xref: /openbmc/linux/fs/xfs/libxfs/xfs_defer.c (revision bc9f2b7c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_trans.h"
17 #include "xfs_buf_item.h"
18 #include "xfs_inode.h"
19 #include "xfs_inode_item.h"
20 #include "xfs_trace.h"
21 
22 /*
23  * Deferred Operations in XFS
24  *
25  * Due to the way locking rules work in XFS, certain transactions (block
26  * mapping and unmapping, typically) have permanent reservations so that
27  * we can roll the transaction to adhere to AG locking order rules and
28  * to unlock buffers between metadata updates.  Prior to rmap/reflink,
29  * the mapping code had a mechanism to perform these deferrals for
30  * extents that were going to be freed; this code makes that facility
31  * more generic.
32  *
33  * When adding the reverse mapping and reflink features, it became
34  * necessary to perform complex remapping multi-transactions to comply
35  * with AG locking order rules, and to be able to spread a single
36  * refcount update operation (an operation on an n-block extent can
37  * update as many as n records!) among multiple transactions.  XFS can
38  * roll a transaction to facilitate this, but using this facility
39  * requires us to log "intent" items in case log recovery needs to
40  * redo the operation, and to log "done" items to indicate that redo
41  * is not necessary.
42  *
43  * Deferred work is tracked in xfs_defer_pending items.  Each pending
44  * item tracks one type of deferred work.  Incoming work items (which
45  * have not yet had an intent logged) are attached to a pending item
46  * on the dop_intake list, where they wait for the caller to finish
47  * the deferred operations.
48  *
49  * Finishing a set of deferred operations is an involved process.  To
50  * start, we define "rolling a deferred-op transaction" as follows:
51  *
52  * > For each xfs_defer_pending item on the dop_intake list,
53  *   - Sort the work items in AG order.  XFS locking
54  *     order rules require us to lock buffers in AG order.
55  *   - Create a log intent item for that type.
56  *   - Attach it to the pending item.
57  *   - Move the pending item from the dop_intake list to the
58  *     dop_pending list.
59  * > Roll the transaction.
60  *
61  * NOTE: To avoid exceeding the transaction reservation, we limit the
62  * number of items that we attach to a given xfs_defer_pending.
63  *
64  * The actual finishing process looks like this:
65  *
66  * > For each xfs_defer_pending in the dop_pending list,
67  *   - Roll the deferred-op transaction as above.
68  *   - Create a log done item for that type, and attach it to the
69  *     log intent item.
70  *   - For each work item attached to the log intent item,
71  *     * Perform the described action.
72  *     * Attach the work item to the log done item.
73  *     * If the result of doing the work was -EAGAIN, ->finish work
74  *       wants a new transaction.  See the "Requesting a Fresh
75  *       Transaction while Finishing Deferred Work" section below for
76  *       details.
77  *
78  * The key here is that we must log an intent item for all pending
79  * work items every time we roll the transaction, and that we must log
80  * a done item as soon as the work is completed.  With this mechanism
81  * we can perform complex remapping operations, chaining intent items
82  * as needed.
83  *
84  * Requesting a Fresh Transaction while Finishing Deferred Work
85  *
86  * If ->finish_item decides that it needs a fresh transaction to
87  * finish the work, it must ask its caller (xfs_defer_finish) for a
88  * continuation.  The most likely cause of this circumstance are the
89  * refcount adjust functions deciding that they've logged enough items
90  * to be at risk of exceeding the transaction reservation.
91  *
92  * To get a fresh transaction, we want to log the existing log done
93  * item to prevent the log intent item from replaying, immediately log
94  * a new log intent item with the unfinished work items, roll the
95  * transaction, and re-call ->finish_item wherever it left off.  The
96  * log done item and the new log intent item must be in the same
97  * transaction or atomicity cannot be guaranteed; defer_finish ensures
98  * that this happens.
99  *
100  * This requires some coordination between ->finish_item and
101  * defer_finish.  Upon deciding to request a new transaction,
102  * ->finish_item should update the current work item to reflect the
103  * unfinished work.  Next, it should reset the log done item's list
104  * count to the number of items finished, and return -EAGAIN.
105  * defer_finish sees the -EAGAIN, logs the new log intent item
106  * with the remaining work items, and leaves the xfs_defer_pending
107  * item at the head of the dop_work queue.  Then it rolls the
108  * transaction and picks up processing where it left off.  It is
109  * required that ->finish_item must be careful to leave enough
110  * transaction reservation to fit the new log intent item.
