1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_defer.h" 14 #include "xfs_trans.h" 15 #include "xfs_buf_item.h" 16 #include "xfs_inode.h" 17 #include "xfs_inode_item.h" 18 #include "xfs_trace.h" 19 20 /* 21 * Deferred Operations in XFS 22 * 23 * Due to the way locking rules work in XFS, certain transactions (block 24 * mapping and unmapping, typically) have permanent reservations so that 25 * we can roll the transaction to adhere to AG locking order rules and 26 * to unlock buffers between metadata updates. Prior to rmap/reflink, 27 * the mapping code had a mechanism to perform these deferrals for 28 * extents that were going to be freed; this code makes that facility 29 * more generic. 30 * 31 * When adding the reverse mapping and reflink features, it became 32 * necessary to perform complex remapping multi-transactions to comply 33 * with AG locking order rules, and to be able to spread a single 34 * refcount update operation (an operation on an n-block extent can 35 * update as many as n records!) among multiple transactions. XFS can 36 * roll a transaction to facilitate this, but using this facility 37 * requires us to log "intent" items in case log recovery needs to 38 * redo the operation, and to log "done" items to indicate that redo 39 * is not necessary. 40 * 41 * Deferred work is tracked in xfs_defer_pending items. Each pending 42 * item tracks one type of deferred work. Incoming work items (which 43 * have not yet had an intent logged) are attached to a pending item 44 * on the dop_intake list, where they wait for the caller to finish 45 * the deferred operations. 46 * 47 * Finishing a set of deferred operations is an involved process. To 48 * start, we define "rolling a deferred-op transaction" as follows: 49 * 50 * > For each xfs_defer_pending item on the dop_intake list, 51 * - Sort the work items in AG order. XFS locking 52 * order rules require us to lock buffers in AG order. 53 * - Create a log intent item for that type. 54 * - Attach it to the pending item. 55 * - Move the pending item from the dop_intake list to the 56 * dop_pending list. 57 * > Roll the transaction. 58 * 59 * NOTE: To avoid exceeding the transaction reservation, we limit the 60 * number of items that we attach to a given xfs_defer_pending. 61 * 62 * The actual finishing process looks like this: 63 * 64 * > For each xfs_defer_pending in the dop_pending list, 65 * - Roll the deferred-op transaction as above. 66 * - Create a log done item for that type, and attach it to the 67 * log intent item. 68 * - For each work item attached to the log intent item, 69 * * Perform the described action. 70 * * Attach the work item to the log done item. 71 * * If the result of doing the work was -EAGAIN, ->finish work 72 * wants a new transaction. See the "Requesting a Fresh 73 * Transaction while Finishing Deferred Work" section below for 74 * details. 75 * 76 * The key here is that we must log an intent item for all pending 77 * work items every time we roll the transaction, and that we must log 78 * a done item as soon as the work is completed. With this mechanism 79 * we can perform complex remapping operations, chaining intent items 80 * as needed. 81 * 82 * Requesting a Fresh Transaction while Finishing Deferred Work 83 * 84 * If ->finish_item decides that it needs a fresh transaction to 85 * finish the work, it must ask its caller (xfs_defer_finish) for a 86 * continuation. The most likely cause of this circumstance are the 87 * refcount adjust functions deciding that they've logged enough items 88 * to be at risk of exceeding the transaction reservation. 