xref: /openbmc/linux/fs/ubifs/debug.c (revision fa538f7cf05aab61cd91e01c160d4a09c81b8ffe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements most of the debugging stuff which is compiled in only
13  * when it is enabled. But some debugging check functions are implemented in
14  * corresponding subsystem, just because they are closely related and utilize
15  * various local functions of those subsystems.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/debugfs.h>
20 #include <linux/math64.h>
21 #include <linux/uaccess.h>
22 #include <linux/random.h>
23 #include <linux/ctype.h>
24 #include "ubifs.h"
25 
26 static DEFINE_SPINLOCK(dbg_lock);
27 
28 static const char *get_key_fmt(int fmt)
29 {
30 	switch (fmt) {
31 	case UBIFS_SIMPLE_KEY_FMT:
32 		return "simple";
33 	default:
34 		return "unknown/invalid format";
35 	}
36 }
37 
38 static const char *get_key_hash(int hash)
39 {
40 	switch (hash) {
41 	case UBIFS_KEY_HASH_R5:
42 		return "R5";
43 	case UBIFS_KEY_HASH_TEST:
44 		return "test";
45 	default:
46 		return "unknown/invalid name hash";
47 	}
48 }
49 
50 static const char *get_key_type(int type)
51 {
52 	switch (type) {
53 	case UBIFS_INO_KEY:
54 		return "inode";
55 	case UBIFS_DENT_KEY:
56 		return "direntry";
57 	case UBIFS_XENT_KEY:
58 		return "xentry";
59 	case UBIFS_DATA_KEY:
60 		return "data";
61 	case UBIFS_TRUN_KEY:
62 		return "truncate";
63 	default:
64 		return "unknown/invalid key";
65 	}
66 }
67 
68 static const char *get_dent_type(int type)
69 {
70 	switch (type) {
71 	case UBIFS_ITYPE_REG:
72 		return "file";
73 	case UBIFS_ITYPE_DIR:
74 		return "dir";
75 	case UBIFS_ITYPE_LNK:
76 		return "symlink";
77 	case UBIFS_ITYPE_BLK:
78 		return "blkdev";
79 	case UBIFS_ITYPE_CHR:
80 		return "char dev";
81 	case UBIFS_ITYPE_FIFO:
82 		return "fifo";
83 	case UBIFS_ITYPE_SOCK:
84 		return "socket";
85 	default:
86 		return "unknown/invalid type";
87 	}
88 }
89 
90 const char *dbg_snprintf_key(const struct ubifs_info *c,
91 			     const union ubifs_key *key, char *buffer, int len)
92 {
93 	char *p = buffer;
94 	int type = key_type(c, key);
95 
96 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
97 		switch (type) {
98 		case UBIFS_INO_KEY:
99 			len -= snprintf(p, len, "(%lu, %s)",
100 					(unsigned long)key_inum(c, key),
101 					get_key_type(type));
102 			break;
103 		case UBIFS_DENT_KEY:
104 		case UBIFS_XENT_KEY:
105 			len -= snprintf(p, len, "(%lu, %s, %#08x)",
106 					(unsigned long)key_inum(c, key),
107 					get_key_type(type), key_hash(c, key));
108 			break;
109 		case UBIFS_DATA_KEY:
110 			len -= snprintf(p, len, "(%lu, %s, %u)",
111 					(unsigned long)key_inum(c, key),
112 					get_key_type(type), key_block(c, key));
113 			break;
114 		case UBIFS_TRUN_KEY:
115 			len -= snprintf(p, len, "(%lu, %s)",
116 					(unsigned long)key_inum(c, key),
117 					get_key_type(type));
118 			break;
119 		default:
120 			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
121 					key->u32[0], key->u32[1]);
122 		}
123 	} else
124 		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
125 	ubifs_assert(c, len > 0);
126 	return p;
127 }
128 
129 const char *dbg_ntype(int type)
130 {
131 	switch (type) {
132 	case UBIFS_PAD_NODE:
133 		return "padding node";
134 	case UBIFS_SB_NODE:
135 		return "superblock node";
136 	case UBIFS_MST_NODE:
137 		return "master node";
138 	case UBIFS_REF_NODE:
139 		return "reference node";
140 	case UBIFS_INO_NODE:
141 		return "inode node";
142 	case UBIFS_DENT_NODE:
143 		return "direntry node";
144 	case UBIFS_XENT_NODE:
145 		return "xentry node";
146 	case UBIFS_DATA_NODE:
147 		return "data node";
148 	case UBIFS_TRUN_NODE:
149 		return "truncate node";
150 	case UBIFS_IDX_NODE:
151 		return "indexing node";
152 	case UBIFS_CS_NODE:
153 		return "commit start node";
154 	case UBIFS_ORPH_NODE:
155 		return "orphan node";
156 	case UBIFS_AUTH_NODE:
157 		return "auth node";
158 	default:
159 		return "unknown node";
160 	}
161 }
162 
163 static const char *dbg_gtype(int type)
164 {
165 	switch (type) {
166 	case UBIFS_NO_NODE_GROUP:
167 		return "no node group";
168 	case UBIFS_IN_NODE_GROUP:
169 		return "in node group";
170 	case UBIFS_LAST_OF_NODE_GROUP:
171 		return "last of node group";
172 	default:
173 		return "unknown";
174 	}
175 }
176 
177 const char *dbg_cstate(int cmt_state)
178 {
179 	switch (cmt_state) {
180 	case COMMIT_RESTING:
181 		return "commit resting";
182 	case COMMIT_BACKGROUND:
183 		return "background commit requested";
184 	case COMMIT_REQUIRED:
185 		return "commit required";
186 	case COMMIT_RUNNING_BACKGROUND:
187 		return "BACKGROUND commit running";
188 	case COMMIT_RUNNING_REQUIRED:
189 		return "commit running and required";
190 	case COMMIT_BROKEN:
191 		return "broken commit";
192 	default:
193 		return "unknown commit state";
194 	}
195 }
196 
197 const char *dbg_jhead(int jhead)
198 {
199 	switch (jhead) {
200 	case GCHD:
201 		return "0 (GC)";
202 	case BASEHD:
203 		return "1 (base)";
204 	case DATAHD:
205 		return "2 (data)";
206 	default:
207 		return "unknown journal head";
208 	}
209 }
210 
211 static void dump_ch(const struct ubifs_ch *ch)
212 {
213 	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
214 	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
215 	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
216 	       dbg_ntype(ch->node_type));
217 	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
218 	       dbg_gtype(ch->group_type));
219 	pr_err("\tsqnum          %llu\n",
220 	       (unsigned long long)le64_to_cpu(ch->sqnum));
221 	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
222 }
223 
224 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
225 {
226 	const struct ubifs_inode *ui = ubifs_inode(inode);
227 	struct fscrypt_name nm = {0};
228 	union ubifs_key key;
229 	struct ubifs_dent_node *dent, *pdent = NULL;
230 	int count = 2;
231 
232 	pr_err("Dump in-memory inode:");
233 	pr_err("\tinode          %lu\n", inode->i_ino);
234 	pr_err("\tsize           %llu\n",
235 	       (unsigned long long)i_size_read(inode));
236 	pr_err("\tnlink          %u\n", inode->i_nlink);
237 	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
238 	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
239 	pr_err("\tatime          %u.%u\n",
240 	       (unsigned int)inode->i_atime.tv_sec,
241 	       (unsigned int)inode->i_atime.tv_nsec);
242 	pr_err("\tmtime          %u.%u\n",
243 	       (unsigned int)inode->i_mtime.tv_sec,
244 	       (unsigned int)inode->i_mtime.tv_nsec);
245 	pr_err("\tctime          %u.%u\n",
246 	       (unsigned int)inode->i_ctime.tv_sec,
247 	       (unsigned int)inode->i_ctime.tv_nsec);
248 	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
249 	pr_err("\txattr_size     %u\n", ui->xattr_size);
250 	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
251 	pr_err("\txattr_names    %u\n", ui->xattr_names);
252 	pr_err("\tdirty          %u\n", ui->dirty);
253 	pr_err("\txattr          %u\n", ui->xattr);
254 	pr_err("\tbulk_read      %u\n", ui->bulk_read);
255 	pr_err("\tsynced_i_size  %llu\n",
256 	       (unsigned long long)ui->synced_i_size);
257 	pr_err("\tui_size        %llu\n",
258 	       (unsigned long long)ui->ui_size);
259 	pr_err("\tflags          %d\n", ui->flags);
260 	pr_err("\tcompr_type     %d\n", ui->compr_type);
261 	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
262 	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
263 	pr_err("\tdata_len       %d\n", ui->data_len);
264 
265 	if (!S_ISDIR(inode->i_mode))
266 		return;
267 
268 	pr_err("List of directory entries:\n");
269 	ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
270 
271 	lowest_dent_key(c, &key, inode->i_ino);
272 	while (1) {
273 		dent = ubifs_tnc_next_ent(c, &key, &nm);
274 		if (IS_ERR(dent)) {
275 			if (PTR_ERR(dent) != -ENOENT)
276 				pr_err("error %ld\n", PTR_ERR(dent));
277 			break;
278 		}
279 
280 		pr_err("\t%d: inode %llu, type %s, len %d\n",
281 		       count++, (unsigned long long) le64_to_cpu(dent->inum),
282 		       get_dent_type(dent->type),
283 		       le16_to_cpu(dent->nlen));
284 
285 		fname_name(&nm) = dent->name;
286 		fname_len(&nm) = le16_to_cpu(dent->nlen);
287 		kfree(pdent);
288 		pdent = dent;
289 		key_read(c, &dent->key, &key);
290 	}
291 	kfree(pdent);
292 }
293 
294 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
295 {
296 	int i, n;
297 	union ubifs_key key;
298 	const struct ubifs_ch *ch = node;
299 	char key_buf[DBG_KEY_BUF_LEN];
300 
301 	/* If the magic is incorrect, just hexdump the first bytes */
302 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
303 		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
304 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
305 			       (void *)node, UBIFS_CH_SZ, 1);
306 		return;
307 	}
308 
309 	spin_lock(&dbg_lock);
310 	dump_ch(node);
311 
312 	switch (ch->node_type) {
313 	case UBIFS_PAD_NODE:
314 	{
315 		const struct ubifs_pad_node *pad = node;
316 
317 		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
318 		break;
319 	}
320 	case UBIFS_SB_NODE:
321 	{
322 		const struct ubifs_sb_node *sup = node;
323 		unsigned int sup_flags = le32_to_cpu(sup->flags);
324 
325 		pr_err("\tkey_hash       %d (%s)\n",
326 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
327 		pr_err("\tkey_fmt        %d (%s)\n",
328 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
329 		pr_err("\tflags          %#x\n", sup_flags);
330 		pr_err("\tbig_lpt        %u\n",
331 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
332 		pr_err("\tspace_fixup    %u\n",
333 		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
334 		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
335 		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
336 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
337 		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
338 		pr_err("\tmax_bud_bytes  %llu\n",
339 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
340 		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
341 		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
342 		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
343 		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
344 		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
345 		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
346 		pr_err("\tdefault_compr  %u\n",
347 		       (int)le16_to_cpu(sup->default_compr));
348 		pr_err("\trp_size        %llu\n",
349 		       (unsigned long long)le64_to_cpu(sup->rp_size));
350 		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
351 		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
352 		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
353 		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
354 		pr_err("\tUUID           %pUB\n", sup->uuid);
355 		break;
356 	}
357 	case UBIFS_MST_NODE:
358 	{
359 		const struct ubifs_mst_node *mst = node;
360 
361 		pr_err("\thighest_inum   %llu\n",
362 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
363 		pr_err("\tcommit number  %llu\n",
364 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
365 		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
366 		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
367 		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
368 		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
369 		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
370 		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
371 		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
372 		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
373 		pr_err("\tindex_size     %llu\n",
374 		       (unsigned long long)le64_to_cpu(mst->index_size));
375 		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
376 		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
377 		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
378 		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
379 		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
380 		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
381 		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
382 		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
383 		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
384 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
385 		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
386 		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
387 		pr_err("\ttotal_free     %llu\n",
388 		       (unsigned long long)le64_to_cpu(mst->total_free));
389 		pr_err("\ttotal_dirty    %llu\n",
390 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
391 		pr_err("\ttotal_used     %llu\n",
392 		       (unsigned long long)le64_to_cpu(mst->total_used));
393 		pr_err("\ttotal_dead     %llu\n",
394 		       (unsigned long long)le64_to_cpu(mst->total_dead));
395 		pr_err("\ttotal_dark     %llu\n",
396 		       (unsigned long long)le64_to_cpu(mst->total_dark));
397 		break;
398 	}
399 	case UBIFS_REF_NODE:
400 	{
401 		const struct ubifs_ref_node *ref = node;
402 
403 		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
404 		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
405 		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
406 		break;
407 	}
408 	case UBIFS_INO_NODE:
409 	{
410 		const struct ubifs_ino_node *ino = node;
411 
412 		key_read(c, &ino->key, &key);
413 		pr_err("\tkey            %s\n",
414 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
415 		pr_err("\tcreat_sqnum    %llu\n",
416 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
417 		pr_err("\tsize           %llu\n",
418 		       (unsigned long long)le64_to_cpu(ino->size));
419 		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
420 		pr_err("\tatime          %lld.%u\n",
421 		       (long long)le64_to_cpu(ino->atime_sec),
422 		       le32_to_cpu(ino->atime_nsec));
423 		pr_err("\tmtime          %lld.%u\n",
424 		       (long long)le64_to_cpu(ino->mtime_sec),
425 		       le32_to_cpu(ino->mtime_nsec));
426 		pr_err("\tctime          %lld.%u\n",
427 		       (long long)le64_to_cpu(ino->ctime_sec),
428 		       le32_to_cpu(ino->ctime_nsec));
429 		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
430 		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
431 		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
432 		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
433 		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
434 		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
435 		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
436 		pr_err("\tcompr_type     %#x\n",
437 		       (int)le16_to_cpu(ino->compr_type));
438 		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
439 		break;
440 	}
441 	case UBIFS_DENT_NODE:
442 	case UBIFS_XENT_NODE:
443 	{
444 		const struct ubifs_dent_node *dent = node;
445 		int nlen = le16_to_cpu(dent->nlen);
446 
447 		key_read(c, &dent->key, &key);
448 		pr_err("\tkey            %s\n",
449 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
450 		pr_err("\tinum           %llu\n",
451 		       (unsigned long long)le64_to_cpu(dent->inum));
452 		pr_err("\ttype           %d\n", (int)dent->type);
453 		pr_err("\tnlen           %d\n", nlen);
454 		pr_err("\tname           ");
455 
456 		if (nlen > UBIFS_MAX_NLEN)
457 			pr_err("(bad name length, not printing, bad or corrupted node)");
458 		else {
459 			for (i = 0; i < nlen && dent->name[i]; i++)
460 				pr_cont("%c", isprint(dent->name[i]) ?
