xref: /openbmc/linux/fs/xfs/libxfs/xfs_defer.c (revision df0e68c1)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_inode.h"
17 #include "xfs_inode_item.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_log.h"
21 #include "xfs_rmap.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap.h"
24 #include "xfs_alloc.h"
25 
26 static struct kmem_cache	*xfs_defer_pending_cache;
27 
28 /*
29  * Deferred Operations in XFS
30  *
31  * Due to the way locking rules work in XFS, certain transactions (block
32  * mapping and unmapping, typically) have permanent reservations so that
33  * we can roll the transaction to adhere to AG locking order rules and
34  * to unlock buffers between metadata updates.  Prior to rmap/reflink,
35  * the mapping code had a mechanism to perform these deferrals for
36  * extents that were going to be freed; this code makes that facility
37  * more generic.
38  *
39  * When adding the reverse mapping and reflink features, it became
40  * necessary to perform complex remapping multi-transactions to comply
41  * with AG locking order rules, and to be able to spread a single
42  * refcount update operation (an operation on an n-block extent can
43  * update as many as n records!) among multiple transactions.  XFS can
44  * roll a transaction to facilitate this, but using this facility
45  * requires us to log "intent" items in case log recovery needs to
46  * redo the operation, and to log "done" items to indicate that redo
47  * is not necessary.
48  *
49  * Deferred work is tracked in xfs_defer_pending items.  Each pending
50  * item tracks one type of deferred work.  Incoming work items (which
51  * have not yet had an intent logged) are attached to a pending item
52  * on the dop_intake list, where they wait for the caller to finish
53  * the deferred operations.
54  *
55  * Finishing a set of deferred operations is an involved process.  To
56  * start, we define "rolling a deferred-op transaction" as follows:
57  *
58  * > For each xfs_defer_pending item on the dop_intake list,
59  *   - Sort the work items in AG order.  XFS locking
60  *     order rules require us to lock buffers in AG order.
61  *   - Create a log intent item for that type.
62  *   - Attach it to the pending item.
63  *   - Move the pending item from the dop_intake list to the
64  *     dop_pending list.
65  * > Roll the transaction.
66  *
67  * NOTE: To avoid exceeding the transaction reservation, we limit the
68  * number of items that we attach to a given xfs_defer_pending.
69  *
70  * The actual finishing process looks like this:
71  *
72  * > For each xfs_defer_pending in the dop_pending list,
73  *   - Roll the deferred-op transaction as above.
74  *   - Create a log done item for that type, and attach it to the
75  *     log intent item.
76  *   - For each work item attached to the log intent item,
77  *     * Perform the described action.
78  *     * Attach the work item to the log done item.
79  *     * If the result of doing the work was -EAGAIN, ->finish work
80  *       wants a new transaction.  See the "Requesting a Fresh
81  *       Transaction while Finishing Deferred Work" section below for
82  *       details.
83  *
84  * The key here is that we must log an intent item for all pending
85  * work items every time we roll the transaction, and that we must log
86  * a done item as soon as the work is completed.  With this mechanism
87  * we can perform complex remapping operations, chaining intent items
88  * as needed.
89  *
90  * Requesting a Fresh Transaction while Finishing Deferred Work
91  *
92  * If ->finish_item decides that it needs a fresh transaction to
93  * finish the work, it must ask its caller (xfs_defer_finish) for a
94  * continuation.  The most likely cause of this circumstance are the
95  * refcount adjust functions deciding that they've logged enough items
96  * to be at risk of exceeding the transaction reservation.
97  *
98  * To get a fresh transaction, we want to log the existing log done
99  * item to prevent the log intent item from replaying, immediately log
100  * a new log intent item with the unfinished work items, roll the
101  * transaction, and re-call ->finish_item wherever it left off.  The
102  * log done item and the new log intent item must be in the same
103  * transaction or atomicity cannot be guaranteed; defer_finish ensures
104  * that this happens.
105  *
106  * This requires some coordination between ->finish_item and
107  * defer_finish.  Upon deciding to request a new transaction,
108  * ->finish_item should update the current work item to reflect the
109  * unfinished work.  Next, it should reset the log done item's list
110  * count to the number of items finished, and return -EAGAIN.
111  * defer_finish sees the -EAGAIN, logs the new log intent item
112  * with the remaining work items, and leaves the xfs_defer_pending
113  * item at the head of the dop_work queue.  Then it rolls the
114  * transaction and picks up processing where it left off.  It is
115  * required that ->finish_item must be careful to leave enough
116  * transaction reservation to fit the new log intent item.