111  *
112  * This is an example of remapping the extent (E, E+B) into file X at
113  * offset A and dealing with the extent (C, C+B) already being mapped
114  * there:
115  * +-------------------------------------------------+
116  * | Unmap file X startblock C offset A length B     | t0
117  * | Intent to reduce refcount for extent (C, B)     |
118  * | Intent to remove rmap (X, C, A, B)              |
119  * | Intent to free extent (D, 1) (bmbt block)       |
120  * | Intent to map (X, A, B) at startblock E         |
121  * +-------------------------------------------------+
122  * | Map file X startblock E offset A length B       | t1
123  * | Done mapping (X, E, A, B)                       |
124  * | Intent to increase refcount for extent (E, B)   |
125  * | Intent to add rmap (X, E, A, B)                 |
126  * +-------------------------------------------------+
127  * | Reduce refcount for extent (C, B)               | t2
128  * | Done reducing refcount for extent (C, 9)        |
129  * | Intent to reduce refcount for extent (C+9, B-9) |
130  * | (ran out of space after 9 refcount updates)     |
131  * +-------------------------------------------------+
132  * | Reduce refcount for extent (C+9, B+9)           | t3
133  * | Done reducing refcount for extent (C+9, B-9)    |
134  * | Increase refcount for extent (E, B)             |
135  * | Done increasing refcount for extent (E, B)      |
136  * | Intent to free extent (C, B)                    |
137  * | Intent to free extent (F, 1) (refcountbt block) |
138  * | Intent to remove rmap (F, 1, REFC)              |
139  * +-------------------------------------------------+
140  * | Remove rmap (X, C, A, B)                        | t4
141  * | Done removing rmap (X, C, A, B)                 |
142  * | Add rmap (X, E, A, B)                           |
143  * | Done adding rmap (X, E, A, B)                   |
144  * | Remove rmap (F, 1, REFC)                        |
145  * | Done removing rmap (F, 1, REFC)                 |
146  * +-------------------------------------------------+
147  * | Free extent (C, B)                              | t5
148  * | Done freeing extent (C, B)                      |
149  * | Free extent (D, 1)                              |
150  * | Done freeing extent (D, 1)                      |
151  * | Free extent (F, 1)                              |
152  * | Done freeing extent (F, 1)                      |
153  * +-------------------------------------------------+
154  *
155  * If we should crash before t2 commits, log recovery replays
156  * the following intent items:
157  *
158  * - Intent to reduce refcount for extent (C, B)
159  * - Intent to remove rmap (X, C, A, B)
160  * - Intent to free extent (D, 1) (bmbt block)
161  * - Intent to increase refcount for extent (E, B)
162  * - Intent to add rmap (X, E, A, B)
163  *
164  * In the process of recovering, it should also generate and take care
165  * of these intent items:
166  *
167  * - Intent to free extent (C, B)
168  * - Intent to free extent (F, 1) (refcountbt block)
169  * - Intent to remove rmap (F, 1, REFC)
170  *
171  * Note that the continuation requested between t2 and t3 is likely to
172  * reoccur.
173  */
174 
175 static const struct xfs_defer_op_type *defer_op_types[] = {
176 	[XFS_DEFER_OPS_TYPE_BMAP]	= &xfs_bmap_update_defer_type,
177 	[XFS_DEFER_OPS_TYPE_REFCOUNT]	= &xfs_refcount_update_defer_type,
178 	[XFS_DEFER_OPS_TYPE_RMAP]	= &xfs_rmap_update_defer_type,
179 	[XFS_DEFER_OPS_TYPE_FREE]	= &xfs_extent_free_defer_type,
180 	[XFS_DEFER_OPS_TYPE_AGFL_FREE]	= &xfs_agfl_free_defer_type,
181 };
182 
183 /*
184  * For each pending item in the intake list, log its intent item and the
185  * associated extents, then add the entire intake list to the end of
186  * the pending list.
