1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements most of the debugging stuff which is compiled in only 25 * when it is enabled. But some debugging check functions are implemented in 26 * corresponding subsystem, just because they are closely related and utilize 27 * various local functions of those subsystems. 28 */ 29 30 #define UBIFS_DBG_PRESERVE_UBI 31 32 #include "ubifs.h" 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/debugfs.h> 36 #include <linux/math64.h> 37 38 #ifdef CONFIG_UBIFS_FS_DEBUG 39 40 DEFINE_SPINLOCK(dbg_lock); 41 42 static char dbg_key_buf0[128]; 43 static char dbg_key_buf1[128]; 44 45 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT; 46 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT; 47 unsigned int ubifs_tst_flags; 48 49 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR); 50 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR); 51 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR); 52 53 MODULE_PARM_DESC(debug_msgs, "Debug message type flags"); 54 MODULE_PARM_DESC(debug_chks, "Debug check flags"); 55 MODULE_PARM_DESC(debug_tsts, "Debug special test flags"); 56 57 static const char *get_key_fmt(int fmt) 58 { 59 switch (fmt) { 60 case UBIFS_SIMPLE_KEY_FMT: 61 return "simple"; 62 default: 63 return "unknown/invalid format"; 64 } 65 } 66 67 static const char *get_key_hash(int hash) 68 { 69 switch (hash) { 70 case UBIFS_KEY_HASH_R5: 71 return "R5"; 72 case UBIFS_KEY_HASH_TEST: 73 return "test"; 74 default: 75 return "unknown/invalid name hash"; 76 } 77 } 78 79 static const char *get_key_type(int type) 80 { 81 switch (type) { 82 case UBIFS_INO_KEY: 83 return "inode"; 84 case UBIFS_DENT_KEY: 85 return "direntry"; 86 case UBIFS_XENT_KEY: 87 return "xentry"; 88 case UBIFS_DATA_KEY: 89 return "data"; 90 case UBIFS_TRUN_KEY: 91 return "truncate"; 92 default: 93 return "unknown/invalid key"; 94 } 95 } 96 97 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key, 98 char *buffer) 99 { 100 char *p = buffer; 101 int type = key_type(c, key); 102 103 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 104 switch (type) { 105 case UBIFS_INO_KEY: 106 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key), 107 get_key_type(type)); 108 break; 109 case UBIFS_DENT_KEY: 110 case UBIFS_XENT_KEY: 111 sprintf(p, "(%lu, %s, %#08x)", 112 (unsigned long)key_inum(c, key), 113 get_key_type(type), key_hash(c, key)); 114 break; 115 case UBIFS_DATA_KEY: 116 sprintf(p, "(%lu, %s, %u)", 117 (unsigned long)key_inum(c, key), 118 get_key_type(type), key_block(c, key)); 119 break; 120 case UBIFS_TRUN_KEY: 121 sprintf(p, "(%lu, %s)", 122 (unsigned long)key_inum(c, key), 123 get_key_type(type)); 124 break; 125 default: 126 sprintf(p, "(bad key type: %#08x, %#08x)", 127 key->u32[0], key->u32[1]); 128 } 129 } else 130 sprintf(p, "bad key format %d", c->key_fmt); 131 } 132 133 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key) 134 { 135 /* dbg_lock must be held */ 136 sprintf_key(c, key, dbg_key_buf0); 137 return dbg_key_buf0; 138 } 139 140 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key) 141 { 142 /* dbg_lock must be held */ 143 sprintf_key(c, key, dbg_key_buf1); 144 return dbg_key_buf1; 145 } 146 147 const char *dbg_ntype(int type) 148 { 149 switch (type) { 150 case UBIFS_PAD_NODE: 151 return "padding node"; 152 case UBIFS_SB_NODE: 153 return "superblock node"; 154 case UBIFS_MST_NODE: 155 return "master node"; 156 case UBIFS_REF_NODE: 157 return "reference node"; 158 case UBIFS_INO_NODE: 159 return "inode node"; 160 case UBIFS_DENT_NODE: 161 return "direntry node"; 162 case UBIFS_XENT_NODE: 163 return "xentry node"; 164 case UBIFS_DATA_NODE: 165 return "data node"; 166 case UBIFS_TRUN_NODE: 167 return "truncate node"; 168 case UBIFS_IDX_NODE: 169 return "indexing node"; 170 case UBIFS_CS_NODE: 171 return "commit start node"; 172 case UBIFS_ORPH_NODE: 173 return "orphan node"; 174 default: 175 return "unknown node"; 176 } 177 } 178 179 static const char *dbg_gtype(int type) 180 { 181 switch (type) { 182 case UBIFS_NO_NODE_GROUP: 183 