xref: /openbmc/linux/fs/xfs/libxfs/xfs_defer.c (revision f3c799c2)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_inode.h"
17 #include "xfs_inode_item.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_log.h"
21 #include "xfs_rmap.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap.h"
24 
25 static struct kmem_cache	*xfs_defer_pending_cache;
26 
27 /*
28  * Deferred Operations in XFS
29  *
30  * Due to the way locking rules work in XFS, certain transactions (block
31  * mapping and unmapping, typically) have permanent reservations so that
32  * we can roll the transaction to adhere to AG locking order rules and
33  * to unlock buffers between metadata updates.  Prior to rmap/reflink,
34  * the mapping code had a mechanism to perform these deferrals for
35  * extents that were going to be freed; this code makes that facility
36  * more generic.
37  *
38  * When adding the reverse mapping and reflink features, it became
39  * necessary to perform complex remapping multi-transactions to comply
40  * with AG locking order rules, and to be able to spread a single
41  * refcount update operation (an operation on an n-block extent can
42  * update as many as n records!) among multiple transactions.  XFS can
43  * roll a transaction to facilitate this, but using this facility
44  * requires us to log "intent" items in case log recovery needs to
45  * redo the operation, and to log "done" items to indicate that redo
46  * is not necessary.
47  *
48  * Deferred work is tracked in xfs_defer_pending items.  Each pending
49  * item tracks one type of deferred work.  Incoming work items (which
50  * have not yet had an intent logged) are attached to a pending item
51  * on the dop_intake list, where they wait for the caller to finish
52  * the deferred operations.
53  *
54  * Finishing a set of deferred operations is an involved process.  To
55  * start, we define "rolling a deferred-op transaction" as follows:
56  *
57  * > For each xfs_defer_pending item on the dop_intake list,
58  *   - Sort the work items in AG order.  XFS locking
59  *     order rules require us to lock buffers in AG order.
60  *   - Create a log intent item for that type.
61  *   - Attach it to the pending item.
62  *   - Move the pending item from the dop_intake list to the
63  *     dop_pending list.
64  * > Roll the transaction.
65  *
66  * NOTE: To avoid exceeding the transaction reservation, we limit the
67  * number of items that we attach to a given xfs_defer_pending.
68  *
69  * The actual finishing process looks like this:
70  *
71  * > For each xfs_defer_pending in the dop_pending list,
72  *   - Roll the deferred-op transaction as above.
73  *   - Create a log done item for that type, and attach it to the
74  *     log intent item.
75  *   - For each work item attached to the log intent item,
76  *     * Perform the described action.
77  *     * Attach the work item to the log done item.
78  *     * If the result of doing the work was -EAGAIN, ->finish work
79  *       wants a new transaction.  See the "Requesting a Fresh
80  *       Transaction while Finishing Deferred Work" section below for
81  *       details.
82  *
83  * The key here is that we must log an intent item for all pending
84  * work items every time we roll the transaction, and that we must log
85  * a done item as soon as the work is completed.  With this mechanism
86  * we can perform complex remapping operations, chaining intent items
87  * as needed.
88  *
89  * Requesting a Fresh Transaction while Finishing Deferred Work
90  *
91  * If ->finish_item decides that it needs a fresh transaction to
92  * finish the work, it must ask its caller (xfs_defer_finish) for a
93  * continuation.  The most likely cause of this circumstance are the
94  * refcount adjust functions deciding that they've logged enough items
95  * to be at risk of exceeding the transaction reservation.
96  *
97  * To get a fresh transaction, we want to log the existing log done
98  * item to prevent the log intent item from replaying, immediately log
99  * a new log intent item with the unfinished work items, roll the
100  * transaction, and re-call ->finish_item wherever it left off.  The
101  * log done item and the new log intent item must be in the same
102  * transaction or atomicity cannot be guaranteed; defer_finish ensures
103  * that this happens.
104  *
105  * This requires some coordination between ->finish_item and
106  * defer_finish.  Upon deciding to request a new transaction,
107  * ->finish_item should update the current work item to reflect the
108  * unfinished work.  Next, it should reset the log done item's list
109  * count to the number of items finished, and return -EAGAIN.
110  * defer_finish sees the -EAGAIN, logs the new log intent item
111  * with the remaining work items, and leaves the xfs_defer_pending
112  * item at the head of the dop_work queue.  Then it rolls the
113  * transaction and picks up processing where it left off.  It is
114  * required that ->finish_item must be careful to leave enough
115  * transaction reservation to fit the new log intent item.
