1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_defer.h" 14 #include "xfs_trans.h" 15 #include "xfs_buf_item.h" 16 #include "xfs_inode.h" 17 #include "xfs_inode_item.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_log.h" 21 #include "xfs_rmap.h" 22 #include "xfs_refcount.h" 23 #include "xfs_bmap.h" 24 #include "xfs_alloc.h" 25 #include "xfs_buf.h" 26 #include "xfs_da_format.h" 27 #include "xfs_da_btree.h" 28 #include "xfs_attr.h" 29 30 static struct kmem_cache *xfs_defer_pending_cache; 31 32 /* 33 * Deferred Operations in XFS 34 * 35 * Due to the way locking rules work in XFS, certain transactions (block 36 * mapping and unmapping, typically) have permanent reservations so that 37 * we can roll the transaction to adhere to AG locking order rules and 38 * to unlock buffers between metadata updates. Prior to rmap/reflink, 39 * the mapping code had a mechanism to perform these deferrals for 40 * extents that were going to be freed; this code makes that facility 41 * more generic. 42 * 43 * When adding the reverse mapping and reflink features, it became 44 * necessary to perform complex remapping multi-transactions to comply 45 * with AG locking order rules, and to be able to spread a single 46 * refcount update operation (an operation on an n-block extent can 47 * update as many as n records!) among multiple transactions. XFS can 48 * roll a transaction to facilitate this, but using this facility 49 * requires us to log "intent" items in case log recovery needs to 50 * redo the operation, and to log "done" items to indicate that redo 51 * is not necessary. 52 * 53 * Deferred work is tracked in xfs_defer_pending items. Each pending 54 * item tracks one type of deferred work. Incoming work items (which 55 * have not yet had an intent logged) are attached to a pending item 56 * on the dop_intake list, where they wait for the caller to finish 57 * the deferred operations. 58 * 59 * Finishing a set of deferred operations is an involved process. To 60 * start, we define "rolling a deferred-op transaction" as follows: 61 * 62 * > For each xfs_defer_pending item on the dop_intake list, 63 * - Sort the work items in AG order. XFS locking 64 * order rules require us to lock buffers in AG order. 65 * - Create a log intent item for that type. 66 * - Attach it to the pending item. 67 * - Move the pending item from the dop_intake list to the 68 * dop_pending list. 69 * > Roll the transaction. 70 * 71 * NOTE: To avoid exceeding the transaction reservation, we limit the 72 * number of items that we attach to a given xfs_defer_pending. 73 * 74 * The actual finishing process looks like this: 75 * 76 * > For each xfs_defer_pending in the dop_pending list, 77 * - Roll the deferred-op transaction as above. 78 * - Create a log done item for that type, and attach it to the 79 * log intent item. 80 * - For each work item attached to the log intent item, 81 * * Perform the described action. 82 * * Attach the work item to the log done item. 83 * * If the result of doing the work was -EAGAIN, ->finish work 84 * wants a new transaction. See the "Requesting a Fresh 85 * Transaction while Finishing Deferred Work" section below for 86 * details. 87 * 88 * The key here is that we must log an intent item for all pending 89 * work items every time we roll the transaction, and that we must log 90 * a done item as soon as the work is completed. With this mechanism 91 * we can perform complex remapping operations, chaining intent items 92 * as needed. 93 * 94 * Requesting a Fresh Transaction while Finishing Deferred Work 95 * 96 * If ->finish_item decides that it needs a fresh transaction to 97 * finish the work, it must ask its caller (xfs_defer_finish) for a 98 * continuation. The most likely cause of this circumstance are the 99 * refcount adjust functions deciding that they've logged enough items 100 * to be at risk of exceeding the transaction reservation. 