461 					dent->name[i] : '?');
462 		}
463 		pr_cont("\n");
464 
465 		break;
466 	}
467 	case UBIFS_DATA_NODE:
468 	{
469 		const struct ubifs_data_node *dn = node;
470 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
471 
472 		key_read(c, &dn->key, &key);
473 		pr_err("\tkey            %s\n",
474 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
475 		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
476 		pr_err("\tcompr_typ      %d\n",
477 		       (int)le16_to_cpu(dn->compr_type));
478 		pr_err("\tdata size      %d\n", dlen);
479 		pr_err("\tdata:\n");
480 		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
481 			       (void *)&dn->data, dlen, 0);
482 		break;
483 	}
484 	case UBIFS_TRUN_NODE:
485 	{
486 		const struct ubifs_trun_node *trun = node;
487 
488 		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
489 		pr_err("\told_size       %llu\n",
490 		       (unsigned long long)le64_to_cpu(trun->old_size));
491 		pr_err("\tnew_size       %llu\n",
492 		       (unsigned long long)le64_to_cpu(trun->new_size));
493 		break;
494 	}
495 	case UBIFS_IDX_NODE:
496 	{
497 		const struct ubifs_idx_node *idx = node;
498 
499 		n = le16_to_cpu(idx->child_cnt);
500 		pr_err("\tchild_cnt      %d\n", n);
501 		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
502 		pr_err("\tBranches:\n");
503 
504 		for (i = 0; i < n && i < c->fanout - 1; i++) {
505 			const struct ubifs_branch *br;
506 
507 			br = ubifs_idx_branch(c, idx, i);
508 			key_read(c, &br->key, &key);
509 			pr_err("\t%d: LEB %d:%d len %d key %s\n",
510 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
511 			       le32_to_cpu(br->len),
512 			       dbg_snprintf_key(c, &key, key_buf,
513 						DBG_KEY_BUF_LEN));
514 		}
515 		break;
516 	}
517 	case UBIFS_CS_NODE:
518 		break;
519 	case UBIFS_ORPH_NODE:
520 	{
521 		const struct ubifs_orph_node *orph = node;
522 
523 		pr_err("\tcommit number  %llu\n",
524 		       (unsigned long long)
525 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
526 		pr_err("\tlast node flag %llu\n",
527 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
528 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
529 		pr_err("\t%d orphan inode numbers:\n", n);
530 		for (i = 0; i < n; i++)
531 			pr_err("\t  ino %llu\n",
532 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
533 		break;
534 	}
535 	case UBIFS_AUTH_NODE:
536 	{
537 		break;
538 	}
539 	default:
540 		pr_err("node type %d was not recognized\n",
541 		       (int)ch->node_type);
542 	}
543 	spin_unlock(&dbg_lock);
544 }
545 
546 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
547 {
548 	spin_lock(&dbg_lock);
549 	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
550 	       req->new_ino, req->dirtied_ino);
551 	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
552 	       req->new_ino_d, req->dirtied_ino_d);
553 	pr_err("\tnew_page    %d, dirtied_page %d\n",
554 	       req->new_page, req->dirtied_page);
555 	pr_err("\tnew_dent    %d, mod_dent     %d\n",
556 	       req->new_dent, req->mod_dent);
557 	pr_err("\tidx_growth  %d\n", req->idx_growth);
558 	pr_err("\tdata_growth %d dd_growth     %d\n",
559 	       req->data_growth, req->dd_growth);
560 	spin_unlock(&dbg_lock);
561 }
562 
563 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
564 {
565 	spin_lock(&dbg_lock);
566 	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
567 	       current->pid, lst->empty_lebs, lst->idx_lebs);
568 	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
569 	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
570 	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
571 	       lst->total_used, lst->total_dark, lst->total_dead);
572 	spin_unlock(&dbg_lock);
573 }
574 
575 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
576 {
577 	int i;
578 	struct rb_node *rb;
579 	struct ubifs_bud *bud;
580 	struct ubifs_gced_idx_leb *idx_gc;
581 	long long available, outstanding, free;
582 
583 	spin_lock(&c->space_lock);
584 	spin_lock(&dbg_lock);
585 	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
586 	       current->pid, bi->data_growth + bi->dd_growth,
587 	       bi->data_growth + bi->dd_growth + bi->idx_growth);
588 	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
589 	       bi->data_growth, bi->dd_growth, bi->idx_growth);
590 	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
591 	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
592 	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
593 	       bi->page_budget, bi->inode_budget, bi->dent_budget);
594 	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
595 	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
596 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
597 
598 	if (bi != &c->bi)
599 		/*
600 		 * If we are dumping saved budgeting data, do not print
601 		 * additional information which is about the current state, not
602 		 * the old one which corresponded to the saved budgeting data.
603 		 */
604 		goto out_unlock;
605 
606 	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
607 	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
608 	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
609 	       atomic_long_read(&c->dirty_pg_cnt),
610 	       atomic_long_read(&c->dirty_zn_cnt),
611 	       atomic_long_read(&c->clean_zn_cnt));
612 	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
613 
614 	/* If we are in R/O mode, journal heads do not exist */
615 	if (c->jheads)
616 		for (i = 0; i < c->jhead_cnt; i++)
617 			pr_err("\tjhead %s\t LEB %d\n",
618 			       dbg_jhead(c->jheads[i].wbuf.jhead),
619 			       c->jheads[i].wbuf.lnum);
620 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
621 		bud = rb_entry(rb, struct ubifs_bud, rb);
622 		pr_err("\tbud LEB %d\n", bud->lnum);
623 	}
624 	list_for_each_entry(bud, &c->old_buds, list)
625 		pr_err("\told bud LEB %d\n", bud->lnum);
626 	list_for_each_entry(idx_gc, &c->idx_gc, list)
627 		pr_err("\tGC'ed idx LEB %d unmap %d\n",
628 		       idx_gc->lnum, idx_gc->unmap);
629 	pr_err("\tcommit state %d\n", c->cmt_state);
630 
631 	/* Print budgeting predictions */
632 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
633 	outstanding = c->bi.data_growth + c->bi.dd_growth;
634 	free = ubifs_get_free_space_nolock(c);
635 	pr_err("Budgeting predictions:\n");
636 	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
637 	       available, outstanding, free);
638 out_unlock:
639 	spin_unlock(&dbg_lock);
640 	spin_unlock(&c->space_lock);
641 }
642 
643 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
644 {
645 	int i, spc, dark = 0, dead = 0;
646 	struct rb_node *rb;
647 	struct ubifs_bud *bud;
648 
649 	spc = lp->free + lp->dirty;
650 	if (spc < c->dead_wm)
651 		dead = spc;
652 	else
653 		dark = ubifs_calc_dark(c, spc);
654 
655 	if (lp->flags & LPROPS_INDEX)
656 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
657 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
658 		       lp->flags);
659 	else
660 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
661 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
662 		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
663 
664 	if (lp->flags & LPROPS_TAKEN) {
665 		if (lp->flags & LPROPS_INDEX)
666 			pr_cont("index, taken");
667 		else
668 			pr_cont("taken");
669 	} else {
670 		const char *s;
671 
672 		if (lp->flags & LPROPS_INDEX) {
673 			switch (lp->flags & LPROPS_CAT_MASK) {
674 			case LPROPS_DIRTY_IDX:
675 				s = "dirty index";
676 				break;
677 			case LPROPS_FRDI_IDX:
678 				s = "freeable index";
679 				break;
680 			default:
681 				s = "index";
682 			}
683 		} else {
684 			switch (lp->flags & LPROPS_CAT_MASK) {
685 			case LPROPS_UNCAT:
686 				s = "not categorized";
687 				break;
688 			case LPROPS_DIRTY:
689 				s = "dirty";
690 				break;
691 			case LPROPS_FREE:
692 				s = "free";
693 				break;
694 			case LPROPS_EMPTY:
695 				s = "empty";
696 				break;
697 			case LPROPS_FREEABLE:
698 				s = "freeable";
699 				break;
700 			default:
701 				s = NULL;
702 				break;
703 			}
704 		}
705 		pr_cont("%s", s);
706 	}
707 
708 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
709 		bud = rb_entry(rb, struct ubifs_bud, rb);
710 		if (bud->lnum == lp->lnum) {
711 			int head = 0;
712 			for (i = 0; i < c->jhead_cnt; i++) {
713 				/*
714 				 * Note, if we are in R/O mode or in the middle
715 				 * of mounting/re-mounting, the write-buffers do
716 				 * not exist.