117  *
118  * This is an example of remapping the extent (E, E+B) into file X at
119  * offset A and dealing with the extent (C, C+B) already being mapped
120  * there:
121  * +-------------------------------------------------+
122  * | Unmap file X startblock C offset A length B     | t0
123  * | Intent to reduce refcount for extent (C, B)     |
124  * | Intent to remove rmap (X, C, A, B)              |
125  * | Intent to free extent (D, 1) (bmbt block)       |
126  * | Intent to map (X, A, B) at startblock E         |
127  * +-------------------------------------------------+
128  * | Map file X startblock E offset A length B       | t1
129  * | Done mapping (X, E, A, B)                       |
130  * | Intent to increase refcount for extent (E, B)   |
131  * | Intent to add rmap (X, E, A, B)                 |
132  * +-------------------------------------------------+
133  * | Reduce refcount for extent (C, B)               | t2
134  * | Done reducing refcount for extent (C, 9)        |
135  * | Intent to reduce refcount for extent (C+9, B-9) |
136  * | (ran out of space after 9 refcount updates)     |
137  * +-------------------------------------------------+
138  * | Reduce refcount for extent (C+9, B+9)           | t3
139  * | Done reducing refcount for extent (C+9, B-9)    |
140  * | Increase refcount for extent (E, B)             |
141  * | Done increasing refcount for extent (E, B)      |
142  * | Intent to free extent (C, B)                    |
143  * | Intent to free extent (F, 1) (refcountbt block) |
144  * | Intent to remove rmap (F, 1, REFC)              |
145  * +-------------------------------------------------+
146  * | Remove rmap (X, C, A, B)                        | t4
147  * | Done removing rmap (X, C, A, B)                 |
148  * | Add rmap (X, E, A, B)                           |
149  * | Done adding rmap (X, E, A, B)                   |
150  * | Remove rmap (F, 1, REFC)                        |
151  * | Done removing rmap (F, 1, REFC)                 |
152  * +-------------------------------------------------+
153  * | Free extent (C, B)                              | t5
154  * | Done freeing extent (C, B)                      |
155  * | Free extent (D, 1)                              |
156  * | Done freeing extent (D, 1)                      |
157  * | Free extent (F, 1)                              |
158  * | Done freeing extent (F, 1)                      |
159  * +-------------------------------------------------+
160  *
161  * If we should crash before t2 commits, log recovery replays
162  * the following intent items:
163  *
164  * - Intent to reduce refcount for extent (C, B)
165  * - Intent to remove rmap (X, C, A, B)
166  * - Intent to free extent (D, 1) (bmbt block)
167  * - Intent to increase refcount for extent (E, B)
168  * - Intent to add rmap (X, E, A, B)
169  *
170  * In the process of recovering, it should also generate and take care
171  * of these intent items:
172  *
173  * - Intent to free extent (C, B)
174  * - Intent to free extent (F, 1) (refcountbt block)
175  * - Intent to remove rmap (F, 1, REFC)
176  *
177  * Note that the continuation requested between t2 and t3 is likely to
178  * reoccur.
179  */
180 
181 static const struct xfs_defer_op_type *defer_op_types[] = {
182 	[XFS_DEFER_OPS_TYPE_BMAP]	= &xfs_bmap_update_defer_type,
183 	[XFS_DEFER_OPS_TYPE_REFCOUNT]	= &xfs_refcount_update_defer_type,
184 	[XFS_DEFER_OPS_TYPE_RMAP]	= &xfs_rmap_update_defer_type,
185 	[XFS_DEFER_OPS_TYPE_FREE]	= &xfs_extent_free_defer_type,
186 	[XFS_DEFER_OPS_TYPE_AGFL_FREE]	= &xfs_agfl_free_defer_type,
187 };
188 
189 static void
190 xfs_defer_create_intent(
191 	struct xfs_trans		*tp,
192 	struct xfs_defer_pending	*dfp,
193 	bool				sort)
194 {
195 	const struct xfs_defer_op_type	*ops = defer_op_types[dfp->dfp_type];
196 
197 	if (!dfp->dfp_intent)
198 		dfp->dfp_intent = ops->create_intent(tp, &dfp->dfp_work,
199 						     dfp->dfp_count, sort);
200 }
201 
202 /*
203  * For each pending item in the intake list, log its intent item and the
204  * associated extents, then add the entire intake list to the end of
205  * the pending list.
