xref: /openbmc/linux/fs/xfs/libxfs/xfs_defer.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_inode.h"
17 #include "xfs_inode_item.h"
18 #include "xfs_trace.h"
19 
20 /*
21  * Deferred Operations in XFS
22  *
23  * Due to the way locking rules work in XFS, certain transactions (block
24  * mapping and unmapping, typically) have permanent reservations so that
25  * we can roll the transaction to adhere to AG locking order rules and
26  * to unlock buffers between metadata updates.  Prior to rmap/reflink,
27  * the mapping code had a mechanism to perform these deferrals for
28  * extents that were going to be freed; this code makes that facility
29  * more generic.
30  *
31  * When adding the reverse mapping and reflink features, it became
32  * necessary to perform complex remapping multi-transactions to comply
33  * with AG locking order rules, and to be able to spread a single
34  * refcount update operation (an operation on an n-block extent can
35  * update as many as n records!) among multiple transactions.  XFS can
36  * roll a transaction to facilitate this, but using this facility
37  * requires us to log "intent" items in case log recovery needs to
38  * redo the operation, and to log "done" items to indicate that redo
39  * is not necessary.
40  *
41  * Deferred work is tracked in xfs_defer_pending items.  Each pending
42  * item tracks one type of deferred work.  Incoming work items (which
43  * have not yet had an intent logged) are attached to a pending item
44  * on the dop_intake list, where they wait for the caller to finish
45  * the deferred operations.
46  *
47  * Finishing a set of deferred operations is an involved process.  To
48  * start, we define "rolling a deferred-op transaction" as follows:
49  *
50  * > For each xfs_defer_pending item on the dop_intake list,
51  *   - Sort the work items in AG order.  XFS locking
52  *     order rules require us to lock buffers in AG order.
53  *   - Create a log intent item for that type.
54  *   - Attach it to the pending item.
55  *   - Move the pending item from the dop_intake list to the
56  *     dop_pending list.
57  * > Roll the transaction.
58  *
59  * NOTE: To avoid exceeding the transaction reservation, we limit the
60  * number of items that we attach to a given xfs_defer_pending.
61  *
62  * The actual finishing process looks like this:
63  *
64  * > For each xfs_defer_pending in the dop_pending list,
65  *   - Roll the deferred-op transaction as above.
66  *   - Create a log done item for that type, and attach it to the
67  *     log intent item.
68  *   - For each work item attached to the log intent item,
69  *     * Perform the described action.
70  *     * Attach the work item to the log done item.
71  *     * If the result of doing the work was -EAGAIN, ->finish work
72  *       wants a new transaction.  See the "Requesting a Fresh
73  *       Transaction while Finishing Deferred Work" section below for
74  *       details.
75  *
76  * The key here is that we must log an intent item for all pending
77  * work items every time we roll the transaction, and that we must log
78  * a done item as soon as the work is completed.  With this mechanism
79  * we can perform complex remapping operations, chaining intent items
80  * as needed.
81  *
82  * Requesting a Fresh Transaction while Finishing Deferred Work
83  *
84  * If ->finish_item decides that it needs a fresh transaction to
85  * finish the work, it must ask its caller (xfs_defer_finish) for a
86  * continuation.  The most likely cause of this circumstance are the
87  * refcount adjust functions deciding that they've logged enough items
88  * to be at risk of exceeding the transaction reservation.
89  *
90  * To get a fresh transaction, we want to log the existing log done
91  * item to prevent the log intent item from replaying, immediately log
92  * a new log intent item with the unfinished work items, roll the
93  * transaction, and re-call ->finish_item wherever it left off.  The
94  * log done item and the new log intent item must be in the same
95  * transaction or atomicity cannot be guaranteed; defer_finish ensures
96  * that this happens.
97  *
98  * This requires some coordination between ->finish_item and
99  * defer_finish.  Upon deciding to request a new transaction,
100  * ->finish_item should update the current work item to reflect the
101  * unfinished work.  Next, it should reset the log done item's list
102  * count to the number of items finished, and return -EAGAIN.
103  * defer_finish sees the -EAGAIN, logs the new log intent item
104  * with the remaining work items, and leaves the xfs_defer_pending
105  * item at the head of the dop_work queue.  Then it rolls the
106  * transaction and picks up processing where it left off.  It is
107  * required that ->finish_item must be careful to leave enough
108  * transaction reservation to fit the new log intent item.