116  *
117  * This is an example of remapping the extent (E, E+B) into file X at
118  * offset A and dealing with the extent (C, C+B) already being mapped
119  * there:
120  * +-------------------------------------------------+
121  * | Unmap file X startblock C offset A length B     | t0
122  * | Intent to reduce refcount for extent (C, B)     |
123  * | Intent to remove rmap (X, C, A, B)              |
124  * | Intent to free extent (D, 1) (bmbt block)       |
125  * | Intent to map (X, A, B) at startblock E         |
126  * +-------------------------------------------------+
127  * | Map file X startblock E offset A length B       | t1
128  * | Done mapping (X, E, A, B)                       |
129  * | Intent to increase refcount for extent (E, B)   |
130  * | Intent to add rmap (X, E, A, B)                 |
131  * +-------------------------------------------------+
132  * | Reduce refcount for extent (C, B)               | t2
133  * | Done reducing refcount for extent (C, 9)        |
134  * | Intent to reduce refcount for extent (C+9, B-9) |
135  * | (ran out of space after 9 refcount updates)     |
136  * +-------------------------------------------------+
137  * | Reduce refcount for extent (C+9, B+9)           | t3
138  * | Done reducing refcount for extent (C+9, B-9)    |
139  * | Increase refcount for extent (E, B)             |
140  * | Done increasing refcount for extent (E, B)      |
141  * | Intent to free extent (C, B)                    |
142  * | Intent to free extent (F, 1) (refcountbt block) |
143  * | Intent to remove rmap (F, 1, REFC)              |
144  * +-------------------------------------------------+
145  * | Remove rmap (X, C, A, B)                        | t4
146  * | Done removing rmap (X, C, A, B)                 |
147  * | Add rmap (X, E, A, B)                           |
148  * | Done adding rmap (X, E, A, B)                   |
149  * | Remove rmap (F, 1, REFC)                        |
150  * | Done removing rmap (F, 1, REFC)                 |
151  * +-------------------------------------------------+
152  * | Free extent (C, B)                              | t5
153  * | Done freeing extent (C, B)                      |
154  * | Free extent (D, 1)                              |
155  * | Done freeing extent (D, 1)                      |
156  * | Free extent (F, 1)                              |
157  * | Done freeing extent (F, 1)                      |
158  * +-------------------------------------------------+
159  *
160  * If we should crash before t2 commits, log recovery replays
161  * the following intent items:
162  *
163  * - Intent to reduce refcount for extent (C, B)
164  * - Intent to remove rmap (X, C, A, B)
165  * - Intent to free extent (D, 1) (bmbt block)
166  * - Intent to increase refcount for extent (E, B)
167  * - Intent to add rmap (X, E, A, B)
168  *
169  * In the process of recovering, it should also generate and take care
170  * of these intent items:
171  *
172  * - Intent to free extent (C, B)
173  * - Intent to free extent (F, 1) (refcountbt block)
174  * - Intent to remove rmap (F, 1, REFC)
175  *
176  * Note that the continuation requested between t2 and t3 is likely to
177  * reoccur.
178  */
179 
180 static const struct xfs_defer_op_type *defer_op_types[] = {
181 	[XFS_DEFER_OPS_TYPE_BMAP]	= &xfs_bmap_update_defer_type,
182 	[XFS_DEFER_OPS_TYPE_REFCOUNT]	= &xfs_refcount_update_defer_type,
183 	[XFS_DEFER_OPS_TYPE_RMAP]	= &xfs_rmap_update_defer_type,
184 	[XFS_DEFER_OPS_TYPE_FREE]	= &xfs_extent_free_defer_type,
185 	[XFS_DEFER_OPS_TYPE_AGFL_FREE]	= &xfs_agfl_free_defer_type,
186 };
187 
188 static void
189 xfs_defer_create_intent(
190 	struct xfs_trans		*tp,
191 	struct xfs_defer_pending	*dfp,
192 	bool				sort)
193 {
194 	const struct xfs_defer_op_type	*ops = defer_op_types[dfp->dfp_type];
195 
196 	if (!dfp->dfp_intent)
197 		dfp->dfp_intent = ops->create_intent(tp, &dfp->dfp_work,
198 						     dfp->dfp_count, sort);
199 }
200 
201 /*
202  * For each pending item in the intake list, log its intent item and the
203  * associated extents, then add the entire intake list to the end of
204  * the pending list.