101 * 102 * To get a fresh transaction, we want to log the existing log done 103 * item to prevent the log intent item from replaying, immediately log 104 * a new log intent item with the unfinished work items, roll the 105 * transaction, and re-call ->finish_item wherever it left off. The 106 * log done item and the new log intent item must be in the same 107 * transaction or atomicity cannot be guaranteed; defer_finish ensures 108 * that this happens. 109 * 110 * This requires some coordination between ->finish_item and 111 * defer_finish. Upon deciding to request a new transaction, 112 * ->finish_item should update the current work item to reflect the 113 * unfinished work. Next, it should reset the log done item's list 114 * count to the number of items finished, and return -EAGAIN. 115 * defer_finish sees the -EAGAIN, logs the new log intent item 116 * with the remaining work items, and leaves the xfs_defer_pending 117 * item at the head of the dop_work queue. Then it rolls the 118 * transaction and picks up processing where it left off. It is 119 * required that ->finish_item must be careful to leave enough 120 * transaction reservation to fit the new log intent item. 121 * 122 * This is an example of remapping the extent (E, E+B) into file X at 123 * offset A and dealing with the extent (C, C+B) already being mapped 124 * there: 125 * +-------------------------------------------------+ 126 * | Unmap file X startblock C offset A length B | t0 127 * | Intent to reduce refcount for extent (C, B) | 128 * | Intent to remove rmap (X, C, A, B) | 129 * | Intent to free extent (D, 1) (bmbt block) | 130 * | Intent to map (X, A, B) at startblock E | 131 * +-------------------------------------------------+ 132 * | Map file X startblock E offset A length B | t1 133 * | Done mapping (X, E, A, B) | 134 * | Intent to increase refcount for extent (E, B) | 135 * | Intent to add rmap (X, E, A, B) | 136 * +-------------------------------------------------+ 137 * | Reduce refcount for extent (C, B) | t2 138 * | Done reducing refcount for extent (C, 9) | 139 * | Intent to reduce refcount for extent (C+9, B-9) | 140 * | (ran out of space after 9 refcount updates) | 141 * +-------------------------------------------------+ 142 * | Reduce refcount for extent (C+9, B+9) | t3 143 * | Done reducing refcount for extent (C+9, B-9) | 144 * | Increase refcount for extent (E, B) | 145 * | Done increasing refcount for extent (E, B) | 146 * | Intent to free extent (C, B) | 147 * | Intent to free extent (F, 1) (refcountbt block) | 148 * | Intent to remove rmap (F, 1, REFC) | 149 * +-------------------------------------------------+ 150 * | Remove rmap (X, C, A, B) | t4 151 * | Done removing rmap (X, C, A, B) | 152 * | Add rmap (X, E, A, B) | 153 * | Done adding rmap (X, E, A, B) | 154 * | Remove rmap (F, 1, REFC) | 155 * | Done removing rmap (F, 1, REFC) | 156 * +-------------------------------------------------+ 157 * | Free extent (C, B) | t5 158 * | Done freeing extent (C, B) | 159 * | Free extent (D, 1) | 160 * | Done freeing extent (D, 1) | 161 * | Free extent (F, 1) | 162 * | Done freeing extent (F, 1) | 163 * +-------------------------------------------------+ 164 * 165 * If we should crash before t2 commits, log recovery replays 166 * the following intent items: 167 * 168 * - Intent to reduce refcount for extent (C, B) 169 * - Intent to remove rmap (X, C, A, B) 170 * - Intent to free extent (D, 1) (bmbt block) 171 * - Intent to increase refcount for extent (E, B) 172 * - Intent to add rmap (X, E, A, B) 173 * 174 * In the process of recovering, it should also generate and take care 175 * of these intent items: 176 * 177 * - Intent to free extent (C, B) 178 * - Intent to free extent (F, 1) (refcountbt block) 179 * - Intent to remove rmap (F, 1, REFC) 180 * 181 * Note that the continuation requested between t2 and t3 is likely to 182 * reoccur. 