109  *
110  * This is an example of remapping the extent (E, E+B) into file X at
111  * offset A and dealing with the extent (C, C+B) already being mapped
112  * there:
113  * +-------------------------------------------------+
114  * | Unmap file X startblock C offset A length B     | t0
115  * | Intent to reduce refcount for extent (C, B)     |
116  * | Intent to remove rmap (X, C, A, B)              |
117  * | Intent to free extent (D, 1) (bmbt block)       |
118  * | Intent to map (X, A, B) at startblock E         |
119  * +-------------------------------------------------+
120  * | Map file X startblock E offset A length B       | t1
121  * | Done mapping (X, E, A, B)                       |
122  * | Intent to increase refcount for extent (E, B)   |
123  * | Intent to add rmap (X, E, A, B)                 |
124  * +-------------------------------------------------+
125  * | Reduce refcount for extent (C, B)               | t2
126  * | Done reducing refcount for extent (C, 9)        |
127  * | Intent to reduce refcount for extent (C+9, B-9) |
128  * | (ran out of space after 9 refcount updates)     |
129  * +-------------------------------------------------+
130  * | Reduce refcount for extent (C+9, B+9)           | t3
131  * | Done reducing refcount for extent (C+9, B-9)    |
132  * | Increase refcount for extent (E, B)             |
133  * | Done increasing refcount for extent (E, B)      |
134  * | Intent to free extent (C, B)                    |
135  * | Intent to free extent (F, 1) (refcountbt block) |
136  * | Intent to remove rmap (F, 1, REFC)              |
137  * +-------------------------------------------------+
138  * | Remove rmap (X, C, A, B)                        | t4
139  * | Done removing rmap (X, C, A, B)                 |
140  * | Add rmap (X, E, A, B)                           |
141  * | Done adding rmap (X, E, A, B)                   |
142  * | Remove rmap (F, 1, REFC)                        |
143  * | Done removing rmap (F, 1, REFC)                 |
144  * +-------------------------------------------------+
145  * | Free extent (C, B)                              | t5
146  * | Done freeing extent (C, B)                      |
147  * | Free extent (D, 1)                              |
148  * | Done freeing extent (D, 1)                      |
149  * | Free extent (F, 1)                              |
150  * | Done freeing extent (F, 1)                      |
151  * +-------------------------------------------------+
152  *
153  * If we should crash before t2 commits, log recovery replays
154  * the following intent items:
155  *
156  * - Intent to reduce refcount for extent (C, B)
157  * - Intent to remove rmap (X, C, A, B)
158  * - Intent to free extent (D, 1) (bmbt block)
159  * - Intent to increase refcount for extent (E, B)
160  * - Intent to add rmap (X, E, A, B)
161  *
162  * In the process of recovering, it should also generate and take care
163  * of these intent items:
164  *
165  * - Intent to free extent (C, B)
166  * - Intent to free extent (F, 1) (refcountbt block)
167  * - Intent to remove rmap (F, 1, REFC)
168  *
169  * Note that the continuation requested between t2 and t3 is likely to
170  * reoccur.
171  */
172 
173 static const struct xfs_defer_op_type *defer_op_types[] = {
174 	[XFS_DEFER_OPS_TYPE_BMAP]	= &xfs_bmap_update_defer_type,
175 	[XFS_DEFER_OPS_TYPE_REFCOUNT]	= &xfs_refcount_update_defer_type,
176 	[XFS_DEFER_OPS_TYPE_RMAP]	= &xfs_rmap_update_defer_type,
177 	[XFS_DEFER_OPS_TYPE_FREE]	= &xfs_extent_free_defer_type,
178 	[XFS_DEFER_OPS_TYPE_AGFL_FREE]	= &xfs_agfl_free_defer_type,
179 };
180 
181 /*
182  * For each pending item in the intake list, log its intent item and the
183  * associated extents, then add the entire intake list to the end of
184  * the pending list.