89 * 90 * To get a fresh transaction, we want to log the existing log done 91 * item to prevent the log intent item from replaying, immediately log 92 * a new log intent item with the unfinished work items, roll the 93 * transaction, and re-call ->finish_item wherever it left off. The 94 * log done item and the new log intent item must be in the same 95 * transaction or atomicity cannot be guaranteed; defer_finish ensures 96 * that this happens. 97 * 98 * This requires some coordination between ->finish_item and 99 * defer_finish. Upon deciding to request a new transaction, 100 * ->finish_item should update the current work item to reflect the 101 * unfinished work. Next, it should reset the log done item's list 102 * count to the number of items finished, and return -EAGAIN. 103 * defer_finish sees the -EAGAIN, logs the new log intent item 104 * with the remaining work items, and leaves the xfs_defer_pending 105 * item at the head of the dop_work queue. Then it rolls the 106 * transaction and picks up processing where it left off. It is 107 * required that ->finish_item must be careful to leave enough 108 * transaction reservation to fit the new log intent item. 109 * 110 * This is an example of remapping the extent (E, E+B) into file X at 111 * offset A and dealing with the extent (C, C+B) already being mapped 112 * there: 113 * +-------------------------------------------------+ 114 * | Unmap file X startblock C offset A length B | t0 115 * | Intent to reduce refcount for extent (C, B) | 116 * | Intent to remove rmap (X, C, A, B) | 117 * | Intent to free extent (D, 1) (bmbt block) | 118 * | Intent to map (X, A, B) at startblock E | 119 * +-------------------------------------------------+ 120 * | Map file X startblock E offset A length B | t1 121 * | Done mapping (X, E, A, B) | 122 * | Intent to increase refcount for extent (E, B) | 123 * | Intent to add rmap (X, E, A, B) | 124 * +-------------------------------------------------+ 125 * | Reduce refcount for extent (C, B) | t2 126 * | Done reducing refcount for extent (C, 9) | 127 * | Intent to reduce refcount for extent (C+9, B-9) | 128 * | (ran out of space after 9 refcount updates) | 129 * +-------------------------------------------------+ 130 * | Reduce refcount for extent (C+9, B+9) | t3 131 * | Done reducing refcount for extent (C+9, B-9) | 132 * | Increase refcount for extent (E, B) | 133 * | Done increasing refcount for extent (E, B) | 134 * | Intent to free extent (C, B) | 135 * | Intent to free extent (F, 1) (refcountbt block) | 136 * | Intent to remove rmap (F, 1, REFC) | 137 * +-------------------------------------------------+ 138 * | Remove rmap (X, C, A, B) | t4 139 * | Done removing rmap (X, C, A, B) | 140 * | Add rmap (X, E, A, B) | 141 * | Done adding rmap (X, E, A, B) | 142 * | Remove rmap (F, 1, REFC) | 143 * | Done removing rmap (F, 1, REFC) | 144 * +-------------------------------------------------+ 145 * | Free extent (C, B) | t5 146 * | Done freeing extent (C, B) | 147 * | Free extent (D, 1) | 148 * | Done freeing extent (D, 1) | 149 * | Free extent (F, 1) | 150 * | Done freeing extent (F, 1) | 151 * +-------------------------------------------------+ 152 * 153 * If we should crash before t2 commits, log recovery replays 154 * the following intent items: 155 * 156 * - Intent to reduce refcount for extent (C, B) 157 * - Intent to remove rmap (X, C, A, B) 158 * - Intent to free extent (D, 1) (bmbt block) 159 * - Intent to increase refcount for extent (E, B) 160 * - Intent to add rmap (X, E, A, B) 161 * 162 * In the process of recovering, it should also generate and take care 163 * of these intent items: 164 * 165 * - Intent to free extent (C, B) 166 * - Intent to free extent (F, 1) (refcountbt block) 167 * - Intent to remove rmap (F, 1, REFC) 168 * 169 * Note that the continuation requested between t2 and t3 is likely to 170 * reoccur. 