xref: /openbmc/linux/fs/xfs/libxfs/xfs_defer.c (revision 176f011b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_trans.h"
17 #include "xfs_buf_item.h"
18 #include "xfs_inode.h"
19 #include "xfs_inode_item.h"
20 #include "xfs_trace.h"
21 
22 /*
23  * Deferred Operations in XFS
24  *
25  * Due to the way locking rules work in XFS, certain transactions (block
26  * mapping and unmapping, typically) have permanent reservations so that
27  * we can roll the transaction to adhere to AG locking order rules and
28  * to unlock buffers between metadata updates.  Prior to rmap/reflink,
29  * the mapping code had a mechanism to perform these deferrals for
30  * extents that were going to be freed; this code makes that facility
31  * more generic.
32  *
33  * When adding the reverse mapping and reflink features, it became
34  * necessary to perform complex remapping multi-transactions to comply
35  * with AG locking order rules, and to be able to spread a single
36  * refcount update operation (an operation on an n-block extent can
37  * update as many as n records!) among multiple transactions.  XFS can
38  * roll a transaction to facilitate this, but using this facility
39  * requires us to log "intent" items in case log recovery needs to
40  * redo the operation, and to log "done" items to indicate that redo
41  * is not necessary.
42  *
43  * Deferred work is tracked in xfs_defer_pending items.  Each pending
44  * item tracks one type of deferred work.  Incoming work items (which
45  * have not yet had an intent logged) are attached to a pending item
46  * on the dop_intake list, where they wait for the caller to finish
47  * the deferred operations.
48  *
49  * Finishing a set of deferred operations is an involved process.  To
50  * start, we define "rolling a deferred-op transaction" as follows:
51  *
52  * > For each xfs_defer_pending item on the dop_intake list,
53  *   - Sort the work items in AG order.  XFS locking
54  *     order rules require us to lock buffers in AG order.
55  *   - Create a log intent item for that type.
56  *   - Attach it to the pending item.
57  *   - Move the pending item from the dop_intake list to the
58  *     dop_pending list.
59  * > Roll the transaction.
60  *
61  * NOTE: To avoid exceeding the transaction reservation, we limit the
62  * number of items that we attach to a given xfs_defer_pending.
63  *
64  * The actual finishing process looks like this:
65  *
66  * > For each xfs_defer_pending in the dop_pending list,
67  *   - Roll the deferred-op transaction as above.
68  *   - Create a log done item for that type, and attach it to the
69  *     log intent item.
70  *   - For each work item attached to the log intent item,
71  *     * Perform the described action.
72  *     * Attach the work item to the log done item.
73  *     * If the result of doing the work was -EAGAIN, ->finish work
74  *       wants a new transaction.  See the "Requesting a Fresh
75  *       Transaction while Finishing Deferred Work" section below for
76  *       details.
77  *
78  * The key here is that we must log an intent item for all pending
79  * work items every time we roll the transaction, and that we must log
80  * a done item as soon as the work is completed.  With this mechanism
81  * we can perform complex remapping operations, chaining intent items
82  * as needed.
83  *
84  * Requesting a Fresh Transaction while Finishing Deferred Work
85  *
86  * If ->finish_item decides that it needs a fresh transaction to
87  * finish the work, it must ask its caller (xfs_defer_finish) for a
88  * continuation.  The most likely cause of this circumstance are the
89  * refcount adjust functions deciding that they've logged enough items
90  * to be at risk of exceeding the transaction reservation.
91  *
92  * To get a fresh transaction, we want to log the existing log done
93  * item to prevent the log intent item from replaying, immediately log
94  * a new log intent item with the unfinished work items, roll the
95  * transaction, and re-call ->finish_item wherever it left off.  The
96  * log done item and the new log intent item must be in the same
97  * transaction or atomicity cannot be guaranteed; defer_finish ensures
98  * that this happens.
99  *
100  * This requires some coordination between ->finish_item and
101  * defer_finish.  Upon deciding to request a new transaction,
102  * ->finish_item should update the current work item to reflect the
103  * unfinished work.  Next, it should reset the log done item's list
104  * count to the number of items finished, and return -EAGAIN.
105  * defer_finish sees the -EAGAIN, logs the new log intent item
106  * with the remaining work items, and leaves the xfs_defer_pending
107  * item at the head of the dop_work queue.  Then it rolls the
108  * transaction and picks up processing where it left off.  It is
109  * required that ->finish_item must be careful to leave enough
110  * transaction reservation to fit the new log intent item.
