xref: /openbmc/linux/fs/xfs/libxfs/xfs_defer.c (revision a5b2c10c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_inode.h"
17 #include "xfs_inode_item.h"
18 #include "xfs_trace.h"
19 
20 /*
21  * Deferred Operations in XFS
22  *
23  * Due to the way locking rules work in XFS, certain transactions (block
24  * mapping and unmapping, typically) have permanent reservations so that
25  * we can roll the transaction to adhere to AG locking order rules and
26  * to unlock buffers between metadata updates.  Prior to rmap/reflink,
27  * the mapping code had a mechanism to perform these deferrals for
28  * extents that were going to be freed; this code makes that facility
29  * more generic.
30  *
31  * When adding the reverse mapping and reflink features, it became
32  * necessary to perform complex remapping multi-transactions to comply
33  * with AG locking order rules, and to be able to spread a single
34  * refcount update operation (an operation on an n-block extent can
35  * update as many as n records!) among multiple transactions.  XFS can
36  * roll a transaction to facilitate this, but using this facility
37  * requires us to log "intent" items in case log recovery needs to
38  * redo the operation, and to log "done" items to indicate that redo
39  * is not necessary.
40  *
41  * Deferred work is tracked in xfs_defer_pending items.  Each pending
42  * item tracks one type of deferred work.  Incoming work items (which
43  * have not yet had an intent logged) are attached to a pending item
44  * on the dop_intake list, where they wait for the caller to finish
45  * the deferred operations.
46  *
47  * Finishing a set of deferred operations is an involved process.  To
48  * start, we define "rolling a deferred-op transaction" as follows:
49  *
50  * > For each xfs_defer_pending item on the dop_intake list,
51  *   - Sort the work items in AG order.  XFS locking
52  *     order rules require us to lock buffers in AG order.
53  *   - Create a log intent item for that type.
54  *   - Attach it to the pending item.
55  *   - Move the pending item from the dop_intake list to the
56  *     dop_pending list.
57  * > Roll the transaction.
58  *
59  * NOTE: To avoid exceeding the transaction reservation, we limit the
60  * number of items that we attach to a given xfs_defer_pending.
61  *
62  * The actual finishing process looks like this:
63  *
64  * > For each xfs_defer_pending in the dop_pending list,
65  *   - Roll the deferred-op transaction as above.
66  *   - Create a log done item for that type, and attach it to the
67  *     log intent item.
68  *   - For each work item attached to the log intent item,
69  *     * Perform the described action.
70  *     * Attach the work item to the log done item.
71  *     * If the result of doing the work was -EAGAIN, ->finish work
72  *       wants a new transaction.  See the "Requesting a Fresh
73  *       Transaction while Finishing Deferred Work" section below for
74  *       details.
75  *
76  * The key here is that we must log an intent item for all pending
77  * work items every time we roll the transaction, and that we must log
78  * a done item as soon as the work is completed.  With this mechanism
79  * we can perform complex remapping operations, chaining intent items
80  * as needed.
81  *
82  * Requesting a Fresh Transaction while Finishing Deferred Work
83  *
84  * If ->finish_item decides that it needs a fresh transaction to
85  * finish the work, it must ask its caller (xfs_defer_finish) for a
86  * continuation.  The most likely cause of this circumstance are the
87  * refcount adjust functions deciding that they've logged enough items
88  * to be at risk of exceeding the transaction reservation.
89  *
90  * To get a fresh transaction, we want to log the existing log done
91  * item to prevent the log intent item from replaying, immediately log
92  * a new log intent item with the unfinished work items, roll the
93  * transaction, and re-call ->finish_item wherever it left off.  The
94  * log done item and the new log intent item must be in the same
95  * transaction or atomicity cannot be guaranteed; defer_finish ensures
96  * that this happens.
97  *
98  * This requires some coordination between ->finish_item and
99  * defer_finish.  Upon deciding to request a new transaction,
100  * ->finish_item should update the current work item to reflect the
101  * unfinished work.  Next, it should reset the log done item's list
102  * count to the number of items finished, and return -EAGAIN.
103  * defer_finish sees the -EAGAIN, logs the new log intent item
104  * with the remaining work items, and leaves the xfs_defer_pending
105  * item at the head of the dop_work queue.  Then it rolls the
106  * transaction and picks up processing where it left off.  It is
107  * required that ->finish_item must be careful to leave enough
108  * transaction reservation to fit the new log intent item.