205  */
206 STATIC void
207 xfs_defer_create_intents(
208 	struct xfs_trans		*tp)
209 {
210 	struct xfs_defer_pending	*dfp;
211 
212 	list_for_each_entry(dfp, &tp->t_dfops, dfp_list) {
213 		trace_xfs_defer_create_intent(tp->t_mountp, dfp);
214 		xfs_defer_create_intent(tp, dfp, true);
215 	}
216 }
217 
218 /* Abort all the intents that were committed. */
219 STATIC void
220 xfs_defer_trans_abort(
221 	struct xfs_trans		*tp,
222 	struct list_head		*dop_pending)
223 {
224 	struct xfs_defer_pending	*dfp;
225 	const struct xfs_defer_op_type	*ops;
226 
227 	trace_xfs_defer_trans_abort(tp, _RET_IP_);
228 
229 	/* Abort intent items that don't have a done item. */
230 	list_for_each_entry(dfp, dop_pending, dfp_list) {
231 		ops = defer_op_types[dfp->dfp_type];
232 		trace_xfs_defer_pending_abort(tp->t_mountp, dfp);
233 		if (dfp->dfp_intent && !dfp->dfp_done) {
234 			ops->abort_intent(dfp->dfp_intent);
235 			dfp->dfp_intent = NULL;
236 		}
237 	}
238 }
239 
240 /*
241  * Capture resources that the caller said not to release ("held") when the
242  * transaction commits.  Caller is responsible for zero-initializing @dres.
243  */
244 static int
245 xfs_defer_save_resources(
246 	struct xfs_defer_resources	*dres,
247 	struct xfs_trans		*tp)
248 {
249 	struct xfs_buf_log_item		*bli;
250 	struct xfs_inode_log_item	*ili;
251 	struct xfs_log_item		*lip;
252 
253 	BUILD_BUG_ON(NBBY * sizeof(dres->dr_ordered) < XFS_DEFER_OPS_NR_BUFS);
254 
255 	list_for_each_entry(lip, &tp->t_items, li_trans) {
256 		switch (lip->li_type) {
257 		case XFS_LI_BUF:
258 			bli = container_of(lip, struct xfs_buf_log_item,
259 					   bli_item);
260 			if (bli->bli_flags & XFS_BLI_HOLD) {
261 				if (dres->dr_bufs >= XFS_DEFER_OPS_NR_BUFS) {
262 					ASSERT(0);
263 					return -EFSCORRUPTED;
264 				}
265 				if (bli->bli_flags & XFS_BLI_ORDERED)
266 					dres->dr_ordered |=
267 							(1U << dres->dr_bufs);
268 				else
269 					xfs_trans_dirty_buf(tp, bli->bli_buf);
270 				dres->dr_bp[dres->dr_bufs++] = bli->bli_buf;
271 			}
272 			break;
273 		case XFS_LI_INODE:
274 			ili = container_of(lip, struct xfs_inode_log_item,
275 					   ili_item);
276 			if (ili->ili_lock_flags == 0) {
277 				if (dres->dr_inos >= XFS_DEFER_OPS_NR_INODES) {
278 					ASSERT(0);
279 					return -EFSCORRUPTED;
280 				}
281 				xfs_trans_log_inode(tp, ili->ili_inode,
282 						    XFS_ILOG_CORE);
283 				dres->dr_ip[dres->dr_inos++] = ili->ili_inode;
284 			}
285 			break;
286 		default:
287 			break;
288 		}
289 	}
290 
291 	return 0;
292 }
293 
294 /* Attach the held resources to the transaction. */
295 static void
296 xfs_defer_restore_resources(
297 	struct xfs_trans		*tp,
298 	struct xfs_defer_resources	*dres)
299 {
300 	unsigned short			i;
301 
302 	/* Rejoin the joined inodes. */
303 	for (i = 0; i < dres->dr_inos; i++)
304 		xfs_trans_ijoin(tp, dres->dr_ip[i], 0);
305 
306 	/* Rejoin the buffers and dirty them so the log moves forward. */
307 	for (i = 0; i < dres->dr_bufs; i++) {
308 		xfs_trans_bjoin(tp, dres->dr_bp[i]);
309 		if (dres->dr_ordered & (1U << i))
310 			xfs_trans_ordered_buf(tp, dres->dr_bp[i]);
311 		xfs_trans_bhold(tp, dres->dr_bp[i]);
312 	}
313 }
314 
315 /* Roll a transaction so we can do some deferred op processing. */
316 STATIC int
317 xfs_defer_trans_roll(
318 	struct xfs_trans		**tpp)
319 {
320 	struct xfs_defer_resources	dres = { };
321 	int				error;
322 
323 	error = xfs_defer_save_resources(&dres, *tpp);
324 	if (error)
325 		return error;
326 
327 	trace_xfs_defer_trans_roll(*tpp, _RET_IP_);
328 
329 	/*
330 	 * Roll the transaction.  Rolling always given a new transaction (even
331 	 * if committing the old one fails!) to hand back to the caller, so we
332 	 * join the held resources to the new transaction so that we always
333 	 * return with the held resources joined to @tpp, no matter what
334 	 * happened.