206  */
207 STATIC void
208 xfs_defer_create_intents(
209 	struct xfs_trans		*tp)
210 {
211 	struct xfs_defer_pending	*dfp;
212 
213 	list_for_each_entry(dfp, &tp->t_dfops, dfp_list) {
214 		trace_xfs_defer_create_intent(tp->t_mountp, dfp);
215 		xfs_defer_create_intent(tp, dfp, true);
216 	}
217 }
218 
219 /* Abort all the intents that were committed. */
220 STATIC void
221 xfs_defer_trans_abort(
222 	struct xfs_trans		*tp,
223 	struct list_head		*dop_pending)
224 {
225 	struct xfs_defer_pending	*dfp;
226 	const struct xfs_defer_op_type	*ops;
227 
228 	trace_xfs_defer_trans_abort(tp, _RET_IP_);
229 
230 	/* Abort intent items that don't have a done item. */
231 	list_for_each_entry(dfp, dop_pending, dfp_list) {
232 		ops = defer_op_types[dfp->dfp_type];
233 		trace_xfs_defer_pending_abort(tp->t_mountp, dfp);
234 		if (dfp->dfp_intent && !dfp->dfp_done) {
235 			ops->abort_intent(dfp->dfp_intent);
236 			dfp->dfp_intent = NULL;
237 		}
238 	}
239 }
240 
241 /*
242  * Capture resources that the caller said not to release ("held") when the
243  * transaction commits.  Caller is responsible for zero-initializing @dres.
244  */
245 static int
246 xfs_defer_save_resources(
247 	struct xfs_defer_resources	*dres,
248 	struct xfs_trans		*tp)
249 {
250 	struct xfs_buf_log_item		*bli;
251 	struct xfs_inode_log_item	*ili;
252 	struct xfs_log_item		*lip;
253 
254 	BUILD_BUG_ON(NBBY * sizeof(dres->dr_ordered) < XFS_DEFER_OPS_NR_BUFS);
255 
256 	list_for_each_entry(lip, &tp->t_items, li_trans) {
257 		switch (lip->li_type) {
258 		case XFS_LI_BUF:
259 			bli = container_of(lip, struct xfs_buf_log_item,
260 					   bli_item);
261 			if (bli->bli_flags & XFS_BLI_HOLD) {
262 				if (dres->dr_bufs >= XFS_DEFER_OPS_NR_BUFS) {
263 					ASSERT(0);
264 					return -EFSCORRUPTED;
265 				}
266 				if (bli->bli_flags & XFS_BLI_ORDERED)
267 					dres->dr_ordered |=
268 							(1U << dres->dr_bufs);
269 				else
270 					xfs_trans_dirty_buf(tp, bli->bli_buf);
271 				dres->dr_bp[dres->dr_bufs++] = bli->bli_buf;
272 			}
273 			break;
274 		case XFS_LI_INODE:
275 			ili = container_of(lip, struct xfs_inode_log_item,
276 					   ili_item);
277 			if (ili->ili_lock_flags == 0) {
278 				if (dres->dr_inos >= XFS_DEFER_OPS_NR_INODES) {
279 					ASSERT(0);
280 					return -EFSCORRUPTED;
281 				}
282 				xfs_trans_log_inode(tp, ili->ili_inode,
283 						    XFS_ILOG_CORE);
284 				dres->dr_ip[dres->dr_inos++] = ili->ili_inode;
285 			}
286 			break;
287 		default:
288 			break;
289 		}
290 	}
291 
292 	return 0;
293 }
294 
295 /* Attach the held resources to the transaction. */
296 static void
297 xfs_defer_restore_resources(
298 	struct xfs_trans		*tp,
299 	struct xfs_defer_resources	*dres)
300 {
301 	unsigned short			i;
302 
303 	/* Rejoin the joined inodes. */
304 	for (i = 0; i < dres->dr_inos; i++)
305 		xfs_trans_ijoin(tp, dres->dr_ip[i], 0);
306 
307 	/* Rejoin the buffers and dirty them so the log moves forward. */
308 	for (i = 0; i < dres->dr_bufs; i++) {
309 		xfs_trans_bjoin(tp, dres->dr_bp[i]);
310 		if (dres->dr_ordered & (1U << i))
311 			xfs_trans_ordered_buf(tp, dres->dr_bp[i]);
312 		xfs_trans_bhold(tp, dres->dr_bp[i]);
313 	}
314 }
315 
316 /* Roll a transaction so we can do some deferred op processing. */
317 STATIC int
318 xfs_defer_trans_roll(
319 	struct xfs_trans		**tpp)
320 {
321 	struct xfs_defer_resources	dres = { };
322 	int				error;
323 
324 	error = xfs_defer_save_resources(&dres, *tpp);
325 	if (error)
326 		return error;
327 
328 	trace_xfs_defer_trans_roll(*tpp, _RET_IP_);
329 
330 	/*
331 	 * Roll the transaction.  Rolling always given a new transaction (even
332 	 * if committing the old one fails!) to hand back to the caller, so we
333 	 * join the held resources to the new transaction so that we always
334 	 * return with the held resources joined to @tpp, no matter what
335 	 * happened.