111  *
112  * This is an example of remapping the extent (E, E+B) into file X at
113  * offset A and dealing with the extent (C, C+B) already being mapped
114  * there:
115  * +-------------------------------------------------+
116  * | Unmap file X startblock C offset A length B     | t0
117  * | Intent to reduce refcount for extent (C, B)     |
118  * | Intent to remove rmap (X, C, A, B)              |
119  * | Intent to free extent (D, 1) (bmbt block)       |
120  * | Intent to map (X, A, B) at startblock E         |
121  * +-------------------------------------------------+
122  * | Map file X startblock E offset A length B       | t1
123  * | Done mapping (X, E, A, B)                       |
124  * | Intent to increase refcount for extent (E, B)   |
125  * | Intent to add rmap (X, E, A, B)                 |
126  * +-------------------------------------------------+
127  * | Reduce refcount for extent (C, B)               | t2
128  * | Done reducing refcount for extent (C, 9)        |
129  * | Intent to reduce refcount for extent (C+9, B-9) |
130  * | (ran out of space after 9 refcount updates)     |
131  * +-------------------------------------------------+
132  * | Reduce refcount for extent (C+9, B+9)           | t3
133  * | Done reducing refcount for extent (C+9, B-9)    |
134  * | Increase refcount for extent (E, B)             |
135  * | Done increasing refcount for extent (E, B)      |
136  * | Intent to free extent (C, B)                    |
137  * | Intent to free extent (F, 1) (refcountbt block) |
138  * | Intent to remove rmap (F, 1, REFC)              |
139  * +-------------------------------------------------+
140  * | Remove rmap (X, C, A, B)                        | t4
141  * | Done removing rmap (X, C, A, B)                 |
142  * | Add rmap (X, E, A, B)                           |
143  * | Done adding rmap (X, E, A, B)                   |
144  * | Remove rmap (F, 1, REFC)                        |
145  * | Done removing rmap (F, 1, REFC)                 |
146  * +-------------------------------------------------+
147  * | Free extent (C, B)                              | t5
148  * | Done freeing extent (C, B)                      |
149  * | Free extent (D, 1)                              |
150  * | Done freeing extent (D, 1)                      |
151  * | Free extent (F, 1)                              |
152  * | Done freeing extent (F, 1)                      |
153  * +-------------------------------------------------+
154  *
155  * If we should crash before t2 commits, log recovery replays
156  * the following intent items:
157  *
158  * - Intent to reduce refcount for extent (C, B)
159  * - Intent to remove rmap (X, C, A, B)
160  * - Intent to free extent (D, 1) (bmbt block)
161  * - Intent to increase refcount for extent (E, B)
162  * - Intent to add rmap (X, E, A, B)
163  *
164  * In the process of recovering, it should also generate and take care
165  * of these intent items:
166  *
167  * - Intent to free extent (C, B)
168  * - Intent to free extent (F, 1) (refcountbt block)
169  * - Intent to remove rmap (F, 1, REFC)
170  *
171  * Note that the continuation requested between t2 and t3 is likely to
172  * reoccur.
173  */
174 
175 static const struct xfs_defer_op_type *defer_op_types[] = {
176 	[XFS_DEFER_OPS_TYPE_BMAP]	= &xfs_bmap_update_defer_type,
177 	[XFS_DEFER_OPS_TYPE_REFCOUNT]	= &xfs_refcount_update_defer_type,
178 	[XFS_DEFER_OPS_TYPE_RMAP]	= &xfs_rmap_update_defer_type,
179 	[XFS_DEFER_OPS_TYPE_FREE]	= &xfs_extent_free_defer_type,
180 	[XFS_DEFER_OPS_TYPE_AGFL_FREE]	= &xfs_agfl_free_defer_type,
181 };
182 
183 /*
184  * For each pending item in the intake list, log its intent item and the
185  * associated extents, then add the entire intake list to the end of
186  * the pending list.