109  *
110  * This is an example of remapping the extent (E, E+B) into file X at
111  * offset A and dealing with the extent (C, C+B) already being mapped
112  * there:
113  * +-------------------------------------------------+
114  * | Unmap file X startblock C offset A length B     | t0
115  * | Intent to reduce refcount for extent (C, B)     |
116  * | Intent to remove rmap (X, C, A, B)              |
117  * | Intent to free extent (D, 1) (bmbt block)       |
118  * | Intent to map (X, A, B) at startblock E         |
119  * +-------------------------------------------------+
120  * | Map file X startblock E offset A length B       | t1
121  * | Done mapping (X, E, A, B)                       |
122  * | Intent to increase refcount for extent (E, B)   |
123  * | Intent to add rmap (X, E, A, B)                 |
124  * +-------------------------------------------------+
125  * | Reduce refcount for extent (C, B)               | t2
126  * | Done reducing refcount for extent (C, 9)        |
127  * | Intent to reduce refcount for extent (C+9, B-9) |
128  * | (ran out of space after 9 refcount updates)     |
129  * +-------------------------------------------------+
130  * | Reduce refcount for extent (C+9, B+9)           | t3
131  * | Done reducing refcount for extent (C+9, B-9)    |
132  * | Increase refcount for extent (E, B)             |
133  * | Done increasing refcount for extent (E, B)      |
134  * | Intent to free extent (C, B)                    |
135  * | Intent to free extent (F, 1) (refcountbt block) |
136  * | Intent to remove rmap (F, 1, REFC)              |
137  * +-------------------------------------------------+
138  * | Remove rmap (X, C, A, B)                        | t4
139  * | Done removing rmap (X, C, A, B)                 |
140  * | Add rmap (X, E, A, B)                           |
141  * | Done adding rmap (X, E, A, B)                   |
142  * | Remove rmap (F, 1, REFC)                        |
143  * | Done removing rmap (F, 1, REFC)                 |
144  * +-------------------------------------------------+
145  * | Free extent (C, B)                              | t5
146  * | Done freeing extent (C, B)                      |
147  * | Free extent (D, 1)                              |
148  * | Done freeing extent (D, 1)                      |
149  * | Free extent (F, 1)                              |
150  * | Done freeing extent (F, 1)                      |
151  * +-------------------------------------------------+
152  *
153  * If we should crash before t2 commits, log recovery replays
154  * the following intent items:
155  *
156  * - Intent to reduce refcount for extent (C, B)
157  * - Intent to remove rmap (X, C, A, B)
158  * - Intent to free extent (D, 1) (bmbt block)
159  * - Intent to increase refcount for extent (E, B)
160  * - Intent to add rmap (X, E, A, B)
161  *
162  * In the process of recovering, it should also generate and take care
163  * of these intent items:
164  *
165  * - Intent to free extent (C, B)
166  * - Intent to free extent (F, 1) (refcountbt block)
167  * - Intent to remove rmap (F, 1, REFC)
168  *
169  * Note that the continuation requested between t2 and t3 is likely to
170  * reoccur.
171  */
172 
173 static const struct xfs_defer_op_type *defer_op_types[] = {
174 	[XFS_DEFER_OPS_TYPE_BMAP]	= &xfs_bmap_update_defer_type,
175 	[XFS_DEFER_OPS_TYPE_REFCOUNT]	= &xfs_refcount_update_defer_type,
176 	[XFS_DEFER_OPS_TYPE_RMAP]	= &xfs_rmap_update_defer_type,
177 	[XFS_DEFER_OPS_TYPE_FREE]	= &xfs_extent_free_defer_type,
178 	[XFS_DEFER_OPS_TYPE_AGFL_FREE]	= &xfs_agfl_free_defer_type,
179 };
180 
181 static void
182 xfs_defer_create_intent(
183 	struct xfs_trans		*tp,
184 	struct xfs_defer_pending	*dfp,
185 	bool				sort)
186 {
187 	const struct xfs_defer_op_type	*ops = defer_op_types[dfp->dfp_type];
188 
189 	dfp->dfp_intent = ops->create_intent(tp, &dfp->dfp_work,
190 			dfp->dfp_count, sort);
191 }
192 
193 /*
194  * For each pending item in the intake list, log its intent item and the
195  * associated extents, then add the entire intake list to the end of
196  * the pending list.
