1 /* 2 * Copyright (C) 2016 Oracle. All Rights Reserved. 3 * 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it would be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. 19 */ 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_shared.h" 23 #include "xfs_format.h" 24 #include "xfs_log_format.h" 25 #include "xfs_trans_resv.h" 26 #include "xfs_bit.h" 27 #include "xfs_sb.h" 28 #include "xfs_mount.h" 29 #include "xfs_defer.h" 30 #include "xfs_trans.h" 31 #include "xfs_trace.h" 32 33 /* 34 * Deferred Operations in XFS 35 * 36 * Due to the way locking rules work in XFS, certain transactions (block 37 * mapping and unmapping, typically) have permanent reservations so that 38 * we can roll the transaction to adhere to AG locking order rules and 39 * to unlock buffers between metadata updates. Prior to rmap/reflink, 40 * the mapping code had a mechanism to perform these deferrals for 41 * extents that were going to be freed; this code makes that facility 42 * more generic. 43 * 44 * When adding the reverse mapping and reflink features, it became 45 * necessary to perform complex remapping multi-transactions to comply 46 * with AG locking order rules, and to be able to spread a single 47 * refcount update operation (an operation on an n-block extent can 48 * update as many as n records!) among multiple transactions. XFS can 49 * roll a transaction to facilitate this, but using this facility 50 * requires us to log "intent" items in case log recovery needs to 51 * redo the operation, and to log "done" items to indicate that redo 52 * is not necessary. 53 * 54 * Deferred work is tracked in xfs_defer_pending items. Each pending 55 * item tracks one type of deferred work. Incoming work items (which 56 * have not yet had an intent logged) are attached to a pending item 57 * on the dop_intake list, where they wait for the caller to finish 58 * the deferred operations. 59 * 60 * Finishing a set of deferred operations is an involved process. To 61 * start, we define "rolling a deferred-op transaction" as follows: 62 * 63 * > For each xfs_defer_pending item on the dop_intake list, 64 * - Sort the work items in AG order. XFS locking 65 * order rules require us to lock buffers in AG order. 66 * - Create a log intent item for that type. 67 * - Attach it to the pending item. 68 * - Move the pending item from the dop_intake list to the 69 * dop_pending list. 70 * > Roll the transaction. 71 * 72 * NOTE: To avoid exceeding the transaction reservation, we limit the 73 * number of items that we attach to a given xfs_defer_pending. 74 * 75 * The actual finishing process looks like this: 76 * 77 * > For each xfs_defer_pending in the dop_pending list, 78 * - Roll the deferred-op transaction as above. 79 * - Create a log done item for that type, and attach it to the 80 * log intent item. 81 * - For each work item attached to the log intent item, 82 * * Perform the described action. 83 * * Attach the work item to the log done item. 84 * * If the result of doing the work was -EAGAIN, ->finish work 85 * wants a new transaction. See the "Requesting a Fresh 86 * Transaction while Finishing Deferred Work" section below for 87 * details. 88 * 89 * The key here is that we must log an intent item for all pending 90 * work items every time we roll the transaction, and that we must log 91 * a done item as soon as the work is completed. With this mechanism 92 * we can perform complex remapping operations, chaining intent items 93 * as needed. 