return "no node group"; 184 case UBIFS_IN_NODE_GROUP: 185 return "in node group"; 186 case UBIFS_LAST_OF_NODE_GROUP: 187 return "last of node group"; 188 default: 189 return "unknown"; 190 } 191 } 192 193 const char *dbg_cstate(int cmt_state) 194 { 195 switch (cmt_state) { 196 case COMMIT_RESTING: 197 return "commit resting"; 198 case COMMIT_BACKGROUND: 199 return "background commit requested"; 200 case COMMIT_REQUIRED: 201 return "commit required"; 202 case COMMIT_RUNNING_BACKGROUND: 203 return "BACKGROUND commit running"; 204 case COMMIT_RUNNING_REQUIRED: 205 return "commit running and required"; 206 case COMMIT_BROKEN: 207 return "broken commit"; 208 default: 209 return "unknown commit state"; 210 } 211 } 212 213 const char *dbg_jhead(int jhead) 214 { 215 switch (jhead) { 216 case GCHD: 217 return "0 (GC)"; 218 case BASEHD: 219 return "1 (base)"; 220 case DATAHD: 221 return "2 (data)"; 222 default: 223 return "unknown journal head"; 224 } 225 } 226 227 static void dump_ch(const struct ubifs_ch *ch) 228 { 229 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic)); 230 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc)); 231 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type, 232 dbg_ntype(ch->node_type)); 233 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type, 234 dbg_gtype(ch->group_type)); 235 printk(KERN_DEBUG "\tsqnum %llu\n", 236 (unsigned long long)le64_to_cpu(ch->sqnum)); 237 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len)); 238 } 239 240 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode) 241 { 242 const struct ubifs_inode *ui = ubifs_inode(inode); 243 244 printk(KERN_DEBUG "Dump in-memory inode:"); 245 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino); 246 printk(KERN_DEBUG "\tsize %llu\n", 247 (unsigned long long)i_size_read(inode)); 248 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink); 249 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid); 250 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid); 251 printk(KERN_DEBUG "\tatime %u.%u\n", 252 (unsigned int)inode->i_atime.tv_sec, 253 (unsigned int)inode->i_atime.tv_nsec); 254 printk(KERN_DEBUG "\tmtime %u.%u\n", 255 (unsigned int)inode->i_mtime.tv_sec, 256 (unsigned int)inode->i_mtime.tv_nsec); 257 printk(KERN_DEBUG "\tctime %u.%u\n", 258 (unsigned int)inode->i_ctime.tv_sec, 259 (unsigned int)inode->i_ctime.tv_nsec); 260 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum); 261 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size); 262 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt); 263 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names); 264 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty); 265 printk(KERN_DEBUG "\txattr %u\n", ui->xattr); 266 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr); 267 printk(KERN_DEBUG "\tsynced_i_size %llu\n", 268 (unsigned long long)ui->synced_i_size); 269 printk(KERN_DEBUG "\tui_size %llu\n", 270 (unsigned long long)ui->ui_size); 271 printk(KERN_DEBUG "\tflags %d\n", ui->flags); 272 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type); 273 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read); 274 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row); 275 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len); 276 } 277 278 void dbg_dump_node(const struct ubifs_info *c, const void *node) 279 { 280 int i, n; 281 union ubifs_key key; 282 const struct ubifs_ch *ch = node; 283 284 if (dbg_failure_mode) 285 return; 286 287 /* If the magic is incorrect, just hexdump the first bytes */ 288 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 289 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ); 290 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 291 (void *)node, UBIFS_CH_SZ, 1); 292 return; 293 } 294 295 spin_lock(&dbg_lock); 296 dump_ch(node); 297 298 switch (ch->node_type) { 299 case UBIFS_PAD_NODE: 300 { 301 const struct ubifs_pad_node *pad = node; 302 303 printk(KERN_DEBUG "\tpad_len %u\n", 304 le32_to_cpu(pad->pad_len)); 305 break; 306 } 307 case UBIFS_SB_NODE: 308 { 309 const struct ubifs_sb_node *sup = node; 310 unsigned int sup_flags = le32_to_cpu(sup->flags); 311 312 printk(KERN_DEBUG "\tkey_hash %d (%s)\n", 313 (int)sup->key_hash, get_key_hash(sup->key_hash)); 314 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n", 315 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 316 printk(KERN_DEBUG "\tflags %#x\n", sup_flags); 317 printk(KERN_DEBUG "\t big_lpt %u\n", 318 !!