197  */
198 STATIC void
199 xfs_defer_create_intents(
200 	struct xfs_trans		*tp)
201 {
202 	struct xfs_defer_pending	*dfp;
203 
204 	list_for_each_entry(dfp, &tp->t_dfops, dfp_list) {
205 		trace_xfs_defer_create_intent(tp->t_mountp, dfp);
206 		xfs_defer_create_intent(tp, dfp, true);
207 	}
208 }
209 
210 /* Abort all the intents that were committed. */
211 STATIC void
212 xfs_defer_trans_abort(
213 	struct xfs_trans		*tp,
214 	struct list_head		*dop_pending)
215 {
216 	struct xfs_defer_pending	*dfp;
217 	const struct xfs_defer_op_type	*ops;
218 
219 	trace_xfs_defer_trans_abort(tp, _RET_IP_);
220 
221 	/* Abort intent items that don't have a done item. */
222 	list_for_each_entry(dfp, dop_pending, dfp_list) {
223 		ops = defer_op_types[dfp->dfp_type];
224 		trace_xfs_defer_pending_abort(tp->t_mountp, dfp);
225 		if (dfp->dfp_intent && !dfp->dfp_done) {
226 			ops->abort_intent(dfp->dfp_intent);
227 			dfp->dfp_intent = NULL;
228 		}
229 	}
230 }
231 
232 /* Roll a transaction so we can do some deferred op processing. */
233 STATIC int
234 xfs_defer_trans_roll(
235 	struct xfs_trans		**tpp)
236 {
237 	struct xfs_trans		*tp = *tpp;
238 	struct xfs_buf_log_item		*bli;
239 	struct xfs_inode_log_item	*ili;
240 	struct xfs_log_item		*lip;
241 	struct xfs_buf			*bplist[XFS_DEFER_OPS_NR_BUFS];
242 	struct xfs_inode		*iplist[XFS_DEFER_OPS_NR_INODES];
243 	unsigned int			ordered = 0; /* bitmap */
244 	int				bpcount = 0, ipcount = 0;
245 	int				i;
246 	int				error;
247 
248 	BUILD_BUG_ON(NBBY * sizeof(ordered) < XFS_DEFER_OPS_NR_BUFS);
249 
250 	list_for_each_entry(lip, &tp->t_items, li_trans) {
251 		switch (lip->li_type) {
252 		case XFS_LI_BUF:
253 			bli = container_of(lip, struct xfs_buf_log_item,
254 					   bli_item);
255 			if (bli->bli_flags & XFS_BLI_HOLD) {
256 				if (bpcount >= XFS_DEFER_OPS_NR_BUFS) {
257 					ASSERT(0);
258 					return -EFSCORRUPTED;
259 				}
260 				if (bli->bli_flags & XFS_BLI_ORDERED)
261 					ordered |= (1U << bpcount);
262 				else
263 					xfs_trans_dirty_buf(tp, bli->bli_buf);
264 				bplist[bpcount++] = bli->bli_buf;
265 			}
266 			break;
267 		case XFS_LI_INODE:
268 			ili = container_of(lip, struct xfs_inode_log_item,
269 					   ili_item);
270 			if (ili->ili_lock_flags == 0) {
271 				if (ipcount >= XFS_DEFER_OPS_NR_INODES) {
272 					ASSERT(0);
273 					return -EFSCORRUPTED;
274 				}
275 				xfs_trans_log_inode(tp, ili->ili_inode,
276 						    XFS_ILOG_CORE);
277 				iplist[ipcount++] = ili->ili_inode;
278 			}
279 			break;
280 		default:
281 			break;
282 		}
283 	}
284 
285 	trace_xfs_defer_trans_roll(tp, _RET_IP_);
286 
287 	/*
288 	 * Roll the transaction.  Rolling always given a new transaction (even
289 	 * if committing the old one fails!) to hand back to the caller, so we
290 	 * join the held resources to the new transaction so that we always
291 	 * return with the held resources joined to @tpp, no matter what
292 	 * happened.
293 	 */
294 	error = xfs_trans_roll(tpp);
295 	tp = *tpp;
296 
297 	/* Rejoin the joined inodes. */
298 	for (i = 0; i < ipcount; i++)
299 		xfs_trans_ijoin(tp, iplist[i], 0);
300 
301 	/* Rejoin the buffers and dirty them so the log moves forward. */
302 	for (i = 0; i < bpcount; i++) {
303 		xfs_trans_bjoin(tp, bplist[i]);
304 		if (ordered & (1U << i))
305 			xfs_trans_ordered_buf(tp, bplist[i]);
306 		xfs_trans_bhold(tp, bplist[i]);
307 	}
308 
309 	if (error)
310 		trace_xfs_defer_trans_roll_error(tp, error);
311 	return error;
312 }
313 
314 /*
315  * Reset an already used dfops after finish.