187  */
188 STATIC void
189 xfs_defer_create_intents(
190 	struct xfs_trans		*tp)
191 {
192 	struct list_head		*li;
193 	struct xfs_defer_pending	*dfp;
194 	const struct xfs_defer_op_type	*ops;
195 
196 	list_for_each_entry(dfp, &tp->t_dfops, dfp_list) {
197 		ops = defer_op_types[dfp->dfp_type];
198 		dfp->dfp_intent = ops->create_intent(tp, dfp->dfp_count);
199 		trace_xfs_defer_create_intent(tp->t_mountp, dfp);
200 		list_sort(tp->t_mountp, &dfp->dfp_work, ops->diff_items);
201 		list_for_each(li, &dfp->dfp_work)
202 			ops->log_item(tp, dfp->dfp_intent, li);
203 	}
204 }
205 
206 /* Abort all the intents that were committed. */
207 STATIC void
208 xfs_defer_trans_abort(
209 	struct xfs_trans		*tp,
210 	struct list_head		*dop_pending)
211 {
212 	struct xfs_defer_pending	*dfp;
213 	const struct xfs_defer_op_type	*ops;
214 
215 	trace_xfs_defer_trans_abort(tp, _RET_IP_);
216 
217 	/* Abort intent items that don't have a done item. */
218 	list_for_each_entry(dfp, dop_pending, dfp_list) {
219 		ops = defer_op_types[dfp->dfp_type];
220 		trace_xfs_defer_pending_abort(tp->t_mountp, dfp);
221 		if (dfp->dfp_intent && !dfp->dfp_done) {
222 			ops->abort_intent(dfp->dfp_intent);
223 			dfp->dfp_intent = NULL;
224 		}
225 	}
226 }
227 
228 /* Roll a transaction so we can do some deferred op processing. */
229 STATIC int
230 xfs_defer_trans_roll(
231 	struct xfs_trans		**tpp)
232 {
233 	struct xfs_trans		*tp = *tpp;
234 	struct xfs_buf_log_item		*bli;
235 	struct xfs_inode_log_item	*ili;
236 	struct xfs_log_item		*lip;
237 	struct xfs_buf			*bplist[XFS_DEFER_OPS_NR_BUFS];
238 	struct xfs_inode		*iplist[XFS_DEFER_OPS_NR_INODES];
239 	int				bpcount = 0, ipcount = 0;
240 	int				i;
241 	int				error;
242 
243 	list_for_each_entry(lip, &tp->t_items, li_trans) {
244 		switch (lip->li_type) {
245 		case XFS_LI_BUF:
246 			bli = container_of(lip, struct xfs_buf_log_item,
247 					   bli_item);
248 			if (bli->bli_flags & XFS_BLI_HOLD) {
249 				if (bpcount >= XFS_DEFER_OPS_NR_BUFS) {
250 					ASSERT(0);
251 					return -EFSCORRUPTED;
252 				}
253 				xfs_trans_dirty_buf(tp, bli->bli_buf);
254 				bplist[bpcount++] = bli->bli_buf;
255 			}
256 			break;
257 		case XFS_LI_INODE:
258 			ili = container_of(lip, struct xfs_inode_log_item,
259 					   ili_item);
260 			if (ili->ili_lock_flags == 0) {
261 				if (ipcount >= XFS_DEFER_OPS_NR_INODES) {
262 					ASSERT(0);
263 					return -EFSCORRUPTED;
264 				}
265 				xfs_trans_log_inode(tp, ili->ili_inode,
266 						    XFS_ILOG_CORE);
267 				iplist[ipcount++] = ili->ili_inode;
268 			}
269 			break;
270 		default:
271 			break;
272 		}
273 	}
274 
275 	trace_xfs_defer_trans_roll(tp, _RET_IP_);
276 
277 	/* Roll the transaction. */
278 	error = xfs_trans_roll(tpp);
279 	tp = *tpp;
280 	if (error) {
281 		trace_xfs_defer_trans_roll_error(tp, error);
282 		return error;
283 	}
284 
285 	/* Rejoin the joined inodes. */
286 	for (i = 0; i < ipcount; i++)
287 		xfs_trans_ijoin(tp, iplist[i], 0);
288 
289 	/* Rejoin the buffers and dirty them so the log moves forward. */
290 	for (i = 0; i < bpcount; i++) {
291 		xfs_trans_bjoin(tp, bplist[i]);
292 		xfs_trans_bhold(tp, bplist[i]);
293 	}
294 
295 	return error;
296 }
297 
298 /*
299  * Reset an already used dfops after finish.
300  */
301 static void
302 xfs_defer_reset(
303 	struct xfs_trans	*tp)
304 {
305 	ASSERT(list_empty(&tp->t_dfops));
306 
307 	/*
308 	 * Low mode state transfers across transaction rolls to mirror dfops
309 	 * lifetime. Clear it now that dfops is reset.
310 	 */
311 	tp->t_flags &= ~XFS_TRANS_LOWMODE;
312 }
313 
314 /*
315  * Free up any items left in the list.