336 	 */
337 	error = xfs_trans_roll(tpp);
338 
339 	xfs_defer_restore_resources(*tpp, &dres);
340 
341 	if (error)
342 		trace_xfs_defer_trans_roll_error(*tpp, error);
343 	return error;
344 }
345 
346 /*
347  * Free up any items left in the list.
348  */
349 static void
350 xfs_defer_cancel_list(
351 	struct xfs_mount		*mp,
352 	struct list_head		*dop_list)
353 {
354 	struct xfs_defer_pending	*dfp;
355 	struct xfs_defer_pending	*pli;
356 	struct list_head		*pwi;
357 	struct list_head		*n;
358 	const struct xfs_defer_op_type	*ops;
359 
360 	/*
361 	 * Free the pending items.  Caller should already have arranged
362 	 * for the intent items to be released.
363 	 */
364 	list_for_each_entry_safe(dfp, pli, dop_list, dfp_list) {
365 		ops = defer_op_types[dfp->dfp_type];
366 		trace_xfs_defer_cancel_list(mp, dfp);
367 		list_del(&dfp->dfp_list);
368 		list_for_each_safe(pwi, n, &dfp->dfp_work) {
369 			list_del(pwi);
370 			dfp->dfp_count--;
371 			ops->cancel_item(pwi);
372 		}
373 		ASSERT(dfp->dfp_count == 0);
374 		kmem_cache_free(xfs_defer_pending_cache, dfp);
375 	}
376 }
377 
378 /*
379  * Prevent a log intent item from pinning the tail of the log by logging a
380  * done item to release the intent item; and then log a new intent item.
381  * The caller should provide a fresh transaction and roll it after we're done.
382  */
383 static int
384 xfs_defer_relog(
385 	struct xfs_trans		**tpp,
386 	struct list_head		*dfops)
387 {
388 	struct xlog			*log = (*tpp)->t_mountp->m_log;
389 	struct xfs_defer_pending	*dfp;
390 	xfs_lsn_t			threshold_lsn = NULLCOMMITLSN;
391 
392 
393 	ASSERT((*tpp)->t_flags & XFS_TRANS_PERM_LOG_RES);
394 
395 	list_for_each_entry(dfp, dfops, dfp_list) {
396 		/*
397 		 * If the log intent item for this deferred op is not a part of
398 		 * the current log checkpoint, relog the intent item to keep
399 		 * the log tail moving forward.  We're ok with this being racy
400 		 * because an incorrect decision means we'll be a little slower
401 		 * at pushing the tail.
402 		 */
403 		if (dfp->dfp_intent == NULL ||
404 		    xfs_log_item_in_current_chkpt(dfp->dfp_intent))
405 			continue;
406 
407 		/*
408 		 * Figure out where we need the tail to be in order to maintain
409 		 * the minimum required free space in the log.  Only sample
410 		 * the log threshold once per call.
411 		 */
412 		if (threshold_lsn == NULLCOMMITLSN) {
413 			threshold_lsn = xlog_grant_push_threshold(log, 0);
414 			if (threshold_lsn == NULLCOMMITLSN)
415 				break;
416 		}
417 		if (XFS_LSN_CMP(dfp->dfp_intent->li_lsn, threshold_lsn) >= 0)
418 			continue;
419 
420 		trace_xfs_defer_relog_intent((*tpp)->t_mountp, dfp);
421 		XFS_STATS_INC((*tpp)->t_mountp, defer_relog);
422 		dfp->dfp_intent = xfs_trans_item_relog(dfp->dfp_intent, *tpp);
423 	}
424 
425 	if ((*tpp)->t_flags & XFS_TRANS_DIRTY)
426 		return xfs_defer_trans_roll(tpp);
427 	return 0;
428 }
429 
430 /*
431  * Log an intent-done item for the first pending intent, and finish the work
432  * items.