717 				 */
718 				if (c->jheads &&
719 				    lp->lnum == c->jheads[i].wbuf.lnum) {
720 					pr_cont(", jhead %s", dbg_jhead(i));
721 					head = 1;
722 				}
723 			}
724 			if (!head)
725 				pr_cont(", bud of jhead %s",
726 				       dbg_jhead(bud->jhead));
727 		}
728 	}
729 	if (lp->lnum == c->gc_lnum)
730 		pr_cont(", GC LEB");
731 	pr_cont(")\n");
732 }
733 
734 void ubifs_dump_lprops(struct ubifs_info *c)
735 {
736 	int lnum, err;
737 	struct ubifs_lprops lp;
738 	struct ubifs_lp_stats lst;
739 
740 	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
741 	ubifs_get_lp_stats(c, &lst);
742 	ubifs_dump_lstats(&lst);
743 
744 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
745 		err = ubifs_read_one_lp(c, lnum, &lp);
746 		if (err) {
747 			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
748 			continue;
749 		}
750 
751 		ubifs_dump_lprop(c, &lp);
752 	}
753 	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
754 }
755 
756 void ubifs_dump_lpt_info(struct ubifs_info *c)
757 {
758 	int i;
759 
760 	spin_lock(&dbg_lock);
761 	pr_err("(pid %d) dumping LPT information\n", current->pid);
762 	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
763 	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
764 	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
765 	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
766 	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
767 	pr_err("\tbig_lpt:       %d\n", c->big_lpt);
768 	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
769 	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
770 	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
771 	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
772 	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
773 	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
774 	pr_err("\tspace_bits:    %d\n", c->space_bits);
775 	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
776 	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
777 	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
778 	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
779 	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
780 	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
781 	pr_err("\tLPT head is at %d:%d\n",
782 	       c->nhead_lnum, c->nhead_offs);
783 	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
784 	if (c->big_lpt)
785 		pr_err("\tLPT lsave is at %d:%d\n",
786 		       c->lsave_lnum, c->lsave_offs);
787 	for (i = 0; i < c->lpt_lebs; i++)
788 		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
789 		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
790 		       c->ltab[i].tgc, c->ltab[i].cmt);
791 	spin_unlock(&dbg_lock);
792 }
793 
794 void ubifs_dump_sleb(const struct ubifs_info *c,
795 		     const struct ubifs_scan_leb *sleb, int offs)
796 {
797 	struct ubifs_scan_node *snod;
798 
799 	pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
800 	       current->pid, sleb->lnum, offs);
801 
802 	list_for_each_entry(snod, &sleb->nodes, list) {
803 		cond_resched();
804 		pr_err("Dumping node at LEB %d:%d len %d\n",
805 		       sleb->lnum, snod->offs, snod->len);
806 		ubifs_dump_node(c, snod->node);
807 	}
808 }
809 
810 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
811 {
812 	struct ubifs_scan_leb *sleb;
813 	struct ubifs_scan_node *snod;
814 	void *buf;
815 
816 	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
817 
818 	buf = __vmalloc(c->leb_size, GFP_NOFS);
819 	if (!buf) {
820 		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
821 		return;
822 	}
823 
824 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
825 	if (IS_ERR(sleb)) {
826 		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
827 		goto out;
828 	}
829 
830 	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
831 	       sleb->nodes_cnt, sleb->endpt);
832 
833 	list_for_each_entry(snod, &sleb->nodes, list) {
834 		cond_resched();
835 		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
836 		       snod->offs, snod->len);
837 		ubifs_dump_node(c, snod->node);
838 	}
839 
840 	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
841 	ubifs_scan_destroy(sleb);
842 
843 out:
844 	vfree(buf);
845 	return;
846 }
847 
848 void ubifs_dump_znode(const struct ubifs_info *c,
849 		      const struct ubifs_znode *znode)
850 {
851 	int n;
852 	const struct ubifs_zbranch *zbr;
853 	char key_buf[DBG_KEY_BUF_LEN];
854 
855 	spin_lock(&dbg_lock);
856 	if (znode->parent)
857 		zbr = &znode->parent->zbranch[znode->iip];
858 	else
859 		zbr = &c->zroot;
860 
861 	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
862 	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
863 	       znode->level, znode->child_cnt, znode->flags);
864 
865 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
866 		spin_unlock(&dbg_lock);
867 		return;
868 	}
869 
870 	pr_err("zbranches:\n");
871 	for (n = 0; n < znode->child_cnt; n++) {
872 		zbr = &znode->zbranch[n];
873 		if (znode->level > 0)
874 			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
875 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
876 			       dbg_snprintf_key(c, &zbr->key, key_buf,
877 						DBG_KEY_BUF_LEN));
878 		else
879 			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
880 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
881 			       dbg_snprintf_key(c, &zbr->key, key_buf,
882 						DBG_KEY_BUF_LEN));
883 	}
884 	spin_unlock(&dbg_lock);
885 }
886 
887 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
888 {
889 	int i;
890 
891 	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
892 	       current->pid, cat, heap->cnt);
893 	for (i = 0; i < heap->cnt; i++) {
894 		struct ubifs_lprops *lprops = heap->arr[i];
895 
896 		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
897 		       i, lprops->lnum, lprops->hpos, lprops->free,
898 		       lprops->dirty, lprops->flags);
899 	}
900 	pr_err("(pid %d) finish dumping heap\n", current->pid);
901 }
902 
903 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
904 		      struct ubifs_nnode *parent, int iip)
905 {
906 	int i;
907 
908 	pr_err("(pid %d) dumping pnode:\n", current->pid);
909 	pr_err("\taddress %zx parent %zx cnext %zx\n",
910 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
911 	pr_err("\tflags %lu iip %d level %d num %d\n",
912 	       pnode->flags, iip, pnode->level, pnode->num);
913 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
914 		struct ubifs_lprops *lp = &pnode->lprops[i];
915 
916 		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
917 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
918 	}
919 }
920 
921 void ubifs_dump_tnc(struct ubifs_info *c)
922 {
923 	struct ubifs_znode *znode;
924 	int level;
925 
926 	pr_err("\n");
927 	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
928 	znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
929 	level = znode->level;
930 	pr_err("== Level %d ==\n", level);
931 	while (znode) {
932 		if (level != znode->level) {
933 			level = znode->level;
934 			pr_err("== Level %d ==\n", level);
935 		}
936 		ubifs_dump_znode(c, znode);
937 		znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
938 	}
939 	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
940 }
941 
942 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
943 		      void *priv)
944 {
945 	ubifs_dump_znode(c, znode);
946 	return 0;
947 }
948 
949 /**
950  * ubifs_dump_index - dump the on-flash index.
951  * @c: UBIFS file-system description object
952  *
953  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
954  * which dumps only in-memory znodes and does not read znodes which from flash.
955  */
956 void ubifs_dump_index(struct ubifs_info *c)
957 {
958 	dbg_walk_index(c, NULL, dump_znode, NULL);
959 }
960 
961 /**
962  * dbg_save_space_info - save information about flash space.
963  * @c: UBIFS file-system description object
964  *
965  * This function saves information about UBIFS free space, dirty space, etc, in
966  * order to check it later.
967  */
968 void dbg_save_space_info(struct ubifs_info *c)
969 {
970 	struct ubifs_debug_info *d = c->dbg;
971 	int freeable_cnt;
972 
973 	spin_lock(&c->space_lock);
974 	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
975 	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
976 	d->saved_idx_gc_cnt = c->idx_gc_cnt;
977 
978 	/*
979 	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
980 	 * affects the free space calculations, and UBIFS might not know about
981 	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
982 	 * only when we read their lprops, and we do this only lazily, upon the
983 	 * need. So at any given point of time @c->freeable_cnt might be not
984 	 * exactly accurate.
985 	 *
986 	 * Just one example about the issue we hit when we did not zero
987 	 * @c->freeable_cnt.
988 	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
989 	 *    amount of free space in @d->saved_free
990 	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
991 	 *    information from flash, where we cache LEBs from various
992 	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
993 	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
994 	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
995 	 *    -> 'ubifs_add_to_cat()').
996 	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
997 	 *    becomes %1.
998 	 * 4. We calculate the amount of free space when the re-mount is
999 	 *    finished in 'dbg_check_space_info()' and it does not match
1000 	 *    @d->saved_free.
1001 	 */
1002 	freeable_cnt = c->freeable_cnt;
1003 	c->freeable_cnt = 0;
1004 	d->saved_free = ubifs_get_free_space_nolock(c);
1005 	c->freeable_cnt = freeable_cnt;
1006 	spin_unlock(&c->space_lock);
1007 }
1008 
1009 /**
1010  * dbg_check_space_info - check flash space information.
1011  * @c: UBIFS file-system description object
1012  *
1013  * This function compares current flash space information with the information
1014  * which was saved when the 'dbg_save_space_info()' function was called.
1015  * Returns zero if the information has not changed, and %-EINVAL it it has
1016  * changed.
1017  */
1018 int dbg_check_space_info(struct ubifs_info *c)
1019 {
1020 	struct ubifs_debug_info *d = c->dbg;
1021 	struct ubifs_lp_stats lst;
1022 	long long free;
1023 	int freeable_cnt;
1024 
1025 	spin_lock(&c->space_lock);
1026 	freeable_cnt = c->freeable_cnt;
1027 	c->freeable_cnt = 0;
1028 	free = ubifs_get_free_space_nolock(c);
1029 	c->freeable_cnt = freeable_cnt;
1030 	spin_unlock(&c->space_lock);
1031 
1032 	if (free != d->saved_free) {
1033 		ubifs_err(c, "free space changed from %lld to %lld",
1034 			  d->saved_free, free);
1035 		goto out;
1036 	}
1037 
1038 	return 0;
1039 
1040 out:
1041 	ubifs_msg(c, "saved lprops statistics dump");
1042 	ubifs_dump_lstats(&d->saved_lst);
1043 	ubifs_msg(c, "saved budgeting info dump");
1044 	ubifs_dump_budg(c, &d->saved_bi);
1045 	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1046 	ubifs_msg(c, "current lprops statistics dump");
1047 	ubifs_get_lp_stats(c, &lst);
1048 	ubifs_dump_lstats(&lst);
1049 	ubifs_msg(c, "current budgeting info dump");
1050 	ubifs_dump_budg(c, &c->bi);
1051 	dump_stack();
1052 	return -EINVAL;
1053 }
1054 
1055 /**
1056  * dbg_check_synced_i_size - check synchronized inode size.
1057  * @c: UBIFS file-system description object
1058  * @inode: inode to check
1059  *
1060  * If inode is clean, synchronized inode size has to be equivalent to current
1061  * inode size. This function has to be called only for locked inodes (@i_mutex
1062  * has to be locked). Returns %0 if synchronized inode size if correct, and
1063  * %-EINVAL if not.
1064  */
1065 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1066 {
1067 	int err = 0;
1068 	struct ubifs_inode *ui = ubifs_inode(inode);
1069 
1070 	if (!dbg_is_chk_gen(c))
1071 		return 0;
1072 	if (!S_ISREG(inode->i_mode))
1073 		return 0;
1074 
1075 	mutex_lock(&ui->ui_mutex);
1076 	spin_lock(&ui->ui_lock);
1077 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1078 		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1079 			  ui->ui_size, ui->synced_i_size);
1080 		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1081 			  inode->i_mode, i_size_read(inode));
1082 		dump_stack();
1083 		err = -EINVAL;
1084 	}
1085 	spin_unlock(&ui->ui_lock);
1086 	mutex_unlock(&ui->ui_mutex);
1087 	return err;
1088 }
1089 
1090 /*
1091  * dbg_check_dir - check directory inode size and link count.
1092  * @c: UBIFS file-system description object
1093  * @dir: the directory to calculate size for
1094  * @size: the result is returned here
1095  *
1096  * This function makes sure that directory size and link count are correct.
1097  * Returns zero in case of success and a negative error code in case of
1098  * failure.
1099  *
1100  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1101  * calling this function.
1102  */
1103 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1104 {
1105 	unsigned int nlink = 2;
1106 	union ubifs_key key;
1107 	struct ubifs_dent_node *dent, *pdent = NULL;
1108 	struct fscrypt_name nm = {0};
1109 	loff_t size = UBIFS_INO_NODE_SZ;
1110 
1111 	if (!dbg_is_chk_gen(c))
1112 		return 0;
1113 
1114 	if (!S_ISDIR(dir->i_mode))
1115 		return 0;
1116 
1117 	lowest_dent_key(c, &key, dir->i_ino);
1118 	while (1) {
1119 		int err;
1120 
1121 		dent = ubifs_tnc_next_ent(c, &key, &nm);
1122 		if (IS_ERR(dent)) {
1123 			err = PTR_ERR(dent);
1124 			if (err == -ENOENT)
1125 				break;
1126 			kfree(pdent);
1127 			return err;
1128 		}
1129 
1130 		fname_name(&nm) = dent->name;
1131 		fname_len(&nm) = le16_to_cpu(dent->nlen);
1132 		size += CALC_DENT_SIZE(fname_len(&nm));
1133 		if (dent->type == UBIFS_ITYPE_DIR)
1134 			nlink += 1;
1135 		kfree(pdent);
1136 		pdent = dent;
1137 		key_read(c, &dent->key, &key);
1138 	}
1139 	kfree(pdent);
1140 
1141 	if (i_size_read(dir) != size) {
1142 		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1143 			  dir->i_ino, (unsigned long long)i_size_read(dir),
1144 			  (unsigned long long)size);
1145 		ubifs_dump_inode(c, dir);
1146 		dump_stack();
1147 		return -EINVAL;
1148 	}
1149 	if (dir->i_nlink != nlink) {
1150 		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1151 			  dir->i_ino, dir->i_nlink, nlink);
1152 		ubifs_dump_inode(c, dir);
1153 		dump_stack();
1154 		return -EINVAL;
1155 	}
1156 
1157 	return 0;
1158 }
1159 
1160 /**
1161  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1162  * @c: UBIFS file-system description object
1163  * @zbr1: first zbranch
1164  * @zbr2: following zbranch
1165  *
1166  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1167  * names of the direntries/xentries which are referred by the keys. This
1168  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1169  * sure the name of direntry/xentry referred by @zbr1 is less than
1170  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1171  * and a negative error code in case of failure.
