1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_defer.h" 14 #include "xfs_trans.h" 15 #include "xfs_buf_item.h" 16 #include "xfs_inode.h" 17 #include "xfs_inode_item.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_log.h" 21 #include "xfs_rmap.h" 22 #include "xfs_refcount.h" 23 #include "xfs_bmap.h" 24 #include "xfs_alloc.h" 25 #include "xfs_buf.h" 26 #include "xfs_da_format.h" 27 #include "xfs_da_btree.h" 28 #include "xfs_attr.h" 29 30 static struct kmem_cache *xfs_defer_pending_cache; 31 32 /* 33 * Deferred Operations in XFS 34 * 35 * Due to the way locking rules work in XFS, certain transactions (block 36 * mapping and unmapping, typically) have permanent reservations so that 37 * we can roll the transaction to adhere to AG locking order rules and 38 * to unlock buffers between metadata updates. Prior to rmap/reflink, 39 * the mapping code had a mechanism to perform these deferrals for 40 * extents that were going to be freed; this code makes that facility 41 * more generic. 42 * 43 * When adding the reverse mapping and reflink features, it became 44 * necessary to perform complex remapping multi-transactions to comply 45 * with AG locking order rules, and to be able to spread a single 46 * refcount update operation (an operation on an n-block extent can 47 * update as many as n records!) among multiple transactions. XFS can 48 * roll a transaction to facilitate this, but using this facility 49 * requires us to log "intent" items in case log recovery needs to 50 * redo the operation, and to log "done" items to indicate that redo 51 * is not necessary. 52 * 53 * Deferred work is tracked in xfs_defer_pending items. Each pending 54 * item tracks one type of deferred work. Incoming work items (which 55 * have not yet had an intent logged) are attached to a pending item 56 * on the dop_intake list, where they wait for the caller to finish 57 * the deferred operations. 58 * 59 * Finishing a set of deferred operations is an involved process. To 60 * start, we define "rolling a deferred-op transaction" as follows: 61 * 62 * > For each xfs_defer_pending item on the dop_intake list, 63 * - Sort the work items in AG order. XFS locking 64 * order rules require us to lock buffers in AG order. 65 * - Create a log intent item for that type. 66 * - Attach it to the pending item. 67 * - Move the pending item from the dop_intake list to the 68 * dop_pending list. 69 * > Roll the transaction. 70 * 71 * NOTE: To avoid exceeding the transaction reservation, we limit the 72 * number of items that we attach to a given xfs_defer_pending. 73 * 74 * The actual finishing process looks like this: 75 * 76 * > For each xfs_defer_pending in the dop_pending list, 77 * - Roll the deferred-op transaction as above. 78 * - Create a log done item for that type, and attach it to the 79 * log intent item. 80 * - For each work item attached to the log intent item, 81 * * Perform the described action. 82 * * Attach the work item to the log done item. 83 * * If the result of doing the work was -EAGAIN, ->finish work 84 * wants a new transaction. See the "Requesting a Fresh 85 * Transaction while Finishing Deferred Work" section below for 86 * details. 87 * 88 * The key here is that we must log an intent item for all pending 89 * work items every time we roll the transaction, and that we must log 90 * a done item as soon as the work is completed. With this mechanism 91 * we can perform complex remapping operations, chaining intent items 92 * as needed. 93 * 94 * Requesting a Fresh Transaction while Finishing Deferred Work 95 * 96 * If ->finish_item decides that it needs a fresh transaction to 97 * finish the work, it must ask its caller (xfs_defer_finish) for a 98 * continuation. The most likely cause of this circumstance are the 99 * refcount adjust functions deciding that they've logged enough items 100 * to be at risk of exceeding the transaction reservation. 