433  */
434 static int
435 xfs_defer_finish_one(
436 	struct xfs_trans		*tp,
437 	struct xfs_defer_pending	*dfp)
438 {
439 	const struct xfs_defer_op_type	*ops = defer_op_types[dfp->dfp_type];
440 	struct xfs_btree_cur		*state = NULL;
441 	struct list_head		*li, *n;
442 	int				error;
443 
444 	trace_xfs_defer_pending_finish(tp->t_mountp, dfp);
445 
446 	dfp->dfp_done = ops->create_done(tp, dfp->dfp_intent, dfp->dfp_count);
447 	list_for_each_safe(li, n, &dfp->dfp_work) {
448 		list_del(li);
449 		dfp->dfp_count--;
450 		error = ops->finish_item(tp, dfp->dfp_done, li, &state);
451 		if (error == -EAGAIN) {
452 			/*
453 			 * Caller wants a fresh transaction; put the work item
454 			 * back on the list and log a new log intent item to
455 			 * replace the old one.  See "Requesting a Fresh
456 			 * Transaction while Finishing Deferred Work" above.
457 			 */
458 			list_add(li, &dfp->dfp_work);
459 			dfp->dfp_count++;
460 			dfp->dfp_done = NULL;
461 			dfp->dfp_intent = NULL;
462 			xfs_defer_create_intent(tp, dfp, false);
463 		}
464 
465 		if (error)
466 			goto out;
467 	}
468 
469 	/* Done with the dfp, free it. */
470 	list_del(&dfp->dfp_list);
471 	kmem_cache_free(xfs_defer_pending_cache, dfp);
472 out:
473 	if (ops->finish_cleanup)
474 		ops->finish_cleanup(tp, state, error);
475 	return error;
476 }
477 
478 /*
479  * Finish all the pending work.  This involves logging intent items for
480  * any work items that wandered in since the last transaction roll (if
481  * one has even happened), rolling the transaction, and finishing the
482  * work items in the first item on the logged-and-pending list.
483  *
484  * If an inode is provided, relog it to the new transaction.
485  */
486 int
487 xfs_defer_finish_noroll(
488 	struct xfs_trans		**tp)
489 {
490 	struct xfs_defer_pending	*dfp;
491 	int				error = 0;
492 	LIST_HEAD(dop_pending);
493 
494 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
495 
496 	trace_xfs_defer_finish(*tp, _RET_IP_);
497 
498 	/* Until we run out of pending work to finish... */
499 	while (!list_empty(&dop_pending) || !list_empty(&(*tp)->t_dfops)) {
500 		/*
501 		 * Deferred items that are created in the process of finishing
502 		 * other deferred work items should be queued at the head of
503 		 * the pending list, which puts them ahead of the deferred work
504 		 * that was created by the caller.  This keeps the number of
505 		 * pending work items to a minimum, which decreases the amount
506 		 * of time that any one intent item can stick around in memory,
507 		 * pinning the log tail.
508 		 */
509 		xfs_defer_create_intents(*tp);
510 		list_splice_init(&(*tp)->t_dfops, &dop_pending);
511 
512 		error = xfs_defer_trans_roll(tp);
513 		if (error)
514 			goto out_shutdown;
515 
516 		/* Possibly relog intent items to keep the log moving. */
517 		error = xfs_defer_relog(tp, &dop_pending);
518 		if (error)
519 			goto out_shutdown;
520 
521 		dfp = list_first_entry(&dop_pending, struct xfs_defer_pending,
522 				       dfp_list);
523 		error = xfs_defer_finish_one(*tp, dfp);
524 		if (error && error != -EAGAIN)
525 			goto out_shutdown;
526 	}
527 
528 	trace_xfs_defer_finish_done(*tp, _RET_IP_);
529 	return 0;
530 
531 out_shutdown:
532 	xfs_defer_trans_abort(*tp, &dop_pending);
533 	xfs_force_shutdown((*tp)->t_mountp, SHUTDOWN_CORRUPT_INCORE);
534 	trace_xfs_defer_finish_error(*tp, error);
535 	xfs_defer_cancel_list((*tp)->t_mountp, &dop_pending);
536 	xfs_defer_cancel(*tp);
537 	return error;
538 }
539 
540 int
541 xfs_defer_finish(
542 	struct xfs_trans	**tp)
543 {
544 	int			error;
545 
546 	/*
547 	 * Finish and roll the transaction once more to avoid returning to the
548 	 * caller with a dirty transaction.
