xref: /openbmc/linux/fs/xfs/libxfs/xfs_defer.c (revision 5ddd658e)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_inode.h"
17 #include "xfs_inode_item.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_log.h"
21 #include "xfs_rmap.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap.h"
24 #include "xfs_alloc.h"
25 
26 static struct kmem_cache	*xfs_defer_pending_cache;
27 
28 /*
29  * Deferred Operations in XFS
30  *
31  * Due to the way locking rules work in XFS, certain transactions (block
32  * mapping and unmapping, typically) have permanent reservations so that
33  * we can roll the transaction to adhere to AG locking order rules and
34  * to unlock buffers between metadata updates.  Prior to rmap/reflink,
35  * the mapping code had a mechanism to perform these deferrals for
36  * extents that were going to be freed; this code makes that facility
37  * more generic.
38  *
39  * When adding the reverse mapping and reflink features, it became
40  * necessary to perform complex remapping multi-transactions to comply
41  * with AG locking order rules, and to be able to spread a single
42  * refcount update operation (an operation on an n-block extent can
43  * update as many as n records!) among multiple transactions.  XFS can
44  * roll a transaction to facilitate this, but using this facility
45  * requires us to log "intent" items in case log recovery needs to
46  * redo the operation, and to log "done" items to indicate that redo
47  * is not necessary.
48  *
49  * Deferred work is tracked in xfs_defer_pending items.  Each pending
50  * item tracks one type of deferred work.  Incoming work items (which
51  * have not yet had an intent logged) are attached to a pending item
52  * on the dop_intake list, where they wait for the caller to finish
53  * the deferred operations.
54  *
55  * Finishing a set of deferred operations is an involved process.  To
56  * start, we define "rolling a deferred-op transaction" as follows:
57  *
58  * > For each xfs_defer_pending item on the dop_intake list,
59  *   - Sort the work items in AG order.  XFS locking
60  *     order rules require us to lock buffers in AG order.
61  *   - Create a log intent item for that type.
62  *   - Attach it to the pending item.
63  *   - Move the pending item from the dop_intake list to the
64  *     dop_pending list.
65  * > Roll the transaction.
66  *
67  * NOTE: To avoid exceeding the transaction reservation, we limit the
68  * number of items that we attach to a given xfs_defer_pending.
69  *
70  * The actual finishing process looks like this:
71  *
72  * > For each xfs_defer_pending in the dop_pending list,
73  *   - Roll the deferred-op transaction as above.
74  *   - Create a log done item for that type, and attach it to the
75  *     log intent item.
76  *   - For each work item attached to the log intent item,
77  *     * Perform the described action.
78  *     * Attach the work item to the log done item.
79  *     * If the result of doing the work was -EAGAIN, ->finish work
80  *       wants a new transaction.  See the "Requesting a Fresh
81  *       Transaction while Finishing Deferred Work" section below for
82  *       details.
83  *
84  * The key here is that we must log an intent item for all pending
85  * work items every time we roll the transaction, and that we must log
86  * a done item as soon as the work is completed.  With this mechanism
87  * we can perform complex remapping operations, chaining intent items
88  * as needed.
89  *
90  * Requesting a Fresh Transaction while Finishing Deferred Work
91  *
92  * If ->finish_item decides that it needs a fresh transaction to
93  * finish the work, it must ask its caller (xfs_defer_finish) for a
94  * continuation.  The most likely cause of this circumstance are the
95  * refcount adjust functions deciding that they've logged enough items
96  * to be at risk of exceeding the transaction reservation.
97  *
98  * To get a fresh transaction, we want to log the existing log done
99  * item to prevent the log intent item from replaying, immediately log
100  * a new log intent item with the unfinished work items, roll the
101  * transaction, and re-call ->finish_item wherever it left off.  The
102  * log done item and the new log intent item must be in the same
103  * transaction or atomicity cannot be guaranteed; defer_finish ensures
104  * that this happens.
105  *
106  * This requires some coordination between ->finish_item and
107  * defer_finish.  Upon deciding to request a new transaction,
108  * ->finish_item should update the current work item to reflect the
109  * unfinished work.  Next, it should reset the log done item's list
110  * count to the number of items finished, and return -EAGAIN.
111  * defer_finish sees the -EAGAIN, logs the new log intent item
112  * with the remaining work items, and leaves the xfs_defer_pending
113  * item at the head of the dop_work queue.  Then it rolls the
114  * transaction and picks up processing where it left off.  It is
115  * required that ->finish_item must be careful to leave enough
116  * transaction reservation to fit the new log intent item.