(sup_flags & UBIFS_FLG_BIGLPT)); 319 printk(KERN_DEBUG "\tmin_io_size %u\n", 320 le32_to_cpu(sup->min_io_size)); 321 printk(KERN_DEBUG "\tleb_size %u\n", 322 le32_to_cpu(sup->leb_size)); 323 printk(KERN_DEBUG "\tleb_cnt %u\n", 324 le32_to_cpu(sup->leb_cnt)); 325 printk(KERN_DEBUG "\tmax_leb_cnt %u\n", 326 le32_to_cpu(sup->max_leb_cnt)); 327 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n", 328 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 329 printk(KERN_DEBUG "\tlog_lebs %u\n", 330 le32_to_cpu(sup->log_lebs)); 331 printk(KERN_DEBUG "\tlpt_lebs %u\n", 332 le32_to_cpu(sup->lpt_lebs)); 333 printk(KERN_DEBUG "\torph_lebs %u\n", 334 le32_to_cpu(sup->orph_lebs)); 335 printk(KERN_DEBUG "\tjhead_cnt %u\n", 336 le32_to_cpu(sup->jhead_cnt)); 337 printk(KERN_DEBUG "\tfanout %u\n", 338 le32_to_cpu(sup->fanout)); 339 printk(KERN_DEBUG "\tlsave_cnt %u\n", 340 le32_to_cpu(sup->lsave_cnt)); 341 printk(KERN_DEBUG "\tdefault_compr %u\n", 342 (int)le16_to_cpu(sup->default_compr)); 343 printk(KERN_DEBUG "\trp_size %llu\n", 344 (unsigned long long)le64_to_cpu(sup->rp_size)); 345 printk(KERN_DEBUG "\trp_uid %u\n", 346 le32_to_cpu(sup->rp_uid)); 347 printk(KERN_DEBUG "\trp_gid %u\n", 348 le32_to_cpu(sup->rp_gid)); 349 printk(KERN_DEBUG "\tfmt_version %u\n", 350 le32_to_cpu(sup->fmt_version)); 351 printk(KERN_DEBUG "\ttime_gran %u\n", 352 le32_to_cpu(sup->time_gran)); 353 printk(KERN_DEBUG "\tUUID %02X%02X%02X%02X-%02X%02X" 354 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n", 355 sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3], 356 sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7], 357 sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11], 358 sup->uuid[12], sup->uuid[13], sup->uuid[14], 359 sup->uuid[15]); 360 break; 361 } 362 case UBIFS_MST_NODE: 363 { 364 const struct ubifs_mst_node *mst = node; 365 366 printk(KERN_DEBUG "\thighest_inum %llu\n", 367 (unsigned long long)le64_to_cpu(mst->highest_inum)); 368 printk(KERN_DEBUG "\tcommit number %llu\n", 369 (unsigned long long)le64_to_cpu(mst->cmt_no)); 370 printk(KERN_DEBUG "\tflags %#x\n", 371 le32_to_cpu(mst->flags)); 372 printk(KERN_DEBUG "\tlog_lnum %u\n", 373 le32_to_cpu(mst->log_lnum)); 374 printk(KERN_DEBUG "\troot_lnum %u\n", 375 le32_to_cpu(mst->root_lnum)); 376 printk(KERN_DEBUG "\troot_offs %u\n", 377 le32_to_cpu(mst->root_offs)); 378 printk(KERN_DEBUG "\troot_len %u\n", 379 le32_to_cpu(mst->root_len)); 380 printk(KERN_DEBUG "\tgc_lnum %u\n", 381 le32_to_cpu(mst->gc_lnum)); 382 printk(KERN_DEBUG "\tihead_lnum %u\n", 383 le32_to_cpu(mst->ihead_lnum)); 384 printk(KERN_DEBUG "\tihead_offs %u\n", 385 le32_to_cpu(mst->ihead_offs)); 386 printk(KERN_DEBUG "\tindex_size %llu\n", 387 (unsigned long long)le64_to_cpu(mst->index_size)); 388 printk(KERN_DEBUG "\tlpt_lnum %u\n", 389 le32_to_cpu(mst->lpt_lnum)); 390 printk(KERN_DEBUG "\tlpt_offs %u\n", 391 le32_to_cpu(mst->lpt_offs)); 392 printk(KERN_DEBUG "\tnhead_lnum %u\n", 393 le32_to_cpu(mst->nhead_lnum)); 394 printk(KERN_DEBUG "\tnhead_offs %u\n", 395 le32_to_cpu(mst->nhead_offs)); 396 printk(KERN_DEBUG "\tltab_lnum %u\n", 397 le32_to_cpu(mst->ltab_lnum)); 398 printk(KERN_DEBUG "\tltab_offs %u\n", 399 le32_to_cpu(mst->ltab_offs)); 400 printk(KERN_DEBUG "\tlsave_lnum %u\n", 401 le32_to_cpu(mst->lsave_lnum)); 402 printk(KERN_DEBUG "\tlsave_offs %u\n", 403 le32_to_cpu(mst->lsave_offs)); 404 printk(KERN_DEBUG "\tlscan_lnum %u\n", 405 le32_to_cpu(mst->lscan_lnum)); 406 printk(KERN_DEBUG "\tleb_cnt %u\n", 407 le32_to_cpu(mst->leb_cnt)); 408 printk(KERN_DEBUG "\tempty_lebs %u\n", 409 le32_to_cpu(mst->empty_lebs)); 410 printk(KERN_DEBUG "\tidx_lebs %u\n", 411 le32_to_cpu(mst->idx_lebs)); 412 printk(KERN_DEBUG "\ttotal_free %llu\n", 413 (unsigned long long)le64_to_cpu(mst->total_free)); 414 printk(KERN_DEBUG "\ttotal_dirty %llu\n", 415 (unsigned long long)le64_to_cpu(mst->total_dirty)); 416 printk(KERN_DEBUG "\ttotal_used %llu\n", 417 (unsigned long long)le64_to_cpu(mst->total_used)); 418 printk(KERN_DEBUG "\ttotal_dead %llu\n", 419 (unsigned long long)le64_to_cpu(mst->total_dead)); 420 printk(KERN_DEBUG "\ttotal_dark %llu\n", 421 (unsigned long long)le64_to_cpu(mst->total_dark)); 422 break; 423 } 424 case UBIFS_REF_NODE: 425 { 426 const struct ubifs_ref_node *ref = node; 427 428 printk(KERN_DEBUG "\tlnum %u\n", 429 le32_to_cpu(ref->lnum)); 430 printk(KERN_DEBUG "\toffs %u\n", 431 le32_to_cpu(ref->offs)); 432 printk(KERN_DEBUG "\tjhead %u\n", 433 le32_to_cpu(ref->jhead)); 434 break; 435 } 436 case UBIFS_INO_NODE: 437 { 438 const struct ubifs_ino_node *ino = node; 439 440 key_read(c, &ino->key, &key); 441 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 442 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", 443 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 444 printk(KERN_DEBUG "\tsize %llu\n", 445 (unsigned long long)le64_to_cpu(ino->size)); 446 printk(KERN_DEBUG "\tnlink %u\n", 447 le32_to_cpu(ino->nlink)); 448 printk(KERN_DEBUG "\tatime %lld.%u\n", 449 (long long)le64_to_cpu(ino->atime_sec), 450 le32_to_cpu(ino->atime_nsec)); 451 printk(KERN_DEBUG "\tmtime %lld.%u\n", 452 (long long)le64_to_cpu(ino->mtime_sec), 453 le32_to_cpu(ino->mtime_nsec)); 454 printk(KERN_DEBUG "\tctime %lld.%u\n", 455 (long long)le64_to_cpu(ino->ctime_sec), 456 le32_to_cpu(ino->ctime_nsec)); 457 printk(KERN_DEBUG "\tuid %u\n", 458 le32_to_cpu(ino->uid)); 459 printk(KERN_DEBUG "\tgid %u\n", 460 le32_to_cpu(ino->gid)); 461 printk(KERN_DEBUG "\tmode %u\n", 462 le32_to_cpu(ino->mode)); 463 printk(KERN_DEBUG "\tflags %#x\n", 464 le32_to_cpu(ino->flags)); 465 printk(KERN_DEBUG "\txattr_cnt %u\n", 466 le32_to_cpu(ino->xattr_cnt)); 467 printk(KERN_DEBUG "\txattr_size %u\n", 468 le32_to_cpu(ino->xattr_size)); 469 printk(KERN_DEBUG "\txattr_names %u\n", 470 le32_to_cpu(ino->xattr_names)); 471 printk(KERN_DEBUG "\tcompr_type %#x\n", 472 (int)le16_to_cpu(ino->compr_type)); 473 printk(KERN_DEBUG "\tdata len %u\n", 474 le32_to_cpu(ino->data_len)); 475 break; 476 } 477 case UBIFS_DENT_NODE: 478 case UBIFS_XENT_NODE: 479 { 480 const struct ubifs_dent_node *dent = node; 481 int nlen = le16_to_cpu(dent->nlen); 482 483 key_read(c, &dent->key, &key); 484 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 485 printk(KERN_DEBUG "\tinum %llu\n", 486 (unsigned long long)le64_to_cpu(dent->inum)); 487 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type); 488 printk(KERN_DEBUG "\tnlen %d\n", nlen); 489 printk(KERN_DEBUG "\tname "); 490 491 if (nlen > UBIFS_MAX_NLEN) 492 printk(KERN_DEBUG "(bad name length, not printing, " 493 "bad or corrupted node)"); 494 else { 495 for (i = 0; i < nlen && dent->name[i]; i++) 496 printk(KERN_CONT "%c", dent->name[i]); 497 } 498 printk(KERN_CONT "\n"); 499 500 break; 501 } 502 case UBIFS_DATA_NODE: 503 { 504 const struct ubifs_data_node *dn = node; 505 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 506 507 key_read(c, &dn->key, &key); 508 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 509 printk(KERN_DEBUG "\tsize %u\n", 510 le32_to_cpu(dn->size)); 511 printk(KERN_DEBUG "\tcompr_typ %d\n", 512 (int)le16_to_cpu(dn->compr_type)); 513 printk(KERN_DEBUG "\tdata size %d\n", 514 dlen); 515 printk(KERN_DEBUG "\tdata:\n"); 516 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1, 517 (void *)&dn->data, dlen, 0); 518 break; 519 } 520 case UBIFS_TRUN_NODE: 521 { 522 const struct ubifs_trun_node *trun = node; 523 524 printk(KERN_DEBUG "\tinum %u\n", 525 le32_to_cpu(trun->inum)); 526 printk(KERN_DEBUG "\told_size %llu\n", 527 (unsigned long long)le64_to_cpu(trun->old_size)); 528 printk(KERN_DEBUG "\tnew_size %llu\n", 529 (unsigned long long)le64_to_cpu(trun->new_size)); 530 break; 531 } 532 case UBIFS_IDX_NODE: 