171 */ 172 173 static const struct xfs_defer_op_type *defer_op_types[] = { 174 [XFS_DEFER_OPS_TYPE_BMAP] = &xfs_bmap_update_defer_type, 175 [XFS_DEFER_OPS_TYPE_REFCOUNT] = &xfs_refcount_update_defer_type, 176 [XFS_DEFER_OPS_TYPE_RMAP] = &xfs_rmap_update_defer_type, 177 [XFS_DEFER_OPS_TYPE_FREE] = &xfs_extent_free_defer_type, 178 [XFS_DEFER_OPS_TYPE_AGFL_FREE] = &xfs_agfl_free_defer_type, 179 }; 180 181 /* 182 * For each pending item in the intake list, log its intent item and the 183 * associated extents, then add the entire intake list to the end of 184 * the pending list. 185 */ 186 STATIC void 187 xfs_defer_create_intents( 188 struct xfs_trans *tp) 189 { 190 struct list_head *li; 191 struct xfs_defer_pending *dfp; 192 const struct xfs_defer_op_type *ops; 193 194 list_for_each_entry(dfp, &tp->t_dfops, dfp_list) { 195 ops = defer_op_types[dfp->dfp_type]; 196 dfp->dfp_intent = ops->create_intent(tp, dfp->dfp_count); 197 trace_xfs_defer_create_intent(tp->t_mountp, dfp); 198 list_sort(tp->t_mountp, &dfp->dfp_work, ops->diff_items); 199 list_for_each(li, &dfp->dfp_work) 200 ops->log_item(tp, dfp->dfp_intent, li); 201 } 202 } 203 204 /* Abort all the intents that were committed. */ 205 STATIC void 206 xfs_defer_trans_abort( 207 struct xfs_trans *tp, 208 struct list_head *dop_pending) 209 { 210 struct xfs_defer_pending *dfp; 211 const struct xfs_defer_op_type *ops; 212 213 trace_xfs_defer_trans_abort(tp, _RET_IP_); 214 215 /* Abort intent items that don't have a done item. */ 216 list_for_each_entry(dfp, dop_pending, dfp_list) { 217 ops = defer_op_types[dfp->dfp_type]; 218 trace_xfs_defer_pending_abort(tp->t_mountp, dfp); 219 if (dfp->dfp_intent && !dfp->dfp_done) { 220 ops->abort_intent(dfp->dfp_intent); 221 dfp->dfp_intent = NULL; 222 } 223 } 224 } 225 226 /* Roll a transaction so we can do some deferred op processing. */ 227 STATIC int 228 xfs_defer_trans_roll( 229 struct xfs_trans **tpp) 230 { 231 struct xfs_trans *tp = *tpp; 232 struct xfs_buf_log_item *bli; 233 struct xfs_inode_log_item *ili; 234 struct xfs_log_item *lip; 235 struct xfs_buf *bplist[XFS_DEFER_OPS_NR_BUFS]; 236 struct xfs_inode *iplist[XFS_DEFER_OPS_NR_INODES]; 237 int bpcount = 0, ipcount = 0; 238 int i; 239 int error; 240 241 list_for_each_entry(lip, &tp->t_items, li_trans) { 242 switch (lip->li_type) { 243 case XFS_LI_BUF: 244 bli = container_of(lip, struct xfs_buf_log_item, 245 bli_item); 246 if (bli->bli_flags & XFS_BLI_HOLD) { 247 if (bpcount >= XFS_DEFER_OPS_NR_BUFS) { 248 ASSERT(0); 249 return -EFSCORRUPTED; 250 } 251 xfs_trans_dirty_buf(tp, bli->bli_buf); 252 bplist[bpcount++] = bli->bli_buf; 253 } 254 break; 255 case XFS_LI_INODE: 256 ili = container_of(lip, struct xfs_inode_log_item, 257 ili_item); 258 if (ili->ili_lock_flags == 0) { 259 if (ipcount >= XFS_DEFER_OPS_NR_INODES) { 260 ASSERT(0); 261 return -EFSCORRUPTED; 262 } 263 xfs_trans_log_inode(tp, ili->ili_inode, 264 XFS_ILOG_CORE); 265 iplist[ipcount++] = ili->ili_inode; 266 } 267 break; 268 default: 269 break; 270 } 271 } 272 273 trace_xfs_defer_trans_roll(tp, _RET_IP_); 274 275 /* 276 * Roll the transaction. Rolling always given a new transaction (even 277 * if committing the old one fails!) to hand back to the caller, so we 278 * join the held resources to the new transaction so that we always 279 * return with the held resources joined to @tpp, no matter what 280 * happened. 