1172  */
1173 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1174 			       struct ubifs_zbranch *zbr2)
1175 {
1176 	int err, nlen1, nlen2, cmp;
1177 	struct ubifs_dent_node *dent1, *dent2;
1178 	union ubifs_key key;
1179 	char key_buf[DBG_KEY_BUF_LEN];
1180 
1181 	ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1182 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1183 	if (!dent1)
1184 		return -ENOMEM;
1185 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1186 	if (!dent2) {
1187 		err = -ENOMEM;
1188 		goto out_free;
1189 	}
1190 
1191 	err = ubifs_tnc_read_node(c, zbr1, dent1);
1192 	if (err)
1193 		goto out_free;
1194 	err = ubifs_validate_entry(c, dent1);
1195 	if (err)
1196 		goto out_free;
1197 
1198 	err = ubifs_tnc_read_node(c, zbr2, dent2);
1199 	if (err)
1200 		goto out_free;
1201 	err = ubifs_validate_entry(c, dent2);
1202 	if (err)
1203 		goto out_free;
1204 
1205 	/* Make sure node keys are the same as in zbranch */
1206 	err = 1;
1207 	key_read(c, &dent1->key, &key);
1208 	if (keys_cmp(c, &zbr1->key, &key)) {
1209 		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1210 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1211 						       DBG_KEY_BUF_LEN));
1212 		ubifs_err(c, "but it should have key %s according to tnc",
1213 			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1214 					   DBG_KEY_BUF_LEN));
1215 		ubifs_dump_node(c, dent1);
1216 		goto out_free;
1217 	}
1218 
1219 	key_read(c, &dent2->key, &key);
1220 	if (keys_cmp(c, &zbr2->key, &key)) {
1221 		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1222 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1223 						       DBG_KEY_BUF_LEN));
1224 		ubifs_err(c, "but it should have key %s according to tnc",
1225 			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1226 					   DBG_KEY_BUF_LEN));
1227 		ubifs_dump_node(c, dent2);
1228 		goto out_free;
1229 	}
1230 
1231 	nlen1 = le16_to_cpu(dent1->nlen);
1232 	nlen2 = le16_to_cpu(dent2->nlen);
1233 
1234 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1235 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1236 		err = 0;
1237 		goto out_free;
1238 	}
1239 	if (cmp == 0 && nlen1 == nlen2)
1240 		ubifs_err(c, "2 xent/dent nodes with the same name");
1241 	else
1242 		ubifs_err(c, "bad order of colliding key %s",
1243 			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1244 
1245 	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1246 	ubifs_dump_node(c, dent1);
1247 	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1248 	ubifs_dump_node(c, dent2);
1249 
1250 out_free:
1251 	kfree(dent2);
1252 	kfree(dent1);
1253 	return err;
1254 }
1255 
1256 /**
1257  * dbg_check_znode - check if znode is all right.
1258  * @c: UBIFS file-system description object
1259  * @zbr: zbranch which points to this znode
1260  *
1261  * This function makes sure that znode referred to by @zbr is all right.
1262  * Returns zero if it is, and %-EINVAL if it is not.
1263  */
1264 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1265 {
1266 	struct ubifs_znode *znode = zbr->znode;
1267 	struct ubifs_znode *zp = znode->parent;
1268 	int n, err, cmp;
1269 
1270 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1271 		err = 1;
1272 		goto out;
1273 	}
1274 	if (znode->level < 0) {
1275 		err = 2;
1276 		goto out;
1277 	}
1278 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1279 		err = 3;
1280 		goto out;
1281 	}
1282 
1283 	if (zbr->len == 0)
1284 		/* Only dirty zbranch may have no on-flash nodes */
1285 		if (!ubifs_zn_dirty(znode)) {
1286 			err = 4;
1287 			goto out;
1288 		}
1289 
1290 	if (ubifs_zn_dirty(znode)) {
1291 		/*
1292 		 * If znode is dirty, its parent has to be dirty as well. The
1293 		 * order of the operation is important, so we have to have
1294 		 * memory barriers.
1295 		 */
1296 		smp_mb();
1297 		if (zp && !ubifs_zn_dirty(zp)) {
1298 			/*
1299 			 * The dirty flag is atomic and is cleared outside the
1300 			 * TNC mutex, so znode's dirty flag may now have
1301 			 * been cleared. The child is always cleared before the
1302 			 * parent, so we just need to check again.
1303 			 */
1304 			smp_mb();
1305 			if (ubifs_zn_dirty(znode)) {
1306 				err = 5;
1307 				goto out;
1308 			}
1309 		}
1310 	}
1311 
1312 	if (zp) {
1313 		const union ubifs_key *min, *max;
1314 
1315 		if (znode->level != zp->level - 1) {
1316 			err = 6;
1317 			goto out;
1318 		}
1319 
1320 		/* Make sure the 'parent' pointer in our znode is correct */
1321 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1322 		if (!err) {
1323 			/* This zbranch does not exist in the parent */
1324 			err = 7;
1325 			goto out;
1326 		}
1327 
1328 		if (znode->iip >= zp->child_cnt) {
1329 			err = 8;
1330 			goto out;
1331 		}
1332 
1333 		if (znode->iip != n) {
1334 			/* This may happen only in case of collisions */
1335 			if (keys_cmp(c, &zp->zbranch[n].key,
1336 				     &zp->zbranch[znode->iip].key)) {
1337 				err = 9;
1338 				goto out;
1339 			}
1340 			n = znode->iip;
1341 		}
1342 
1343 		/*
1344 		 * Make sure that the first key in our znode is greater than or
1345 		 * equal to the key in the pointing zbranch.
1346 		 */
1347 		min = &zbr->key;
1348 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1349 		if (cmp == 1) {
1350 			err = 10;
1351 			goto out;
1352 		}
1353 
1354 		if (n + 1 < zp->child_cnt) {
1355 			max = &zp->zbranch[n + 1].key;
1356 
1357 			/*
1358 			 * Make sure the last key in our znode is less or
1359 			 * equivalent than the key in the zbranch which goes
1360 			 * after our pointing zbranch.
1361 			 */
1362 			cmp = keys_cmp(c, max,
1363 				&znode->zbranch[znode->child_cnt - 1].key);
1364 			if (cmp == -1) {
1365 				err = 11;
1366 				goto out;
1367 			}
1368 		}
1369 	} else {
1370 		/* This may only be root znode */
1371 		if (zbr != &c->zroot) {
1372 			err = 12;
1373 			goto out;
1374 		}
1375 	}
1376 
1377 	/*
1378 	 * Make sure that next key is greater or equivalent then the previous
1379 	 * one.
1380 	 */
1381 	for (n = 1; n < znode->child_cnt; n++) {
1382 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1383 			       &znode->zbranch[n].key);
1384 		if (cmp > 0) {
1385 			err = 13;
1386 			goto out;
1387 		}
1388 		if (cmp == 0) {
1389 			/* This can only be keys with colliding hash */
1390 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1391 				err = 14;
1392 				goto out;
1393 			}
1394 
1395 			if (znode->level != 0 || c->replaying)
1396 				continue;
1397 
1398 			/*
1399 			 * Colliding keys should follow binary order of
1400 			 * corresponding xentry/dentry names.
1401 			 */
1402 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1403 						  &znode->zbranch[n]);
1404 			if (err < 0)
1405 				return err;
1406 			if (err) {
1407 				err = 15;
1408 				goto out;
1409 			}
1410 		}
1411 	}
1412 
1413 	for (n = 0; n < znode->child_cnt; n++) {
1414 		if (!znode->zbranch[n].znode &&
1415 		    (znode->zbranch[n].lnum == 0 ||
1416 		     znode->zbranch[n].len == 0)) {
1417 			err = 16;
1418 			goto out;
1419 		}
1420 
1421 		if (znode->zbranch[n].lnum != 0 &&
1422 		    znode->zbranch[n].len == 0) {
1423 			err = 17;
1424 			goto out;
1425 		}
1426 
1427 		if (znode->zbranch[n].lnum == 0 &&
1428 		    znode->zbranch[n].len != 0) {
1429 			err = 18;
1430 			goto out;
1431 		}
1432 
1433 		if (znode->zbranch[n].lnum == 0 &&
1434 		    znode->zbranch[n].offs != 0) {
1435 			err = 19;
1436 			goto out;
1437 		}
1438 
1439 		if (znode->level != 0 && znode->zbranch[n].znode)
1440 			if (znode->zbranch[n].znode->parent != znode) {
1441 				err = 20;
1442 				goto out;
1443 			}
1444 	}
1445 
1446 	return 0;
1447 
1448 out:
1449 	ubifs_err(c, "failed, error %d", err);
1450 	ubifs_msg(c, "dump of the znode");
1451 	ubifs_dump_znode(c, znode);
1452 	if (zp) {
1453 		ubifs_msg(c, "dump of the parent znode");
1454 		ubifs_dump_znode(c, zp);
1455 	}
1456 	dump_stack();
1457 	return -EINVAL;
1458 }
1459 
1460 /**
1461  * dbg_check_tnc - check TNC tree.
1462  * @c: UBIFS file-system description object
1463  * @extra: do extra checks that are possible at start commit
1464  *
1465  * This function traverses whole TNC tree and checks every znode. Returns zero
1466  * if everything is all right and %-EINVAL if something is wrong with TNC.
1467  */
1468 int dbg_check_tnc(struct ubifs_info *c, int extra)
1469 {
1470 	struct ubifs_znode *znode;
1471 	long clean_cnt = 0, dirty_cnt = 0;
1472 	int err, last;
1473 
1474 	if (!dbg_is_chk_index(c))
1475 		return 0;
1476 
1477 	ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1478 	if (!c->zroot.znode)
1479 		return 0;
1480 
1481 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1482 	while (1) {
1483 		struct ubifs_znode *prev;
1484 		struct ubifs_zbranch *zbr;
1485 
1486 		if (!znode->parent)
1487 			zbr = &c->zroot;
1488 		else
1489 			zbr = &znode->parent->zbranch[znode->iip];
1490 
1491 		err = dbg_check_znode(c, zbr);
1492 		if (err)
1493 			return err;
1494 
1495 		if (extra) {
1496 			if (ubifs_zn_dirty(znode))
1497 				dirty_cnt += 1;
1498 			else
1499 				clean_cnt += 1;
1500 		}
1501 
1502 		prev = znode;
1503 		znode = ubifs_tnc_postorder_next(c, znode);
1504 		if (!znode)
1505 			break;
1506 
1507 		/*
1508 		 * If the last key of this znode is equivalent to the first key
1509 		 * of the next znode (collision), then check order of the keys.