335 	 */
336 	error = xfs_trans_roll(tpp);
337 
338 	xfs_defer_restore_resources(*tpp, &dres);
339 
340 	if (error)
341 		trace_xfs_defer_trans_roll_error(*tpp, error);
342 	return error;
343 }
344 
345 /*
346  * Free up any items left in the list.
347  */
348 static void
349 xfs_defer_cancel_list(
350 	struct xfs_mount		*mp,
351 	struct list_head		*dop_list)
352 {
353 	struct xfs_defer_pending	*dfp;
354 	struct xfs_defer_pending	*pli;
355 	struct list_head		*pwi;
356 	struct list_head		*n;
357 	const struct xfs_defer_op_type	*ops;
358 
359 	/*
360 	 * Free the pending items.  Caller should already have arranged
361 	 * for the intent items to be released.
362 	 */
363 	list_for_each_entry_safe(dfp, pli, dop_list, dfp_list) {
364 		ops = defer_op_types[dfp->dfp_type];
365 		trace_xfs_defer_cancel_list(mp, dfp);
366 		list_del(&dfp->dfp_list);
367 		list_for_each_safe(pwi, n, &dfp->dfp_work) {
368 			list_del(pwi);
369 			dfp->dfp_count--;
370 			ops->cancel_item(pwi);
371 		}
372 		ASSERT(dfp->dfp_count == 0);
373 		kmem_cache_free(xfs_defer_pending_cache, dfp);
374 	}
375 }
376 
377 /*
378  * Prevent a log intent item from pinning the tail of the log by logging a
379  * done item to release the intent item; and then log a new intent item.
380  * The caller should provide a fresh transaction and roll it after we're done.
381  */
382 static int
383 xfs_defer_relog(
384 	struct xfs_trans		**tpp,
385 	struct list_head		*dfops)
386 {
387 	struct xlog			*log = (*tpp)->t_mountp->m_log;
388 	struct xfs_defer_pending	*dfp;
389 	xfs_lsn_t			threshold_lsn = NULLCOMMITLSN;
390 
391 
392 	ASSERT((*tpp)->t_flags & XFS_TRANS_PERM_LOG_RES);
393 
394 	list_for_each_entry(dfp, dfops, dfp_list) {
395 		/*
396 		 * If the log intent item for this deferred op is not a part of
397 		 * the current log checkpoint, relog the intent item to keep
398 		 * the log tail moving forward.  We're ok with this being racy
399 		 * because an incorrect decision means we'll be a little slower
400 		 * at pushing the tail.
401 		 */
402 		if (dfp->dfp_intent == NULL ||
403 		    xfs_log_item_in_current_chkpt(dfp->dfp_intent))
404 			continue;
405 
406 		/*
407 		 * Figure out where we need the tail to be in order to maintain
408 		 * the minimum required free space in the log.  Only sample
409 		 * the log threshold once per call.
410 		 */
411 		if (threshold_lsn == NULLCOMMITLSN) {
412 			threshold_lsn = xlog_grant_push_threshold(log, 0);
413 			if (threshold_lsn == NULLCOMMITLSN)
414 				break;
415 		}
416 		if (XFS_LSN_CMP(dfp->dfp_intent->li_lsn, threshold_lsn) >= 0)
417 			continue;
418 
419 		trace_xfs_defer_relog_intent((*tpp)->t_mountp, dfp);
420 		XFS_STATS_INC((*tpp)->t_mountp, defer_relog);
421 		dfp->dfp_intent = xfs_trans_item_relog(dfp->dfp_intent, *tpp);
422 	}
423 
424 	if ((*tpp)->t_flags & XFS_TRANS_DIRTY)
425 		return xfs_defer_trans_roll(tpp);
426 	return 0;
427 }
428 
429 /*
430  * Log an intent-done item for the first pending intent, and finish the work
431  * items.