187  */
188 STATIC void
189 xfs_defer_create_intents(
190 	struct xfs_trans		*tp)
191 {
192 	struct list_head		*li;
193 	struct xfs_defer_pending	*dfp;
194 
195 	list_for_each_entry(dfp, &tp->t_dfops, dfp_list) {
196 		dfp->dfp_intent = dfp->dfp_type->create_intent(tp,
197 				dfp->dfp_count);
198 		trace_xfs_defer_create_intent(tp->t_mountp, dfp);
199 		list_sort(tp->t_mountp, &dfp->dfp_work,
200 				dfp->dfp_type->diff_items);
201 		list_for_each(li, &dfp->dfp_work)
202 			dfp->dfp_type->log_item(tp, dfp->dfp_intent, li);
203 	}
204 }
205 
206 /* Abort all the intents that were committed. */
207 STATIC void
208 xfs_defer_trans_abort(
209 	struct xfs_trans		*tp,
210 	struct list_head		*dop_pending)
211 {
212 	struct xfs_defer_pending	*dfp;
213 
214 	trace_xfs_defer_trans_abort(tp, _RET_IP_);
215 
216 	/* Abort intent items that don't have a done item. */
217 	list_for_each_entry(dfp, dop_pending, dfp_list) {
218 		trace_xfs_defer_pending_abort(tp->t_mountp, dfp);
219 		if (dfp->dfp_intent && !dfp->dfp_done) {
220 			dfp->dfp_type->abort_intent(dfp->dfp_intent);
221 			dfp->dfp_intent = NULL;
222 		}
223 	}
224 }
225 
226 /* Roll a transaction so we can do some deferred op processing. */
227 STATIC int
228 xfs_defer_trans_roll(
229 	struct xfs_trans		**tpp)
230 {
231 	struct xfs_trans		*tp = *tpp;
232 	struct xfs_buf_log_item		*bli;
233 	struct xfs_inode_log_item	*ili;
234 	struct xfs_log_item		*lip;
235 	struct xfs_buf			*bplist[XFS_DEFER_OPS_NR_BUFS];
236 	struct xfs_inode		*iplist[XFS_DEFER_OPS_NR_INODES];
237 	int				bpcount = 0, ipcount = 0;
238 	int				i;
239 	int				error;
240 
241 	list_for_each_entry(lip, &tp->t_items, li_trans) {
242 		switch (lip->li_type) {
243 		case XFS_LI_BUF:
244 			bli = container_of(lip, struct xfs_buf_log_item,
245 					   bli_item);
246 			if (bli->bli_flags & XFS_BLI_HOLD) {
247 				if (bpcount >= XFS_DEFER_OPS_NR_BUFS) {
248 					ASSERT(0);
249 					return -EFSCORRUPTED;
250 				}
251 				xfs_trans_dirty_buf(tp, bli->bli_buf);
252 				bplist[bpcount++] = bli->bli_buf;
253 			}
254 			break;
255 		case XFS_LI_INODE:
256 			ili = container_of(lip, struct xfs_inode_log_item,
257 					   ili_item);
258 			if (ili->ili_lock_flags == 0) {
259 				if (ipcount >= XFS_DEFER_OPS_NR_INODES) {
260 					ASSERT(0);
261 					return -EFSCORRUPTED;
262 				}
263 				xfs_trans_log_inode(tp, ili->ili_inode,
264 						    XFS_ILOG_CORE);
265 				iplist[ipcount++] = ili->ili_inode;
266 			}
267 			break;
268 		default:
269 			break;
270 		}
271 	}
272 
273 	trace_xfs_defer_trans_roll(tp, _RET_IP_);
274 
275 	/* Roll the transaction. */
276 	error = xfs_trans_roll(tpp);
277 	tp = *tpp;
278 	if (error) {
279 		trace_xfs_defer_trans_roll_error(tp, error);
280 		return error;
281 	}
282 
283 	/* Rejoin the joined inodes. */
284 	for (i = 0; i < ipcount; i++)
285 		xfs_trans_ijoin(tp, iplist[i], 0);
286 
287 	/* Rejoin the buffers and dirty them so the log moves forward. */
288 	for (i = 0; i < bpcount; i++) {
289 		xfs_trans_bjoin(tp, bplist[i]);
290 		xfs_trans_bhold(tp, bplist[i]);
291 	}
292 
293 	return error;
294 }
295 
296 /*
297  * Reset an already used dfops after finish.
298  */
299 static void
300 xfs_defer_reset(
301 	struct xfs_trans	*tp)
302 {
303 	ASSERT(list_empty(&tp->t_dfops));
304 
305 	/*
306 	 * Low mode state transfers across transaction rolls to mirror dfops
307 	 * lifetime. Clear it now that dfops is reset.
308 	 */
309 	tp->t_flags &= ~XFS_TRANS_LOWMODE;
310 }
311 
312 /*
313  * Free up any items left in the list.