533 { 534 const struct ubifs_idx_node *idx = node; 535 536 n = le16_to_cpu(idx->child_cnt); 537 printk(KERN_DEBUG "\tchild_cnt %d\n", n); 538 printk(KERN_DEBUG "\tlevel %d\n", 539 (int)le16_to_cpu(idx->level)); 540 printk(KERN_DEBUG "\tBranches:\n"); 541 542 for (i = 0; i < n && i < c->fanout - 1; i++) { 543 const struct ubifs_branch *br; 544 545 br = ubifs_idx_branch(c, idx, i); 546 key_read(c, &br->key, &key); 547 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n", 548 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 549 le32_to_cpu(br->len), DBGKEY(&key)); 550 } 551 break; 552 } 553 case UBIFS_CS_NODE: 554 break; 555 case UBIFS_ORPH_NODE: 556 { 557 const struct ubifs_orph_node *orph = node; 558 559 printk(KERN_DEBUG "\tcommit number %llu\n", 560 (unsigned long long) 561 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 562 printk(KERN_DEBUG "\tlast node flag %llu\n", 563 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 564 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 565 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n); 566 for (i = 0; i < n; i++) 567 printk(KERN_DEBUG "\t ino %llu\n", 568 (unsigned long long)le64_to_cpu(orph->inos[i])); 569 break; 570 } 571 default: 572 printk(KERN_DEBUG "node type %d was not recognized\n", 573 (int)ch->node_type); 574 } 575 spin_unlock(&dbg_lock); 576 } 577 578 void dbg_dump_budget_req(const struct ubifs_budget_req *req) 579 { 580 spin_lock(&dbg_lock); 581 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n", 582 req->new_ino, req->dirtied_ino); 583 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n", 584 req->new_ino_d, req->dirtied_ino_d); 585 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n", 586 req->new_page, req->dirtied_page); 587 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n", 588 req->new_dent, req->mod_dent); 589 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth); 590 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n", 591 req->data_growth, req->dd_growth); 592 spin_unlock(&dbg_lock); 593 } 594 595 void dbg_dump_lstats(const struct ubifs_lp_stats *lst) 596 { 597 spin_lock(&dbg_lock); 598 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, " 599 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs); 600 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, " 601 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free, 602 lst->total_dirty); 603 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, " 604 "total_dead %lld\n", lst->total_used, lst->total_dark, 605 lst->total_dead); 606 spin_unlock(&dbg_lock); 607 } 608 609 void dbg_dump_budg(struct ubifs_info *c) 610 { 611 int i; 612 struct rb_node *rb; 613 struct ubifs_bud *bud; 614 struct ubifs_gced_idx_leb *idx_gc; 615 long long available, outstanding, free; 616 617 ubifs_assert(spin_is_locked(&c->space_lock)); 618 spin_lock(&dbg_lock); 619 printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, " 620 "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid, 621 c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth); 622 printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, " 623 "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth, 624 c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth, 625 c->freeable_cnt); 626 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, " 627 "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs, 628 c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt); 629 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, " 630 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt), 631 atomic_long_read(&c->dirty_zn_cnt), 632 atomic_long_read(&c->clean_zn_cnt)); 633 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 634 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 635 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n", 636 c->gc_lnum, c->ihead_lnum); 637 /* If we are in R/O mode, journal heads do not exist */ 638 if (c->jheads) 639 for (i = 0; i < c->jhead_cnt; i++) 640 printk(KERN_DEBUG "\tjhead %s\t LEB %d\n", 641 