94 * 95 * Requesting a Fresh Transaction while Finishing Deferred Work 96 * 97 * If ->finish_item decides that it needs a fresh transaction to 98 * finish the work, it must ask its caller (xfs_defer_finish) for a 99 * continuation. The most likely cause of this circumstance are the 100 * refcount adjust functions deciding that they've logged enough items 101 * to be at risk of exceeding the transaction reservation. 102 * 103 * To get a fresh transaction, we want to log the existing log done 104 * item to prevent the log intent item from replaying, immediately log 105 * a new log intent item with the unfinished work items, roll the 106 * transaction, and re-call ->finish_item wherever it left off. The 107 * log done item and the new log intent item must be in the same 108 * transaction or atomicity cannot be guaranteed; defer_finish ensures 109 * that this happens. 110 * 111 * This requires some coordination between ->finish_item and 112 * defer_finish. Upon deciding to request a new transaction, 113 * ->finish_item should update the current work item to reflect the 114 * unfinished work. Next, it should reset the log done item's list 115 * count to the number of items finished, and return -EAGAIN. 116 * defer_finish sees the -EAGAIN, logs the new log intent item 117 * with the remaining work items, and leaves the xfs_defer_pending 118 * item at the head of the dop_work queue. Then it rolls the 119 * transaction and picks up processing where it left off. It is 120 * required that ->finish_item must be careful to leave enough 121 * transaction reservation to fit the new log intent item. 122 * 123 * This is an example of remapping the extent (E, E+B) into file X at 124 * offset A and dealing with the extent (C, C+B) already being mapped 125 * there: 126 * +-------------------------------------------------+ 127 * | Unmap file X startblock C offset A length B | t0 128 * | Intent to reduce refcount for extent (C, B) | 129 * | Intent to remove rmap (X, C, A, B) | 130 * | Intent to free extent (D, 1) (bmbt block) | 131 * | Intent to map (X, A, B) at startblock E | 132 * +-------------------------------------------------+ 133 * | Map file X startblock E offset A length B | t1 134 * | Done mapping (X, E, A, B) | 135 * | Intent to increase refcount for extent (E, B) | 136 * | Intent to add rmap (X, E, A, B) | 137 * +-------------------------------------------------+ 138 * | Reduce refcount for extent (C, B) | t2 139 * | Done reducing refcount for extent (C, 9) | 140 * | Intent to reduce refcount for extent (C+9, B-9) | 141 * | (ran out of space after 9 refcount updates) | 142 * +-------------------------------------------------+ 143 * | Reduce refcount for extent (C+9, B+9) | t3 144 * | Done reducing refcount for extent (C+9, B-9) | 145 * | Increase refcount for extent (E, B) | 146 * | Done increasing refcount for extent (E, B) | 147 * | Intent to free extent (C, B) | 148 * | Intent to free extent (F, 1) (refcountbt block) | 149 * | Intent to remove rmap (F, 1, REFC) | 150 * +-------------------------------------------------+ 151 * | Remove rmap (X, C, A, B) | t4 152 * | Done removing rmap (X, C, A, B) | 153 * | Add rmap (X, E, A, B) | 154 * | Done adding rmap (X, E, A, B) | 155 * | Remove rmap (F, 1, REFC) | 156 * | Done removing rmap (F, 1, REFC) | 157 * +-------------------------------------------------+ 158 * | Free extent (C, B) | t5 159 * | Done freeing extent (C, B) | 160 * | Free extent (D, 1) | 161 * | Done freeing extent (D, 1) | 162 * | Free extent (F, 1) | 163 * | Done freeing extent (F, 1) | 164 * +-------------------------------------------------+ 165 * 166 * If we should crash before t2 commits, log recovery replays 167 * the following intent items: 168 * 169 * - Intent to reduce refcount for extent (C, B) 170 * - Intent to remove rmap (X, C, A, B) 171 * - Intent to free extent (D, 1) (bmbt block) 172 * - Intent to increase refcount for extent (E, B) 173 * - Intent to add rmap (X, E, A, B) 174 * 175 * In the process of recovering, it should also generate and take care 176 * of these intent items: 177 * 178 * - Intent to free extent (C, B) 179 * - Intent to free extent (F, 1) (refcountbt block) 180 * - Intent to remove rmap (F, 1, REFC) 181 * 182 * Note that the continuation requested between t2 and t3 is likely to 183 * reoccur. 184 */ 185 186 static const struct xfs_defer_op_type *defer_op_types[XFS_DEFER_OPS_TYPE_MAX]; 187 188 /* 189 * For each pending item in the intake list, log its intent item and the 190 * associated extents, then add the entire intake list to the end of 191 * the pending list. 192 */ 193 STATIC void 194 xfs_defer_intake_work( 195 struct xfs_trans *tp, 196 struct xfs_defer_ops *dop) 197 { 198 struct list_head *li; 199 struct xfs_defer_pending *dfp; 200 201 list_for_each_entry(dfp, &dop->dop_intake, dfp_list) { 202 dfp->dfp_intent = dfp->dfp_type->create_intent(tp, 203 dfp->dfp_count); 204 trace_xfs_defer_intake_work(tp->t_mountp, dfp); 205 list_sort(tp->t_mountp, &dfp->dfp_work, 206 dfp->dfp_type->diff_items); 207 list_for_each(li, &dfp->dfp_work) 208 dfp->dfp_type->log_item(tp, dfp->dfp_intent, li); 209 } 210 211 list_splice_tail_init(&dop->dop_intake, &dop->dop_pending); 212 } 213 214 /* Abort all the intents that were committed. */ 215 STATIC void 216 xfs_defer_trans_abort( 217 struct xfs_trans *tp, 218 struct xfs_defer_ops *dop, 219 int error) 220 { 221 struct xfs_defer_pending *dfp; 222 223 trace_xfs_defer_trans_abort(tp->t_mountp, dop); 224 225 /* Abort intent items that don't have a done item. */ 226 list_for_each_entry(dfp, &dop->dop_pending, dfp_list) { 227 trace_xfs_defer_pending_abort(tp->t_mountp, dfp); 228 if (dfp->dfp_intent && !dfp->dfp_done) { 229 dfp->dfp_type->abort_intent(dfp->dfp_intent); 230 dfp->dfp_intent = NULL; 231 } 232 } 233 234 /* Shut down FS. */ 235 xfs_force_shutdown(tp->t_mountp, (error == -EFSCORRUPTED) ? 236 SHUTDOWN_CORRUPT_INCORE : SHUTDOWN_META_IO_ERROR); 237 } 238 239 /* Roll a transaction so we can do some deferred op processing. */ 240 STATIC int 241 xfs_defer_trans_roll( 242 struct xfs_trans **tp, 243 struct xfs_defer_ops *dop) 244 { 245 int i; 246 int error; 247 248 /* Log all the joined inodes. */ 249 for (i = 0; i < XFS_DEFER_OPS_NR_INODES && dop->dop_inodes[i]; i++) 250 xfs_trans_log_inode(*tp, dop->dop_inodes[i], XFS_ILOG_CORE); 251 252 trace_xfs_defer_trans_roll((*tp)->t_mountp, dop); 253 254 /* Roll the transaction. */ 255 error = xfs_trans_roll(tp); 256 if (error) { 257 trace_xfs_defer_trans_roll_error((*tp)->t_mountp, dop, error); 258 