101 * 102 * To get a fresh transaction, we want to log the existing log done 103 * item to prevent the log intent item from replaying, immediately log 104 * a new log intent item with the unfinished work items, roll the 105 * transaction, and re-call ->finish_item wherever it left off. The 106 * log done item and the new log intent item must be in the same 107 * transaction or atomicity cannot be guaranteed; defer_finish ensures 108 * that this happens. 109 * 110 * This requires some coordination between ->finish_item and 111 * defer_finish. Upon deciding to request a new transaction, 112 * ->finish_item should update the current work item to reflect the 113 * unfinished work. Next, it should reset the log done item's list 114 * count to the number of items finished, and return -EAGAIN. 115 * defer_finish sees the -EAGAIN, logs the new log intent item 116 * with the remaining work items, and leaves the xfs_defer_pending 117 * item at the head of the dop_work queue. Then it rolls the 118 * transaction and picks up processing where it left off. It is 119 * required that ->finish_item must be careful to leave enough 120 * transaction reservation to fit the new log intent item. 121 * 122 * This is an example of remapping the extent (E, E+B) into file X at 123 * offset A and dealing with the extent (C, C+B) already being mapped 124 * there: 125 * +-------------------------------------------------+ 126 * | Unmap file X startblock C offset A length B | t0 127 * | Intent to reduce refcount for extent (C, B) | 128 * | Intent to remove rmap (X, C, A, B) | 129 * | Intent to free extent (D, 1) (bmbt block) | 130 * | Intent to map (X, A, B) at startblock E | 131 * +-------------------------------------------------+ 132 * | Map file X startblock E offset A length B | t1 133 * | Done mapping (X, E, A, B) | 134 * | Intent to increase refcount for extent (E, B) | 135 * | Intent to add rmap (X, E, A, B) | 136 * +-------------------------------------------------+ 137 * | Reduce refcount for extent (C, B) | t2 138 * | Done reducing refcount for extent (C, 9) | 139 * | Intent to reduce refcount for extent (C+9, B-9) | 140 * | (ran out of space after 9 refcount updates) | 141 * +-------------------------------------------------+ 142 * | Reduce refcount for extent (C+9, B+9) | t3 143 * | Done reducing refcount for extent (C+9, B-9) | 144 * | Increase refcount for extent (E, B) | 145 * | Done increasing refcount for extent (E, B) | 146 * | Intent to free extent (C, B) | 147 * | Intent to free extent (F, 1) (refcountbt block) | 148 * | Intent to remove rmap (F, 1, REFC) | 149 * +-------------------------------------------------+ 150 * | Remove rmap (X, C, A, B) | t4 151 * | Done removing rmap (X, C, A, B) | 152 * | Add rmap (X, E, A, B) | 153 * | Done adding rmap (X, E, A, B) | 154 * | Remove rmap (F, 1, REFC) | 155 * | Done removing rmap (F, 1, REFC) | 156 * +-------------------------------------------------+ 157 * | Free extent (C, B) | t5 158 * | Done freeing extent (C, B) | 159 * | Free extent (D, 1) | 160 * | Done freeing extent (D, 1) | 161 * | Free extent (F, 1) | 162 * | Done freeing extent (F, 1) | 163 * +-------------------------------------------------+ 164 * 165 * If we should crash before t2 commits, log recovery replays 166 * the following intent items: 167 * 168 * - Intent to reduce refcount for extent (C, B) 169 * - Intent to remove rmap (X, C, A, B) 170 * - Intent to free extent (D, 1) (bmbt block) 171 * - Intent to increase refcount for extent (E, B) 172 * - Intent to add rmap (X, E, A, B) 173 * 174 * In the process of recovering, it should also generate and take care 175 * of these intent items: 176 * 177 * - Intent to free extent (C, B) 178 * - Intent to free extent (F, 1) (refcountbt block) 179 * - Intent to remove rmap (F, 1, REFC) 180 * 181 * Note that the continuation requested between t2 and t3 is likely to 182 * reoccur. 