183 */ 184 185 static const struct xfs_defer_op_type *defer_op_types[] = { 186 [XFS_DEFER_OPS_TYPE_BMAP] = &xfs_bmap_update_defer_type, 187 [XFS_DEFER_OPS_TYPE_REFCOUNT] = &xfs_refcount_update_defer_type, 188 [XFS_DEFER_OPS_TYPE_RMAP] = &xfs_rmap_update_defer_type, 189 [XFS_DEFER_OPS_TYPE_FREE] = &xfs_extent_free_defer_type, 190 [XFS_DEFER_OPS_TYPE_AGFL_FREE] = &xfs_agfl_free_defer_type, 191 [XFS_DEFER_OPS_TYPE_ATTR] = &xfs_attr_defer_type, 192 }; 193 194 /* 195 * Ensure there's a log intent item associated with this deferred work item if 196 * the operation must be restarted on crash. Returns 1 if there's a log item; 197 * 0 if there isn't; or a negative errno. 198 */ 199 static int 200 xfs_defer_create_intent( 201 struct xfs_trans *tp, 202 struct xfs_defer_pending *dfp, 203 bool sort) 204 { 205 const struct xfs_defer_op_type *ops = defer_op_types[dfp->dfp_type]; 206 struct xfs_log_item *lip; 207 208 if (dfp->dfp_intent) 209 return 1; 210 211 lip = ops->create_intent(tp, &dfp->dfp_work, dfp->dfp_count, sort); 212 if (!lip) 213 return 0; 214 if (IS_ERR(lip)) 215 return PTR_ERR(lip); 216 217 dfp->dfp_intent = lip; 218 return 1; 219 } 220 221 /* 222 * For each pending item in the intake list, log its intent item and the 223 * associated extents, then add the entire intake list to the end of 224 * the pending list. 225 * 226 * Returns 1 if at least one log item was associated with the deferred work; 227 * 0 if there are no log items; or a negative errno. 228 */ 229 static int 230 xfs_defer_create_intents( 231 struct xfs_trans *tp) 232 { 233 struct xfs_defer_pending *dfp; 234 int ret = 0; 235 236 list_for_each_entry(dfp, &tp->t_dfops, dfp_list) { 237 int ret2; 238 239 trace_xfs_defer_create_intent(tp->t_mountp, dfp); 240 ret2 = xfs_defer_create_intent(tp, dfp, true); 241 if (ret2 < 0) 242 return ret2; 243 ret |= ret2; 244 } 245 return ret; 246 } 247 248 static inline void 249 xfs_defer_pending_abort( 250 struct xfs_mount *mp, 251 struct xfs_defer_pending *dfp) 252 { 253 const struct xfs_defer_op_type *ops = defer_op_types[dfp->dfp_type]; 254 255 trace_xfs_defer_pending_abort(mp, dfp); 256 257 if (dfp->dfp_intent && !dfp->dfp_done) { 258 ops->abort_intent(dfp->dfp_intent); 259 dfp->dfp_intent = NULL; 260 } 261 } 262 263 static inline void 264 xfs_defer_pending_cancel_work( 265 struct xfs_mount *mp, 266 struct xfs_defer_pending *dfp) 267 { 268 const struct xfs_defer_op_type *ops = defer_op_types[dfp->dfp_type]; 269 struct list_head *pwi; 270 struct list_head *n; 271 272 trace_xfs_defer_cancel_list(mp, dfp); 273 274 list_del(&dfp->dfp_list); 275 list_for_each_safe(pwi, n, &dfp->dfp_work) { 276 list_del(pwi); 277 dfp->dfp_count--; 278 trace_xfs_defer_cancel_item(mp, dfp, pwi); 279 ops->cancel_item(pwi); 280 } 281 ASSERT(dfp->dfp_count == 0); 282 kmem_cache_free(xfs_defer_pending_cache, dfp); 283 } 284 285 STATIC void 286 xfs_defer_pending_abort_list( 287 struct xfs_mount *mp, 288 struct list_head *dop_list) 289 { 290 struct xfs_defer_pending *dfp; 291 292 /* Abort intent items that don't have a done item. */ 293 list_for_each_entry(dfp, dop_list, dfp_list) 294 xfs_defer_pending_abort(mp, dfp); 295 } 296 297 /* Abort all the intents that were committed. */ 298 STATIC void 299 xfs_defer_trans_abort( 300 struct xfs_trans *tp, 301 struct list_head *dop_pending) 302 { 303 trace_xfs_defer_trans_abort(tp, _RET_IP_); 304 xfs_defer_pending_abort_list(tp->t_mountp, dop_pending); 305 } 306 307 /* 308 * Capture resources that the caller said not to release ("held") when the 309 * transaction commits. Caller is responsible for zero-initializing @dres. 310 */ 311 static int 312 xfs_defer_save_resources( 313 struct xfs_defer_resources *dres, 314 struct xfs_trans *tp) 315 { 316 struct xfs_buf_log_item *bli; 317 struct xfs_inode_log_item *ili; 318 struct xfs_log_item *lip; 319 320 BUILD_BUG_ON(NBBY * sizeof(dres->dr_ordered) < XFS_DEFER_OPS_NR_BUFS); 321 322 list_for_each_entry(lip, &tp->t_items, li_trans) { 323 