549 	 */
550 	error = xfs_defer_finish_noroll(tp);
551 	if (error)
552 		return error;
553 	if ((*tp)->t_flags & XFS_TRANS_DIRTY) {
554 		error = xfs_defer_trans_roll(tp);
555 		if (error) {
556 			xfs_force_shutdown((*tp)->t_mountp,
557 					   SHUTDOWN_CORRUPT_INCORE);
558 			return error;
559 		}
560 	}
561 
562 	/* Reset LOWMODE now that we've finished all the dfops. */
563 	ASSERT(list_empty(&(*tp)->t_dfops));
564 	(*tp)->t_flags &= ~XFS_TRANS_LOWMODE;
565 	return 0;
566 }
567 
568 void
569 xfs_defer_cancel(
570 	struct xfs_trans	*tp)
571 {
572 	struct xfs_mount	*mp = tp->t_mountp;
573 
574 	trace_xfs_defer_cancel(tp, _RET_IP_);
575 	xfs_defer_cancel_list(mp, &tp->t_dfops);
576 }
577 
578 /* Add an item for later deferred processing. */
579 void
580 xfs_defer_add(
581 	struct xfs_trans		*tp,
582 	enum xfs_defer_ops_type		type,
583 	struct list_head		*li)
584 {
585 	struct xfs_defer_pending	*dfp = NULL;
586 	const struct xfs_defer_op_type	*ops;
587 
588 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
589 	BUILD_BUG_ON(ARRAY_SIZE(defer_op_types) != XFS_DEFER_OPS_TYPE_MAX);
590 
591 	/*
592 	 * Add the item to a pending item at the end of the intake list.
593 	 * If the last pending item has the same type, reuse it.  Else,
594 	 * create a new pending item at the end of the intake list.
595 	 */
596 	if (!list_empty(&tp->t_dfops)) {
597 		dfp = list_last_entry(&tp->t_dfops,
598 				struct xfs_defer_pending, dfp_list);
599 		ops = defer_op_types[dfp->dfp_type];
600 		if (dfp->dfp_type != type ||
601 		    (ops->max_items && dfp->dfp_count >= ops->max_items))
602 			dfp = NULL;
603 	}
604 	if (!dfp) {
605 		dfp = kmem_cache_zalloc(xfs_defer_pending_cache,
606 				GFP_NOFS | __GFP_NOFAIL);
607 		dfp->dfp_type = type;
608 		dfp->dfp_intent = NULL;
609 		dfp->dfp_done = NULL;
610 		dfp->dfp_count = 0;
611 		INIT_LIST_HEAD(&dfp->dfp_work);
612 		list_add_tail(&dfp->dfp_list, &tp->t_dfops);
613 	}
614 
615 	list_add_tail(li, &dfp->dfp_work);
616 	dfp->dfp_count++;
617 }
618 
619 /*
620  * Move deferred ops from one transaction to another and reset the source to
621  * initial state. This is primarily used to carry state forward across
622  * transaction rolls with pending dfops.
623  */
624 void
625 xfs_defer_move(
626 	struct xfs_trans	*dtp,
627 	struct xfs_trans	*stp)
628 {
629 	list_splice_init(&stp->t_dfops, &dtp->t_dfops);
630 
631 	/*
632 	 * Low free space mode was historically controlled by a dfops field.
633 	 * This meant that low mode state potentially carried across multiple
634 	 * transaction rolls. Transfer low mode on a dfops move to preserve
635 	 * that behavior.
636 	 */
637 	dtp->t_flags |= (stp->t_flags & XFS_TRANS_LOWMODE);
638 	stp->t_flags &= ~XFS_TRANS_LOWMODE;
639 }
640 
641 /*
642  * Prepare a chain of fresh deferred ops work items to be completed later.  Log
643  * recovery requires the ability to put off until later the actual finishing
644  * work so that it can process unfinished items recovered from the log in
645  * correct order.
646  *
647  * Create and log intent items for all the work that we're capturing so that we
648  * can be assured that the items will get replayed if the system goes down
649  * before log recovery gets a chance to finish the work it put off.  The entire
650  * deferred ops state is transferred to the capture structure and the
651  * transaction is then ready for the caller to commit it.  If there are no
652  * intent items to capture, this function returns NULL.