183 */ 184 185 static const struct xfs_defer_op_type *defer_op_types[] = { 186 [XFS_DEFER_OPS_TYPE_BMAP] = &xfs_bmap_update_defer_type, 187 [XFS_DEFER_OPS_TYPE_REFCOUNT] = &xfs_refcount_update_defer_type, 188 [XFS_DEFER_OPS_TYPE_RMAP] = &xfs_rmap_update_defer_type, 189 [XFS_DEFER_OPS_TYPE_FREE] = &xfs_extent_free_defer_type, 190 [XFS_DEFER_OPS_TYPE_AGFL_FREE] = &xfs_agfl_free_defer_type, 191 [XFS_DEFER_OPS_TYPE_ATTR] = &xfs_attr_defer_type, 192 }; 193 194 /* 195 * Ensure there's a log intent item associated with this deferred work item if 196 * the operation must be restarted on crash. Returns 1 if there's a log item; 197 * 0 if there isn't; or a negative errno. 198 */ 199 static int 200 xfs_defer_create_intent( 201 struct xfs_trans *tp, 202 struct xfs_defer_pending *dfp, 203 bool sort) 204 { 205 const struct xfs_defer_op_type *ops = defer_op_types[dfp->dfp_type]; 206 struct xfs_log_item *lip; 207 208 if (dfp->dfp_intent) 209 return 1; 210 211 lip = ops->create_intent(tp, &dfp->dfp_work, dfp->dfp_count, sort); 212 if (!lip) 213 return 0; 214 if (IS_ERR(lip)) 215 return PTR_ERR(lip); 216 217 dfp->dfp_intent = lip; 218 return 1; 219 } 220 221 /* 222 * For each pending item in the intake list, log its intent item and the 223 * associated extents, then add the entire intake list to the end of 224 * the pending list. 225 * 226 * Returns 1 if at least one log item was associated with the deferred work; 227 * 0 if there are no log items; or a negative errno. 228 */ 229 static int 230 xfs_defer_create_intents( 231 struct xfs_trans *tp) 232 { 233 struct xfs_defer_pending *dfp; 234 int ret = 0; 235 236 list_for_each_entry(dfp, &tp->t_dfops, dfp_list) { 237 int ret2; 238 239 trace_xfs_defer_create_intent(tp->t_mountp, dfp); 240 ret2 = xfs_defer_create_intent(tp, dfp, true); 241 if (ret2 < 0) 242 return ret2; 243 ret |= ret2; 244 } 245 return ret; 246 } 247 248 STATIC void 249 xfs_defer_pending_abort( 250 struct xfs_mount *mp, 251 struct list_head *dop_list) 252 { 253 struct xfs_defer_pending *dfp; 254 const struct xfs_defer_op_type *ops; 255 256 /* Abort intent items that don't have a done item. */ 257 list_for_each_entry(dfp, dop_list, dfp_list) { 258 ops = defer_op_types[dfp->dfp_type]; 259 trace_xfs_defer_pending_abort(mp, dfp); 260 if (dfp->dfp_intent && !dfp->dfp_done) { 261 ops->abort_intent(dfp->dfp_intent); 262 dfp->dfp_intent = NULL; 263 } 264 } 265 } 266 267 /* Abort all the intents that were committed. */ 268 STATIC void 269 xfs_defer_trans_abort( 270 struct xfs_trans *tp, 271 struct list_head *dop_pending) 272 { 273 trace_xfs_defer_trans_abort(tp, _RET_IP_); 274 xfs_defer_pending_abort(tp->t_mountp, dop_pending); 275 } 276 277 /* 278 * Capture resources that the caller said not to release ("held") when the 279 * transaction commits. Caller is responsible for zero-initializing @dres. 280 */ 281 static int 282 xfs_defer_save_resources( 283 struct xfs_defer_resources *dres, 284 struct xfs_trans *tp) 285 { 286 struct xfs_buf_log_item *bli; 287 struct xfs_inode_log_item *ili; 288 struct xfs_log_item *lip; 289 290 BUILD_BUG_ON(NBBY * sizeof(dres->dr_ordered) < XFS_DEFER_OPS_NR_BUFS); 291 292 list_for_each_entry(lip, &tp->t_items, li_trans) { 293 switch (lip->li_type) { 294 case XFS_LI_BUF: 295 bli = container_of(lip, struct xfs_buf_log_item, 296 bli_item); 297 if (bli->bli_flags & XFS_BLI_HOLD) { 298 if (dres->dr_bufs >= XFS_DEFER_OPS_NR_BUFS) { 299 ASSERT(0); 300 return -EFSCORRUPTED; 301 } 302 if (bli->bli_flags & XFS_BLI_ORDERED) 303 