314  */
315 static void
316 xfs_defer_cancel_list(
317 	struct xfs_mount		*mp,
318 	struct list_head		*dop_list)
319 {
320 	struct xfs_defer_pending	*dfp;
321 	struct xfs_defer_pending	*pli;
322 	struct list_head		*pwi;
323 	struct list_head		*n;
324 
325 	/*
326 	 * Free the pending items.  Caller should already have arranged
327 	 * for the intent items to be released.
328 	 */
329 	list_for_each_entry_safe(dfp, pli, dop_list, dfp_list) {
330 		trace_xfs_defer_cancel_list(mp, dfp);
331 		list_del(&dfp->dfp_list);
332 		list_for_each_safe(pwi, n, &dfp->dfp_work) {
333 			list_del(pwi);
334 			dfp->dfp_count--;
335 			dfp->dfp_type->cancel_item(pwi);
336 		}
337 		ASSERT(dfp->dfp_count == 0);
338 		kmem_free(dfp);
339 	}
340 }
341 
342 /*
343  * Finish all the pending work.  This involves logging intent items for
344  * any work items that wandered in since the last transaction roll (if
345  * one has even happened), rolling the transaction, and finishing the
346  * work items in the first item on the logged-and-pending list.
347  *
348  * If an inode is provided, relog it to the new transaction.
349  */
350 int
351 xfs_defer_finish_noroll(
352 	struct xfs_trans		**tp)
353 {
354 	struct xfs_defer_pending	*dfp;
355 	struct list_head		*li;
356 	struct list_head		*n;
357 	void				*state;
358 	int				error = 0;
359 	void				(*cleanup_fn)(struct xfs_trans *, void *, int);
360 	LIST_HEAD(dop_pending);
361 
362 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
363 
364 	trace_xfs_defer_finish(*tp, _RET_IP_);
365 
366 	/* Until we run out of pending work to finish... */
367 	while (!list_empty(&dop_pending) || !list_empty(&(*tp)->t_dfops)) {
368 		/* log intents and pull in intake items */
369 		xfs_defer_create_intents(*tp);
370 		list_splice_tail_init(&(*tp)->t_dfops, &dop_pending);
371 
372 		/*
373 		 * Roll the transaction.
374 		 */
375 		error = xfs_defer_trans_roll(tp);
376 		if (error)
377 			goto out;
378 
379 		/* Log an intent-done item for the first pending item. */
380 		dfp = list_first_entry(&dop_pending, struct xfs_defer_pending,
381 				       dfp_list);
382 		trace_xfs_defer_pending_finish((*tp)->t_mountp, dfp);
383 		dfp->dfp_done = dfp->dfp_type->create_done(*tp, dfp->dfp_intent,
384 				dfp->dfp_count);
385 		cleanup_fn = dfp->dfp_type->finish_cleanup;
386 
387 		/* Finish the work items. */
388 		state = NULL;
389 		list_for_each_safe(li, n, &dfp->dfp_work) {
390 			list_del(li);
391 			dfp->dfp_count--;
392 			error = dfp->dfp_type->finish_item(*tp, li,
393 					dfp->dfp_done, &state);
394 			if (error == -EAGAIN) {
395 				/*
396 				 * Caller wants a fresh transaction;
397 				 * put the work item back on the list
398 				 * and jump out.
399 				 */
400 				list_add(li, &dfp->dfp_work);
401 				dfp->dfp_count++;
402 				break;
403 			} else if (error) {
404 				/*
405 				 * Clean up after ourselves and jump out.
406 				 * xfs_defer_cancel will take care of freeing
407 				 * all these lists and stuff.
408 				 */
409 				if (cleanup_fn)
410 					cleanup_fn(*tp, state, error);
411 				goto out;
412 			}
413 		}
414 		if (error == -EAGAIN) {
415 			/*
416 			 * Caller wants a fresh transaction, so log a
417 			 * new log intent item to replace the old one
418 			 * and roll the transaction.  See "Requesting
419 			 * a Fresh Transaction while Finishing
420 			 * Deferred Work" above.