switch (lip->li_type) { 324 case XFS_LI_BUF: 325 bli = container_of(lip, struct xfs_buf_log_item, 326 bli_item); 327 if (bli->bli_flags & XFS_BLI_HOLD) { 328 if (dres->dr_bufs >= XFS_DEFER_OPS_NR_BUFS) { 329 ASSERT(0); 330 return -EFSCORRUPTED; 331 } 332 if (bli->bli_flags & XFS_BLI_ORDERED) 333 dres->dr_ordered |= 334 (1U << dres->dr_bufs); 335 else 336 xfs_trans_dirty_buf(tp, bli->bli_buf); 337 dres->dr_bp[dres->dr_bufs++] = bli->bli_buf; 338 } 339 break; 340 case XFS_LI_INODE: 341 ili = container_of(lip, struct xfs_inode_log_item, 342 ili_item); 343 if (ili->ili_lock_flags == 0) { 344 if (dres->dr_inos >= XFS_DEFER_OPS_NR_INODES) { 345 ASSERT(0); 346 return -EFSCORRUPTED; 347 } 348 xfs_trans_log_inode(tp, ili->ili_inode, 349 XFS_ILOG_CORE); 350 dres->dr_ip[dres->dr_inos++] = ili->ili_inode; 351 } 352 break; 353 default: 354 break; 355 } 356 } 357 358 return 0; 359 } 360 361 /* Attach the held resources to the transaction. */ 362 static void 363 xfs_defer_restore_resources( 364 struct xfs_trans *tp, 365 struct xfs_defer_resources *dres) 366 { 367 unsigned short i; 368 369 /* Rejoin the joined inodes. */ 370 for (i = 0; i < dres->dr_inos; i++) 371 xfs_trans_ijoin(tp, dres->dr_ip[i], 0); 372 373 /* Rejoin the buffers and dirty them so the log moves forward. */ 374 for (i = 0; i < dres->dr_bufs; i++) { 375 xfs_trans_bjoin(tp, dres->dr_bp[i]); 376 if (dres->dr_ordered & (1U << i)) 377 xfs_trans_ordered_buf(tp, dres->dr_bp[i]); 378 xfs_trans_bhold(tp, dres->dr_bp[i]); 379 } 380 } 381 382 /* Roll a transaction so we can do some deferred op processing. */ 383 STATIC int 384 xfs_defer_trans_roll( 385 struct xfs_trans **tpp) 386 { 387 struct xfs_defer_resources dres = { }; 388 int error; 389 390 error = xfs_defer_save_resources(&dres, *tpp); 391 if (error) 392 return error; 393 394 trace_xfs_defer_trans_roll(*tpp, _RET_IP_); 395 396 /* 397 * Roll the transaction. Rolling always given a new transaction (even 398 * if committing the old one fails!) to hand back to the caller, so we 399 * join the held resources to the new transaction so that we always 400 * return with the held resources joined to @tpp, no matter what 401 * happened. 402 */ 403 error = xfs_trans_roll(tpp); 404 405 xfs_defer_restore_resources(*tpp, &dres); 406 407 if (error) 408 trace_xfs_defer_trans_roll_error(*tpp, error); 409 return error; 410 } 411 412 /* 413 * Free up any items left in the list. 414 */ 415 static void 416 xfs_defer_cancel_list( 417 struct xfs_mount *mp, 418 struct list_head *dop_list) 419 { 420 struct xfs_defer_pending *dfp; 421 struct xfs_defer_pending *pli; 422 423 /* 424 * Free the pending items. Caller should already have arranged 425 * for the intent items to be released. 426 */ 427 list_for_each_entry_safe(dfp, pli, dop_list, dfp_list) 428 xfs_defer_pending_cancel_work(mp, dfp); 429 } 430 431 /* 432 * Prevent a log intent item from pinning the tail of the log by logging a 433 * done item to release the intent item; and then log a new intent item. 434 * The caller should provide a fresh transaction and roll it after we're done. 435 */ 436 static int 437 xfs_defer_relog( 438 struct xfs_trans **tpp, 439 struct list_head *dfops) 440 { 441 struct xlog *log = (*tpp)->t_mountp->m_log; 442 struct xfs_defer_pending *dfp; 443 xfs_lsn_t threshold_lsn = NULLCOMMITLSN; 444 445 446 ASSERT((*tpp)->t_flags & XFS_TRANS_PERM_LOG_RES); 447 448 list_for_each_entry(dfp, dfops, dfp_list) { 449 /* 450 * If the log intent item for this deferred op is not a part of 451 * the current log checkpoint, relog the intent item to keep 452 * the log tail moving forward. We're ok with this being racy 453 * because an incorrect decision means we'll be a little slower 454 * at pushing the tail. 455 */ 456 if (dfp->dfp_intent == NULL || 457 xfs_log_item_in_current_chkpt(dfp->dfp_intent)) 458 continue; 459 460 /* 461 * Figure out where we need the tail to be in order to maintain 462 * the minimum