281 */ 282 error = xfs_trans_roll(tpp); 283 tp = *tpp; 284 285 /* Rejoin the joined inodes. */ 286 for (i = 0; i < ipcount; i++) 287 xfs_trans_ijoin(tp, iplist[i], 0); 288 289 /* Rejoin the buffers and dirty them so the log moves forward. */ 290 for (i = 0; i < bpcount; i++) { 291 xfs_trans_bjoin(tp, bplist[i]); 292 xfs_trans_bhold(tp, bplist[i]); 293 } 294 295 if (error) 296 trace_xfs_defer_trans_roll_error(tp, error); 297 return error; 298 } 299 300 /* 301 * Reset an already used dfops after finish. 302 */ 303 static void 304 xfs_defer_reset( 305 struct xfs_trans *tp) 306 { 307 ASSERT(list_empty(&tp->t_dfops)); 308 309 /* 310 * Low mode state transfers across transaction rolls to mirror dfops 311 * lifetime. Clear it now that dfops is reset. 312 */ 313 tp->t_flags &= ~XFS_TRANS_LOWMODE; 314 } 315 316 /* 317 * Free up any items left in the list. 318 */ 319 static void 320 xfs_defer_cancel_list( 321 struct xfs_mount *mp, 322 struct list_head *dop_list) 323 { 324 struct xfs_defer_pending *dfp; 325 struct xfs_defer_pending *pli; 326 struct list_head *pwi; 327 struct list_head *n; 328 const struct xfs_defer_op_type *ops; 329 330 /* 331 * Free the pending items. Caller should already have arranged 332 * for the intent items to be released. 333 */ 334 list_for_each_entry_safe(dfp, pli, dop_list, dfp_list) { 335 ops = defer_op_types[dfp->dfp_type]; 336 trace_xfs_defer_cancel_list(mp, dfp); 337 list_del(&dfp->dfp_list); 338 list_for_each_safe(pwi, n, &dfp->dfp_work) { 339 list_del(pwi); 340 dfp->dfp_count--; 341 ops->cancel_item(pwi); 342 } 343 ASSERT(dfp->dfp_count == 0); 344 kmem_free(dfp); 345 } 346 } 347 348 /* 349 * Finish all the pending work. This involves logging intent items for 350 * any work items that wandered in since the last transaction roll (if 351 * one has even happened), rolling the transaction, and finishing the 352 * work items in the first item on the logged-and-pending list. 353 * 354 * If an inode is provided, relog it to the new transaction. 355 */ 356 int 357 xfs_defer_finish_noroll( 358 struct xfs_trans **tp) 359 { 360 struct xfs_defer_pending *dfp; 361 struct list_head *li; 362 struct list_head *n; 363 void *state; 364 int error = 0; 365 const struct xfs_defer_op_type *ops; 366 LIST_HEAD(dop_pending); 367 368 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 369 370 trace_xfs_defer_finish(*tp, _RET_IP_); 371 372 /* Until we run out of pending work to finish... */ 373 while (!list_empty(&dop_pending) || !list_empty(&(*tp)->t_dfops)) { 374 /* log intents and pull in intake items */ 375 xfs_defer_create_intents(*tp); 376 list_splice_tail_init(&(*tp)->t_dfops, &dop_pending); 377 378 /* 379 * Roll the transaction. 380 */ 381 error = xfs_defer_trans_roll(tp); 382 if (error) 383 goto out; 384 385 /* Log an intent-done item for the first pending item. */ 386 dfp = list_first_entry(&dop_pending, struct xfs_defer_pending, 387 dfp_list); 388 ops = defer_op_types[dfp->dfp_type]; 389 trace_xfs_defer_pending_finish((*tp)->t_mountp, dfp); 390 dfp->dfp_done = ops->create_done(*tp, dfp->dfp_intent, 391 dfp->dfp_count); 392 393 /* Finish the work items. */ 394 state = NULL; 395 list_for_each_safe(li, n, &dfp->dfp_work) { 396 list_del(li); 397 dfp->dfp_count--; 398 error = ops->finish_item(*tp, li, dfp->dfp_done, 399 &state); 400 if (error == -EAGAIN) { 401 /* 402 * Caller wants a fresh transaction; 403 * put the work item back on the list 404 * and jump out. 405 */ 406 list_add(li, &dfp->dfp_work); 407 dfp->dfp_count++; 408 break; 409 } else if (error) { 410 /* 411 * Clean up after ourselves and jump out. 412 * xfs_defer_cancel will take care of freeing 413 * all these lists and stuff. 