117  *
118  * This is an example of remapping the extent (E, E+B) into file X at
119  * offset A and dealing with the extent (C, C+B) already being mapped
120  * there:
121  * +-------------------------------------------------+
122  * | Unmap file X startblock C offset A length B     | t0
123  * | Intent to reduce refcount for extent (C, B)     |
124  * | Intent to remove rmap (X, C, A, B)              |
125  * | Intent to free extent (D, 1) (bmbt block)       |
126  * | Intent to map (X, A, B) at startblock E         |
127  * +-------------------------------------------------+
128  * | Map file X startblock E offset A length B       | t1
129  * | Done mapping (X, E, A, B)                       |
130  * | Intent to increase refcount for extent (E, B)   |
131  * | Intent to add rmap (X, E, A, B)                 |
132  * +-------------------------------------------------+
133  * | Reduce refcount for extent (C, B)               | t2
134  * | Done reducing refcount for extent (C, 9)        |
135  * | Intent to reduce refcount for extent (C+9, B-9) |
136  * | (ran out of space after 9 refcount updates)     |
137  * +-------------------------------------------------+
138  * | Reduce refcount for extent (C+9, B+9)           | t3
139  * | Done reducing refcount for extent (C+9, B-9)    |
140  * | Increase refcount for extent (E, B)             |
141  * | Done increasing refcount for extent (E, B)      |
142  * | Intent to free extent (C, B)                    |
143  * | Intent to free extent (F, 1) (refcountbt block) |
144  * | Intent to remove rmap (F, 1, REFC)              |
145  * +-------------------------------------------------+
146  * | Remove rmap (X, C, A, B)                        | t4
147  * | Done removing rmap (X, C, A, B)                 |
148  * | Add rmap (X, E, A, B)                           |
149  * | Done adding rmap (X, E, A, B)                   |
150  * | Remove rmap (F, 1, REFC)                        |
151  * | Done removing rmap (F, 1, REFC)                 |
152  * +-------------------------------------------------+
153  * | Free extent (C, B)                              | t5
154  * | Done freeing extent (C, B)                      |
155  * | Free extent (D, 1)                              |
156  * | Done freeing extent (D, 1)                      |
157  * | Free extent (F, 1)                              |
158  * | Done freeing extent (F, 1)                      |
159  * +-------------------------------------------------+
160  *
161  * If we should crash before t2 commits, log recovery replays
162  * the following intent items:
163  *
164  * - Intent to reduce refcount for extent (C, B)
165  * - Intent to remove rmap (X, C, A, B)
166  * - Intent to free extent (D, 1) (bmbt block)
167  * - Intent to increase refcount for extent (E, B)
168  * - Intent to add rmap (X, E, A, B)
169  *
170  * In the process of recovering, it should also generate and take care
171  * of these intent items:
172  *
173  * - Intent to free extent (C, B)
174  * - Intent to free extent (F, 1) (refcountbt block)
175  * - Intent to remove rmap (F, 1, REFC)
176  *
177  * Note that the continuation requested between t2 and t3 is likely to
178  * reoccur.
179  */
180 
181 static const struct xfs_defer_op_type *defer_op_types[] = {
182 	[XFS_DEFER_OPS_TYPE_BMAP]	= &xfs_bmap_update_defer_type,
183 	[XFS_DEFER_OPS_TYPE_REFCOUNT]	= &xfs_refcount_update_defer_type,
184 	[XFS_DEFER_OPS_TYPE_RMAP]	= &xfs_rmap_update_defer_type,
185 	[XFS_DEFER_OPS_TYPE_FREE]	= &xfs_extent_free_defer_type,
186 	[XFS_DEFER_OPS_TYPE_AGFL_FREE]	= &xfs_agfl_free_defer_type,
187 };
188 
189 static bool
190 xfs_defer_create_intent(
191 	struct xfs_trans		*tp,
192 	struct xfs_defer_pending	*dfp,
193 	bool				sort)
194 {
195 	const struct xfs_defer_op_type	*ops = defer_op_types[dfp->dfp_type];
196 
197 	if (!dfp->dfp_intent)
198 		dfp->dfp_intent = ops->create_intent(tp, &dfp->dfp_work,
199 						     dfp->dfp_count, sort);
200 	return dfp->dfp_intent != NULL;
201 }
202 
203 /*
204  * For each pending item in the intake list, log its intent item and the
205  * associated extents, then add the entire intake list to the end of
206  * the pending list.