required free space in the log. Only sample 463 * the log threshold once per call. 464 */ 465 if (threshold_lsn == NULLCOMMITLSN) { 466 threshold_lsn = xlog_grant_push_threshold(log, 0); 467 if (threshold_lsn == NULLCOMMITLSN) 468 break; 469 } 470 if (XFS_LSN_CMP(dfp->dfp_intent->li_lsn, threshold_lsn) >= 0) 471 continue; 472 473 trace_xfs_defer_relog_intent((*tpp)->t_mountp, dfp); 474 XFS_STATS_INC((*tpp)->t_mountp, defer_relog); 475 dfp->dfp_intent = xfs_trans_item_relog(dfp->dfp_intent, *tpp); 476 } 477 478 if ((*tpp)->t_flags & XFS_TRANS_DIRTY) 479 return xfs_defer_trans_roll(tpp); 480 return 0; 481 } 482 483 /* 484 * Log an intent-done item for the first pending intent, and finish the work 485 * items. 486 */ 487 static int 488 xfs_defer_finish_one( 489 struct xfs_trans *tp, 490 struct xfs_defer_pending *dfp) 491 { 492 const struct xfs_defer_op_type *ops = defer_op_types[dfp->dfp_type]; 493 struct xfs_btree_cur *state = NULL; 494 struct list_head *li, *n; 495 int error; 496 497 trace_xfs_defer_pending_finish(tp->t_mountp, dfp); 498 499 dfp->dfp_done = ops->create_done(tp, dfp->dfp_intent, dfp->dfp_count); 500 list_for_each_safe(li, n, &dfp->dfp_work) { 501 list_del(li); 502 dfp->dfp_count--; 503 trace_xfs_defer_finish_item(tp->t_mountp, dfp, li); 504 error = ops->finish_item(tp, dfp->dfp_done, li, &state); 505 if (error == -EAGAIN) { 506 int ret; 507 508 /* 509 * Caller wants a fresh transaction; put the work item 510 * back on the list and log a new log intent item to 511 * replace the old one. See "Requesting a Fresh 512 * Transaction while Finishing Deferred Work" above. 513 */ 514 list_add(li, &dfp->dfp_work); 515 dfp->dfp_count++; 516 dfp->dfp_done = NULL; 517 dfp->dfp_intent = NULL; 518 ret = xfs_defer_create_intent(tp, dfp, false); 519 if (ret < 0) 520 error = ret; 521 } 522 523 if (error) 524 goto out; 525 } 526 527 /* Done with the dfp, free it. */ 528 list_del(&dfp->dfp_list); 529 kmem_cache_free(xfs_defer_pending_cache, dfp); 530 out: 531 if (ops->finish_cleanup) 532 ops->finish_cleanup(tp, state, error); 533 return error; 534 } 535 536 /* 537 * Finish all the pending work. This involves logging intent items for 538 * any work items that wandered in since the last transaction roll (if 539 * one has even happened), rolling the transaction, and finishing the 540 * work items in the first item on the logged-and-pending list. 541 * 542 * If an inode is provided, relog it to the new transaction. 543 */ 544 int 545 xfs_defer_finish_noroll( 546 struct xfs_trans **tp) 547 { 548 struct xfs_defer_pending *dfp = NULL; 549 int error = 0; 550 LIST_HEAD(dop_pending); 551 552 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 553 554 trace_xfs_defer_finish(*tp, _RET_IP_); 555 556 /* Until we run out of pending work to finish... */ 557 while (!list_empty(&dop_pending) || !list_empty(&(*tp)->t_dfops)) { 558 /* 559 * Deferred items that are created in the process of finishing 560 * other deferred work items should be queued at the head of 561 * the pending list, which puts them ahead of the deferred work 562 * that was created by the caller. This keeps the number of 563 * pending work items to a minimum, which decreases the amount 564 * of time that any one intent item can stick around in memory, 565 * pinning the log tail. 566 */ 567 int has_intents = xfs_defer_create_intents(*tp); 568 569 list_splice_init(&(*tp)->t_dfops, &dop_pending); 570 571 if (has_intents < 0) { 572 error = has_intents; 573 goto out_shutdown; 574 } 575 if (has_intents || dfp) { 576 error = xfs_defer_trans_roll(tp); 577 if (error) 578 goto out_shutdown; 579 580 /* Relog intent items to keep the log moving. */ 581 error = xfs_defer_relog(tp, &dop_pending); 582 if (error) 583 goto out_shutdown; 584 } 585 586 dfp = list_first_entry(&dop_pending, struct xfs_defer_pending, 587 dfp_list); 588 error = xfs_defer_finish_one(*tp, dfp); 589 if (error && error != -EAGAIN) 590 goto out_shutdown; 591 } 592 593 trace_xfs_defer_finish_done(*tp, _RET_IP_); 594 return 0; 595 596 out_shutdown: 597 xfs_defer_trans_abort(*tp, &dop_pending); 598 xfs_force_shutdown((*tp)->t_mountp, SHUTDOWN_CORRUPT_INCORE); 599 trace_xfs_defer_finish_error(*tp, error); 600 xfs_defer_cancel_list((*tp)->t_mountp, &dop_pending); 601 xfs_defer_cancel(*tp); 602 return error; 603 } 604 605 int 606 xfs_defer_finish( 607 struct xfs_trans **tp) 608 { 609 int error; 610 611 /* 612 * Finish and roll the transaction once more to avoid returning to the 613 * caller with a dirty transaction. 