653  *
654  * If capture_ip is not NULL, the capture structure will obtain an extra
655  * reference to the inode.
656  */
657 static struct xfs_defer_capture *
658 xfs_defer_ops_capture(
659 	struct xfs_trans		*tp)
660 {
661 	struct xfs_defer_capture	*dfc;
662 	unsigned short			i;
663 	int				error;
664 
665 	if (list_empty(&tp->t_dfops))
666 		return NULL;
667 
668 	/* Create an object to capture the defer ops. */
669 	dfc = kmem_zalloc(sizeof(*dfc), KM_NOFS);
670 	INIT_LIST_HEAD(&dfc->dfc_list);
671 	INIT_LIST_HEAD(&dfc->dfc_dfops);
672 
673 	xfs_defer_create_intents(tp);
674 
675 	/* Move the dfops chain and transaction state to the capture struct. */
676 	list_splice_init(&tp->t_dfops, &dfc->dfc_dfops);
677 	dfc->dfc_tpflags = tp->t_flags & XFS_TRANS_LOWMODE;
678 	tp->t_flags &= ~XFS_TRANS_LOWMODE;
679 
680 	/* Capture the remaining block reservations along with the dfops. */
681 	dfc->dfc_blkres = tp->t_blk_res - tp->t_blk_res_used;
682 	dfc->dfc_rtxres = tp->t_rtx_res - tp->t_rtx_res_used;
683 
684 	/* Preserve the log reservation size. */
685 	dfc->dfc_logres = tp->t_log_res;
686 
687 	error = xfs_defer_save_resources(&dfc->dfc_held, tp);
688 	if (error) {
689 		/*
690 		 * Resource capture should never fail, but if it does, we
691 		 * still have to shut down the log and release things
692 		 * properly.
693 		 */
694 		xfs_force_shutdown(tp->t_mountp, SHUTDOWN_CORRUPT_INCORE);
695 	}
696 
697 	/*
698 	 * Grab extra references to the inodes and buffers because callers are
699 	 * expected to release their held references after we commit the
700 	 * transaction.
701 	 */
702 	for (i = 0; i < dfc->dfc_held.dr_inos; i++) {
703 		ASSERT(xfs_isilocked(dfc->dfc_held.dr_ip[i], XFS_ILOCK_EXCL));
704 		ihold(VFS_I(dfc->dfc_held.dr_ip[i]));
705 	}
706 
707 	for (i = 0; i < dfc->dfc_held.dr_bufs; i++)
708 		xfs_buf_hold(dfc->dfc_held.dr_bp[i]);
709 
710 	return dfc;
711 }
712 
713 /* Release all resources that we used to capture deferred ops. */
714 void
715 xfs_defer_ops_capture_free(
716 	struct xfs_mount		*mp,
717 	struct xfs_defer_capture	*dfc)
718 {
719 	unsigned short			i;
720 
721 	xfs_defer_cancel_list(mp, &dfc->dfc_dfops);
722 
723 	for (i = 0; i < dfc->dfc_held.dr_bufs; i++)
724 		xfs_buf_relse(dfc->dfc_held.dr_bp[i]);
725 
726 	for (i = 0; i < dfc->dfc_held.dr_inos; i++)
727 		xfs_irele(dfc->dfc_held.dr_ip[i]);
728 
729 	kmem_free(dfc);
730 }
731 
732 /*
733  * Capture any deferred ops and commit the transaction.  This is the last step
734  * needed to finish a log intent item that we recovered from the log.  If any
735  * of the deferred ops operate on an inode, the caller must pass in that inode
736  * so that the reference can be transferred to the capture structure.  The
737  * caller must hold ILOCK_EXCL on the inode, and must unlock it before calling
738  * xfs_defer_ops_continue.
739  */
740 int
741 xfs_defer_ops_capture_and_commit(
742 	struct xfs_trans		*tp,
743 	struct list_head		*capture_list)
744 {
745 	struct xfs_mount		*mp = tp->t_mountp;
746 	struct xfs_defer_capture	*dfc;
747 	int				error;
748 
749 	/* If we don't capture anything, commit transaction and exit. */
750 	dfc = xfs_defer_ops_capture(tp);
751 	if (!dfc)
752 		return xfs_trans_commit(tp);
753 
754 	/* Commit the transaction and add the capture structure to the list. */
755 	error = xfs_trans_commit(tp);
756 	if (error) {
757 		xfs_defer_ops_capture_free(mp, dfc);
758 		return error;
759 	}
760 
761 	list_add_tail(&dfc->dfc_list, capture_list);
762 	return 0;
763 }
764 
765 /*
766  * Attach a chain of captured deferred ops to a new transaction and free the
767  * capture structure.  If an inode was captured, it will be passed back to the
768  * caller with ILOCK_EXCL held and joined to the transaction with lockflags==0.