dbg_jhead(c->jheads[i].wbuf.jhead), 642 c->jheads[i].wbuf.lnum); 643 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 644 bud = rb_entry(rb, struct ubifs_bud, rb); 645 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum); 646 } 647 list_for_each_entry(bud, &c->old_buds, list) 648 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum); 649 list_for_each_entry(idx_gc, &c->idx_gc, list) 650 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n", 651 idx_gc->lnum, idx_gc->unmap); 652 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state); 653 654 /* Print budgeting predictions */ 655 available = ubifs_calc_available(c, c->min_idx_lebs); 656 outstanding = c->budg_data_growth + c->budg_dd_growth; 657 free = ubifs_get_free_space_nolock(c); 658 printk(KERN_DEBUG "Budgeting predictions:\n"); 659 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n", 660 available, outstanding, free); 661 spin_unlock(&dbg_lock); 662 } 663 664 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 665 { 666 int i, spc, dark = 0, dead = 0; 667 struct rb_node *rb; 668 struct ubifs_bud *bud; 669 670 spc = lp->free + lp->dirty; 671 if (spc < c->dead_wm) 672 dead = spc; 673 else 674 dark = ubifs_calc_dark(c, spc); 675 676 if (lp->flags & LPROPS_INDEX) 677 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d " 678 "free + dirty %-8d flags %#x (", lp->lnum, lp->free, 679 lp->dirty, c->leb_size - spc, spc, lp->flags); 680 else 681 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d " 682 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d " 683 "flags %#-4x (", lp->lnum, lp->free, lp->dirty, 684 c->leb_size - spc, spc, dark, dead, 685 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 686 687 if (lp->flags & LPROPS_TAKEN) { 688 if (lp->flags & LPROPS_INDEX) 689 printk(KERN_CONT "index, taken"); 690 else 691 printk(KERN_CONT "taken"); 692 } else { 693 const char *s; 694 695 if (lp->flags & LPROPS_INDEX) { 696 switch (lp->flags & LPROPS_CAT_MASK) { 697 case LPROPS_DIRTY_IDX: 698 s = "dirty index"; 699 break; 700 case LPROPS_FRDI_IDX: 701 s = "freeable index"; 702 break; 703 default: 704 s = "index"; 705 } 706 } else { 707 switch (lp->flags & LPROPS_CAT_MASK) { 708 case LPROPS_UNCAT: 709 s = "not categorized"; 710 break; 711 case LPROPS_DIRTY: 712 s = "dirty"; 713 break; 714 case LPROPS_FREE: 715 s = "free"; 716 break; 717 case LPROPS_EMPTY: 718 s = "empty"; 719 break; 720 case LPROPS_FREEABLE: 721 s = "freeable"; 722 break; 723 default: 724 s = NULL; 725 break; 726 } 727 } 728 printk(KERN_CONT "%s", s); 729 } 730 731 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 732 bud = rb_entry(rb, struct ubifs_bud, rb); 733 if (bud->lnum == lp->lnum) { 734 int head = 0; 735 for (i = 0; i < c->jhead_cnt; i++) { 736 if (lp->lnum == c->jheads[i].wbuf.lnum) { 737 printk(KERN_CONT ", jhead %s", 738 dbg_jhead(i)); 739 head = 1; 740 } 741 } 742 if (!head) 743 printk(KERN_CONT ", bud of jhead %s", 744 dbg_jhead(bud->jhead)); 745 } 746 } 747 if (lp->lnum == c->gc_lnum) 748 printk(KERN_CONT ", GC LEB"); 749 printk(KERN_CONT ")\n"); 750 } 751 752 void dbg_dump_lprops(struct ubifs_info *c) 753 { 754 int lnum, err; 755 struct ubifs_lprops lp; 756 struct ubifs_lp_stats lst; 757 758 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n", 759 current->pid); 760 ubifs_get_lp_stats(c, &lst); 761 dbg_dump_lstats(&lst); 762 763 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 764 err = ubifs_read_one_lp(c, lnum, &lp); 765 if (err) 766 ubifs_err("cannot read lprops for LEB %d", lnum); 767 768 dbg_dump_lprop(c, &lp); 769 } 770 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n", 771 current->pid); 772 } 773 774 void dbg_dump_lpt_info(struct ubifs_info *c) 775 { 776 int i; 777 778 spin_lock(&dbg_lock); 779 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid); 780 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz); 781 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz); 782 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz); 783 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz); 784 