614 */ 615 error = xfs_defer_finish_noroll(tp); 616 if (error) 617 return error; 618 if ((*tp)->t_flags & XFS_TRANS_DIRTY) { 619 error = xfs_defer_trans_roll(tp); 620 if (error) { 621 xfs_force_shutdown((*tp)->t_mountp, 622 SHUTDOWN_CORRUPT_INCORE); 623 return error; 624 } 625 } 626 627 /* Reset LOWMODE now that we've finished all the dfops. */ 628 ASSERT(list_empty(&(*tp)->t_dfops)); 629 (*tp)->t_flags &= ~XFS_TRANS_LOWMODE; 630 return 0; 631 } 632 633 void 634 xfs_defer_cancel( 635 struct xfs_trans *tp) 636 { 637 struct xfs_mount *mp = tp->t_mountp; 638 639 trace_xfs_defer_cancel(tp, _RET_IP_); 640 xfs_defer_cancel_list(mp, &tp->t_dfops); 641 } 642 643 /* Add an item for later deferred processing. */ 644 void 645 xfs_defer_add( 646 struct xfs_trans *tp, 647 enum xfs_defer_ops_type type, 648 struct list_head *li) 649 { 650 struct xfs_defer_pending *dfp = NULL; 651 const struct xfs_defer_op_type *ops = defer_op_types[type]; 652 653 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 654 BUILD_BUG_ON(ARRAY_SIZE(defer_op_types) != XFS_DEFER_OPS_TYPE_MAX); 655 656 /* 657 * Add the item to a pending item at the end of the intake list. 658 * If the last pending item has the same type, reuse it. Else, 659 * create a new pending item at the end of the intake list. 660 */ 661 if (!list_empty(&tp->t_dfops)) { 662 dfp = list_last_entry(&tp->t_dfops, 663 struct xfs_defer_pending, dfp_list); 664 if (dfp->dfp_type != type || 665 (ops->max_items && dfp->dfp_count >= ops->max_items)) 666 dfp = NULL; 667 } 668 if (!dfp) { 669 dfp = kmem_cache_zalloc(xfs_defer_pending_cache, 670 GFP_NOFS | __GFP_NOFAIL); 671 dfp->dfp_type = type; 672 dfp->dfp_intent = NULL; 673 dfp->dfp_done = NULL; 674 dfp->dfp_count = 0; 675 INIT_LIST_HEAD(&dfp->dfp_work); 676 list_add_tail(&dfp->dfp_list, &tp->t_dfops); 677 } 678 679 list_add_tail(li, &dfp->dfp_work); 680 trace_xfs_defer_add_item(tp->t_mountp, dfp, li); 681 dfp->dfp_count++; 682 } 683 684 /* 685 * Create a pending deferred work item to replay the recovered intent item 686 * and add it to the list. 687 */ 688 void 689 xfs_defer_start_recovery( 690 struct xfs_log_item *lip, 691 enum xfs_defer_ops_type dfp_type, 692 struct list_head *r_dfops) 693 { 694 struct xfs_defer_pending *dfp; 695 696 dfp = kmem_cache_zalloc(xfs_defer_pending_cache, 697 GFP_NOFS | __GFP_NOFAIL); 698 dfp->dfp_type = dfp_type; 699 dfp->dfp_intent = lip; 700 INIT_LIST_HEAD(&dfp->dfp_work); 701 list_add_tail(&dfp->dfp_list, r_dfops); 702 } 703 704 /* 705 * Cancel a deferred work item created to recover a log intent item. @dfp 706 * will be freed after this function returns. 707 */ 708 void 709 xfs_defer_cancel_recovery( 710 struct xfs_mount *mp, 711 struct xfs_defer_pending *dfp) 712 { 713 xfs_defer_pending_abort(mp, dfp); 714 xfs_defer_pending_cancel_work(mp, dfp); 715 } 716 717 /* 718 * Move deferred ops from one transaction to another and reset the source to 719 * initial state. This is primarily used to carry state forward across 720 * transaction rolls with pending dfops. 721 */ 722 void 723 xfs_defer_move( 724 struct xfs_trans *dtp, 725 struct xfs_trans *stp) 726 { 727 list_splice_init(&stp->t_dfops, &dtp->t_dfops); 728 729 /* 730 * Low free space mode was historically controlled by a dfops field. 731 * This meant that low mode state potentially carried across multiple 732 * transaction rolls. Transfer low mode on a dfops move to preserve 733 * that behavior. 