207  */
208 static bool
209 xfs_defer_create_intents(
210 	struct xfs_trans		*tp)
211 {
212 	struct xfs_defer_pending	*dfp;
213 	bool				ret = false;
214 
215 	list_for_each_entry(dfp, &tp->t_dfops, dfp_list) {
216 		trace_xfs_defer_create_intent(tp->t_mountp, dfp);
217 		ret |= xfs_defer_create_intent(tp, dfp, true);
218 	}
219 	return ret;
220 }
221 
222 /* Abort all the intents that were committed. */
223 STATIC void
224 xfs_defer_trans_abort(
225 	struct xfs_trans		*tp,
226 	struct list_head		*dop_pending)
227 {
228 	struct xfs_defer_pending	*dfp;
229 	const struct xfs_defer_op_type	*ops;
230 
231 	trace_xfs_defer_trans_abort(tp, _RET_IP_);
232 
233 	/* Abort intent items that don't have a done item. */
234 	list_for_each_entry(dfp, dop_pending, dfp_list) {
235 		ops = defer_op_types[dfp->dfp_type];
236 		trace_xfs_defer_pending_abort(tp->t_mountp, dfp);
237 		if (dfp->dfp_intent && !dfp->dfp_done) {
238 			ops->abort_intent(dfp->dfp_intent);
239 			dfp->dfp_intent = NULL;
240 		}
241 	}
242 }
243 
244 /*
245  * Capture resources that the caller said not to release ("held") when the
246  * transaction commits.  Caller is responsible for zero-initializing @dres.
247  */
248 static int
249 xfs_defer_save_resources(
250 	struct xfs_defer_resources	*dres,
251 	struct xfs_trans		*tp)
252 {
253 	struct xfs_buf_log_item		*bli;
254 	struct xfs_inode_log_item	*ili;
255 	struct xfs_log_item		*lip;
256 
257 	BUILD_BUG_ON(NBBY * sizeof(dres->dr_ordered) < XFS_DEFER_OPS_NR_BUFS);
258 
259 	list_for_each_entry(lip, &tp->t_items, li_trans) {
260 		switch (lip->li_type) {
261 		case XFS_LI_BUF:
262 			bli = container_of(lip, struct xfs_buf_log_item,
263 					   bli_item);
264 			if (bli->bli_flags & XFS_BLI_HOLD) {
265 				if (dres->dr_bufs >= XFS_DEFER_OPS_NR_BUFS) {
266 					ASSERT(0);
267 					return -EFSCORRUPTED;
268 				}
269 				if (bli->bli_flags & XFS_BLI_ORDERED)
270 					dres->dr_ordered |=
271 							(1U << dres->dr_bufs);
272 				else
273 					xfs_trans_dirty_buf(tp, bli->bli_buf);
274 				dres->dr_bp[dres->dr_bufs++] = bli->bli_buf;
275 			}
276 			break;
277 		case XFS_LI_INODE:
278 			ili = container_of(lip, struct xfs_inode_log_item,
279 					   ili_item);
280 			if (ili->ili_lock_flags == 0) {
281 				if (dres->dr_inos >= XFS_DEFER_OPS_NR_INODES) {
282 					ASSERT(0);
283 					return -EFSCORRUPTED;
284 				}
285 				xfs_trans_log_inode(tp, ili->ili_inode,
286 						    XFS_ILOG_CORE);
287 				dres->dr_ip[dres->dr_inos++] = ili->ili_inode;
288 			}
289 			break;
290 		default:
291 			break;
292 		}
293 	}
294 
295 	return 0;
296 }
297 
298 /* Attach the held resources to the transaction. */
299 static void
300 xfs_defer_restore_resources(
301 	struct xfs_trans		*tp,
302 	struct xfs_defer_resources	*dres)
303 {
304 	unsigned short			i;
305 
306 	/* Rejoin the joined inodes. */
307 	for (i = 0; i < dres->dr_inos; i++)
308 		xfs_trans_ijoin(tp, dres->dr_ip[i], 0);
309 
310 	/* Rejoin the buffers and dirty them so the log moves forward. */
311 	for (i = 0; i < dres->dr_bufs; i++) {
312 		xfs_trans_bjoin(tp, dres->dr_bp[i]);
313 		if (dres->dr_ordered & (1U << i))
314 			xfs_trans_ordered_buf(tp, dres->dr_bp[i]);
315 		xfs_trans_bhold(tp, dres->dr_bp[i]);
316 	}
317 }
318 
319 /* Roll a transaction so we can do some deferred op processing. */
320 STATIC int
321 xfs_defer_trans_roll(
322 	struct xfs_trans		**tpp)
323 {
324 	struct xfs_defer_resources	dres = { };
325 	int				error;
326 
327 	error = xfs_defer_save_resources(&dres, *tpp);
328 	if (error)
329 		return error;
330 
331 	trace_xfs_defer_trans_roll(*tpp, _RET_IP_);
332 
333 	/*
334 	 * Roll the transaction.  Rolling always given a new transaction (even
335 	 * if committing the old one fails!) to hand back to the caller, so we
336 	 * join the held resources to the new transaction so that we always
337 	 * return with the held resources joined to @tpp, no matter what
338 	 * happened.