414 */ 415 if (ops->finish_cleanup) 416 ops->finish_cleanup(*tp, state, error); 417 goto out; 418 } 419 } 420 if (error == -EAGAIN) { 421 /* 422 * Caller wants a fresh transaction, so log a 423 * new log intent item to replace the old one 424 * and roll the transaction. See "Requesting 425 * a Fresh Transaction while Finishing 426 * Deferred Work" above. 427 */ 428 dfp->dfp_intent = ops->create_intent(*tp, 429 dfp->dfp_count); 430 dfp->dfp_done = NULL; 431 list_for_each(li, &dfp->dfp_work) 432 ops->log_item(*tp, dfp->dfp_intent, li); 433 } else { 434 /* Done with the dfp, free it. */ 435 list_del(&dfp->dfp_list); 436 kmem_free(dfp); 437 } 438 439 if (ops->finish_cleanup) 440 ops->finish_cleanup(*tp, state, error); 441 } 442 443 out: 444 if (error) { 445 xfs_defer_trans_abort(*tp, &dop_pending); 446 xfs_force_shutdown((*tp)->t_mountp, SHUTDOWN_CORRUPT_INCORE); 447 trace_xfs_defer_finish_error(*tp, error); 448 xfs_defer_cancel_list((*tp)->t_mountp, &dop_pending); 449 xfs_defer_cancel(*tp); 450 return error; 451 } 452 453 trace_xfs_defer_finish_done(*tp, _RET_IP_); 454 return 0; 455 } 456 457 int 458 xfs_defer_finish( 459 struct xfs_trans **tp) 460 { 461 int error; 462 463 /* 464 * Finish and roll the transaction once more to avoid returning to the 465 * caller with a dirty transaction. 466 */ 467 error = xfs_defer_finish_noroll(tp); 468 if (error) 469 return error; 470 if ((*tp)->t_flags & XFS_TRANS_DIRTY) { 471 error = xfs_defer_trans_roll(tp); 472 if (error) { 473 xfs_force_shutdown((*tp)->t_mountp, 474 SHUTDOWN_CORRUPT_INCORE); 475 return error; 476 } 477 } 478 xfs_defer_reset(*tp); 479 return 0; 480 } 481 482 void 483 xfs_defer_cancel( 484 struct xfs_trans *tp) 485 { 486 struct xfs_mount *mp = tp->t_mountp; 487 488 trace_xfs_defer_cancel(tp, _RET_IP_); 489 xfs_defer_cancel_list(mp, &tp->t_dfops); 490 } 491 492 /* Add an item for later deferred processing. */ 493 void 494 xfs_defer_add( 495 struct xfs_trans *tp, 496 enum xfs_defer_ops_type type, 497 struct list_head *li) 498 { 499 struct xfs_defer_pending *dfp = NULL; 500 const struct xfs_defer_op_type *ops; 501 502 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 503 BUILD_BUG_ON(ARRAY_SIZE(defer_op_types) != XFS_DEFER_OPS_TYPE_MAX); 504 505 /* 506 * Add the item to a pending item at the end of the intake list. 507 * If the last pending item has the same type, reuse it. Else, 508 * create a new pending item at the end of the intake list. 509 */ 510 if (!list_empty(&tp->t_dfops)) { 511 dfp = list_last_entry(&tp->t_dfops, 512 struct xfs_defer_pending, dfp_list); 513 ops = defer_op_types[dfp->dfp_type]; 514 if (dfp->dfp_type != type || 515 (ops->max_items && dfp->dfp_count >= ops->max_items)) 516 dfp = NULL; 517 } 518 if (!dfp) { 519 dfp = kmem_alloc(sizeof(struct xfs_defer_pending), 520 KM_SLEEP | KM_NOFS); 521 dfp->dfp_type = type; 522 dfp->dfp_intent = NULL; 523 dfp->dfp_done = NULL; 524 dfp->dfp_count = 0; 525 INIT_LIST_HEAD(&dfp->dfp_work); 526 list_add_tail(&dfp->dfp_list, &tp->t_dfops); 527 } 528 529 list_add_tail(li, &dfp->dfp_work); 530 dfp->dfp_count++; 531 } 532 533 /* 534 * Move deferred ops from one transaction to another and reset the source to 535 * initial state. This is primarily used to carry state forward across 536 * transaction rolls with pending dfops. 537 */ 538 void 539 xfs_defer_move( 540 struct xfs_trans *dtp, 541 struct xfs_trans *stp) 542 { 543 list_splice_init(&stp->t_dfops, &dtp->t_dfops); 544 545 /* 546 * Low free space mode was historically controlled by a dfops field. 547 * This meant that low mode state potentially carried across multiple 548 * transaction rolls. Transfer low mode on a dfops move to preserve 549 * that behavior. 550 */ 551 dtp->t_flags |= (stp->t_flags & XFS_TRANS_LOWMODE); 552 553 xfs_defer_reset(stp); 554 } 555