421 			 */
422 			dfp->dfp_intent = dfp->dfp_type->create_intent(*tp,
423 					dfp->dfp_count);
424 			dfp->dfp_done = NULL;
425 			list_for_each(li, &dfp->dfp_work)
426 				dfp->dfp_type->log_item(*tp, dfp->dfp_intent,
427 						li);
428 		} else {
429 			/* Done with the dfp, free it. */
430 			list_del(&dfp->dfp_list);
431 			kmem_free(dfp);
432 		}
433 
434 		if (cleanup_fn)
435 			cleanup_fn(*tp, state, error);
436 	}
437 
438 out:
439 	if (error) {
440 		xfs_defer_trans_abort(*tp, &dop_pending);
441 		xfs_force_shutdown((*tp)->t_mountp, SHUTDOWN_CORRUPT_INCORE);
442 		trace_xfs_defer_finish_error(*tp, error);
443 		xfs_defer_cancel_list((*tp)->t_mountp, &dop_pending);
444 		xfs_defer_cancel(*tp);
445 		return error;
446 	}
447 
448 	trace_xfs_defer_finish_done(*tp, _RET_IP_);
449 	return 0;
450 }
451 
452 int
453 xfs_defer_finish(
454 	struct xfs_trans	**tp)
455 {
456 	int			error;
457 
458 	/*
459 	 * Finish and roll the transaction once more to avoid returning to the
460 	 * caller with a dirty transaction.
461 	 */
462 	error = xfs_defer_finish_noroll(tp);
463 	if (error)
464 		return error;
465 	if ((*tp)->t_flags & XFS_TRANS_DIRTY) {
466 		error = xfs_defer_trans_roll(tp);
467 		if (error) {
468 			xfs_force_shutdown((*tp)->t_mountp,
469 					   SHUTDOWN_CORRUPT_INCORE);
470 			return error;
471 		}
472 	}
473 	xfs_defer_reset(*tp);
474 	return 0;
475 }
476 
477 void
478 xfs_defer_cancel(
479 	struct xfs_trans	*tp)
480 {
481 	struct xfs_mount	*mp = tp->t_mountp;
482 
483 	trace_xfs_defer_cancel(tp, _RET_IP_);
484 	xfs_defer_cancel_list(mp, &tp->t_dfops);
485 }
486 
487 /* Add an item for later deferred processing. */
488 void
489 xfs_defer_add(
490 	struct xfs_trans		*tp,
491 	enum xfs_defer_ops_type		type,
492 	struct list_head		*li)
493 {
494 	struct xfs_defer_pending	*dfp = NULL;
495 
496 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
497 	BUILD_BUG_ON(ARRAY_SIZE(defer_op_types) != XFS_DEFER_OPS_TYPE_MAX);
498 
499 	/*
500 	 * Add the item to a pending item at the end of the intake list.
501 	 * If the last pending item has the same type, reuse it.  Else,
502 	 * create a new pending item at the end of the intake list.
503 	 */
504 	if (!list_empty(&tp->t_dfops)) {
505 		dfp = list_last_entry(&tp->t_dfops,
506 				struct xfs_defer_pending, dfp_list);
507 		if (dfp->dfp_type->type != type ||
508 		    (dfp->dfp_type->max_items &&
509 		     dfp->dfp_count >= dfp->dfp_type->max_items))
510 			dfp = NULL;
511 	}
512 	if (!dfp) {
513 		dfp = kmem_alloc(sizeof(struct xfs_defer_pending),
514 				KM_SLEEP | KM_NOFS);
515 		dfp->dfp_type = defer_op_types[type];
516 		dfp->dfp_intent = NULL;
517 		dfp->dfp_done = NULL;
518 		dfp->dfp_count = 0;
519 		INIT_LIST_HEAD(&dfp->dfp_work);
520 		list_add_tail(&dfp->dfp_list, &tp->t_dfops);
521 	}
522 
523 	list_add_tail(li, &dfp->dfp_work);
524 	dfp->dfp_count++;
525 }
526 
527 /*
528  * Move deferred ops from one transaction to another and reset the source to
529  * initial state. This is primarily used to carry state forward across
530  * transaction rolls with pending dfops.
531  */
532 void
533 xfs_defer_move(
534 	struct xfs_trans	*dtp,
535 	struct xfs_trans	*stp)
536 {
537 	list_splice_init(&stp->t_dfops, &dtp->t_dfops);
538 
539 	/*
540 	 * Low free space mode was historically controlled by a dfops field.
541 	 * This meant that low mode state potentially carried across multiple
542 	 * transaction rolls. Transfer low mode on a dfops move to preserve
543 	 * that behavior.
544 	 */
545 	dtp->t_flags |= (stp->t_flags & XFS_TRANS_LOWMODE);
546 
547 	xfs_defer_reset(stp);
548 }
549