339 	 */
340 	error = xfs_trans_roll(tpp);
341 
342 	xfs_defer_restore_resources(*tpp, &dres);
343 
344 	if (error)
345 		trace_xfs_defer_trans_roll_error(*tpp, error);
346 	return error;
347 }
348 
349 /*
350  * Free up any items left in the list.
351  */
352 static void
353 xfs_defer_cancel_list(
354 	struct xfs_mount		*mp,
355 	struct list_head		*dop_list)
356 {
357 	struct xfs_defer_pending	*dfp;
358 	struct xfs_defer_pending	*pli;
359 	struct list_head		*pwi;
360 	struct list_head		*n;
361 	const struct xfs_defer_op_type	*ops;
362 
363 	/*
364 	 * Free the pending items.  Caller should already have arranged
365 	 * for the intent items to be released.
366 	 */
367 	list_for_each_entry_safe(dfp, pli, dop_list, dfp_list) {
368 		ops = defer_op_types[dfp->dfp_type];
369 		trace_xfs_defer_cancel_list(mp, dfp);
370 		list_del(&dfp->dfp_list);
371 		list_for_each_safe(pwi, n, &dfp->dfp_work) {
372 			list_del(pwi);
373 			dfp->dfp_count--;
374 			ops->cancel_item(pwi);
375 		}
376 		ASSERT(dfp->dfp_count == 0);
377 		kmem_cache_free(xfs_defer_pending_cache, dfp);
378 	}
379 }
380 
381 /*
382  * Prevent a log intent item from pinning the tail of the log by logging a
383  * done item to release the intent item; and then log a new intent item.
384  * The caller should provide a fresh transaction and roll it after we're done.
385  */
386 static int
387 xfs_defer_relog(
388 	struct xfs_trans		**tpp,
389 	struct list_head		*dfops)
390 {
391 	struct xlog			*log = (*tpp)->t_mountp->m_log;
392 	struct xfs_defer_pending	*dfp;
393 	xfs_lsn_t			threshold_lsn = NULLCOMMITLSN;
394 
395 
396 	ASSERT((*tpp)->t_flags & XFS_TRANS_PERM_LOG_RES);
397 
398 	list_for_each_entry(dfp, dfops, dfp_list) {
399 		/*
400 		 * If the log intent item for this deferred op is not a part of
401 		 * the current log checkpoint, relog the intent item to keep
402 		 * the log tail moving forward.  We're ok with this being racy
403 		 * because an incorrect decision means we'll be a little slower
404 		 * at pushing the tail.
405 		 */
406 		if (dfp->dfp_intent == NULL ||
407 		    xfs_log_item_in_current_chkpt(dfp->dfp_intent))
408 			continue;
409 
410 		/*
411 		 * Figure out where we need the tail to be in order to maintain
412 		 * the minimum required free space in the log.  Only sample
413 		 * the log threshold once per call.
414 		 */
415 		if (threshold_lsn == NULLCOMMITLSN) {
416 			threshold_lsn = xlog_grant_push_threshold(log, 0);
417 			if (threshold_lsn == NULLCOMMITLSN)
418 				break;
419 		}
420 		if (XFS_LSN_CMP(dfp->dfp_intent->li_lsn, threshold_lsn) >= 0)
421 			continue;
422 
423 		trace_xfs_defer_relog_intent((*tpp)->t_mountp, dfp);
424 		XFS_STATS_INC((*tpp)->t_mountp, defer_relog);
425 		dfp->dfp_intent = xfs_trans_item_relog(dfp->dfp_intent, *tpp);
426 	}
427 
428 	if ((*tpp)->t_flags & XFS_TRANS_DIRTY)
429 		return xfs_defer_trans_roll(tpp);
430 	return 0;
431 }
432 
433 /*
434  * Log an intent-done item for the first pending intent, and finish the work
435  * items.