185  */
186 STATIC void
187 xfs_defer_create_intents(
188 	struct xfs_trans		*tp)
189 {
190 	struct list_head		*li;
191 	struct xfs_defer_pending	*dfp;
192 	const struct xfs_defer_op_type	*ops;
193 
194 	list_for_each_entry(dfp, &tp->t_dfops, dfp_list) {
195 		ops = defer_op_types[dfp->dfp_type];
196 		dfp->dfp_intent = ops->create_intent(tp, dfp->dfp_count);
197 		trace_xfs_defer_create_intent(tp->t_mountp, dfp);
198 		list_sort(tp->t_mountp, &dfp->dfp_work, ops->diff_items);
199 		list_for_each(li, &dfp->dfp_work)
200 			ops->log_item(tp, dfp->dfp_intent, li);
201 	}
202 }
203 
204 /* Abort all the intents that were committed. */
205 STATIC void
206 xfs_defer_trans_abort(
207 	struct xfs_trans		*tp,
208 	struct list_head		*dop_pending)
209 {
210 	struct xfs_defer_pending	*dfp;
211 	const struct xfs_defer_op_type	*ops;
212 
213 	trace_xfs_defer_trans_abort(tp, _RET_IP_);
214 
215 	/* Abort intent items that don't have a done item. */
216 	list_for_each_entry(dfp, dop_pending, dfp_list) {
217 		ops = defer_op_types[dfp->dfp_type];
218 		trace_xfs_defer_pending_abort(tp->t_mountp, dfp);
219 		if (dfp->dfp_intent && !dfp->dfp_done) {
220 			ops->abort_intent(dfp->dfp_intent);
221 			dfp->dfp_intent = NULL;
222 		}
223 	}
224 }
225 
226 /* Roll a transaction so we can do some deferred op processing. */
227 STATIC int
228 xfs_defer_trans_roll(
229 	struct xfs_trans		**tpp)
230 {
231 	struct xfs_trans		*tp = *tpp;
232 	struct xfs_buf_log_item		*bli;
233 	struct xfs_inode_log_item	*ili;
234 	struct xfs_log_item		*lip;
235 	struct xfs_buf			*bplist[XFS_DEFER_OPS_NR_BUFS];
236 	struct xfs_inode		*iplist[XFS_DEFER_OPS_NR_INODES];
237 	int				bpcount = 0, ipcount = 0;
238 	int				i;
239 	int				error;
240 
241 	list_for_each_entry(lip, &tp->t_items, li_trans) {
242 		switch (lip->li_type) {
243 		case XFS_LI_BUF:
244 			bli = container_of(lip, struct xfs_buf_log_item,
245 					   bli_item);
246 			if (bli->bli_flags & XFS_BLI_HOLD) {
247 				if (bpcount >= XFS_DEFER_OPS_NR_BUFS) {
248 					ASSERT(0);
249 					return -EFSCORRUPTED;
250 				}
251 				xfs_trans_dirty_buf(tp, bli->bli_buf);
252 				bplist[bpcount++] = bli->bli_buf;
253 			}
254 			break;
255 		case XFS_LI_INODE:
256 			ili = container_of(lip, struct xfs_inode_log_item,
257 					   ili_item);
258 			if (ili->ili_lock_flags == 0) {
259 				if (ipcount >= XFS_DEFER_OPS_NR_INODES) {
260 					ASSERT(0);
261 					return -EFSCORRUPTED;
262 				}
263 				xfs_trans_log_inode(tp, ili->ili_inode,
264 						    XFS_ILOG_CORE);
265 				iplist[ipcount++] = ili->ili_inode;
266 			}
267 			break;
268 		default:
269 			break;
270 		}
271 	}
272 
273 	trace_xfs_defer_trans_roll(tp, _RET_IP_);
274 
275 	/*
276 	 * Roll the transaction.  Rolling always given a new transaction (even
277 	 * if committing the old one fails!) to hand back to the caller, so we
278 	 * join the held resources to the new transaction so that we always
279 	 * return with the held resources joined to @tpp, no matter what
280 	 * happened.
281 	 */
282 	error = xfs_trans_roll(tpp);
283 	tp = *tpp;
284 
285 	/* Rejoin the joined inodes. */
286 	for (i = 0; i < ipcount; i++)
287 		xfs_trans_ijoin(tp, iplist[i], 0);
288 
289 	/* Rejoin the buffers and dirty them so the log moves forward. */
290 	for (i = 0; i < bpcount; i++) {
291 		xfs_trans_bjoin(tp, bplist[i]);
292 		xfs_trans_bhold(tp, bplist[i]);
293 	}
294 
295 	if (error)
296 		trace_xfs_defer_trans_roll_error(tp, error);
297 	return error;
298 }
299 
300 /*
301  * Reset an already used dfops after finish.
302  */
303 static void
304 xfs_defer_reset(
305 	struct xfs_trans	*tp)
306 {
307 	ASSERT(list_empty(&tp->t_dfops));
308 
309 	/*
310 	 * Low mode state transfers across transaction rolls to mirror dfops
311 	 * lifetime. Clear it now that dfops is reset.
312 	 */
313 	tp->t_flags &= ~XFS_TRANS_LOWMODE;
314 }
315 
316 /*
317  * Free up any items left in the list.