dres->dr_ordered |= 304 (1U << dres->dr_bufs); 305 else 306 xfs_trans_dirty_buf(tp, bli->bli_buf); 307 dres->dr_bp[dres->dr_bufs++] = bli->bli_buf; 308 } 309 break; 310 case XFS_LI_INODE: 311 ili = container_of(lip, struct xfs_inode_log_item, 312 ili_item); 313 if (ili->ili_lock_flags == 0) { 314 if (dres->dr_inos >= XFS_DEFER_OPS_NR_INODES) { 315 ASSERT(0); 316 return -EFSCORRUPTED; 317 } 318 xfs_trans_log_inode(tp, ili->ili_inode, 319 XFS_ILOG_CORE); 320 dres->dr_ip[dres->dr_inos++] = ili->ili_inode; 321 } 322 break; 323 default: 324 break; 325 } 326 } 327 328 return 0; 329 } 330 331 /* Attach the held resources to the transaction. */ 332 static void 333 xfs_defer_restore_resources( 334 struct xfs_trans *tp, 335 struct xfs_defer_resources *dres) 336 { 337 unsigned short i; 338 339 /* Rejoin the joined inodes. */ 340 for (i = 0; i < dres->dr_inos; i++) 341 xfs_trans_ijoin(tp, dres->dr_ip[i], 0); 342 343 /* Rejoin the buffers and dirty them so the log moves forward. */ 344 for (i = 0; i < dres->dr_bufs; i++) { 345 xfs_trans_bjoin(tp, dres->dr_bp[i]); 346 if (dres->dr_ordered & (1U << i)) 347 xfs_trans_ordered_buf(tp, dres->dr_bp[i]); 348 xfs_trans_bhold(tp, dres->dr_bp[i]); 349 } 350 } 351 352 /* Roll a transaction so we can do some deferred op processing. */ 353 STATIC int 354 xfs_defer_trans_roll( 355 struct xfs_trans **tpp) 356 { 357 struct xfs_defer_resources dres = { }; 358 int error; 359 360 error = xfs_defer_save_resources(&dres, *tpp); 361 if (error) 362 return error; 363 364 trace_xfs_defer_trans_roll(*tpp, _RET_IP_); 365 366 /* 367 * Roll the transaction. Rolling always given a new transaction (even 368 * if committing the old one fails!) to hand back to the caller, so we 369 * join the held resources to the new transaction so that we always 370 * return with the held resources joined to @tpp, no matter what 371 * happened. 372 */ 373 error = xfs_trans_roll(tpp); 374 375 xfs_defer_restore_resources(*tpp, &dres); 376 377 if (error) 378 trace_xfs_defer_trans_roll_error(*tpp, error); 379 return error; 380 } 381 382 /* 383 * Free up any items left in the list. 384 */ 385 static void 386 xfs_defer_cancel_list( 387 struct xfs_mount *mp, 388 struct list_head *dop_list) 389 { 390 struct xfs_defer_pending *dfp; 391 struct xfs_defer_pending *pli; 392 struct list_head *pwi; 393 struct list_head *n; 394 const struct xfs_defer_op_type *ops; 395 396 /* 397 * Free the pending items. Caller should already have arranged 398 * for the intent items to be released. 399 */ 400 list_for_each_entry_safe(dfp, pli, dop_list, dfp_list) { 401 ops = defer_op_types[dfp->dfp_type]; 402 trace_xfs_defer_cancel_list(mp, dfp); 403 list_del(&dfp->dfp_list); 404 list_for_each_safe(pwi, n, &dfp->dfp_work) { 405 list_del(pwi); 406 dfp->dfp_count--; 407 trace_xfs_defer_cancel_item(mp, dfp, pwi); 408 ops->cancel_item(pwi); 409 } 410 ASSERT(dfp->dfp_count == 0); 411 kmem_cache_free(xfs_defer_pending_cache, dfp); 412 } 413 } 414 415 /* 416 * Prevent a log intent item from pinning the tail of the log by logging a 417 * done item to release the intent item; and then log a new intent item. 418 * The caller should provide a fresh transaction and roll it after we're done. 419 */ 420 static int 421 xfs_defer_relog( 422 struct xfs_trans **tpp, 423 struct list_head *dfops) 424 { 425 struct xlog *log = (*tpp)->t_mountp->m_log; 426 struct xfs_defer_pending *dfp; 427 xfs_lsn_t threshold_lsn = NULLCOMMITLSN; 428 429 430 ASSERT((*tpp)->t_flags & XFS_TRANS_PERM_LOG_RES); 431 432 list_for_each_entry(dfp, dfops, dfp_list) { 433 /* 434 * If the log intent item for this deferred op is not a part of 435 * the current log checkpoint, relog the intent item to keep 436 * the log tail moving forward. We're ok with this being racy 437 * because an incorrect