436  */
437 static int
438 xfs_defer_finish_one(
439 	struct xfs_trans		*tp,
440 	struct xfs_defer_pending	*dfp)
441 {
442 	const struct xfs_defer_op_type	*ops = defer_op_types[dfp->dfp_type];
443 	struct xfs_btree_cur		*state = NULL;
444 	struct list_head		*li, *n;
445 	int				error;
446 
447 	trace_xfs_defer_pending_finish(tp->t_mountp, dfp);
448 
449 	dfp->dfp_done = ops->create_done(tp, dfp->dfp_intent, dfp->dfp_count);
450 	list_for_each_safe(li, n, &dfp->dfp_work) {
451 		list_del(li);
452 		dfp->dfp_count--;
453 		error = ops->finish_item(tp, dfp->dfp_done, li, &state);
454 		if (error == -EAGAIN) {
455 			/*
456 			 * Caller wants a fresh transaction; put the work item
457 			 * back on the list and log a new log intent item to
458 			 * replace the old one.  See "Requesting a Fresh
459 			 * Transaction while Finishing Deferred Work" above.
460 			 */
461 			list_add(li, &dfp->dfp_work);
462 			dfp->dfp_count++;
463 			dfp->dfp_done = NULL;
464 			dfp->dfp_intent = NULL;
465 			xfs_defer_create_intent(tp, dfp, false);
466 		}
467 
468 		if (error)
469 			goto out;
470 	}
471 
472 	/* Done with the dfp, free it. */
473 	list_del(&dfp->dfp_list);
474 	kmem_cache_free(xfs_defer_pending_cache, dfp);
475 out:
476 	if (ops->finish_cleanup)
477 		ops->finish_cleanup(tp, state, error);
478 	return error;
479 }
480 
481 /*
482  * Finish all the pending work.  This involves logging intent items for
483  * any work items that wandered in since the last transaction roll (if
484  * one has even happened), rolling the transaction, and finishing the
485  * work items in the first item on the logged-and-pending list.
486  *
487  * If an inode is provided, relog it to the new transaction.
488  */
489 int
490 xfs_defer_finish_noroll(
491 	struct xfs_trans		**tp)
492 {
493 	struct xfs_defer_pending	*dfp = NULL;
494 	int				error = 0;
495 	LIST_HEAD(dop_pending);
496 
497 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
498 
499 	trace_xfs_defer_finish(*tp, _RET_IP_);
500 
501 	/* Until we run out of pending work to finish... */
502 	while (!list_empty(&dop_pending) || !list_empty(&(*tp)->t_dfops)) {
503 		/*
504 		 * Deferred items that are created in the process of finishing
505 		 * other deferred work items should be queued at the head of
506 		 * the pending list, which puts them ahead of the deferred work
507 		 * that was created by the caller.  This keeps the number of
508 		 * pending work items to a minimum, which decreases the amount
509 		 * of time that any one intent item can stick around in memory,
510 		 * pinning the log tail.
511 		 */
512 		bool has_intents = xfs_defer_create_intents(*tp);
513 
514 		list_splice_init(&(*tp)->t_dfops, &dop_pending);
515 
516 		if (has_intents || dfp) {
517 			error = xfs_defer_trans_roll(tp);
518 			if (error)
519 				goto out_shutdown;
520 
521 			/* Relog intent items to keep the log moving. */
522 			error = xfs_defer_relog(tp, &dop_pending);
523 			if (error)
524 				goto out_shutdown;
525 		}
526 
527 		dfp = list_first_entry(&dop_pending, struct xfs_defer_pending,
528 				       dfp_list);
529 		error = xfs_defer_finish_one(*tp, dfp);
530 		if (error && error != -EAGAIN)
531 			goto out_shutdown;
532 	}
533 
534 	trace_xfs_defer_finish_done(*tp, _RET_IP_);
535 	return 0;
536 
537 out_shutdown:
538 	xfs_defer_trans_abort(*tp, &dop_pending);
539 	xfs_force_shutdown((*tp)->t_mountp, SHUTDOWN_CORRUPT_INCORE);
540 	trace_xfs_defer_finish_error(*tp, error);
541 	xfs_defer_cancel_list((*tp)->t_mountp, &dop_pending);
542 	xfs_defer_cancel(*tp);
543 	return error;
544 }
545 
546 int
547 xfs_defer_finish(
548 	struct xfs_trans	**tp)
549 {
550 	int			error;
551 
552 	/*
553 	 * Finish and roll the transaction once more to avoid returning to the
554 	 * caller with a dirty transaction.