734 */ 735 dtp->t_flags |= (stp->t_flags & XFS_TRANS_LOWMODE); 736 stp->t_flags &= ~XFS_TRANS_LOWMODE; 737 } 738 739 /* 740 * Prepare a chain of fresh deferred ops work items to be completed later. Log 741 * recovery requires the ability to put off until later the actual finishing 742 * work so that it can process unfinished items recovered from the log in 743 * correct order. 744 * 745 * Create and log intent items for all the work that we're capturing so that we 746 * can be assured that the items will get replayed if the system goes down 747 * before log recovery gets a chance to finish the work it put off. The entire 748 * deferred ops state is transferred to the capture structure and the 749 * transaction is then ready for the caller to commit it. If there are no 750 * intent items to capture, this function returns NULL. 751 * 752 * If capture_ip is not NULL, the capture structure will obtain an extra 753 * reference to the inode. 754 */ 755 static struct xfs_defer_capture * 756 xfs_defer_ops_capture( 757 struct xfs_trans *tp) 758 { 759 struct xfs_defer_capture *dfc; 760 unsigned short i; 761 int error; 762 763 if (list_empty(&tp->t_dfops)) 764 return NULL; 765 766 error = xfs_defer_create_intents(tp); 767 if (error < 0) 768 return ERR_PTR(error); 769 770 /* Create an object to capture the defer ops. */ 771 dfc = kmem_zalloc(sizeof(*dfc), KM_NOFS); 772 INIT_LIST_HEAD(&dfc->dfc_list); 773 INIT_LIST_HEAD(&dfc->dfc_dfops); 774 775 /* Move the dfops chain and transaction state to the capture struct. */ 776 list_splice_init(&tp->t_dfops, &dfc->dfc_dfops); 777 dfc->dfc_tpflags = tp->t_flags & XFS_TRANS_LOWMODE; 778 tp->t_flags &= ~XFS_TRANS_LOWMODE; 779 780 /* Capture the remaining block reservations along with the dfops. */ 781 dfc->dfc_blkres = tp->t_blk_res - tp->t_blk_res_used; 782 dfc->dfc_rtxres = tp->t_rtx_res - tp->t_rtx_res_used; 783 784 /* Preserve the log reservation size. */ 785 dfc->dfc_logres = tp->t_log_res; 786 787 error = xfs_defer_save_resources(&dfc->dfc_held, tp); 788 if (error) { 789 /* 790 * Resource capture should never fail, but if it does, we 791 * still have to shut down the log and release things 792 * properly. 793 */ 794 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_CORRUPT_INCORE); 795 } 796 797 /* 798 * Grab extra references to the inodes and buffers because callers are 799 * expected to release their held references after we commit the 800 * transaction. 801 */ 802 for (i = 0; i < dfc->dfc_held.dr_inos; i++) { 803 ASSERT(xfs_isilocked(dfc->dfc_held.dr_ip[i], XFS_ILOCK_EXCL)); 804 ihold(VFS_I(dfc->dfc_held.dr_ip[i])); 805 } 806 807 for (i = 0; i < dfc->dfc_held.dr_bufs; i++) 808 xfs_buf_hold(dfc->dfc_held.dr_bp[i]); 809 810 return dfc; 811 } 812 813 /* Release all resources that we used to capture deferred ops. */ 814 void 815 xfs_defer_ops_capture_abort( 816 struct xfs_mount *mp, 817 struct xfs_defer_capture *dfc) 818 { 819 unsigned short i; 820 821 xfs_defer_pending_abort_list(mp, &dfc->dfc_dfops); 822 xfs_defer_cancel_list(mp, &dfc->dfc_dfops); 823 824 for (i = 0; i < dfc->dfc_held.dr_bufs; i++) 825 xfs_buf_relse(dfc->dfc_held.dr_bp[i]); 826 827 for (i = 0; i < dfc->dfc_held.dr_inos; i++) 828 xfs_irele(dfc->dfc_held.dr_ip[i]); 829 830 kmem_free(dfc); 831 } 832 833 /* 834 * Capture any deferred ops and commit the transaction. This is the last step 835 * needed to finish a log intent item that we recovered from the log. If any 836 * of the deferred ops operate on an inode, the caller must pass in that inode 837 * so that the reference can be transferred to the capture structure. The 838 * caller must hold ILOCK_EXCL on the inode, and must unlock it before calling 839 * xfs_defer_ops_continue. 