316  */
317 static void
318 xfs_defer_cancel_list(
319 	struct xfs_mount		*mp,
320 	struct list_head		*dop_list)
321 {
322 	struct xfs_defer_pending	*dfp;
323 	struct xfs_defer_pending	*pli;
324 	struct list_head		*pwi;
325 	struct list_head		*n;
326 	const struct xfs_defer_op_type	*ops;
327 
328 	/*
329 	 * Free the pending items.  Caller should already have arranged
330 	 * for the intent items to be released.
331 	 */
332 	list_for_each_entry_safe(dfp, pli, dop_list, dfp_list) {
333 		ops = defer_op_types[dfp->dfp_type];
334 		trace_xfs_defer_cancel_list(mp, dfp);
335 		list_del(&dfp->dfp_list);
336 		list_for_each_safe(pwi, n, &dfp->dfp_work) {
337 			list_del(pwi);
338 			dfp->dfp_count--;
339 			ops->cancel_item(pwi);
340 		}
341 		ASSERT(dfp->dfp_count == 0);
342 		kmem_free(dfp);
343 	}
344 }
345 
346 /*
347  * Finish all the pending work.  This involves logging intent items for
348  * any work items that wandered in since the last transaction roll (if
349  * one has even happened), rolling the transaction, and finishing the
350  * work items in the first item on the logged-and-pending list.
351  *
352  * If an inode is provided, relog it to the new transaction.
353  */
354 int
355 xfs_defer_finish_noroll(
356 	struct xfs_trans		**tp)
357 {
358 	struct xfs_defer_pending	*dfp;
359 	struct list_head		*li;
360 	struct list_head		*n;
361 	void				*state;
362 	int				error = 0;
363 	const struct xfs_defer_op_type	*ops;
364 	LIST_HEAD(dop_pending);
365 
366 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
367 
368 	trace_xfs_defer_finish(*tp, _RET_IP_);
369 
370 	/* Until we run out of pending work to finish... */
371 	while (!list_empty(&dop_pending) || !list_empty(&(*tp)->t_dfops)) {
372 		/* log intents and pull in intake items */
373 		xfs_defer_create_intents(*tp);
374 		list_splice_tail_init(&(*tp)->t_dfops, &dop_pending);
375 
376 		/*
377 		 * Roll the transaction.
378 		 */
379 		error = xfs_defer_trans_roll(tp);
380 		if (error)
381 			goto out;
382 
383 		/* Log an intent-done item for the first pending item. */
384 		dfp = list_first_entry(&dop_pending, struct xfs_defer_pending,
385 				       dfp_list);
386 		ops = defer_op_types[dfp->dfp_type];
387 		trace_xfs_defer_pending_finish((*tp)->t_mountp, dfp);
388 		dfp->dfp_done = ops->create_done(*tp, dfp->dfp_intent,
389 				dfp->dfp_count);
390 
391 		/* Finish the work items. */
392 		state = NULL;
393 		list_for_each_safe(li, n, &dfp->dfp_work) {
394 			list_del(li);
395 			dfp->dfp_count--;
396 			error = ops->finish_item(*tp, li, dfp->dfp_done,
397 					&state);
398 			if (error == -EAGAIN) {
399 				/*
400 				 * Caller wants a fresh transaction;
401 				 * put the work item back on the list
402 				 * and jump out.
403 				 */
404 				list_add(li, &dfp->dfp_work);
405 				dfp->dfp_count++;
406 				break;
407 			} else if (error) {
408 				/*
409 				 * Clean up after ourselves and jump out.
410 				 * xfs_defer_cancel will take care of freeing
411 				 * all these lists and stuff.
412 				 */
413 				if (ops->finish_cleanup)
414 					ops->finish_cleanup(*tp, state, error);
415 				goto out;
416 			}
417 		}
418 		if (error == -EAGAIN) {
419 			/*
420 			 * Caller wants a fresh transaction, so log a
421 			 * new log intent item to replace the old one
422 			 * and roll the transaction.  See "Requesting
423 			 * a Fresh Transaction while Finishing
424 			 * Deferred Work" above.