555 	 */
556 	error = xfs_defer_finish_noroll(tp);
557 	if (error)
558 		return error;
559 	if ((*tp)->t_flags & XFS_TRANS_DIRTY) {
560 		error = xfs_defer_trans_roll(tp);
561 		if (error) {
562 			xfs_force_shutdown((*tp)->t_mountp,
563 					   SHUTDOWN_CORRUPT_INCORE);
564 			return error;
565 		}
566 	}
567 
568 	/* Reset LOWMODE now that we've finished all the dfops. */
569 	ASSERT(list_empty(&(*tp)->t_dfops));
570 	(*tp)->t_flags &= ~XFS_TRANS_LOWMODE;
571 	return 0;
572 }
573 
574 void
575 xfs_defer_cancel(
576 	struct xfs_trans	*tp)
577 {
578 	struct xfs_mount	*mp = tp->t_mountp;
579 
580 	trace_xfs_defer_cancel(tp, _RET_IP_);
581 	xfs_defer_cancel_list(mp, &tp->t_dfops);
582 }
583 
584 /* Add an item for later deferred processing. */
585 void
586 xfs_defer_add(
587 	struct xfs_trans		*tp,
588 	enum xfs_defer_ops_type		type,
589 	struct list_head		*li)
590 {
591 	struct xfs_defer_pending	*dfp = NULL;
592 	const struct xfs_defer_op_type	*ops;
593 
594 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
595 	BUILD_BUG_ON(ARRAY_SIZE(defer_op_types) != XFS_DEFER_OPS_TYPE_MAX);
596 
597 	/*
598 	 * Add the item to a pending item at the end of the intake list.
599 	 * If the last pending item has the same type, reuse it.  Else,
600 	 * create a new pending item at the end of the intake list.
601 	 */
602 	if (!list_empty(&tp->t_dfops)) {
603 		dfp = list_last_entry(&tp->t_dfops,
604 				struct xfs_defer_pending, dfp_list);
605 		ops = defer_op_types[dfp->dfp_type];
606 		if (dfp->dfp_type != type ||
607 		    (ops->max_items && dfp->dfp_count >= ops->max_items))
608 			dfp = NULL;
609 	}
610 	if (!dfp) {
611 		dfp = kmem_cache_zalloc(xfs_defer_pending_cache,
612 				GFP_NOFS | __GFP_NOFAIL);
613 		dfp->dfp_type = type;
614 		dfp->dfp_intent = NULL;
615 		dfp->dfp_done = NULL;
616 		dfp->dfp_count = 0;
617 		INIT_LIST_HEAD(&dfp->dfp_work);
618 		list_add_tail(&dfp->dfp_list, &tp->t_dfops);
619 	}
620 
621 	list_add_tail(li, &dfp->dfp_work);
622 	dfp->dfp_count++;
623 }
624 
625 /*
626  * Move deferred ops from one transaction to another and reset the source to
627  * initial state. This is primarily used to carry state forward across
628  * transaction rolls with pending dfops.
629  */
630 void
631 xfs_defer_move(
632 	struct xfs_trans	*dtp,
633 	struct xfs_trans	*stp)
634 {
635 	list_splice_init(&stp->t_dfops, &dtp->t_dfops);
636 
637 	/*
638 	 * Low free space mode was historically controlled by a dfops field.
639 	 * This meant that low mode state potentially carried across multiple
640 	 * transaction rolls. Transfer low mode on a dfops move to preserve
641 	 * that behavior.
642 	 */
643 	dtp->t_flags |= (stp->t_flags & XFS_TRANS_LOWMODE);
644 	stp->t_flags &= ~XFS_TRANS_LOWMODE;
645 }
646 
647 /*
648  * Prepare a chain of fresh deferred ops work items to be completed later.  Log
649  * recovery requires the ability to put off until later the actual finishing
650  * work so that it can process unfinished items recovered from the log in
651  * correct order.
652  *
653  * Create and log intent items for all the work that we're capturing so that we
654  * can be assured that the items will get replayed if the system goes down
655  * before log recovery gets a chance to finish the work it put off.  The entire
656  * deferred ops state is transferred to the capture structure and the
657  * transaction is then ready for the caller to commit it.  If there are no
658  * intent items to capture, this function returns NULL.