1510 		 */
1511 		last = prev->child_cnt - 1;
1512 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1513 		    !keys_cmp(c, &prev->zbranch[last].key,
1514 			      &znode->zbranch[0].key)) {
1515 			err = dbg_check_key_order(c, &prev->zbranch[last],
1516 						  &znode->zbranch[0]);
1517 			if (err < 0)
1518 				return err;
1519 			if (err) {
1520 				ubifs_msg(c, "first znode");
1521 				ubifs_dump_znode(c, prev);
1522 				ubifs_msg(c, "second znode");
1523 				ubifs_dump_znode(c, znode);
1524 				return -EINVAL;
1525 			}
1526 		}
1527 	}
1528 
1529 	if (extra) {
1530 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1531 			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1532 				  atomic_long_read(&c->clean_zn_cnt),
1533 				  clean_cnt);
1534 			return -EINVAL;
1535 		}
1536 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1537 			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1538 				  atomic_long_read(&c->dirty_zn_cnt),
1539 				  dirty_cnt);
1540 			return -EINVAL;
1541 		}
1542 	}
1543 
1544 	return 0;
1545 }
1546 
1547 /**
1548  * dbg_walk_index - walk the on-flash index.
1549  * @c: UBIFS file-system description object
1550  * @leaf_cb: called for each leaf node
1551  * @znode_cb: called for each indexing node
1552  * @priv: private data which is passed to callbacks
1553  *
1554  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1555  * node and @znode_cb for each indexing node. Returns zero in case of success
1556  * and a negative error code in case of failure.
1557  *
1558  * It would be better if this function removed every znode it pulled to into
1559  * the TNC, so that the behavior more closely matched the non-debugging
1560  * behavior.
1561  */
1562 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1563 		   dbg_znode_callback znode_cb, void *priv)
1564 {
1565 	int err;
1566 	struct ubifs_zbranch *zbr;
1567 	struct ubifs_znode *znode, *child;
1568 
1569 	mutex_lock(&c->tnc_mutex);
1570 	/* If the root indexing node is not in TNC - pull it */
1571 	if (!c->zroot.znode) {
1572 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1573 		if (IS_ERR(c->zroot.znode)) {
1574 			err = PTR_ERR(c->zroot.znode);
1575 			c->zroot.znode = NULL;
1576 			goto out_unlock;
1577 		}
1578 	}
1579 
1580 	/*
1581 	 * We are going to traverse the indexing tree in the postorder manner.
1582 	 * Go down and find the leftmost indexing node where we are going to
1583 	 * start from.
1584 	 */
1585 	znode = c->zroot.znode;
1586 	while (znode->level > 0) {
1587 		zbr = &znode->zbranch[0];
1588 		child = zbr->znode;
1589 		if (!child) {
1590 			child = ubifs_load_znode(c, zbr, znode, 0);
1591 			if (IS_ERR(child)) {
1592 				err = PTR_ERR(child);
1593 				goto out_unlock;
1594 			}
1595 		}
1596 
1597 		znode = child;
1598 	}
1599 
1600 	/* Iterate over all indexing nodes */
1601 	while (1) {
1602 		int idx;
1603 
1604 		cond_resched();
1605 
1606 		if (znode_cb) {
1607 			err = znode_cb(c, znode, priv);
1608 			if (err) {
1609 				ubifs_err(c, "znode checking function returned error %d",
1610 					  err);
1611 				ubifs_dump_znode(c, znode);
1612 				goto out_dump;
1613 			}
1614 		}
1615 		if (leaf_cb && znode->level == 0) {
1616 			for (idx = 0; idx < znode->child_cnt; idx++) {
1617 				zbr = &znode->zbranch[idx];
1618 				err = leaf_cb(c, zbr, priv);
1619 				if (err) {
1620 					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1621 						  err, zbr->lnum, zbr->offs);
1622 					goto out_dump;
1623 				}
1624 			}
1625 		}
1626 
1627 		if (!znode->parent)
1628 			break;
1629 
1630 		idx = znode->iip + 1;
1631 		znode = znode->parent;
1632 		if (idx < znode->child_cnt) {
1633 			/* Switch to the next index in the parent */
1634 			zbr = &znode->zbranch[idx];
1635 			child = zbr->znode;
1636 			if (!child) {
1637 				child = ubifs_load_znode(c, zbr, znode, idx);
1638 				if (IS_ERR(child)) {
1639 					err = PTR_ERR(child);
1640 					goto out_unlock;
1641 				}
1642 				zbr->znode = child;
1643 			}
1644 			znode = child;
1645 		} else
1646 			/*
1647 			 * This is the last child, switch to the parent and
1648 			 * continue.
1649 			 */
1650 			continue;
1651 
1652 		/* Go to the lowest leftmost znode in the new sub-tree */
1653 		while (znode->level > 0) {
1654 			zbr = &znode->zbranch[0];
1655 			child = zbr->znode;
1656 			if (!child) {
1657 				child = ubifs_load_znode(c, zbr, znode, 0);
1658 				if (IS_ERR(child)) {
1659 					err = PTR_ERR(child);
1660 					goto out_unlock;
1661 				}
1662 				zbr->znode = child;
1663 			}
1664 			znode = child;
1665 		}
1666 	}
1667 
1668 	mutex_unlock(&c->tnc_mutex);
1669 	return 0;
1670 
1671 out_dump:
1672 	if (znode->parent)
1673 		zbr = &znode->parent->zbranch[znode->iip];
1674 	else
1675 		zbr = &c->zroot;
1676 	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1677 	ubifs_dump_znode(c, znode);
1678 out_unlock:
1679 	mutex_unlock(&c->tnc_mutex);
1680 	return err;
1681 }
1682 
1683 /**
1684  * add_size - add znode size to partially calculated index size.
1685  * @c: UBIFS file-system description object
1686  * @znode: znode to add size for
1687  * @priv: partially calculated index size
1688  *
1689  * This is a helper function for 'dbg_check_idx_size()' which is called for
1690  * every indexing node and adds its size to the 'long long' variable pointed to
1691  * by @priv.
1692  */
1693 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1694 {
1695 	long long *idx_size = priv;
1696 	int add;
1697 
1698 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1699 	add = ALIGN(add, 8);
1700 	*idx_size += add;
1701 	return 0;
1702 }
1703 
1704 /**
1705  * dbg_check_idx_size - check index size.
1706  * @c: UBIFS file-system description object
1707  * @idx_size: size to check
1708  *
1709  * This function walks the UBIFS index, calculates its size and checks that the
1710  * size is equivalent to @idx_size. Returns zero in case of success and a
1711  * negative error code in case of failure.
1712  */
1713 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1714 {
1715 	int err;
1716 	long long calc = 0;
1717 
1718 	if (!dbg_is_chk_index(c))
1719 		return 0;
1720 
1721 	err = dbg_walk_index(c, NULL, add_size, &calc);
1722 	if (err) {
1723 		ubifs_err(c, "error %d while walking the index", err);
1724 		return err;
1725 	}
1726 
1727 	if (calc != idx_size) {
1728 		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1729 			  calc, idx_size);
1730 		dump_stack();
1731 		return -EINVAL;
1732 	}
1733 
1734 	return 0;
1735 }
1736 
1737 /**
1738  * struct fsck_inode - information about an inode used when checking the file-system.
1739  * @rb: link in the RB-tree of inodes
1740  * @inum: inode number
1741  * @mode: inode type, permissions, etc
1742  * @nlink: inode link count
1743  * @xattr_cnt: count of extended attributes
1744  * @references: how many directory/xattr entries refer this inode (calculated
1745  *              while walking the index)
1746  * @calc_cnt: for directory inode count of child directories
1747  * @size: inode size (read from on-flash inode)
1748  * @xattr_sz: summary size of all extended attributes (read from on-flash
1749  *            inode)
1750  * @calc_sz: for directories calculated directory size
1751  * @calc_xcnt: count of extended attributes
1752  * @calc_xsz: calculated summary size of all extended attributes
1753  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1754  *             inode (read from on-flash inode)
1755  * @calc_xnms: calculated sum of lengths of all extended attribute names
1756  */
1757 struct fsck_inode {
1758 	struct rb_node rb;
1759 	ino_t inum;
1760 	umode_t mode;
1761 	unsigned int nlink;
1762 	unsigned int xattr_cnt;
1763 	int references;
1764 	int calc_cnt;
1765 	long long size;
1766 	unsigned int xattr_sz;
1767 	long long calc_sz;
1768 	long long calc_xcnt;
1769 	long long calc_xsz;
1770 	unsigned int xattr_nms;
1771 	long long calc_xnms;
1772 };
1773 
1774 /**
1775  * struct fsck_data - private FS checking information.
1776  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1777  */
1778 struct fsck_data {
1779 	struct rb_root inodes;
1780 };
1781 
1782 /**
1783  * add_inode - add inode information to RB-tree of inodes.
1784  * @c: UBIFS file-system description object
1785  * @fsckd: FS checking information
1786  * @ino: raw UBIFS inode to add
1787  *
1788  * This is a helper function for 'check_leaf()' which adds information about
1789  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1790  * case of success and a negative error code in case of failure.
1791  */
1792 static struct fsck_inode *add_inode(struct ubifs_info *c,
1793 				    struct fsck_data *fsckd,
1794 				    struct ubifs_ino_node *ino)
1795 {
1796 	struct rb_node **p, *parent = NULL;
1797 	struct fsck_inode *fscki;
1798 	ino_t inum = key_inum_flash(c, &ino->key);
1799 	struct inode *inode;
1800 	struct ubifs_inode *ui;
1801 
1802 	p = &fsckd->inodes.rb_node;
1803 	while (*p) {
1804 		parent = *p;
1805 		fscki = rb_entry(parent, struct fsck_inode, rb);
1806 		if (inum < fscki->inum)
1807 			p = &(*p)->rb_left;
1808 		else if (inum > fscki->inum)
1809 			p = &(*p)->rb_right;
1810 		else
1811 			return fscki;
1812 	}
1813 
1814 	if (inum > c->highest_inum) {
1815 		ubifs_err(c, "too high inode number, max. is %lu",
1816 			  (unsigned long)c->highest_inum);
1817 		return ERR_PTR(-EINVAL);
1818 	}
1819 
1820 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1821 	if (!fscki)
1822 		return ERR_PTR(-ENOMEM);
1823 
1824 	inode = ilookup(c->vfs_sb, inum);
1825 
1826 	fscki->inum = inum;
1827 	/*
1828 	 * If the inode is present in the VFS inode cache, use it instead of
1829 	 * the on-flash inode which might be out-of-date. E.g., the size might
1830 	 * be out-of-date. If we do not do this, the following may happen, for
1831 	 * example:
1832 	 *   1. A power cut happens
1833 	 *   2. We mount the file-system R/O, the replay process fixes up the
1834 	 *      inode size in the VFS cache, but on on-flash.
1835 	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1836 	 *      size.
1837 	 */
1838 	if (!inode) {
1839 		fscki->nlink = le32_to_cpu(ino->nlink);
1840 		fscki->size = le64_to_cpu(ino->size);
1841 		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1842 		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1843 		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1844 		fscki->mode = le32_to_cpu(ino->mode);
1845 	} else {
1846 		ui = ubifs_inode(inode);
1847 		fscki->nlink = inode->i_nlink;
1848 		fscki->size = inode->i_size;
1849 		fscki->xattr_cnt = ui->xattr_cnt;
1850 		fscki->xattr_sz = ui->xattr_size;
1851 		fscki->xattr_nms = ui->xattr_names;
1852 		fscki->mode = inode->i_mode;
1853 		iput(inode);
1854 	}
1855 
1856 	if (S_ISDIR(fscki->mode)) {
1857 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1858 		fscki->calc_cnt = 2;
1859 	}
1860 
1861 	rb_link_node(&fscki->rb, parent, p);
1862 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1863 
1864 	return fscki;
1865 }
1866 
1867 /**
1868  * search_inode - search inode in the RB-tree of inodes.
1869  * @fsckd: FS checking information
1870  * @inum: inode number to search
1871  *
1872  * This is a helper function for 'check_leaf()' which searches inode @inum in
1873  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1874  * the inode was not found.
1875  */
1876 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1877 {
1878 	struct rb_node *p;
1879 	struct fsck_inode *fscki;
1880 
1881 	p = fsckd->inodes.rb_node;
1882 	while (p) {
1883 		fscki = rb_entry(p, struct fsck_inode, rb);
1884 		if (inum < fscki->inum)
1885 			p = p->rb_left;
1886 		else if (inum > fscki->inum)
1887 			p = p->rb_right;
1888 		else
1889 			return fscki;
1890 	}
1891 	return NULL;
1892 }
1893 
1894 /**
1895  * read_add_inode - read inode node and add it to RB-tree of inodes.