769  * The caller now owns the inode reference.
770  */
771 void
772 xfs_defer_ops_continue(
773 	struct xfs_defer_capture	*dfc,
774 	struct xfs_trans		*tp,
775 	struct xfs_defer_resources	*dres)
776 {
777 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
778 	ASSERT(!(tp->t_flags & XFS_TRANS_DIRTY));
779 
780 	/* Lock and join the captured inode to the new transaction. */
781 	if (dfc->dfc_held.dr_inos == 2)
782 		xfs_lock_two_inodes(dfc->dfc_held.dr_ip[0], XFS_ILOCK_EXCL,
783 				    dfc->dfc_held.dr_ip[1], XFS_ILOCK_EXCL);
784 	else if (dfc->dfc_held.dr_inos == 1)
785 		xfs_ilock(dfc->dfc_held.dr_ip[0], XFS_ILOCK_EXCL);
786 	xfs_defer_restore_resources(tp, &dfc->dfc_held);
787 	memcpy(dres, &dfc->dfc_held, sizeof(struct xfs_defer_resources));
788 
789 	/* Move captured dfops chain and state to the transaction. */
790 	list_splice_init(&dfc->dfc_dfops, &tp->t_dfops);
791 	tp->t_flags |= dfc->dfc_tpflags;
792 
793 	kmem_free(dfc);
794 }
795 
796 /* Release the resources captured and continued during recovery. */
797 void
798 xfs_defer_resources_rele(
799 	struct xfs_defer_resources	*dres)
800 {
801 	unsigned short			i;
802 
803 	for (i = 0; i < dres->dr_inos; i++) {
804 		xfs_iunlock(dres->dr_ip[i], XFS_ILOCK_EXCL);
805 		xfs_irele(dres->dr_ip[i]);
806 		dres->dr_ip[i] = NULL;
807 	}
808 
809 	for (i = 0; i < dres->dr_bufs; i++) {
810 		xfs_buf_relse(dres->dr_bp[i]);
811 		dres->dr_bp[i] = NULL;
812 	}
813 
814 	dres->dr_inos = 0;
815 	dres->dr_bufs = 0;
816 	dres->dr_ordered = 0;
817 }
818 
819 static inline int __init
820 xfs_defer_init_cache(void)
821 {
822 	xfs_defer_pending_cache = kmem_cache_create("xfs_defer_pending",
823 			sizeof(struct xfs_defer_pending),
824 			0, 0, NULL);
825 
826 	return xfs_defer_pending_cache != NULL ? 0 : -ENOMEM;
827 }
828 
829 static inline void
830 xfs_defer_destroy_cache(void)
831 {
832 	kmem_cache_destroy(xfs_defer_pending_cache);
833 	xfs_defer_pending_cache = NULL;
834 }
835 
836 /* Set up caches for deferred work items. */
837 int __init
838 xfs_defer_init_item_caches(void)
839 {
840 	int				error;
841 
842 	error = xfs_defer_init_cache();
843 	if (error)
844 		return error;
845 	error = xfs_rmap_intent_init_cache();
846 	if (error)
847 		goto err;
848 	error = xfs_refcount_intent_init_cache();
849 	if (error)
850 		goto err;
851 	error = xfs_bmap_intent_init_cache();
852 	if (error)
853 		goto err;
854 	error = xfs_extfree_intent_init_cache();
855 	if (error)
856 		goto err;
857 
858 	return 0;
859 err:
860 	xfs_defer_destroy_item_caches();
861 	return error;
862 }
863 
864 /* Destroy all the deferred work item caches, if they've been allocated. */
865 void
866 xfs_defer_destroy_item_caches(void)
867 {
868 	xfs_extfree_intent_destroy_cache();
869 	xfs_bmap_intent_destroy_cache();
870 	xfs_refcount_intent_destroy_cache();
871 	xfs_rmap_intent_destroy_cache();
872 	xfs_defer_destroy_cache();
873 }
874