659  *
660  * If capture_ip is not NULL, the capture structure will obtain an extra
661  * reference to the inode.
662  */
663 static struct xfs_defer_capture *
664 xfs_defer_ops_capture(
665 	struct xfs_trans		*tp)
666 {
667 	struct xfs_defer_capture	*dfc;
668 	unsigned short			i;
669 	int				error;
670 
671 	if (list_empty(&tp->t_dfops))
672 		return NULL;
673 
674 	/* Create an object to capture the defer ops. */
675 	dfc = kmem_zalloc(sizeof(*dfc), KM_NOFS);
676 	INIT_LIST_HEAD(&dfc->dfc_list);
677 	INIT_LIST_HEAD(&dfc->dfc_dfops);
678 
679 	xfs_defer_create_intents(tp);
680 
681 	/* Move the dfops chain and transaction state to the capture struct. */
682 	list_splice_init(&tp->t_dfops, &dfc->dfc_dfops);
683 	dfc->dfc_tpflags = tp->t_flags & XFS_TRANS_LOWMODE;
684 	tp->t_flags &= ~XFS_TRANS_LOWMODE;
685 
686 	/* Capture the remaining block reservations along with the dfops. */
687 	dfc->dfc_blkres = tp->t_blk_res - tp->t_blk_res_used;
688 	dfc->dfc_rtxres = tp->t_rtx_res - tp->t_rtx_res_used;
689 
690 	/* Preserve the log reservation size. */
691 	dfc->dfc_logres = tp->t_log_res;
692 
693 	error = xfs_defer_save_resources(&dfc->dfc_held, tp);
694 	if (error) {
695 		/*
696 		 * Resource capture should never fail, but if it does, we
697 		 * still have to shut down the log and release things
698 		 * properly.
699 		 */
700 		xfs_force_shutdown(tp->t_mountp, SHUTDOWN_CORRUPT_INCORE);
701 	}
702 
703 	/*
704 	 * Grab extra references to the inodes and buffers because callers are
705 	 * expected to release their held references after we commit the
706 	 * transaction.
707 	 */
708 	for (i = 0; i < dfc->dfc_held.dr_inos; i++) {
709 		ASSERT(xfs_isilocked(dfc->dfc_held.dr_ip[i], XFS_ILOCK_EXCL));
710 		ihold(VFS_I(dfc->dfc_held.dr_ip[i]));
711 	}
712 
713 	for (i = 0; i < dfc->dfc_held.dr_bufs; i++)
714 		xfs_buf_hold(dfc->dfc_held.dr_bp[i]);
715 
716 	return dfc;
717 }
718 
719 /* Release all resources that we used to capture deferred ops. */
720 void
721 xfs_defer_ops_capture_free(
722 	struct xfs_mount		*mp,
723 	struct xfs_defer_capture	*dfc)
724 {
725 	unsigned short			i;
726 
727 	xfs_defer_cancel_list(mp, &dfc->dfc_dfops);
728 
729 	for (i = 0; i < dfc->dfc_held.dr_bufs; i++)
730 		xfs_buf_relse(dfc->dfc_held.dr_bp[i]);
731 
732 	for (i = 0; i < dfc->dfc_held.dr_inos; i++)
733 		xfs_irele(dfc->dfc_held.dr_ip[i]);
734 
735 	kmem_free(dfc);
736 }
737 
738 /*
739  * Capture any deferred ops and commit the transaction.  This is the last step
740  * needed to finish a log intent item that we recovered from the log.  If any
741  * of the deferred ops operate on an inode, the caller must pass in that inode
742  * so that the reference can be transferred to the capture structure.  The
743  * caller must hold ILOCK_EXCL on the inode, and must unlock it before calling
744  * xfs_defer_ops_continue.
745  */
746 int
747 xfs_defer_ops_capture_and_commit(
748 	struct xfs_trans		*tp,
749 	struct list_head		*capture_list)
750 {
751 	struct xfs_mount		*mp = tp->t_mountp;
752 	struct xfs_defer_capture	*dfc;
753 	int				error;
754 
755 	/* If we don't capture anything, commit transaction and exit. */
756 	dfc = xfs_defer_ops_capture(tp);
757 	if (!dfc)
758 		return xfs_trans_commit(tp);
759 
760 	/* Commit the transaction and add the capture structure to the list. */
761 	error = xfs_trans_commit(tp);
762 	if (error) {
763 		xfs_defer_ops_capture_free(mp, dfc);
764 		return error;
765 	}
766 
767 	list_add_tail(&dfc->dfc_list, capture_list);
768 	return 0;
769 }
770 
771 /*
772  * Attach a chain of captured deferred ops to a new transaction and free the
773  * capture structure.  If an inode was captured, it will be passed back to the
774  * caller with ILOCK_EXCL held and joined to the transaction with lockflags==0.