1896  * @c: UBIFS file-system description object
1897  * @fsckd: FS checking information
1898  * @inum: inode number to read
1899  *
1900  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1901  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1902  * information pointer in case of success and a negative error code in case of
1903  * failure.
1904  */
1905 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1906 					 struct fsck_data *fsckd, ino_t inum)
1907 {
1908 	int n, err;
1909 	union ubifs_key key;
1910 	struct ubifs_znode *znode;
1911 	struct ubifs_zbranch *zbr;
1912 	struct ubifs_ino_node *ino;
1913 	struct fsck_inode *fscki;
1914 
1915 	fscki = search_inode(fsckd, inum);
1916 	if (fscki)
1917 		return fscki;
1918 
1919 	ino_key_init(c, &key, inum);
1920 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1921 	if (!err) {
1922 		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1923 		return ERR_PTR(-ENOENT);
1924 	} else if (err < 0) {
1925 		ubifs_err(c, "error %d while looking up inode %lu",
1926 			  err, (unsigned long)inum);
1927 		return ERR_PTR(err);
1928 	}
1929 
1930 	zbr = &znode->zbranch[n];
1931 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1932 		ubifs_err(c, "bad node %lu node length %d",
1933 			  (unsigned long)inum, zbr->len);
1934 		return ERR_PTR(-EINVAL);
1935 	}
1936 
1937 	ino = kmalloc(zbr->len, GFP_NOFS);
1938 	if (!ino)
1939 		return ERR_PTR(-ENOMEM);
1940 
1941 	err = ubifs_tnc_read_node(c, zbr, ino);
1942 	if (err) {
1943 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1944 			  zbr->lnum, zbr->offs, err);
1945 		kfree(ino);
1946 		return ERR_PTR(err);
1947 	}
1948 
1949 	fscki = add_inode(c, fsckd, ino);
1950 	kfree(ino);
1951 	if (IS_ERR(fscki)) {
1952 		ubifs_err(c, "error %ld while adding inode %lu node",
1953 			  PTR_ERR(fscki), (unsigned long)inum);
1954 		return fscki;
1955 	}
1956 
1957 	return fscki;
1958 }
1959 
1960 /**
1961  * check_leaf - check leaf node.
1962  * @c: UBIFS file-system description object
1963  * @zbr: zbranch of the leaf node to check
1964  * @priv: FS checking information
1965  *
1966  * This is a helper function for 'dbg_check_filesystem()' which is called for
1967  * every single leaf node while walking the indexing tree. It checks that the
1968  * leaf node referred from the indexing tree exists, has correct CRC, and does
1969  * some other basic validation. This function is also responsible for building
1970  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1971  * calculates reference count, size, etc for each inode in order to later
1972  * compare them to the information stored inside the inodes and detect possible
1973  * inconsistencies. Returns zero in case of success and a negative error code
1974  * in case of failure.
1975  */
1976 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1977 		      void *priv)
1978 {
1979 	ino_t inum;
1980 	void *node;
1981 	struct ubifs_ch *ch;
1982 	int err, type = key_type(c, &zbr->key);
1983 	struct fsck_inode *fscki;
1984 
1985 	if (zbr->len < UBIFS_CH_SZ) {
1986 		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1987 			  zbr->len, zbr->lnum, zbr->offs);
1988 		return -EINVAL;
1989 	}
1990 
1991 	node = kmalloc(zbr->len, GFP_NOFS);
1992 	if (!node)
1993 		return -ENOMEM;
1994 
1995 	err = ubifs_tnc_read_node(c, zbr, node);
1996 	if (err) {
1997 		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
1998 			  zbr->lnum, zbr->offs, err);
1999 		goto out_free;
2000 	}
2001 
2002 	/* If this is an inode node, add it to RB-tree of inodes */
2003 	if (type == UBIFS_INO_KEY) {
2004 		fscki = add_inode(c, priv, node);
2005 		if (IS_ERR(fscki)) {
2006 			err = PTR_ERR(fscki);
2007 			ubifs_err(c, "error %d while adding inode node", err);
2008 			goto out_dump;
2009 		}
2010 		goto out;
2011 	}
2012 
2013 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2014 	    type != UBIFS_DATA_KEY) {
2015 		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2016 			  type, zbr->lnum, zbr->offs);
2017 		err = -EINVAL;
2018 		goto out_free;
2019 	}
2020 
2021 	ch = node;
2022 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2023 		ubifs_err(c, "too high sequence number, max. is %llu",
2024 			  c->max_sqnum);
2025 		err = -EINVAL;
2026 		goto out_dump;
2027 	}
2028 
2029 	if (type == UBIFS_DATA_KEY) {
2030 		long long blk_offs;
2031 		struct ubifs_data_node *dn = node;
2032 
2033 		ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2034 
2035 		/*
2036 		 * Search the inode node this data node belongs to and insert
2037 		 * it to the RB-tree of inodes.
2038 		 */
2039 		inum = key_inum_flash(c, &dn->key);
2040 		fscki = read_add_inode(c, priv, inum);
2041 		if (IS_ERR(fscki)) {
2042 			err = PTR_ERR(fscki);
2043 			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2044 				  err, (unsigned long)inum);
2045 			goto out_dump;
2046 		}
2047 
2048 		/* Make sure the data node is within inode size */
2049 		blk_offs = key_block_flash(c, &dn->key);
2050 		blk_offs <<= UBIFS_BLOCK_SHIFT;
2051 		blk_offs += le32_to_cpu(dn->size);
2052 		if (blk_offs > fscki->size) {
2053 			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2054 				  zbr->lnum, zbr->offs, fscki->size);
2055 			err = -EINVAL;
2056 			goto out_dump;
2057 		}
2058 	} else {
2059 		int nlen;
2060 		struct ubifs_dent_node *dent = node;
2061 		struct fsck_inode *fscki1;
2062 
2063 		ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2064 
2065 		err = ubifs_validate_entry(c, dent);
2066 		if (err)
2067 			goto out_dump;
2068 
2069 		/*
2070 		 * Search the inode node this entry refers to and the parent
2071 		 * inode node and insert them to the RB-tree of inodes.
2072 		 */
2073 		inum = le64_to_cpu(dent->inum);
2074 		fscki = read_add_inode(c, priv, inum);
2075 		if (IS_ERR(fscki)) {
2076 			err = PTR_ERR(fscki);
2077 			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2078 				  err, (unsigned long)inum);
2079 			goto out_dump;
2080 		}
2081 
2082 		/* Count how many direntries or xentries refers this inode */
2083 		fscki->references += 1;
2084 
2085 		inum = key_inum_flash(c, &dent->key);
2086 		fscki1 = read_add_inode(c, priv, inum);
2087 		if (IS_ERR(fscki1)) {
2088 			err = PTR_ERR(fscki1);
2089 			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2090 				  err, (unsigned long)inum);
2091 			goto out_dump;
2092 		}
2093 
2094 		nlen = le16_to_cpu(dent->nlen);
2095 		if (type == UBIFS_XENT_KEY) {
2096 			fscki1->calc_xcnt += 1;
2097 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2098 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2099 			fscki1->calc_xnms += nlen;
2100 		} else {
2101 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2102 			if (dent->type == UBIFS_ITYPE_DIR)
2103 				fscki1->calc_cnt += 1;
2104 		}
2105 	}
2106 
2107 out:
2108 	kfree(node);
2109 	return 0;
2110 
2111 out_dump:
2112 	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2113 	ubifs_dump_node(c, node);
2114 out_free:
2115 	kfree(node);
2116 	return err;
2117 }
2118 
2119 /**
2120  * free_inodes - free RB-tree of inodes.
2121  * @fsckd: FS checking information
2122  */
2123 static void free_inodes(struct fsck_data *fsckd)
2124 {
2125 	struct fsck_inode *fscki, *n;
2126 
2127 	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2128 		kfree(fscki);
2129 }
2130 
2131 /**
2132  * check_inodes - checks all inodes.
2133  * @c: UBIFS file-system description object
2134  * @fsckd: FS checking information
2135  *
2136  * This is a helper function for 'dbg_check_filesystem()' which walks the
2137  * RB-tree of inodes after the index scan has been finished, and checks that
2138  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2139  * %-EINVAL if not, and a negative error code in case of failure.
2140  */
2141 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2142 {
2143 	int n, err;
2144 	union ubifs_key key;
2145 	struct ubifs_znode *znode;
2146 	struct ubifs_zbranch *zbr;
2147 	struct ubifs_ino_node *ino;
2148 	struct fsck_inode *fscki;
2149 	struct rb_node *this = rb_first(&fsckd->inodes);
2150 
2151 	while (this) {
2152 		fscki = rb_entry(this, struct fsck_inode, rb);
2153 		this = rb_next(this);
2154 
2155 		if (S_ISDIR(fscki->mode)) {
2156 			/*
2157 			 * Directories have to have exactly one reference (they
2158 			 * cannot have hardlinks), although root inode is an
2159 			 * exception.
2160 			 */
2161 			if (fscki->inum != UBIFS_ROOT_INO &&
2162 			    fscki->references != 1) {
2163 				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2164 					  (unsigned long)fscki->inum,
2165 					  fscki->references);
2166 				goto out_dump;
2167 			}
2168 			if (fscki->inum == UBIFS_ROOT_INO &&
2169 			    fscki->references != 0) {
2170 				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2171 					  (unsigned long)fscki->inum,
2172 					  fscki->references);
2173 				goto out_dump;
2174 			}
2175 			if (fscki->calc_sz != fscki->size) {
2176 				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2177 					  (unsigned long)fscki->inum,
2178 					  fscki->size, fscki->calc_sz);
2179 				goto out_dump;
2180 			}
2181 			if (fscki->calc_cnt != fscki->nlink) {
2182 				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2183 					  (unsigned long)fscki->inum,
2184 					  fscki->nlink, fscki->calc_cnt);
2185 				goto out_dump;
2186 			}
2187 		} else {
2188 			if (fscki->references != fscki->nlink) {
2189 				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2190 					  (unsigned long)fscki->inum,
2191 					  fscki->nlink, fscki->references);
2192 				goto out_dump;
2193 			}
2194 		}
2195 		if (fscki->xattr_sz != fscki->calc_xsz) {
2196 			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2197 				  (unsigned long)fscki->inum, fscki->xattr_sz,
2198 				  fscki->calc_xsz);
2199 			goto out_dump;
2200 		}
2201 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2202 			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2203 				  (unsigned long)fscki->inum,
2204 				  fscki->xattr_cnt, fscki->calc_xcnt);
2205 			goto out_dump;
2206 		}
2207 		if (fscki->xattr_nms != fscki->calc_xnms) {
2208 			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2209 				  (unsigned long)fscki->inum, fscki->xattr_nms,
2210 				  fscki->calc_xnms);
2211 			goto out_dump;
2212 		}
2213 	}
2214 
2215 	return 0;
2216 
2217 out_dump:
2218 	/* Read the bad inode and dump it */
2219 	ino_key_init(c, &key, fscki->inum);
2220 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2221 	if (!err) {
2222 		ubifs_err(c, "inode %lu not found in index",
2223 			  (unsigned long)fscki->inum);
2224 		return -ENOENT;
2225 	} else if (err < 0) {
2226 		ubifs_err(c, "error %d while looking up inode %lu",
2227 			  err, (unsigned long)fscki->inum);
2228 		return err;
2229 	}
2230 
2231 	zbr = &znode->zbranch[n];
2232 	ino = kmalloc(zbr->len, GFP_NOFS);
2233 	if (!ino)
2234 		return -ENOMEM;
2235 
2236 	err = ubifs_tnc_read_node(c, zbr, ino);
2237 	if (err) {
2238 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2239 			  zbr->lnum, zbr->offs, err);
2240 		kfree(ino);
2241 		return err;
2242 	}
2243 
2244 	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2245 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2246 	ubifs_dump_node(c, ino);
2247 	kfree(ino);
2248 	return -EINVAL;
2249 }
2250 
2251 /**
2252  * dbg_check_filesystem - check the file-system.