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz); 785 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt); 786 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght); 787 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt); 788 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt); 789 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 790 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 791 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt); 792 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits); 793 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 794 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 795 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 796 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits); 797 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits); 798 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 799 printk(KERN_DEBUG "\tLPT head is at %d:%d\n", 800 c->nhead_lnum, c->nhead_offs); 801 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", 802 c->ltab_lnum, c->ltab_offs); 803 if (c->big_lpt) 804 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n", 805 c->lsave_lnum, c->lsave_offs); 806 for (i = 0; i < c->lpt_lebs; i++) 807 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d " 808 "cmt %d\n", i + c->lpt_first, c->ltab[i].free, 809 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt); 810 spin_unlock(&dbg_lock); 811 } 812 813 void dbg_dump_leb(const struct ubifs_info *c, int lnum) 814 { 815 struct ubifs_scan_leb *sleb; 816 struct ubifs_scan_node *snod; 817 818 if (dbg_failure_mode) 819 return; 820 821 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n", 822 current->pid, lnum); 823 sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0); 824 if (IS_ERR(sleb)) { 825 ubifs_err("scan error %d", (int)PTR_ERR(sleb)); 826 return; 827 } 828 829 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum, 830 sleb->nodes_cnt, sleb->endpt); 831 832 list_for_each_entry(snod, &sleb->nodes, list) { 833 cond_resched(); 834 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum, 835 snod->offs, snod->len); 836 dbg_dump_node(c, snod->node); 837 } 838 839 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n", 840 current->pid, lnum); 841 ubifs_scan_destroy(sleb); 842 return; 843 } 844 845 void dbg_dump_znode(const struct ubifs_info *c, 846 const struct ubifs_znode *znode) 847 { 848 int n; 849 const struct ubifs_zbranch *zbr; 850 851 spin_lock(&dbg_lock); 852 if (znode->parent) 853 zbr = &znode->parent->zbranch[znode->iip]; 854 else 855 zbr = &c->zroot; 856 857 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d" 858 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs, 859 zbr->len, znode->parent, znode->iip, znode->level, 860 znode->child_cnt, znode->flags); 861 862 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 863 spin_unlock(&dbg_lock); 864 return; 865 } 866 867 printk(KERN_DEBUG "zbranches:\n"); 868 for (n = 0; n < znode->child_cnt; n++) { 869 zbr = &znode->zbranch[n]; 870 if (znode->level > 0) 871 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key " 872 "%s\n", n, zbr->znode, zbr->lnum, 873 zbr->offs, zbr->len, 874 DBGKEY(&zbr->key)); 875 else 876 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key " 877 "%s\n", n, zbr->znode, zbr->lnum, 878 zbr->offs, zbr->len, 879 DBGKEY(&zbr->key)); 880 } 881 spin_unlock(&dbg_lock); 882 } 883 884 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 885 { 886 int i; 887 888 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n", 889 current->pid, cat, heap->cnt); 890 for (i = 0; i < heap->cnt; i++) { 891 struct ubifs_lprops *lprops = heap->arr[i]; 892 893 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d " 894 "flags %d\n", i, lprops->lnum, lprops->hpos, 895 lprops->free, lprops->dirty, lprops->flags); 896 } 897 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid); 898 } 899 900 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 901 struct ubifs_nnode *parent, int iip) 902 { 903 int i; 904 905 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid); 