316  */
317 static void
318 xfs_defer_reset(
319 	struct xfs_trans	*tp)
320 {
321 	ASSERT(list_empty(&tp->t_dfops));
322 
323 	/*
324 	 * Low mode state transfers across transaction rolls to mirror dfops
325 	 * lifetime. Clear it now that dfops is reset.
326 	 */
327 	tp->t_flags &= ~XFS_TRANS_LOWMODE;
328 }
329 
330 /*
331  * Free up any items left in the list.
332  */
333 static void
334 xfs_defer_cancel_list(
335 	struct xfs_mount		*mp,
336 	struct list_head		*dop_list)
337 {
338 	struct xfs_defer_pending	*dfp;
339 	struct xfs_defer_pending	*pli;
340 	struct list_head		*pwi;
341 	struct list_head		*n;
342 	const struct xfs_defer_op_type	*ops;
343 
344 	/*
345 	 * Free the pending items.  Caller should already have arranged
346 	 * for the intent items to be released.
347 	 */
348 	list_for_each_entry_safe(dfp, pli, dop_list, dfp_list) {
349 		ops = defer_op_types[dfp->dfp_type];
350 		trace_xfs_defer_cancel_list(mp, dfp);
351 		list_del(&dfp->dfp_list);
352 		list_for_each_safe(pwi, n, &dfp->dfp_work) {
353 			list_del(pwi);
354 			dfp->dfp_count--;
355 			ops->cancel_item(pwi);
356 		}
357 		ASSERT(dfp->dfp_count == 0);
358 		kmem_free(dfp);
359 	}
360 }
361 
362 /*
363  * Log an intent-done item for the first pending intent, and finish the work
364  * items.
365  */
366 static int
367 xfs_defer_finish_one(
368 	struct xfs_trans		*tp,
369 	struct xfs_defer_pending	*dfp)
370 {
371 	const struct xfs_defer_op_type	*ops = defer_op_types[dfp->dfp_type];
372 	struct xfs_btree_cur		*state = NULL;
373 	struct list_head		*li, *n;
374 	int				error;
375 
376 	trace_xfs_defer_pending_finish(tp->t_mountp, dfp);
377 
378 	dfp->dfp_done = ops->create_done(tp, dfp->dfp_intent, dfp->dfp_count);
379 	list_for_each_safe(li, n, &dfp->dfp_work) {
380 		list_del(li);
381 		dfp->dfp_count--;
382 		error = ops->finish_item(tp, dfp->dfp_done, li, &state);
383 		if (error == -EAGAIN) {
384 			/*
385 			 * Caller wants a fresh transaction; put the work item
386 			 * back on the list and log a new log intent item to
387 			 * replace the old one.  See "Requesting a Fresh
388 			 * Transaction while Finishing Deferred Work" above.
389 			 */
390 			list_add(li, &dfp->dfp_work);
391 			dfp->dfp_count++;
392 			dfp->dfp_done = NULL;
393 			xfs_defer_create_intent(tp, dfp, false);
394 		}
395 
396 		if (error)
397 			goto out;
398 	}
399 
400 	/* Done with the dfp, free it. */
401 	list_del(&dfp->dfp_list);
402 	kmem_free(dfp);
403 out:
404 	if (ops->finish_cleanup)
405 		ops->finish_cleanup(tp, state, error);
406 	return error;
407 }
408 
409 /*
410  * Finish all the pending work.  This involves logging intent items for
411  * any work items that wandered in since the last transaction roll (if
412  * one has even happened), rolling the transaction, and finishing the
413  * work items in the first item on the logged-and-pending list.
414  *
415  * If an inode is provided, relog it to the new transaction.