decision means we'll be a little slower 438 * at pushing the tail. 439 */ 440 if (dfp->dfp_intent == NULL || 441 xfs_log_item_in_current_chkpt(dfp->dfp_intent)) 442 continue; 443 444 /* 445 * Figure out where we need the tail to be in order to maintain 446 * the minimum required free space in the log. Only sample 447 * the log threshold once per call. 448 */ 449 if (threshold_lsn == NULLCOMMITLSN) { 450 threshold_lsn = xlog_grant_push_threshold(log, 0); 451 if (threshold_lsn == NULLCOMMITLSN) 452 break; 453 } 454 if (XFS_LSN_CMP(dfp->dfp_intent->li_lsn, threshold_lsn) >= 0) 455 continue; 456 457 trace_xfs_defer_relog_intent((*tpp)->t_mountp, dfp); 458 XFS_STATS_INC((*tpp)->t_mountp, defer_relog); 459 dfp->dfp_intent = xfs_trans_item_relog(dfp->dfp_intent, *tpp); 460 } 461 462 if ((*tpp)->t_flags & XFS_TRANS_DIRTY) 463 return xfs_defer_trans_roll(tpp); 464 return 0; 465 } 466 467 /* 468 * Log an intent-done item for the first pending intent, and finish the work 469 * items. 470 */ 471 static int 472 xfs_defer_finish_one( 473 struct xfs_trans *tp, 474 struct xfs_defer_pending *dfp) 475 { 476 const struct xfs_defer_op_type *ops = defer_op_types[dfp->dfp_type]; 477 struct xfs_btree_cur *state = NULL; 478 struct list_head *li, *n; 479 int error; 480 481 trace_xfs_defer_pending_finish(tp->t_mountp, dfp); 482 483 dfp->dfp_done = ops->create_done(tp, dfp->dfp_intent, dfp->dfp_count); 484 list_for_each_safe(li, n, &dfp->dfp_work) { 485 list_del(li); 486 dfp->dfp_count--; 487 trace_xfs_defer_finish_item(tp->t_mountp, dfp, li); 488 error = ops->finish_item(tp, dfp->dfp_done, li, &state); 489 if (error == -EAGAIN) { 490 int ret; 491 492 /* 493 * Caller wants a fresh transaction; put the work item 494 * back on the list and log a new log intent item to 495 * replace the old one. See "Requesting a Fresh 496 * Transaction while Finishing Deferred Work" above. 497 */ 498 list_add(li, &dfp->dfp_work); 499 dfp->dfp_count++; 500 dfp->dfp_done = NULL; 501 dfp->dfp_intent = NULL; 502 ret = xfs_defer_create_intent(tp, dfp, false); 503 if (ret < 0) 504 error = ret; 505 } 506 507 if (error) 508 goto out; 509 } 510 511 /* Done with the dfp, free it. */ 512 list_del(&dfp->dfp_list); 513 kmem_cache_free(xfs_defer_pending_cache, dfp); 514 out: 515 if (ops->finish_cleanup) 516 ops->finish_cleanup(tp, state, error); 517 return error; 518 } 519 520 /* 521 * Finish all the pending work. This involves logging intent items for 522 * any work items that wandered in since the last transaction roll (if 523 * one has even happened), rolling the transaction, and finishing the 524 * work items in the first item on the logged-and-pending list. 525 * 526 * If an inode is provided, relog it to the new transaction. 527 */ 528 int 529 xfs_defer_finish_noroll( 530 struct xfs_trans **tp) 531 { 532 struct xfs_defer_pending *dfp = NULL; 533 int error = 0; 534 LIST_HEAD(dop_pending); 535 536 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 537 538 trace_xfs_defer_finish(*tp, _RET_IP_); 539 540 /* Until we run out of pending work to finish... */ 541 while (!list_empty(&dop_pending) || !list_empty(&(*tp)->t_dfops)) { 542 /* 543 * Deferred items that are created in the process of finishing 544 * other deferred work items should be queued at the head of 545 * the pending list, which puts them ahead of the deferred work 546 * that was created by the caller. This keeps the number of 547 * pending work items to a minimum, which decreases the amount 548 * of time that any one intent item can stick around in memory, 549 * pinning the log tail. 550 */ 551 int has_intents = xfs_defer_create_intents(*tp); 552 553 list_splice_init(&(*tp)->t_dfops, &dop_pending); 554 555 if (has_intents < 0) { 556 error = has_intents; 557 goto out_shutdown; 558 } 559 if (has_intents || dfp) { 560 error = xfs_defer_trans_roll(tp); 561 if (error) 562 goto out_shutdown; 563 564 /* Relog intent items to keep the log moving. */ 565 error = xfs_defer_relog(tp, &dop_pending); 566 if (error) 567 goto out_shutdown; 568 } 569 570 dfp = list_first_entry(&dop_pending, struct xfs_defer_pending, 571 dfp_list); 572 error = xfs_defer_finish_one(*tp, dfp); 573 if (error && error != -EAGAIN) 574 goto out_shutdown; 575 } 576 577 trace_xfs_defer_finish_done(*tp, _RET_IP_); 578 return 0; 579 580 out_shutdown: 581 xfs_defer_trans_abort(*tp, &dop_pending); 582 xfs_force_shutdown((*tp)->t_mountp, SHUTDOWN_CORRUPT_INCORE); 583 trace_xfs_defer_finish_error(*tp, error); 584 xfs_defer_cancel_list((*tp)->t_mountp, &dop_pending); 585 xfs_defer_cancel(*tp); 586 return error; 587 } 588 589 int 590 xfs_defer_finish( 591 struct xfs_trans **tp) 592 { 593 int error; 594 595 /* 596 * Finish and roll the transaction once more to avoid returning to the 597 * caller with a dirty transaction. 598 */ 599 error = xfs_defer_finish_noroll(tp); 600 if (error) 601 return error; 602 if ((*tp)->t_flags & XFS_TRANS_DIRTY) { 603 error = xfs_defer_trans_roll(tp); 604 if (error) { 605 xfs_force_shutdown((*tp)->t_mountp, 606 SHUTDOWN_CORRUPT_INCORE); 607 return error; 608 } 609 } 610 611 /* Reset LOWMODE now that we've finished all the dfops. */ 612 ASSERT(list_empty(&(*tp)->t_dfops)); 613 (*tp)->t_flags &= ~XFS_TRANS_LOWMODE; 614 return 0; 615 } 616 617 void 618 xfs_defer_cancel( 619 struct xfs_trans *tp) 620 { 621 struct xfs_mount *mp = tp->t_mountp; 622 623 trace_xfs_defer_cancel(tp, _RET_IP_); 624 xfs_defer_cancel_list(mp, &tp->t_dfops); 625 } 626 627 /* Add an item for later deferred processing. */ 628 void 629 xfs_defer_add( 630 struct xfs_trans *tp, 631 enum xfs_defer_ops_type type, 632 struct list_head *li) 633 { 634 struct xfs_defer_pending *dfp = NULL; 635 const struct xfs_defer_op_type *ops = defer_op_types[type]; 636 637 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 638 BUILD_BUG_ON(ARRAY_SIZE(defer_op_types) != XFS_DEFER_OPS_TYPE_MAX); 639 640 /* 641 * Add the item to a pending item at the end of the intake list. 642 * If the last pending item has the same type, reuse it. Else, 643 * create a new pending item at the end of the intake list. 644 */ 645 if (!list_empty(&tp->t_dfops)) { 646 dfp = list_last_entry(&tp->t_dfops, 647 struct xfs_defer_pending, dfp_list); 648 if (dfp->dfp_type != type || 649 (ops->max_items && dfp->dfp_count >= ops->max_items)) 650 dfp = NULL; 651 } 652 if (!dfp) { 653 dfp = kmem_cache_zalloc(xfs_defer_pending_cache, 654 GFP_NOFS | __GFP_NOFAIL); 655 dfp->dfp_type = type; 656 dfp->dfp_intent = NULL; 657 dfp->dfp_done = NULL; 658 dfp->dfp_count = 0; 659 INIT_LIST_HEAD(&dfp->dfp_work); 660 list_add_tail(&dfp->dfp_list, &tp->t_dfops); 661 } 662 663 list_add_tail(li, &dfp->dfp_work); 664 trace_xfs_defer_add_item(tp->t_mountp, dfp, li); 665 dfp->dfp_count++; 666 } 667 668 /* 669 * Move deferred ops from one transaction to another and reset the source to 670 * initial state. This is primarily used to carry state forward across 671 * transaction rolls with pending dfops. 672 */ 673 void 674 xfs_defer_move( 675 struct xfs_trans *dtp, 676 struct xfs_trans *stp) 677 { 678 list_splice_init(&stp->t_dfops, &dtp->t_dfops); 679 680 /* 681 * Low free space mode was historically controlled by a dfops field. 682 * This meant that low mode state potentially carried across multiple 683 * transaction rolls. Transfer low mode on a dfops move to preserve 684 * that behavior. 685 */ 686 dtp->t_flags |= (stp->t_flags & XFS_TRANS_LOWMODE); 687 stp->t_flags &= ~XFS_TRANS_LOWMODE; 688 } 689 690 /* 691 * Prepare a chain of fresh deferred ops work items to be completed later. Log 692 * recovery requires the ability to put off until later the actual finishing 693 * work so that it can process unfinished items recovered from the log in 694 * correct order. 