432  */
433 static int
434 xfs_defer_finish_one(
435 	struct xfs_trans		*tp,
436 	struct xfs_defer_pending	*dfp)
437 {
438 	const struct xfs_defer_op_type	*ops = defer_op_types[dfp->dfp_type];
439 	struct xfs_btree_cur		*state = NULL;
440 	struct list_head		*li, *n;
441 	int				error;
442 
443 	trace_xfs_defer_pending_finish(tp->t_mountp, dfp);
444 
445 	dfp->dfp_done = ops->create_done(tp, dfp->dfp_intent, dfp->dfp_count);
446 	list_for_each_safe(li, n, &dfp->dfp_work) {
447 		list_del(li);
448 		dfp->dfp_count--;
449 		error = ops->finish_item(tp, dfp->dfp_done, li, &state);
450 		if (error == -EAGAIN) {
451 			/*
452 			 * Caller wants a fresh transaction; put the work item
453 			 * back on the list and log a new log intent item to
454 			 * replace the old one.  See "Requesting a Fresh
455 			 * Transaction while Finishing Deferred Work" above.
456 			 */
457 			list_add(li, &dfp->dfp_work);
458 			dfp->dfp_count++;
459 			dfp->dfp_done = NULL;
460 			dfp->dfp_intent = NULL;
461 			xfs_defer_create_intent(tp, dfp, false);
462 		}
463 
464 		if (error)
465 			goto out;
466 	}
467 
468 	/* Done with the dfp, free it. */
469 	list_del(&dfp->dfp_list);
470 	kmem_cache_free(xfs_defer_pending_cache, dfp);
471 out:
472 	if (ops->finish_cleanup)
473 		ops->finish_cleanup(tp, state, error);
474 	return error;
475 }
476 
477 /*
478  * Finish all the pending work.  This involves logging intent items for
479  * any work items that wandered in since the last transaction roll (if
480  * one has even happened), rolling the transaction, and finishing the
481  * work items in the first item on the logged-and-pending list.
482  *
483  * If an inode is provided, relog it to the new transaction.
484  */
485 int
486 xfs_defer_finish_noroll(
487 	struct xfs_trans		**tp)
488 {
489 	struct xfs_defer_pending	*dfp;
490 	int				error = 0;
491 	LIST_HEAD(dop_pending);
492 
493 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
494 
495 	trace_xfs_defer_finish(*tp, _RET_IP_);
496 
497 	/* Until we run out of pending work to finish... */
498 	while (!list_empty(&dop_pending) || !list_empty(&(*tp)->t_dfops)) {
499 		/*
500 		 * Deferred items that are created in the process of finishing
501 		 * other deferred work items should be queued at the head of
502 		 * the pending list, which puts them ahead of the deferred work
503 		 * that was created by the caller.  This keeps the number of
504 		 * pending work items to a minimum, which decreases the amount
505 		 * of time that any one intent item can stick around in memory,
506 		 * pinning the log tail.
507 		 */
508 		xfs_defer_create_intents(*tp);
509 		list_splice_init(&(*tp)->t_dfops, &dop_pending);
510 
511 		error = xfs_defer_trans_roll(tp);
512 		if (error)
513 			goto out_shutdown;
514 
515 		/* Possibly relog intent items to keep the log moving. */
516 		error = xfs_defer_relog(tp, &dop_pending);
517 		if (error)
518 			goto out_shutdown;
519 
520 		dfp = list_first_entry(&dop_pending, struct xfs_defer_pending,
521 				       dfp_list);
522 		error = xfs_defer_finish_one(*tp, dfp);
523 		if (error && error != -EAGAIN)
524 			goto out_shutdown;
525 	}
526 
527 	trace_xfs_defer_finish_done(*tp, _RET_IP_);
528 	return 0;
529 
530 out_shutdown:
531 	xfs_defer_trans_abort(*tp, &dop_pending);
532 	xfs_force_shutdown((*tp)->t_mountp, SHUTDOWN_CORRUPT_INCORE);
533 	trace_xfs_defer_finish_error(*tp, error);
534 	xfs_defer_cancel_list((*tp)->t_mountp, &dop_pending);
535 	xfs_defer_cancel(*tp);
536 	return error;
537 }
538 
539 int
540 xfs_defer_finish(
541 	struct xfs_trans	**tp)
542 {
543 	int			error;
544 
545 	/*
546 	 * Finish and roll the transaction once more to avoid returning to the
547 	 * caller with a dirty transaction.