775  * The caller now owns the inode reference.
776  */
777 void
778 xfs_defer_ops_continue(
779 	struct xfs_defer_capture	*dfc,
780 	struct xfs_trans		*tp,
781 	struct xfs_defer_resources	*dres)
782 {
783 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
784 	ASSERT(!(tp->t_flags & XFS_TRANS_DIRTY));
785 
786 	/* Lock and join the captured inode to the new transaction. */
787 	if (dfc->dfc_held.dr_inos == 2)
788 		xfs_lock_two_inodes(dfc->dfc_held.dr_ip[0], XFS_ILOCK_EXCL,
789 				    dfc->dfc_held.dr_ip[1], XFS_ILOCK_EXCL);
790 	else if (dfc->dfc_held.dr_inos == 1)
791 		xfs_ilock(dfc->dfc_held.dr_ip[0], XFS_ILOCK_EXCL);
792 	xfs_defer_restore_resources(tp, &dfc->dfc_held);
793 	memcpy(dres, &dfc->dfc_held, sizeof(struct xfs_defer_resources));
794 
795 	/* Move captured dfops chain and state to the transaction. */
796 	list_splice_init(&dfc->dfc_dfops, &tp->t_dfops);
797 	tp->t_flags |= dfc->dfc_tpflags;
798 
799 	kmem_free(dfc);
800 }
801 
802 /* Release the resources captured and continued during recovery. */
803 void
804 xfs_defer_resources_rele(
805 	struct xfs_defer_resources	*dres)
806 {
807 	unsigned short			i;
808 
809 	for (i = 0; i < dres->dr_inos; i++) {
810 		xfs_iunlock(dres->dr_ip[i], XFS_ILOCK_EXCL);
811 		xfs_irele(dres->dr_ip[i]);
812 		dres->dr_ip[i] = NULL;
813 	}
814 
815 	for (i = 0; i < dres->dr_bufs; i++) {
816 		xfs_buf_relse(dres->dr_bp[i]);
817 		dres->dr_bp[i] = NULL;
818 	}
819 
820 	dres->dr_inos = 0;
821 	dres->dr_bufs = 0;
822 	dres->dr_ordered = 0;
823 }
824 
825 static inline int __init
826 xfs_defer_init_cache(void)
827 {
828 	xfs_defer_pending_cache = kmem_cache_create("xfs_defer_pending",
829 			sizeof(struct xfs_defer_pending),
830 			0, 0, NULL);
831 
832 	return xfs_defer_pending_cache != NULL ? 0 : -ENOMEM;
833 }
834 
835 static inline void
836 xfs_defer_destroy_cache(void)
837 {
838 	kmem_cache_destroy(xfs_defer_pending_cache);
839 	xfs_defer_pending_cache = NULL;
840 }
841 
842 /* Set up caches for deferred work items. */
843 int __init
844 xfs_defer_init_item_caches(void)
845 {
846 	int				error;
847 
848 	error = xfs_defer_init_cache();
849 	if (error)
850 		return error;
851 	error = xfs_rmap_intent_init_cache();
852 	if (error)
853 		goto err;
854 	error = xfs_refcount_intent_init_cache();
855 	if (error)
856 		goto err;
857 	error = xfs_bmap_intent_init_cache();
858 	if (error)
859 		goto err;
860 	error = xfs_extfree_intent_init_cache();
861 	if (error)
862 		goto err;
863 
864 	return 0;
865 err:
866 	xfs_defer_destroy_item_caches();
867 	return error;
868 }
869 
870 /* Destroy all the deferred work item caches, if they've been allocated. */
871 void
872 xfs_defer_destroy_item_caches(void)
873 {
874 	xfs_extfree_intent_destroy_cache();
875 	xfs_bmap_intent_destroy_cache();
876 	xfs_refcount_intent_destroy_cache();
877 	xfs_rmap_intent_destroy_cache();
878 	xfs_defer_destroy_cache();
879 }
880