695 * 696 * Create and log intent items for all the work that we're capturing so that we 697 * can be assured that the items will get replayed if the system goes down 698 * before log recovery gets a chance to finish the work it put off. The entire 699 * deferred ops state is transferred to the capture structure and the 700 * transaction is then ready for the caller to commit it. If there are no 701 * intent items to capture, this function returns NULL. 702 * 703 * If capture_ip is not NULL, the capture structure will obtain an extra 704 * reference to the inode. 705 */ 706 static struct xfs_defer_capture * 707 xfs_defer_ops_capture( 708 struct xfs_trans *tp) 709 { 710 struct xfs_defer_capture *dfc; 711 unsigned short i; 712 int error; 713 714 if (list_empty(&tp->t_dfops)) 715 return NULL; 716 717 error = xfs_defer_create_intents(tp); 718 if (error < 0) 719 return ERR_PTR(error); 720 721 /* Create an object to capture the defer ops. */ 722 dfc = kmem_zalloc(sizeof(*dfc), KM_NOFS); 723 INIT_LIST_HEAD(&dfc->dfc_list); 724 INIT_LIST_HEAD(&dfc->dfc_dfops); 725 726 /* Move the dfops chain and transaction state to the capture struct. */ 727 list_splice_init(&tp->t_dfops, &dfc->dfc_dfops); 728 dfc->dfc_tpflags = tp->t_flags & XFS_TRANS_LOWMODE; 729 tp->t_flags &= ~XFS_TRANS_LOWMODE; 730 731 /* Capture the remaining block reservations along with the dfops. */ 732 dfc->dfc_blkres = tp->t_blk_res - tp->t_blk_res_used; 733 dfc->dfc_rtxres = tp->t_rtx_res - tp->t_rtx_res_used; 734 735 /* Preserve the log reservation size. */ 736 dfc->dfc_logres = tp->t_log_res; 737 738 error = xfs_defer_save_resources(&dfc->dfc_held, tp); 739 if (error) { 740 /* 741 * Resource capture should never fail, but if it does, we 742 * still have to shut down the log and release things 743 * properly. 744 */ 745 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_CORRUPT_INCORE); 746 } 747 748 /* 749 * Grab extra references to the inodes and buffers because callers are 750 * expected to release their held references after we commit the 751 * transaction. 752 */ 753 for (i = 0; i < dfc->dfc_held.dr_inos; i++) { 754 ASSERT(xfs_isilocked(dfc->dfc_held.dr_ip[i], XFS_ILOCK_EXCL)); 755 ihold(VFS_I(dfc->dfc_held.dr_ip[i])); 756 } 757 758 for (i = 0; i < dfc->dfc_held.dr_bufs; i++) 759 xfs_buf_hold(dfc->dfc_held.dr_bp[i]); 760 761 return dfc; 762 } 763 764 /* Release all resources that we used to capture deferred ops. */ 765 void 766 xfs_defer_ops_capture_abort( 767 struct xfs_mount *mp, 768 struct xfs_defer_capture *dfc) 769 { 770 unsigned short i; 771 772 xfs_defer_pending_abort(mp, &dfc->dfc_dfops); 773 xfs_defer_cancel_list(mp, &dfc->dfc_dfops); 774 775 for (i = 0; i < dfc->dfc_held.dr_bufs; i++) 776 xfs_buf_relse(dfc->dfc_held.dr_bp[i]); 777 778 for (i = 0; i < dfc->dfc_held.dr_inos; i++) 779 xfs_irele(dfc->dfc_held.dr_ip[i]); 780 781 kmem_free(dfc); 782 } 783 784 /* 785 * Capture any deferred ops and commit the transaction. This is the last step 786 * needed to finish a log intent item that we recovered from the log. If any 787 * of the deferred ops operate on an inode, the caller must pass in that inode 788 * so that the reference can be transferred to the capture structure. The 789 * caller must hold ILOCK_EXCL on the inode, and must unlock it before calling 790 * xfs_defer_ops_continue. 