2253  * @c: UBIFS file-system description object
2254  *
2255  * This function checks the file system, namely:
2256  * o makes sure that all leaf nodes exist and their CRCs are correct;
2257  * o makes sure inode nlink, size, xattr size/count are correct (for all
2258  *   inodes).
2259  *
2260  * The function reads whole indexing tree and all nodes, so it is pretty
2261  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2262  * not, and a negative error code in case of failure.
2263  */
2264 int dbg_check_filesystem(struct ubifs_info *c)
2265 {
2266 	int err;
2267 	struct fsck_data fsckd;
2268 
2269 	if (!dbg_is_chk_fs(c))
2270 		return 0;
2271 
2272 	fsckd.inodes = RB_ROOT;
2273 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2274 	if (err)
2275 		goto out_free;
2276 
2277 	err = check_inodes(c, &fsckd);
2278 	if (err)
2279 		goto out_free;
2280 
2281 	free_inodes(&fsckd);
2282 	return 0;
2283 
2284 out_free:
2285 	ubifs_err(c, "file-system check failed with error %d", err);
2286 	dump_stack();
2287 	free_inodes(&fsckd);
2288 	return err;
2289 }
2290 
2291 /**
2292  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2293  * @c: UBIFS file-system description object
2294  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2295  *
2296  * This function returns zero if the list of data nodes is sorted correctly,
2297  * and %-EINVAL if not.
2298  */
2299 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2300 {
2301 	struct list_head *cur;
2302 	struct ubifs_scan_node *sa, *sb;
2303 
2304 	if (!dbg_is_chk_gen(c))
2305 		return 0;
2306 
2307 	for (cur = head->next; cur->next != head; cur = cur->next) {
2308 		ino_t inuma, inumb;
2309 		uint32_t blka, blkb;
2310 
2311 		cond_resched();
2312 		sa = container_of(cur, struct ubifs_scan_node, list);
2313 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2314 
2315 		if (sa->type != UBIFS_DATA_NODE) {
2316 			ubifs_err(c, "bad node type %d", sa->type);
2317 			ubifs_dump_node(c, sa->node);
2318 			return -EINVAL;
2319 		}
2320 		if (sb->type != UBIFS_DATA_NODE) {
2321 			ubifs_err(c, "bad node type %d", sb->type);
2322 			ubifs_dump_node(c, sb->node);
2323 			return -EINVAL;
2324 		}
2325 
2326 		inuma = key_inum(c, &sa->key);
2327 		inumb = key_inum(c, &sb->key);
2328 
2329 		if (inuma < inumb)
2330 			continue;
2331 		if (inuma > inumb) {
2332 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2333 				  (unsigned long)inuma, (unsigned long)inumb);
2334 			goto error_dump;
2335 		}
2336 
2337 		blka = key_block(c, &sa->key);
2338 		blkb = key_block(c, &sb->key);
2339 
2340 		if (blka > blkb) {
2341 			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2342 			goto error_dump;
2343 		}
2344 		if (blka == blkb) {
2345 			ubifs_err(c, "two data nodes for the same block");
2346 			goto error_dump;
2347 		}
2348 	}
2349 
2350 	return 0;
2351 
2352 error_dump:
2353 	ubifs_dump_node(c, sa->node);
2354 	ubifs_dump_node(c, sb->node);
2355 	return -EINVAL;
2356 }
2357 
2358 /**
2359  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2360  * @c: UBIFS file-system description object
2361  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2362  *
2363  * This function returns zero if the list of non-data nodes is sorted correctly,
2364  * and %-EINVAL if not.
2365  */
2366 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2367 {
2368 	struct list_head *cur;
2369 	struct ubifs_scan_node *sa, *sb;
2370 
2371 	if (!dbg_is_chk_gen(c))
2372 		return 0;
2373 
2374 	for (cur = head->next; cur->next != head; cur = cur->next) {
2375 		ino_t inuma, inumb;
2376 		uint32_t hasha, hashb;
2377 
2378 		cond_resched();
2379 		sa = container_of(cur, struct ubifs_scan_node, list);
2380 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2381 
2382 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2383 		    sa->type != UBIFS_XENT_NODE) {
2384 			ubifs_err(c, "bad node type %d", sa->type);
2385 			ubifs_dump_node(c, sa->node);
2386 			return -EINVAL;
2387 		}
2388 		if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2389 		    sb->type != UBIFS_XENT_NODE) {
2390 			ubifs_err(c, "bad node type %d", sb->type);
2391 			ubifs_dump_node(c, sb->node);
2392 			return -EINVAL;
2393 		}
2394 
2395 		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2396 			ubifs_err(c, "non-inode node goes before inode node");
2397 			goto error_dump;
2398 		}
2399 
2400 		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2401 			continue;
2402 
2403 		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2404 			/* Inode nodes are sorted in descending size order */
2405 			if (sa->len < sb->len) {
2406 				ubifs_err(c, "smaller inode node goes first");
2407 				goto error_dump;
2408 			}
2409 			continue;
2410 		}
2411 
2412 		/*
2413 		 * This is either a dentry or xentry, which should be sorted in
2414 		 * ascending (parent ino, hash) order.
2415 		 */
2416 		inuma = key_inum(c, &sa->key);
2417 		inumb = key_inum(c, &sb->key);
2418 
2419 		if (inuma < inumb)
2420 			continue;
2421 		if (inuma > inumb) {
2422 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2423 				  (unsigned long)inuma, (unsigned long)inumb);
2424 			goto error_dump;
2425 		}
2426 
2427 		hasha = key_block(c, &sa->key);
2428 		hashb = key_block(c, &sb->key);
2429 
2430 		if (hasha > hashb) {
2431 			ubifs_err(c, "larger hash %u goes before %u",
2432 				  hasha, hashb);
2433 			goto error_dump;
2434 		}
2435 	}
2436 
2437 	return 0;
2438 
2439 error_dump:
2440 	ubifs_msg(c, "dumping first node");
2441 	ubifs_dump_node(c, sa->node);
2442 	ubifs_msg(c, "dumping second node");
2443 	ubifs_dump_node(c, sb->node);
2444 	return -EINVAL;
2445 	return 0;
2446 }
2447 
2448 static inline int chance(unsigned int n, unsigned int out_of)
2449 {
2450 	return !!((prandom_u32() % out_of) + 1 <= n);
2451 
2452 }
2453 
2454 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2455 {
2456 	struct ubifs_debug_info *d = c->dbg;
2457 
2458 	ubifs_assert(c, dbg_is_tst_rcvry(c));
2459 
2460 	if (!d->pc_cnt) {
2461 		/* First call - decide delay to the power cut */
2462 		if (chance(1, 2)) {
2463 			unsigned long delay;
2464 
2465 			if (chance(1, 2)) {
2466 				d->pc_delay = 1;
2467 				/* Fail within 1 minute */
2468 				delay = prandom_u32() % 60000;
2469 				d->pc_timeout = jiffies;
2470 				d->pc_timeout += msecs_to_jiffies(delay);
2471 				ubifs_warn(c, "failing after %lums", delay);
2472 			} else {
2473 				d->pc_delay = 2;
2474 				delay = prandom_u32() % 10000;
2475 				/* Fail within 10000 operations */
2476 				d->pc_cnt_max = delay;
2477 				ubifs_warn(c, "failing after %lu calls", delay);
2478 			}
2479 		}
2480 
2481 		d->pc_cnt += 1;
2482 	}
2483 
2484 	/* Determine if failure delay has expired */
2485 	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2486 			return 0;
2487 	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2488 			return 0;
2489 
2490 	if (lnum == UBIFS_SB_LNUM) {
2491 		if (write && chance(1, 2))
2492 			return 0;
2493 		if (chance(19, 20))
2494 			return 0;
2495 		ubifs_warn(c, "failing in super block LEB %d", lnum);
2496 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2497 		if (chance(19, 20))
2498 			return 0;
2499 		ubifs_warn(c, "failing in master LEB %d", lnum);
2500 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2501 		if (write && chance(99, 100))
2502 			return 0;
2503 		if (chance(399, 400))
2504 			return 0;
2505 		ubifs_warn(c, "failing in log LEB %d", lnum);
2506 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2507 		if (write && chance(7, 8))
2508 			return 0;
2509 		if (chance(19, 20))
2510 			return 0;
2511 		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2512 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2513 		if (write && chance(1, 2))
2514 			return 0;
2515 		if (chance(9, 10))
2516 			return 0;
2517 		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2518 	} else if (lnum == c->ihead_lnum) {
2519 		if (chance(99, 100))
2520 			return 0;
2521 		ubifs_warn(c, "failing in index head LEB %d", lnum);
2522 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2523 		if (chance(9, 10))
2524 			return 0;
2525 		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2526 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2527 		   !ubifs_search_bud(c, lnum)) {
2528 		if (chance(19, 20))
2529 			return 0;
2530 		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2531 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2532 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2533 		if (chance(999, 1000))
2534 			return 0;
2535 		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2536 	} else {
2537 		if (chance(9999, 10000))
2538 			return 0;
2539 		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2540 	}
2541 
2542 	d->pc_happened = 1;
2543 	ubifs_warn(c, "========== Power cut emulated ==========");
2544 	dump_stack();
2545 	return 1;
2546 }
2547 
2548 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2549 			unsigned int len)
2550 {
2551 	unsigned int from, to, ffs = chance(1, 2);
2552 	unsigned char *p = (void *)buf;
2553 
2554 	from = prandom_u32() % len;
2555 	/* Corruption span max to end of write unit */
2556 	to = min(len, ALIGN(from + 1, c->max_write_size));
2557 
2558 	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2559 		   ffs ? "0xFFs" : "random data");
2560 
2561 	if (ffs)
2562 		memset(p + from, 0xFF, to - from);
2563 	else
2564 		prandom_bytes(p + from, to - from);
2565 
2566 	return to;
2567 }
2568 
2569 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2570 		  int offs, int len)
2571 {
2572 	int err, failing;
2573 
2574 	if (dbg_is_power_cut(c))
2575 		return -EROFS;
2576 
2577 	failing = power_cut_emulated(c, lnum, 1);
2578 	if (failing) {
2579 		len = corrupt_data(c, buf, len);
2580 		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2581 			   len, lnum, offs);
2582 	}
2583 	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2584 	if (err)
2585 		return err;
2586 	if (failing)
2587 		return -EROFS;
2588 	return 0;
2589 }
2590 
2591 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2592 		   int len)
2593 {
2594 	int err;
2595 
2596 	if (dbg_is_power_cut(c))
2597 		return -EROFS;
2598 	if (power_cut_emulated(c, lnum, 1))
2599 		return -EROFS;
2600 	err = ubi_leb_change(c->ubi, lnum, buf, len);
2601 	if (err)
2602 		return err;
2603 	if (power_cut_emulated(c, lnum, 1))
2604 		return -EROFS;
2605 	return 0;
2606 }
2607 
2608 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2609 {
2610 	int err;
2611 
2612 	if (dbg_is_power_cut(c))
2613 		return -EROFS;
2614 	if (power_cut_emulated(c, lnum, 0))
2615 		return -EROFS;
2616 	err = ubi_leb_unmap(c->ubi, lnum);
2617 	if (err)
2618 		return err;
2619 	if (power_cut_emulated(c, lnum, 0))
2620 		return -EROFS;
2621 	return 0;
2622 }
2623 
2624 int dbg_leb_map(struct ubifs_info *c, int lnum)
2625 {
2626 	int err;
2627 
2628 	if (dbg_is_power_cut(c))
2629 		return -EROFS;
2630 	if (power_cut_emulated(c, lnum, 0))
2631 		return -EROFS;
2632 	err = ubi_leb_map(c->ubi, lnum);
2633 	if (err)
2634 		return err;
2635 	if (power_cut_emulated(c, lnum, 0))
2636 		return -EROFS;
2637 	return 0;
2638 }
2639 
2640 /*
2641  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2642  * contain the stuff specific to particular file-system mounts.
2643  */
2644 static struct dentry *dfs_rootdir;
2645 
2646 static int dfs_file_open(struct inode *inode, struct file *file)
2647 {
2648 	file->private_data = inode->i_private;
2649 	return nonseekable_open(inode, file);
2650 }
2651 
2652 /**
2653  * provide_user_output - provide output to the user reading a debugfs file.