xfs_defer_trans_abort(*tp, dop, error); 259 return error; 260 } 261 dop->dop_committed = true; 262 263 /* Rejoin the joined inodes. */ 264 for (i = 0; i < XFS_DEFER_OPS_NR_INODES && dop->dop_inodes[i]; i++) 265 xfs_trans_ijoin(*tp, dop->dop_inodes[i], 0); 266 267 return error; 268 } 269 270 /* Do we have any work items to finish? */ 271 bool 272 xfs_defer_has_unfinished_work( 273 struct xfs_defer_ops *dop) 274 { 275 return !list_empty(&dop->dop_pending) || !list_empty(&dop->dop_intake); 276 } 277 278 /* 279 * Add this inode to the deferred op. Each joined inode is relogged 280 * each time we roll the transaction. 281 */ 282 int 283 xfs_defer_ijoin( 284 struct xfs_defer_ops *dop, 285 struct xfs_inode *ip) 286 { 287 int i; 288 289 for (i = 0; i < XFS_DEFER_OPS_NR_INODES; i++) { 290 if (dop->dop_inodes[i] == ip) 291 return 0; 292 else if (dop->dop_inodes[i] == NULL) { 293 dop->dop_inodes[i] = ip; 294 return 0; 295 } 296 } 297 298 return -EFSCORRUPTED; 299 } 300 301 /* 302 * Finish all the pending work. This involves logging intent items for 303 * any work items that wandered in since the last transaction roll (if 304 * one has even happened), rolling the transaction, and finishing the 305 * work items in the first item on the logged-and-pending list. 306 * 307 * If an inode is provided, relog it to the new transaction. 308 */ 309 int 310 xfs_defer_finish( 311 struct xfs_trans **tp, 312 struct xfs_defer_ops *dop) 313 { 314 struct xfs_defer_pending *dfp; 315 struct list_head *li; 316 struct list_head *n; 317 void *state; 318 int error = 0; 319 void (*cleanup_fn)(struct xfs_trans *, void *, int); 320 321 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 322 323 trace_xfs_defer_finish((*tp)->t_mountp, dop); 324 325 /* Until we run out of pending work to finish... */ 326 while (xfs_defer_has_unfinished_work(dop)) { 327 /* Log intents for work items sitting in the intake. */ 328 xfs_defer_intake_work(*tp, dop); 329 330 /* Roll the transaction. */ 331 error = xfs_defer_trans_roll(tp, dop); 332 if (error) 333 goto out; 334 335 /* Log an intent-done item for the first pending item. */ 336 dfp = list_first_entry(&dop->dop_pending, 337 struct xfs_defer_pending, dfp_list); 338 trace_xfs_defer_pending_finish((*tp)->t_mountp, dfp); 339 dfp->dfp_done = dfp->dfp_type->create_done(*tp, dfp->dfp_intent, 340 dfp->dfp_count); 341 cleanup_fn = dfp->dfp_type->finish_cleanup; 342 343 /* Finish the work items. */ 344 state = NULL; 345 list_for_each_safe(li, n, &dfp->dfp_work) { 346 list_del(li); 347 dfp->dfp_count--; 348 error = dfp->dfp_type->finish_item(*tp, dop, li, 349 dfp->dfp_done, &state); 350 if (error == -EAGAIN) { 351 /* 352 * Caller wants a fresh transaction; 353 * put the work item back on the list 354 * and jump out. 355 */ 356 list_add(li, &dfp->dfp_work); 357 dfp->dfp_count++; 358 break; 359 } else if (error) { 360 /* 361 * Clean up after ourselves and jump out. 362 * xfs_defer_cancel will take care of freeing 363 * all these lists and stuff. 364 */ 365 if (cleanup_fn) 366 cleanup_fn(*tp, state, error); 367 xfs_defer_trans_abort(*tp, dop, error); 368 goto out; 369 } 370 } 371 if (error == -EAGAIN) { 372 /* 373 * Caller wants a fresh transaction, so log a 374 * new log intent item to replace the old one 375 * and roll the transaction. See "Requesting 376 * a Fresh Transaction while Finishing 377 * Deferred Work" above. 