791 */ 792 int 793 xfs_defer_ops_capture_and_commit( 794 struct xfs_trans *tp, 795 struct list_head *capture_list) 796 { 797 struct xfs_mount *mp = tp->t_mountp; 798 struct xfs_defer_capture *dfc; 799 int error; 800 801 /* If we don't capture anything, commit transaction and exit. */ 802 dfc = xfs_defer_ops_capture(tp); 803 if (IS_ERR(dfc)) { 804 xfs_trans_cancel(tp); 805 return PTR_ERR(dfc); 806 } 807 if (!dfc) 808 return xfs_trans_commit(tp); 809 810 /* Commit the transaction and add the capture structure to the list. */ 811 error = xfs_trans_commit(tp); 812 if (error) { 813 xfs_defer_ops_capture_abort(mp, dfc); 814 return error; 815 } 816 817 list_add_tail(&dfc->dfc_list, capture_list); 818 return 0; 819 } 820 821 /* 822 * Attach a chain of captured deferred ops to a new transaction and free the 823 * capture structure. If an inode was captured, it will be passed back to the 824 * caller with ILOCK_EXCL held and joined to the transaction with lockflags==0. 825 * The caller now owns the inode reference. 826 */ 827 void 828 xfs_defer_ops_continue( 829 struct xfs_defer_capture *dfc, 830 struct xfs_trans *tp, 831 struct xfs_defer_resources *dres) 832 { 833 unsigned int i; 834 835 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 836 ASSERT(!(tp->t_flags & XFS_TRANS_DIRTY)); 837 838 /* Lock the captured resources to the new transaction. */ 839 if (dfc->dfc_held.dr_inos == 2) 840 xfs_lock_two_inodes(dfc->dfc_held.dr_ip[0], XFS_ILOCK_EXCL, 841 dfc->dfc_held.dr_ip[1], XFS_ILOCK_EXCL); 842 else if (dfc->dfc_held.dr_inos == 1) 843 xfs_ilock(dfc->dfc_held.dr_ip[0], XFS_ILOCK_EXCL); 844 845 for (i = 0; i < dfc->dfc_held.dr_bufs; i++) 846 xfs_buf_lock(dfc->dfc_held.dr_bp[i]); 847 848 /* Join the captured resources to the new transaction. */ 849 xfs_defer_restore_resources(tp, &dfc->dfc_held); 850 memcpy(dres, &dfc->dfc_held, sizeof(struct xfs_defer_resources)); 851 dres->dr_bufs = 0; 852 853 /* Move captured dfops chain and state to the transaction. */ 854 list_splice_init(&dfc->dfc_dfops, &tp->t_dfops); 855 tp->t_flags |= dfc->dfc_tpflags; 856 857 kmem_free(dfc); 858 } 859 860 /* Release the resources captured and continued during recovery. */ 861 void 862 xfs_defer_resources_rele( 863 struct xfs_defer_resources *dres) 864 { 865 unsigned short i; 866 867 for (i = 0; i < dres->dr_inos; i++) { 868 xfs_iunlock(dres->dr_ip[i], XFS_ILOCK_EXCL); 869 xfs_irele(dres->dr_ip[i]); 870 dres->dr_ip[i] = NULL; 871 } 872 873 for (i = 0; i < dres->dr_bufs; i++) { 874 xfs_buf_relse(dres->dr_bp[i]); 875 dres->dr_bp[i] = NULL; 876 } 877 878 dres->dr_inos = 0; 879 dres->dr_bufs = 0; 880 dres->dr_ordered = 0; 881 } 882 883 static inline int __init 884 xfs_defer_init_cache(void) 885 { 886 xfs_defer_pending_cache = kmem_cache_create("xfs_defer_pending", 887 sizeof(struct xfs_defer_pending), 888 0, 0, NULL); 889 890 return xfs_defer_pending_cache != NULL ? 0 : -ENOMEM; 891 } 892 893 static inline void 894 xfs_defer_destroy_cache(void) 895 { 896 kmem_cache_destroy(xfs_defer_pending_cache); 897 xfs_defer_pending_cache = NULL; 898 } 899 900 /* Set up caches for deferred work items. */ 901 int __init 902 xfs_defer_init_item_caches(void) 903 { 904 int error; 905 906 error = xfs_defer_init_cache(); 907 if (error) 908 return error; 909 error = xfs_rmap_intent_init_cache(); 910 if (error) 911 goto err; 912 error = xfs_refcount_intent_init_cache(); 913 if (error) 914 goto err; 915 error = xfs_bmap_intent_init_cache(); 916 if (error) 917 goto err; 918 error = xfs_extfree_intent_init_cache(); 919 if (error) 920 goto err; 921 error = xfs_attr_intent_init_cache(); 922 if (error) 923 goto err; 924 return 0; 925 err: 926 xfs_defer_destroy_item_caches(); 927 return error; 928 } 929 930 /* Destroy all the deferred work item caches, if they've been allocated. */ 931 void 932 xfs_defer_destroy_item_caches(void) 933 { 934 xfs_attr_intent_destroy_cache(); 935 xfs_extfree_intent_destroy_cache(); 936 xfs_bmap_intent_destroy_cache(); 937 xfs_refcount_intent_destroy_cache(); 938 xfs_rmap_intent_destroy_cache(); 939 xfs_defer_destroy_cache(); 940 } 941