548 	 */
549 	error = xfs_defer_finish_noroll(tp);
550 	if (error)
551 		return error;
552 	if ((*tp)->t_flags & XFS_TRANS_DIRTY) {
553 		error = xfs_defer_trans_roll(tp);
554 		if (error) {
555 			xfs_force_shutdown((*tp)->t_mountp,
556 					   SHUTDOWN_CORRUPT_INCORE);
557 			return error;
558 		}
559 	}
560 
561 	/* Reset LOWMODE now that we've finished all the dfops. */
562 	ASSERT(list_empty(&(*tp)->t_dfops));
563 	(*tp)->t_flags &= ~XFS_TRANS_LOWMODE;
564 	return 0;
565 }
566 
567 void
568 xfs_defer_cancel(
569 	struct xfs_trans	*tp)
570 {
571 	struct xfs_mount	*mp = tp->t_mountp;
572 
573 	trace_xfs_defer_cancel(tp, _RET_IP_);
574 	xfs_defer_cancel_list(mp, &tp->t_dfops);
575 }
576 
577 /* Add an item for later deferred processing. */
578 void
579 xfs_defer_add(
580 	struct xfs_trans		*tp,
581 	enum xfs_defer_ops_type		type,
582 	struct list_head		*li)
583 {
584 	struct xfs_defer_pending	*dfp = NULL;
585 	const struct xfs_defer_op_type	*ops;
586 
587 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
588 	BUILD_BUG_ON(ARRAY_SIZE(defer_op_types) != XFS_DEFER_OPS_TYPE_MAX);
589 
590 	/*
591 	 * Add the item to a pending item at the end of the intake list.
592 	 * If the last pending item has the same type, reuse it.  Else,
593 	 * create a new pending item at the end of the intake list.
594 	 */
595 	if (!list_empty(&tp->t_dfops)) {
596 		dfp = list_last_entry(&tp->t_dfops,
597 				struct xfs_defer_pending, dfp_list);
598 		ops = defer_op_types[dfp->dfp_type];
599 		if (dfp->dfp_type != type ||
600 		    (ops->max_items && dfp->dfp_count >= ops->max_items))
601 			dfp = NULL;
602 	}
603 	if (!dfp) {
604 		dfp = kmem_cache_zalloc(xfs_defer_pending_cache,
605 				GFP_NOFS | __GFP_NOFAIL);
606 		dfp->dfp_type = type;
607 		dfp->dfp_intent = NULL;
608 		dfp->dfp_done = NULL;
609 		dfp->dfp_count = 0;
610 		INIT_LIST_HEAD(&dfp->dfp_work);
611 		list_add_tail(&dfp->dfp_list, &tp->t_dfops);
612 	}
613 
614 	list_add_tail(li, &dfp->dfp_work);
615 	dfp->dfp_count++;
616 }
617 
618 /*
619  * Move deferred ops from one transaction to another and reset the source to
620  * initial state. This is primarily used to carry state forward across
621  * transaction rolls with pending dfops.
622  */
623 void
624 xfs_defer_move(
625 	struct xfs_trans	*dtp,
626 	struct xfs_trans	*stp)
627 {
628 	list_splice_init(&stp->t_dfops, &dtp->t_dfops);
629 
630 	/*
631 	 * Low free space mode was historically controlled by a dfops field.
632 	 * This meant that low mode state potentially carried across multiple
633 	 * transaction rolls. Transfer low mode on a dfops move to preserve
634 	 * that behavior.
635 	 */
636 	dtp->t_flags |= (stp->t_flags & XFS_TRANS_LOWMODE);
637 	stp->t_flags &= ~XFS_TRANS_LOWMODE;
638 }
639 
640 /*
641  * Prepare a chain of fresh deferred ops work items to be completed later.  Log
642  * recovery requires the ability to put off until later the actual finishing
643  * work so that it can process unfinished items recovered from the log in
644  * correct order.
