cache();
906 	if (error)
907 		goto err;
908 	error = xfs_extfree_intent_init_cache();
909 	if (error)
910 		goto err;
911 	error = xfs_attr_intent_init_cache();
912 	if (error)
913 		goto err;
914 	return 0;
915 err:
916 	xfs_defer_destroy_item_caches();
917 	return error;
918 }
919 
920 /* Destroy all the deferred work item caches, if they've been allocated. */
921 void
922 xfs_defer_destroy_item_caches(void)
923 {
924 	xfs_attr_intent_destroy_cache();
925 	xfs_extfree_intent_destroy_cache();
926 	xfs_bmap_intent_destroy_cache();
927 	xfs_refcount_intent_destroy_cache();
928 	xfs_rmap_intent_destroy_cache();
929 	xfs_defer_destroy_cache();
930 }
931