2654  * @val: boolean value for the answer
2655  * @u: the buffer to store the answer at
2656  * @count: size of the buffer
2657  * @ppos: position in the @u output buffer
2658  *
2659  * This is a simple helper function which stores @val boolean value in the user
2660  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2661  * bytes written to @u in case of success and a negative error code in case of
2662  * failure.
2663  */
2664 static int provide_user_output(int val, char __user *u, size_t count,
2665 			       loff_t *ppos)
2666 {
2667 	char buf[3];
2668 
2669 	if (val)
2670 		buf[0] = '1';
2671 	else
2672 		buf[0] = '0';
2673 	buf[1] = '\n';
2674 	buf[2] = 0x00;
2675 
2676 	return simple_read_from_buffer(u, count, ppos, buf, 2);
2677 }
2678 
2679 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2680 			     loff_t *ppos)
2681 {
2682 	struct dentry *dent = file->f_path.dentry;
2683 	struct ubifs_info *c = file->private_data;
2684 	struct ubifs_debug_info *d = c->dbg;
2685 	int val;
2686 
2687 	if (dent == d->dfs_chk_gen)
2688 		val = d->chk_gen;
2689 	else if (dent == d->dfs_chk_index)
2690 		val = d->chk_index;
2691 	else if (dent == d->dfs_chk_orph)
2692 		val = d->chk_orph;
2693 	else if (dent == d->dfs_chk_lprops)
2694 		val = d->chk_lprops;
2695 	else if (dent == d->dfs_chk_fs)
2696 		val = d->chk_fs;
2697 	else if (dent == d->dfs_tst_rcvry)
2698 		val = d->tst_rcvry;
2699 	else if (dent == d->dfs_ro_error)
2700 		val = c->ro_error;
2701 	else
2702 		return -EINVAL;
2703 
2704 	return provide_user_output(val, u, count, ppos);
2705 }
2706 
2707 /**
2708  * interpret_user_input - interpret user debugfs file input.
2709  * @u: user-provided buffer with the input
2710  * @count: buffer size
2711  *
2712  * This is a helper function which interpret user input to a boolean UBIFS
2713  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2714  * in case of failure.
2715  */
2716 static int interpret_user_input(const char __user *u, size_t count)
2717 {
2718 	size_t buf_size;
2719 	char buf[8];
2720 
2721 	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2722 	if (copy_from_user(buf, u, buf_size))
2723 		return -EFAULT;
2724 
2725 	if (buf[0] == '1')
2726 		return 1;
2727 	else if (buf[0] == '0')
2728 		return 0;
2729 
2730 	return -EINVAL;
2731 }
2732 
2733 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2734 			      size_t count, loff_t *ppos)
2735 {
2736 	struct ubifs_info *c = file->private_data;
2737 	struct ubifs_debug_info *d = c->dbg;
2738 	struct dentry *dent = file->f_path.dentry;
2739 	int val;
2740 
2741 	if (file->f_path.dentry == d->dfs_dump_lprops) {
2742 		ubifs_dump_lprops(c);
2743 		return count;
2744 	}
2745 	if (file->f_path.dentry == d->dfs_dump_budg) {
2746 		ubifs_dump_budg(c, &c->bi);
2747 		return count;
2748 	}
2749 	if (file->f_path.dentry == d->dfs_dump_tnc) {
2750 		mutex_lock(&c->tnc_mutex);
2751 		ubifs_dump_tnc(c);
2752 		mutex_unlock(&c->tnc_mutex);
2753 		return count;
2754 	}
2755 
2756 	val = interpret_user_input(u, count);
2757 	if (val < 0)
2758 		return val;
2759 
2760 	if (dent == d->dfs_chk_gen)
2761 		d->chk_gen = val;
2762 	else if (dent == d->dfs_chk_index)
2763 		d->chk_index = val;
2764 	else if (dent == d->dfs_chk_orph)
2765 		d->chk_orph = val;
2766 	else if (dent == d->dfs_chk_lprops)
2767 		d->chk_lprops = val;
2768 	else if (dent == d->dfs_chk_fs)
2769 		d->chk_fs = val;
2770 	else if (dent == d->dfs_tst_rcvry)
2771 		d->tst_rcvry = val;
2772 	else if (dent == d->dfs_ro_error)
2773 		c->ro_error = !!val;
2774 	else
2775 		return -EINVAL;
2776 
2777 	return count;
2778 }
2779 
2780 static const struct file_operations dfs_fops = {
2781 	.open = dfs_file_open,
2782 	.read = dfs_file_read,
2783 	.write = dfs_file_write,
2784 	.owner = THIS_MODULE,
2785 	.llseek = no_llseek,
2786 };
2787 
2788 /**
2789  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2790  * @c: UBIFS file-system description object
2791  *
2792  * This function creates all debugfs files for this instance of UBIFS.
2793  *
2794  * Note, the only reason we have not merged this function with the
2795  * 'ubifs_debugging_init()' function is because it is better to initialize
2796  * debugfs interfaces at the very end of the mount process, and remove them at
2797  * the very beginning of the mount process.
2798  */
2799 void dbg_debugfs_init_fs(struct ubifs_info *c)
2800 {
2801 	int n;
2802 	const char *fname;
2803 	struct ubifs_debug_info *d = c->dbg;
2804 
2805 	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2806 		     c->vi.ubi_num, c->vi.vol_id);
2807 	if (n == UBIFS_DFS_DIR_LEN) {
2808 		/* The array size is too small */
2809 		return;
2810 	}
2811 
2812 	fname = d->dfs_dir_name;
2813 	d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
2814 
2815 	fname = "dump_lprops";
2816 	d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2817 						 &dfs_fops);
2818 
2819 	fname = "dump_budg";
2820 	d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2821 					       &dfs_fops);
2822 
2823 	fname = "dump_tnc";
2824 	d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2825 					      &dfs_fops);
2826 
2827 	fname = "chk_general";
2828 	d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2829 					     d->dfs_dir, c, &dfs_fops);
2830 
2831 	fname = "chk_index";
2832 	d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2833 					       d->dfs_dir, c, &dfs_fops);
2834 
2835 	fname = "chk_orphans";
2836 	d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2837 					      d->dfs_dir, c, &dfs_fops);
2838 
2839 	fname = "chk_lprops";
2840 	d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2841 						d->dfs_dir, c, &dfs_fops);
2842 
2843 	fname = "chk_fs";
2844 	d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2845 					    d->dfs_dir, c, &dfs_fops);
2846 
2847 	fname = "tst_recovery";
2848 	d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2849 					       d->dfs_dir, c, &dfs_fops);
2850 
2851 	fname = "ro_error";
2852 	d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2853 					      d->dfs_dir, c, &dfs_fops);
2854 }
2855 
2856 /**
2857  * dbg_debugfs_exit_fs - remove all debugfs files.
2858  * @c: UBIFS file-system description object
2859  */
2860 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2861 {
2862 	debugfs_remove_recursive(c->dbg->dfs_dir);
2863 }
2864 
2865 struct ubifs_global_debug_info ubifs_dbg;
2866 
2867 static struct dentry *dfs_chk_gen;
2868 static struct dentry *dfs_chk_index;
2869 static struct dentry *dfs_chk_orph;
2870 static struct dentry *dfs_chk_lprops;
2871 static struct dentry *dfs_chk_fs;
2872 static struct dentry *dfs_tst_rcvry;
2873 
2874 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2875 				    size_t count, loff_t *ppos)
2876 {
2877 	struct dentry *dent = file->f_path.dentry;
2878 	int val;
2879 
2880 	if (dent == dfs_chk_gen)
2881 		val = ubifs_dbg.chk_gen;
2882 	else if (dent == dfs_chk_index)
2883 		val = ubifs_dbg.chk_index;
2884 	else if (dent == dfs_chk_orph)
2885 		val = ubifs_dbg.chk_orph;
2886 	else if (dent == dfs_chk_lprops)
2887 		val = ubifs_dbg.chk_lprops;
2888 	else if (dent == dfs_chk_fs)
2889 		val = ubifs_dbg.chk_fs;
2890 	else if (dent == dfs_tst_rcvry)
2891 		val = ubifs_dbg.tst_rcvry;
2892 	else
2893 		return -EINVAL;
2894 
2895 	return provide_user_output(val, u, count, ppos);
2896 }
2897 
2898 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2899 				     size_t count, loff_t *ppos)
2900 {
2901 	struct dentry *dent = file->f_path.dentry;
2902 	int val;
2903 
2904 	val = interpret_user_input(u, count);
2905 	if (val < 0)
2906 		return val;
2907 
2908 	if (dent == dfs_chk_gen)
2909 		ubifs_dbg.chk_gen = val;
2910 	else if (dent == dfs_chk_index)
2911 		ubifs_dbg.chk_index = val;
2912 	else if (dent == dfs_chk_orph)
2913 		ubifs_dbg.chk_orph = val;
2914 	else if (dent == dfs_chk_lprops)
2915 		ubifs_dbg.chk_lprops = val;
2916 	else if (dent == dfs_chk_fs)
2917 		ubifs_dbg.chk_fs = val;
2918 	else if (dent == dfs_tst_rcvry)
2919 		ubifs_dbg.tst_rcvry = val;
2920 	else
2921 		return -EINVAL;
2922 
2923 	return count;
2924 }
2925 
2926 static const struct file_operations dfs_global_fops = {
2927 	.read = dfs_global_file_read,
2928 	.write = dfs_global_file_write,
2929 	.owner = THIS_MODULE,
2930 	.llseek = no_llseek,
2931 };
2932 
2933 /**
2934  * dbg_debugfs_init - initialize debugfs file-system.
2935  *
2936  * UBIFS uses debugfs file-system to expose various debugging knobs to
2937  * user-space. This function creates "ubifs" directory in the debugfs
2938  * file-system.
2939  */
2940 void dbg_debugfs_init(void)
2941 {
2942 	const char *fname;
2943 
2944 	fname = "ubifs";
2945 	dfs_rootdir = debugfs_create_dir(fname, NULL);
2946 
2947 	fname = "chk_general";
2948 	dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2949 					  NULL, &dfs_global_fops);
2950 
2951 	fname = "chk_index";
2952 	dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2953 					    dfs_rootdir, NULL, &dfs_global_fops);
2954 
2955 	fname = "chk_orphans";
2956 	dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2957 					   dfs_rootdir, NULL, &dfs_global_fops);
2958 
2959 	fname = "chk_lprops";
2960 	dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2961 					     dfs_rootdir, NULL, &dfs_global_fops);
2962 
2963 	fname = "chk_fs";
2964 	dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2965 					 NULL, &dfs_global_fops);
2966 
2967 	fname = "tst_recovery";
2968 	dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2969 					    dfs_rootdir, NULL, &dfs_global_fops);
2970 }
2971 
2972 /**
2973  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2974  */
2975 void dbg_debugfs_exit(void)
2976 {
2977 	debugfs_remove_recursive(dfs_rootdir);
2978 }
2979 
2980 void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
2981 			 const char *file, int line)
2982 {
2983 	ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
2984 
2985 	switch (c->assert_action) {
2986 		case ASSACT_PANIC:
2987 		BUG();
2988 		break;
2989 
2990 		case ASSACT_RO:
2991 		ubifs_ro_mode(c, -EINVAL);
2992 		break;
2993 
2994 		case ASSACT_REPORT:
2995 		default:
2996 		dump_stack();
2997 		break;
2998 
2999 	}
3000 }
3001 
3002 /**
3003  * ubifs_debugging_init - initialize UBIFS debugging.
3004  * @c: UBIFS file-system description object
3005  *
3006  * This function initializes debugging-related data for the file system.
3007  * Returns zero in case of success and a negative error code in case of
3008  * failure.
3009  */
3010 int ubifs_debugging_init(struct ubifs_info *c)
3011 {
3012 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3013 	if (!c->dbg)
3014 		return -ENOMEM;
3015 
3016 	return 0;
3017 }
3018 
3019 /**
3020  * ubifs_debugging_exit - free debugging data.
3021  * @c: UBIFS file-system description object
3022  */
3023 void ubifs_debugging_exit(struct ubifs_info *c)
3024 {
3025 	kfree(c->dbg);
3026 }
3027