645  *
646  * Create and log intent items for all the work that we're capturing so that we
647  * can be assured that the items will get replayed if the system goes down
648  * before log recovery gets a chance to finish the work it put off.  The entire
649  * deferred ops state is transferred to the capture structure and the
650  * transaction is then ready for the caller to commit it.  If there are no
651  * intent items to capture, this function returns NULL.
652  *
653  * If capture_ip is not NULL, the capture structure will obtain an extra
654  * reference to the inode.
655  */
656 static struct xfs_defer_capture *
657 xfs_defer_ops_capture(
658 	struct xfs_trans		*tp)
659 {
660 	struct xfs_defer_capture	*dfc;
661 	unsigned short			i;
662 	int				error;
663 
664 	if (list_empty(&tp->t_dfops))
665 		return NULL;
666 
667 	/* Create an object to capture the defer ops. */
668 	dfc = kmem_zalloc(sizeof(*dfc), KM_NOFS);
669 	INIT_LIST_HEAD(&dfc->dfc_list);
670 	INIT_LIST_HEAD(&dfc->dfc_dfops);
671 
672 	xfs_defer_create_intents(tp);
673 
674 	/* Move the dfops chain and transaction state to the capture struct. */
675 	list_splice_init(&tp->t_dfops, &dfc->dfc_dfops);
676 	dfc->dfc_tpflags = tp->t_flags & XFS_TRANS_LOWMODE;
677 	tp->t_flags &= ~XFS_TRANS_LOWMODE;
678 
679 	/* Capture the remaining block reservations along with the dfops. */
680 	dfc->dfc_blkres = tp->t_blk_res - tp->t_blk_res_used;
681 	dfc->dfc_rtxres = tp->t_rtx_res - tp->t_rtx_res_used;
682 
683 	/* Preserve the log reservation size. */
684 	dfc->dfc_logres = tp->t_log_res;
685 
686 	error = xfs_defer_save_resources(&dfc->dfc_held, tp);
687 	if (error) {
688 		/*
689 		 * Resource capture should never fail, but if it does, we
690 		 * still have to shut down the log and release things
691 		 * properly.
692 		 */
693 		xfs_force_shutdown(tp->t_mountp, SHUTDOWN_CORRUPT_INCORE);
694 	}
695 
696 	/*
697 	 * Grab extra references to the inodes and buffers because callers are
698 	 * expected to release their held references after we commit the
699 	 * transaction.
700 	 */
701 	for (i = 0; i < dfc->dfc_held.dr_inos; i++) {
702 		ASSERT(xfs_isilocked(dfc->dfc_held.dr_ip[i], XFS_ILOCK_EXCL));
703 		ihold(VFS_I(dfc->dfc_held.dr_ip[i]));
704 	}
705 
706 	for (i = 0; i < dfc->dfc_held.dr_bufs; i++)
707 		xfs_buf_hold(dfc->dfc_held.dr_bp[i]);
708 
709 	return dfc;
710 }
711 
712 /* Release all resources that we used to capture deferred ops. */
713 void
714 xfs_defer_ops_capture_free(
715 	struct xfs_mount		*mp,
716 	struct xfs_defer_capture	*dfc)
717 {
718 	unsigned short			i;
719 
720 	xfs_defer_cancel_list(mp, &dfc->dfc_dfops);
721 
722 	for (i = 0; i < dfc->dfc_held.dr_bufs; i++)
723 		xfs_buf_relse(dfc->dfc_held.dr_bp[i]);
724 
725 	for (i = 0; i < dfc->dfc_held.dr_inos; i++)
726 		xfs_irele(dfc->dfc_held.dr_ip[i]);
727 
728 	kmem_free(dfc);
729 }
730 
731 /*
732  * Capture any deferred ops and commit the transaction.  This is the last step
733  * needed to finish a log intent item that we recovered from the log.  If any
734  * of the deferred ops operate on an inode, the caller must pass in that inode
735  * so that the reference can be transferred to the capture structure.  The
736  * caller must hold ILOCK_EXCL on the inode, and must unlock it before calling
737  * xfs_defer_ops_continue.