416  */
417 int
418 xfs_defer_finish_noroll(
419 	struct xfs_trans		**tp)
420 {
421 	struct xfs_defer_pending	*dfp;
422 	int				error = 0;
423 	LIST_HEAD(dop_pending);
424 
425 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
426 
427 	trace_xfs_defer_finish(*tp, _RET_IP_);
428 
429 	/* Until we run out of pending work to finish... */
430 	while (!list_empty(&dop_pending) || !list_empty(&(*tp)->t_dfops)) {
431 		xfs_defer_create_intents(*tp);
432 		list_splice_tail_init(&(*tp)->t_dfops, &dop_pending);
433 
434 		error = xfs_defer_trans_roll(tp);
435 		if (error)
436 			goto out_shutdown;
437 
438 		dfp = list_first_entry(&dop_pending, struct xfs_defer_pending,
439 				       dfp_list);
440 		error = xfs_defer_finish_one(*tp, dfp);
441 		if (error && error != -EAGAIN)
442 			goto out_shutdown;
443 	}
444 
445 	trace_xfs_defer_finish_done(*tp, _RET_IP_);
446 	return 0;
447 
448 out_shutdown:
449 	xfs_defer_trans_abort(*tp, &dop_pending);
450 	xfs_force_shutdown((*tp)->t_mountp, SHUTDOWN_CORRUPT_INCORE);
451 	trace_xfs_defer_finish_error(*tp, error);
452 	xfs_defer_cancel_list((*tp)->t_mountp, &dop_pending);
453 	xfs_defer_cancel(*tp);
454 	return error;
455 }
456 
457 int
458 xfs_defer_finish(
459 	struct xfs_trans	**tp)
460 {
461 	int			error;
462 
463 	/*
464 	 * Finish and roll the transaction once more to avoid returning to the
465 	 * caller with a dirty transaction.
466 	 */
467 	error = xfs_defer_finish_noroll(tp);
468 	if (error)
469 		return error;
470 	if ((*tp)->t_flags & XFS_TRANS_DIRTY) {
471 		error = xfs_defer_trans_roll(tp);
472 		if (error) {
473 			xfs_force_shutdown((*tp)->t_mountp,
474 					   SHUTDOWN_CORRUPT_INCORE);
475 			return error;
476 		}
477 	}
478 	xfs_defer_reset(*tp);
479 	return 0;
480 }
481 
482 void
483 xfs_defer_cancel(
484 	struct xfs_trans	*tp)
485 {
486 	struct xfs_mount	*mp = tp->t_mountp;
487 
488 	trace_xfs_defer_cancel(tp, _RET_IP_);
489 	xfs_defer_cancel_list(mp, &tp->t_dfops);
490 }
491 
492 /* Add an item for later deferred processing. */
493 void
494 xfs_defer_add(
495 	struct xfs_trans		*tp,
496 	enum xfs_defer_ops_type		type,
497 	struct list_head		*li)
498 {
499 	struct xfs_defer_pending	*dfp = NULL;
500 	const struct xfs_defer_op_type	*ops;
501 
502 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
503 	BUILD_BUG_ON(ARRAY_SIZE(defer_op_types) != XFS_DEFER_OPS_TYPE_MAX);
504 
505 	/*
506 	 * Add the item to a pending item at the end of the intake list.
507 	 * If the last pending item has the same type, reuse it.  Else,
508 	 * create a new pending item at the end of the intake list.
509 	 */
510 	if (!list_empty(&tp->t_dfops)) {
511 		dfp = list_last_entry(&tp->t_dfops,
512 				struct xfs_defer_pending, dfp_list);
513 		ops = defer_op_types[dfp->dfp_type];
514 		if (dfp->dfp_type != type ||
515 		    (ops->max_items && dfp->dfp_count >= ops->max_items))
516 			dfp = NULL;
517 	}
518 	if (!dfp) {
519 		dfp = kmem_alloc(sizeof(struct xfs_defer_pending),
520 				KM_NOFS);
521 		dfp->dfp_type = type;
522 		dfp->dfp_intent = NULL;
523 		dfp->dfp_done = NULL;
524 		dfp->dfp_count = 0;
525 		INIT_LIST_HEAD(&dfp->dfp_work);
526 		list_add_tail(&dfp->dfp_list, &tp->t_dfops);
527 	}
528 
529 	list_add_tail(li, &dfp->dfp_work);
530 	dfp->dfp_count++;
531 }
532 
533 /*
534  * Move deferred ops from one transaction to another and reset the source to
535  * initial state. This is primarily used to carry state forward across
536  * transaction rolls with pending dfops.
537  */
538 void
539 xfs_defer_move(
540 	struct xfs_trans	*dtp,
541 	struct xfs_trans	*stp)
542 {
543 	list_splice_init(&stp->t_dfops, &dtp->t_dfops);
544 
545 	/*
546 	 * Low free space mode was historically controlled by a dfops field.
547 	 * This meant that low mode state potentially carried across multiple
548 	 * transaction rolls. Transfer low mode on a dfops move to preserve
549 	 * that behavior.
550 	 */
551 	dtp->t_flags |= (stp->t_flags & XFS_TRANS_LOWMODE);
552 
553 	xfs_defer_reset(stp);
554 }
555