425 			 */
426 			dfp->dfp_intent = ops->create_intent(*tp,
427 					dfp->dfp_count);
428 			dfp->dfp_done = NULL;
429 			list_for_each(li, &dfp->dfp_work)
430 				ops->log_item(*tp, dfp->dfp_intent, li);
431 		} else {
432 			/* Done with the dfp, free it. */
433 			list_del(&dfp->dfp_list);
434 			kmem_free(dfp);
435 		}
436 
437 		if (ops->finish_cleanup)
438 			ops->finish_cleanup(*tp, state, error);
439 	}
440 
441 out:
442 	if (error) {
443 		xfs_defer_trans_abort(*tp, &dop_pending);
444 		xfs_force_shutdown((*tp)->t_mountp, SHUTDOWN_CORRUPT_INCORE);
445 		trace_xfs_defer_finish_error(*tp, error);
446 		xfs_defer_cancel_list((*tp)->t_mountp, &dop_pending);
447 		xfs_defer_cancel(*tp);
448 		return error;
449 	}
450 
451 	trace_xfs_defer_finish_done(*tp, _RET_IP_);
452 	return 0;
453 }
454 
455 int
456 xfs_defer_finish(
457 	struct xfs_trans	**tp)
458 {
459 	int			error;
460 
461 	/*
462 	 * Finish and roll the transaction once more to avoid returning to the
463 	 * caller with a dirty transaction.
464 	 */
465 	error = xfs_defer_finish_noroll(tp);
466 	if (error)
467 		return error;
468 	if ((*tp)->t_flags & XFS_TRANS_DIRTY) {
469 		error = xfs_defer_trans_roll(tp);
470 		if (error) {
471 			xfs_force_shutdown((*tp)->t_mountp,
472 					   SHUTDOWN_CORRUPT_INCORE);
473 			return error;
474 		}
475 	}
476 	xfs_defer_reset(*tp);
477 	return 0;
478 }
479 
480 void
481 xfs_defer_cancel(
482 	struct xfs_trans	*tp)
483 {
484 	struct xfs_mount	*mp = tp->t_mountp;
485 
486 	trace_xfs_defer_cancel(tp, _RET_IP_);
487 	xfs_defer_cancel_list(mp, &tp->t_dfops);
488 }
489 
490 /* Add an item for later deferred processing. */
491 void
492 xfs_defer_add(
493 	struct xfs_trans		*tp,
494 	enum xfs_defer_ops_type		type,
495 	struct list_head		*li)
496 {
497 	struct xfs_defer_pending	*dfp = NULL;
498 	const struct xfs_defer_op_type	*ops;
499 
500 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
501 	BUILD_BUG_ON(ARRAY_SIZE(defer_op_types) != XFS_DEFER_OPS_TYPE_MAX);
502 
503 	/*
504 	 * Add the item to a pending item at the end of the intake list.
505 	 * If the last pending item has the same type, reuse it.  Else,
506 	 * create a new pending item at the end of the intake list.
507 	 */
508 	if (!list_empty(&tp->t_dfops)) {
509 		dfp = list_last_entry(&tp->t_dfops,
510 				struct xfs_defer_pending, dfp_list);
511 		ops = defer_op_types[dfp->dfp_type];
512 		if (dfp->dfp_type != type ||
513 		    (ops->max_items && dfp->dfp_count >= ops->max_items))
514 			dfp = NULL;
515 	}
516 	if (!dfp) {
517 		dfp = kmem_alloc(sizeof(struct xfs_defer_pending),
518 				KM_SLEEP | KM_NOFS);
519 		dfp->dfp_type = type;
520 		dfp->dfp_intent = NULL;
521 		dfp->dfp_done = NULL;
522 		dfp->dfp_count = 0;
523 		INIT_LIST_HEAD(&dfp->dfp_work);
524 		list_add_tail(&dfp->dfp_list, &tp->t_dfops);
525 	}
526 
527 	list_add_tail(li, &dfp->dfp_work);
528 	dfp->dfp_count++;
529 }
530 
531 /*
532  * Move deferred ops from one transaction to another and reset the source to
533  * initial state. This is primarily used to carry state forward across
534  * transaction rolls with pending dfops.
535  */
536 void
537 xfs_defer_move(
538 	struct xfs_trans	*dtp,
539 	struct xfs_trans	*stp)
540 {
541 	list_splice_init(&stp->t_dfops, &dtp->t_dfops);
542 
543 	/*
544 	 * Low free space mode was historically controlled by a dfops field.
545 	 * This meant that low mode state potentially carried across multiple
546 	 * transaction rolls. Transfer low mode on a dfops move to preserve
547 	 * that behavior.
548 	 */
549 	dtp->t_flags |= (stp->t_flags & XFS_TRANS_LOWMODE);
550 
551 	xfs_defer_reset(stp);
552 }
553