738  */
739 int
740 xfs_defer_ops_capture_and_commit(
741 	struct xfs_trans		*tp,
742 	struct list_head		*capture_list)
743 {
744 	struct xfs_mount		*mp = tp->t_mountp;
745 	struct xfs_defer_capture	*dfc;
746 	int				error;
747 
748 	/* If we don't capture anything, commit transaction and exit. */
749 	dfc = xfs_defer_ops_capture(tp);
750 	if (!dfc)
751 		return xfs_trans_commit(tp);
752 
753 	/* Commit the transaction and add the capture structure to the list. */
754 	error = xfs_trans_commit(tp);
755 	if (error) {
756 		xfs_defer_ops_capture_free(mp, dfc);
757 		return error;
758 	}
759 
760 	list_add_tail(&dfc->dfc_list, capture_list);
761 	return 0;
762 }
763 
764 /*
765  * Attach a chain of captured deferred ops to a new transaction and free the
766  * capture structure.  If an inode was captured, it will be passed back to the
767  * caller with ILOCK_EXCL held and joined to the transaction with lockflags==0.
768  * The caller now owns the inode reference.
769  */
770 void
771 xfs_defer_ops_continue(
772 	struct xfs_defer_capture	*dfc,
773 	struct xfs_trans		*tp,
774 	struct xfs_defer_resources	*dres)
775 {
776 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
777 	ASSERT(!(tp->t_flags & XFS_TRANS_DIRTY));
778 
779 	/* Lock and join the captured inode to the new transaction. */
780 	if (dfc->dfc_held.dr_inos == 2)
781 		xfs_lock_two_inodes(dfc->dfc_held.dr_ip[0], XFS_ILOCK_EXCL,
782 				    dfc->dfc_held.dr_ip[1], XFS_ILOCK_EXCL);
783 	else if (dfc->dfc_held.dr_inos == 1)
784 		xfs_ilock(dfc->dfc_held.dr_ip[0], XFS_ILOCK_EXCL);
785 	xfs_defer_restore_resources(tp, &dfc->dfc_held);
786 	memcpy(dres, &dfc->dfc_held, sizeof(struct xfs_defer_resources));
787 
788 	/* Move captured dfops chain and state to the transaction. */
789 	list_splice_init(&dfc->dfc_dfops, &tp->t_dfops);
790 	tp->t_flags |= dfc->dfc_tpflags;
791 
792 	kmem_free(dfc);
793 }
794 
795 /* Release the resources captured and continued during recovery. */
796 void
797 xfs_defer_resources_rele(
798 	struct xfs_defer_resources	*dres)
799 {
800 	unsigned short			i;
801 
802 	for (i = 0; i < dres->dr_inos; i++) {
803 		xfs_iunlock(dres->dr_ip[i], XFS_ILOCK_EXCL);
804 		xfs_irele(dres->dr_ip[i]);
805 		dres->dr_ip[i] = NULL;
806 	}
807 
808 	for (i = 0; i < dres->dr_bufs; i++) {
809 		xfs_buf_relse(dres->dr_bp[i]);
810 		dres->dr_bp[i] = NULL;
811 	}
812 
813 	dres->dr_inos = 0;
814 	dres->dr_bufs = 0;
815 	dres->dr_ordered = 0;
816 }
817 
818 static inline int __init
819 xfs_defer_init_cache(void)
820 {
821 	xfs_defer_pending_cache = kmem_cache_create("xfs_defer_pending",
822 			sizeof(struct xfs_defer_pending),
823 			0, 0, NULL);
824 
825 	return xfs_defer_pending_cache != NULL ? 0 : -ENOMEM;
826 }
827 
828 static inline void
829 xfs_defer_destroy_cache(void)
830 {
831 	kmem_cache_destroy(xfs_defer_pending_cache);
832 	xfs_defer_pending_cache = NULL;
833 }
834 
835 /* Set up caches for deferred work items. */
836 int __init
837 xfs_defer_init_item_caches(void)
838 {
839 	int				error;
840 
841 	error = xfs_defer_init_cache();
842 	if (error)
843 		return error;
844 	error = xfs_rmap_intent_init_cache();
845 	if (error)
846 		goto err;
847 	error = xfs_refcount_intent_init_cache();
848 	if (error)
849 		goto err;
850 	error = xfs_bmap_intent_init_cache();
851 	if (error)
852 		goto err;
853 
854 	return 0;
855 err:
856 	xfs_defer_destroy_item_caches();
857 	return error;
858 }
859 
860 /* Destroy all the deferred work item caches, if they've been allocated. */
861 void
862 xfs_defer_destroy_item_caches(void)
863 {
864 	xfs_bmap_intent_destroy_cache();
865 	xfs_refcount_intent_destroy_cache();
866 	xfs_rmap_intent_destroy_cache();
867 	xfs_defer_destroy_cache();
868 }
869