840 */ 841 int 842 xfs_defer_ops_capture_and_commit( 843 struct xfs_trans *tp, 844 struct list_head *capture_list) 845 { 846 struct xfs_mount *mp = tp->t_mountp; 847 struct xfs_defer_capture *dfc; 848 int error; 849 850 /* If we don't capture anything, commit transaction and exit. */ 851 dfc = xfs_defer_ops_capture(tp); 852 if (IS_ERR(dfc)) { 853 xfs_trans_cancel(tp); 854 return PTR_ERR(dfc); 855 } 856 if (!dfc) 857 return xfs_trans_commit(tp); 858 859 /* Commit the transaction and add the capture structure to the list. */ 860 error = xfs_trans_commit(tp); 861 if (error) { 862 xfs_defer_ops_capture_abort(mp, dfc); 863 return error; 864 } 865 866 list_add_tail(&dfc->dfc_list, capture_list); 867 return 0; 868 } 869 870 /* 871 * Attach a chain of captured deferred ops to a new transaction and free the 872 * capture structure. If an inode was captured, it will be passed back to the 873 * caller with ILOCK_EXCL held and joined to the transaction with lockflags==0. 874 * The caller now owns the inode reference. 875 */ 876 void 877 xfs_defer_ops_continue( 878 struct xfs_defer_capture *dfc, 879 struct xfs_trans *tp, 880 struct xfs_defer_resources *dres) 881 { 882 unsigned int i; 883 884 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 885 ASSERT(!(tp->t_flags & XFS_TRANS_DIRTY)); 886 887 /* Lock the captured resources to the new transaction. */ 888 if (dfc->dfc_held.dr_inos == 2) 889 xfs_lock_two_inodes(dfc->dfc_held.dr_ip[0], XFS_ILOCK_EXCL, 890 dfc->dfc_held.dr_ip[1], XFS_ILOCK_EXCL); 891 else if (dfc->dfc_held.dr_inos == 1) 892 xfs_ilock(dfc->dfc_held.dr_ip[0], XFS_ILOCK_EXCL); 893 894 for (i = 0; i < dfc->dfc_held.dr_bufs; i++) 895 xfs_buf_lock(dfc->dfc_held.dr_bp[i]); 896 897 /* Join the captured resources to the new transaction. */ 898 xfs_defer_restore_resources(tp, &dfc->dfc_held); 899 memcpy(dres, &dfc->dfc_held, sizeof(struct xfs_defer_resources)); 900 dres->dr_bufs = 0; 901 902 /* Move captured dfops chain and state to the transaction. */ 903 list_splice_init(&dfc->dfc_dfops, &tp->t_dfops); 904 tp->t_flags |= dfc->dfc_tpflags; 905 906 kmem_free(dfc); 907 } 908 909 /* Release the resources captured and continued during recovery. */ 910 void 911 xfs_defer_resources_rele( 912 struct xfs_defer_resources *dres) 913 { 914 unsigned short i; 915 916 for (i = 0; i < dres->dr_inos; i++) { 917 xfs_iunlock(dres->dr_ip[i], XFS_ILOCK_EXCL); 918 xfs_irele(dres->dr_ip[i]); 919 dres->dr_ip[i] = NULL; 920 } 921 922 for (i = 0; i < dres->dr_bufs; i++) { 923 xfs_buf_relse(dres->dr_bp[i]); 924 dres->dr_bp[i] = NULL; 925 } 926 927 dres->dr_inos = 0; 928 dres->dr_bufs = 0; 929 dres->dr_ordered = 0; 930 } 931 932 static inline int __init 933 xfs_defer_init_cache(void) 934 { 935 xfs_defer_pending_cache = kmem_cache_create("xfs_defer_pending", 936 sizeof(struct xfs_defer_pending), 937 0, 0, NULL); 938 939 return xfs_defer_pending_cache != NULL ? 0 : -ENOMEM; 940 } 941 942 static inline void 943 xfs_defer_destroy_cache(void) 944 { 945 kmem_cache_destroy(xfs_defer_pending_cache); 946 xfs_defer_pending_cache = NULL; 947 } 948 949 /* Set up caches for deferred work items. */ 950 int __init 951 xfs_defer_init_item_caches(void) 952 { 953 int error; 954 955 error = xfs_defer_init_cache(); 956 if (error) 957 return error; 958 error = xfs_rmap_intent_init_cache(); 959 if (error) 960 goto err; 961 error = xfs_refcount_intent_init_cache(); 962 if (error) 963 goto err; 964 error = xfs_bmap_intent_init_cache(); 965 if (error) 966 goto err; 967 error = xfs_extfree_intent_init_cache(); 968 if (error) 969 goto err; 970 error = xfs_attr_intent_init_cache(); 971 if (error) 972 goto err; 973 return 0; 974 err: 975 xfs_defer_destroy_item_caches(); 976 return error; 977 } 978 979 /* Destroy all the deferred work item caches, if they've been allocated. */ 980 void 981 xfs_defer_destroy_item_caches(void) 982 { 983 xfs_attr_intent_destroy_cache(); 984 xfs_extfree_intent_destroy_cache(); 985 xfs_bmap_intent_destroy_cache(); 986 xfs_refcount_intent_destroy_cache(); 987 xfs_rmap_intent_destroy_cache(); 988 xfs_defer_destroy_cache(); 989 } 990