318  */
319 static void
320 xfs_defer_cancel_list(
321 	struct xfs_mount		*mp,
322 	struct list_head		*dop_list)
323 {
324 	struct xfs_defer_pending	*dfp;
325 	struct xfs_defer_pending	*pli;
326 	struct list_head		*pwi;
327 	struct list_head		*n;
328 	const struct xfs_defer_op_type	*ops;
329 
330 	/*
331 	 * Free the pending items.  Caller should already have arranged
332 	 * for the intent items to be released.
333 	 */
334 	list_for_each_entry_safe(dfp, pli, dop_list, dfp_list) {
335 		ops = defer_op_types[dfp->dfp_type];
336 		trace_xfs_defer_cancel_list(mp, dfp);
337 		list_del(&dfp->dfp_list);
338 		list_for_each_safe(pwi, n, &dfp->dfp_work) {
339 			list_del(pwi);
340 			dfp->dfp_count--;
341 			ops->cancel_item(pwi);
342 		}
343 		ASSERT(dfp->dfp_count == 0);
344 		kmem_free(dfp);
345 	}
346 }
347 
348 /*
349  * Finish all the pending work.  This involves logging intent items for
350  * any work items that wandered in since the last transaction roll (if
351  * one has even happened), rolling the transaction, and finishing the
352  * work items in the first item on the logged-and-pending list.
353  *
354  * If an inode is provided, relog it to the new transaction.
355  */
356 int
357 xfs_defer_finish_noroll(
358 	struct xfs_trans		**tp)
359 {
360 	struct xfs_defer_pending	*dfp;
361 	struct list_head		*li;
362 	struct list_head		*n;
363 	void				*state;
364 	int				error = 0;
365 	const struct xfs_defer_op_type	*ops;
366 	LIST_HEAD(dop_pending);
367 
368 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
369 
370 	trace_xfs_defer_finish(*tp, _RET_IP_);
371 
372 	/* Until we run out of pending work to finish... */
373 	while (!list_empty(&dop_pending) || !list_empty(&(*tp)->t_dfops)) {
374 		/* log intents and pull in intake items */
375 		xfs_defer_create_intents(*tp);
376 		list_splice_tail_init(&(*tp)->t_dfops, &dop_pending);
377 
378 		/*
379 		 * Roll the transaction.
380 		 */
381 		error = xfs_defer_trans_roll(tp);
382 		if (error)
383 			goto out;
384 
385 		/* Log an intent-done item for the first pending item. */
386 		dfp = list_first_entry(&dop_pending, struct xfs_defer_pending,
387 				       dfp_list);
388 		ops = defer_op_types[dfp->dfp_type];
389 		trace_xfs_defer_pending_finish((*tp)->t_mountp, dfp);
390 		dfp->dfp_done = ops->create_done(*tp, dfp->dfp_intent,
391 				dfp->dfp_count);
392 
393 		/* Finish the work items. */
394 		state = NULL;
395 		list_for_each_safe(li, n, &dfp->dfp_work) {
396 			list_del(li);
397 			dfp->dfp_count--;
398 			error = ops->finish_item(*tp, li, dfp->dfp_done,
399 					&state);
400 			if (error == -EAGAIN) {
401 				/*
402 				 * Caller wants a fresh transaction;
403 				 * put the work item back on the list
404 				 * and jump out.
405 				 */
406 				list_add(li, &dfp->dfp_work);
407 				dfp->dfp_count++;
408 				break;
409 			} else if (error) {
410 				/*
411 				 * Clean up after ourselves and jump out.
412 				 * xfs_defer_cancel will take care of freeing
413 				 * all these lists and stuff.
414 				 */
415 				if (ops->finish_cleanup)
416 					ops->finish_cleanup(*tp, state, error);
417 				goto out;
418 			}
419 		}
420 		if (error == -EAGAIN) {
421 			/*
422 			 * Caller wants a fresh transaction, so log a
423 			 * new log intent item to replace the old one
424 			 * and roll the transaction.  See "Requesting
425 			 * a Fresh Transaction while Finishing
426 			 * Deferred Work" above.