378 */ 379 dfp->dfp_intent = dfp->dfp_type->create_intent(*tp, 380 dfp->dfp_count); 381 dfp->dfp_done = NULL; 382 list_for_each(li, &dfp->dfp_work) 383 dfp->dfp_type->log_item(*tp, dfp->dfp_intent, 384 li); 385 } else { 386 /* Done with the dfp, free it. */ 387 list_del(&dfp->dfp_list); 388 kmem_free(dfp); 389 } 390 391 if (cleanup_fn) 392 cleanup_fn(*tp, state, error); 393 } 394 395 out: 396 if (error) 397 trace_xfs_defer_finish_error((*tp)->t_mountp, dop, error); 398 else 399 trace_xfs_defer_finish_done((*tp)->t_mountp, dop); 400 return error; 401 } 402 403 /* 404 * Free up any items left in the list. 405 */ 406 void 407 xfs_defer_cancel( 408 struct xfs_defer_ops *dop) 409 { 410 struct xfs_defer_pending *dfp; 411 struct xfs_defer_pending *pli; 412 struct list_head *pwi; 413 struct list_head *n; 414 415 trace_xfs_defer_cancel(NULL, dop); 416 417 /* 418 * Free the pending items. Caller should already have arranged 419 * for the intent items to be released. 420 */ 421 list_for_each_entry_safe(dfp, pli, &dop->dop_intake, dfp_list) { 422 trace_xfs_defer_intake_cancel(NULL, dfp); 423 list_del(&dfp->dfp_list); 424 list_for_each_safe(pwi, n, &dfp->dfp_work) { 425 list_del(pwi); 426 dfp->dfp_count--; 427 dfp->dfp_type->cancel_item(pwi); 428 } 429 ASSERT(dfp->dfp_count == 0); 430 kmem_free(dfp); 431 } 432 list_for_each_entry_safe(dfp, pli, &dop->dop_pending, dfp_list) { 433 trace_xfs_defer_pending_cancel(NULL, dfp); 434 list_del(&dfp->dfp_list); 435 list_for_each_safe(pwi, n, &dfp->dfp_work) { 436 list_del(pwi); 437 dfp->dfp_count--; 438 dfp->dfp_type->cancel_item(pwi); 439 } 440 ASSERT(dfp->dfp_count == 0); 441 kmem_free(dfp); 442 } 443 } 444 445 /* Add an item for later deferred processing. */ 446 void 447 xfs_defer_add( 448 struct xfs_defer_ops *dop, 449 enum xfs_defer_ops_type type, 450 struct list_head *li) 451 { 452 struct xfs_defer_pending *dfp = NULL; 453 454 /* 455 * Add the item to a pending item at the end of the intake list. 456 * If the last pending item has the same type, reuse it. Else, 457 * create a new pending item at the end of the intake list. 458 */ 459 if (!list_empty(&dop->dop_intake)) { 460 dfp = list_last_entry(&dop->dop_intake, 461 struct xfs_defer_pending, dfp_list); 462 if (dfp->dfp_type->type != type || 463 (dfp->dfp_type->max_items && 464 dfp->dfp_count >= dfp->dfp_type->max_items)) 465 dfp = NULL; 466 } 467 if (!dfp) { 468 dfp = kmem_alloc(sizeof(struct xfs_defer_pending), 469 KM_SLEEP | KM_NOFS); 470 dfp->dfp_type = defer_op_types[type]; 471 dfp->dfp_intent = NULL; 472 dfp->dfp_done = NULL; 473 dfp->dfp_count = 0; 474 INIT_LIST_HEAD(&dfp->dfp_work); 475 list_add_tail(&dfp->dfp_list, &dop->dop_intake); 476 } 477 478 list_add_tail(li, &dfp->dfp_work); 479 dfp->dfp_count++; 480 } 481 482 /* Initialize a deferred operation list. */ 483 void 484 xfs_defer_init_op_type( 485 const struct xfs_defer_op_type *type) 486 { 487 defer_op_types[type->type] = type; 488 } 489 490 /* Initialize a deferred operation. */ 491 void 492 xfs_defer_init( 493 struct xfs_defer_ops *dop, 494 xfs_fsblock_t *fbp) 495 { 496 dop->dop_committed = false; 497 dop->dop_low = false; 498 memset(&dop->dop_inodes, 0, sizeof(dop->dop_inodes)); 499 *fbp = NULLFSBLOCK; 500 INIT_LIST_HEAD(&dop->dop_intake); 501 INIT_LIST_HEAD(&dop->dop_pending); 502 trace_xfs_defer_init(NULL, dop); 503 } 504