427 			 */
428 			dfp->dfp_intent = ops->create_intent(*tp,
429 					dfp->dfp_count);
430 			dfp->dfp_done = NULL;
431 			list_for_each(li, &dfp->dfp_work)
432 				ops->log_item(*tp, dfp->dfp_intent, li);
433 		} else {
434 			/* Done with the dfp, free it. */
435 			list_del(&dfp->dfp_list);
436 			kmem_free(dfp);
437 		}
438 
439 		if (ops->finish_cleanup)
440 			ops->finish_cleanup(*tp, state, error);
441 	}
442 
443 out:
444 	if (error) {
445 		xfs_defer_trans_abort(*tp, &dop_pending);
446 		xfs_force_shutdown((*tp)->t_mountp, SHUTDOWN_CORRUPT_INCORE);
447 		trace_xfs_defer_finish_error(*tp, error);
448 		xfs_defer_cancel_list((*tp)->t_mountp, &dop_pending);
449 		xfs_defer_cancel(*tp);
450 		return error;
451 	}
452 
453 	trace_xfs_defer_finish_done(*tp, _RET_IP_);
454 	return 0;
455 }
456 
457 int
458 xfs_defer_finish(
459 	struct xfs_trans	**tp)
460 {
461 	int			error;
462 
463 	/*
464 	 * Finish and roll the transaction once more to avoid returning to the
465 	 * caller with a dirty transaction.
466 	 */
467 	error = xfs_defer_finish_noroll(tp);
468 	if (error)
469 		return error;
470 	if ((*tp)->t_flags & XFS_TRANS_DIRTY) {
471 		error = xfs_defer_trans_roll(tp);
472 		if (error) {
473 			xfs_force_shutdown((*tp)->t_mountp,
474 					   SHUTDOWN_CORRUPT_INCORE);
475 			return error;
476 		}
477 	}
478 	xfs_defer_reset(*tp);
479 	return 0;
480 }
481 
482 void
483 xfs_defer_cancel(
484 	struct xfs_trans	*tp)
485 {
486 	struct xfs_mount	*mp = tp->t_mountp;
487 
488 	trace_xfs_defer_cancel(tp, _RET_IP_);
489 	xfs_defer_cancel_list(mp, &tp->t_dfops);
490 }
491 
492 /* Add an item for later deferred processing. */
493 void
494 xfs_defer_add(
495 	struct xfs_trans		*tp,
496 	enum xfs_defer_ops_type		type,
497 	struct list_head		*li)
498 {
499 	struct xfs_defer_pending	*dfp = NULL;
500 	const struct xfs_defer_op_type	*ops;
501 
502 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
503 	BUILD_BUG_ON(ARRAY_SIZE(defer_op_types) != XFS_DEFER_OPS_TYPE_MAX);
504 
505 	/*
506 	 * Add the item to a pending item at the end of the intake list.
507 	 * If the last pending item has the same type, reuse it.  Else,
508 	 * create a new pending item at the end of the intake list.
509 	 */
510 	if (!list_empty(&tp->t_dfops)) {
511 		dfp = list_last_entry(&tp->t_dfops,
512 				struct xfs_defer_pending, dfp_list);
513 		ops = defer_op_types[dfp->dfp_type];
514 		if (dfp->dfp_type != type ||
515 		    (ops->max_items && dfp->dfp_count >= ops->max_items))
516 			dfp = NULL;
517 	}
518 	if (!dfp) {
519 		dfp = kmem_alloc(sizeof(struct xfs_defer_pending),
520 				KM_SLEEP | KM_NOFS);
521 		dfp->dfp_type = type;
522 		dfp->dfp_intent = NULL;
523 		dfp->dfp_done = NULL;
524 		dfp->dfp_count = 0;
525 		INIT_LIST_HEAD(&dfp->dfp_work);
526 		list_add_tail(&dfp->dfp_list, &tp->t_dfops);
527 	}
528 
529 	list_add_tail(li, &dfp->dfp_work);
530 	dfp->dfp_count++;
531 }
532 
533 /*
534  * Move deferred ops from one transaction to another and reset the source to
535  * initial state. This is primarily used to carry state forward across
536  * transaction rolls with pending dfops.
537  */
538 void
539 xfs_defer_move(
540 	struct xfs_trans	*dtp,
541 	struct xfs_trans	*stp)
542 {
543 	list_splice_init(&stp->t_dfops, &dtp->t_dfops);
544 
545 	/*
546 	 * Low free space mode was historically controlled by a dfops field.
547 	 * This meant that low mode state potentially carried across multiple
548 	 * transaction rolls. Transfer low mode on a dfops move to preserve
549 	 * that behavior.
550 	 */
551 	dtp->t_flags |= (stp->t_flags & XFS_TRANS_LOWMODE);
552 
553 	xfs_defer_reset(stp);
554 }
555