906 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n", 907 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 908 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n", 909 pnode->flags, iip, pnode->level, pnode->num); 910 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 911 struct ubifs_lprops *lp = &pnode->lprops[i]; 912 913 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n", 914 i, lp->free, lp->dirty, lp->flags, lp->lnum); 915 } 916 } 917 918 void dbg_dump_tnc(struct ubifs_info *c) 919 { 920 struct ubifs_znode *znode; 921 int level; 922 923 printk(KERN_DEBUG "\n"); 924 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid); 925 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 926 level = znode->level; 927 printk(KERN_DEBUG "== Level %d ==\n", level); 928 while (znode) { 929 if (level != znode->level) { 930 level = znode->level; 931 printk(KERN_DEBUG "== Level %d ==\n", level); 932 } 933 dbg_dump_znode(c, znode); 934 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 935 } 936 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid); 937 } 938 939 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 940 void *priv) 941 { 942 dbg_dump_znode(c, znode); 943 return 0; 944 } 945 946 /** 947 * dbg_dump_index - dump the on-flash index. 948 * @c: UBIFS file-system description object 949 * 950 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()' 951 * which dumps only in-memory znodes and does not read znodes which from flash. 952 */ 953 void dbg_dump_index(struct ubifs_info *c) 954 { 955 dbg_walk_index(c, NULL, dump_znode, NULL); 956 } 957 958 /** 959 * dbg_save_space_info - save information about flash space. 960 * @c: UBIFS file-system description object 961 * 962 * This function saves information about UBIFS free space, dirty space, etc, in 963 * order to check it later. 964 */ 965 void dbg_save_space_info(struct ubifs_info *c) 966 { 967 struct ubifs_debug_info *d = c->dbg; 968 969 ubifs_get_lp_stats(c, &d->saved_lst); 970 971 spin_lock(&c->space_lock); 972 d->saved_free = ubifs_get_free_space_nolock(c); 973 spin_unlock(&c->space_lock); 974 } 975 976 /** 977 * dbg_check_space_info - check flash space information. 978 * @c: UBIFS file-system description object 979 * 980 * This function compares current flash space information with the information 981 * which was saved when the 'dbg_save_space_info()' function was called. 982 * Returns zero if the information has not changed, and %-EINVAL it it has 983 * changed. 984 */ 985 int dbg_check_space_info(struct ubifs_info *c) 986 { 987 struct ubifs_debug_info *d = c->dbg; 988 struct ubifs_lp_stats lst; 989 long long avail, free; 990 991 spin_lock(&c->space_lock); 992 avail = ubifs_calc_available(c, c->min_idx_lebs); 993 spin_unlock(&c->space_lock); 994 free = ubifs_get_free_space(c); 995 996 if (free != d->saved_free) { 997 ubifs_err("free space changed from %lld to %lld", 998 d->saved_free, free); 999 goto out; 1000 } 1001 1002 return 0; 1003 1004 out: 1005 ubifs_msg("saved lprops statistics dump"); 1006 dbg_dump_lstats(&d->saved_lst); 1007 ubifs_get_lp_stats(c, &lst); 1008 1009 ubifs_msg("current lprops statistics dump"); 1010 dbg_dump_lstats(&lst); 1011 1012 spin_lock(&c->space_lock); 1013 dbg_dump_budg(c); 1014 spin_unlock(&c->space_lock); 1015 dump_stack(); 1016 return -EINVAL; 1017 } 1018 1019 /** 1020 * dbg_check_synced_i_size - check synchronized inode size. 1021 * @inode: inode to check 1022 * 1023 * If inode is clean, synchronized inode size has to be equivalent to current 1024 * inode size. This function has to be called only for locked inodes (@i_mutex 1025 * has to be locked). Returns %0 if synchronized inode size if correct, and 1026 * %-EINVAL if not. 1027 */ 1028 int dbg_check_synced_i_size(struct inode *inode) 1029 { 1030 int err = 0; 1031 struct ubifs_inode *ui = ubifs_inode(inode); 1032 1033 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 1034 return 0; 1035 if (!S_ISREG(inode->i_mode)) 1036 return 0; 1037 1038 mutex_lock(&ui->ui_mutex); 1039 spin_lock(&ui->ui_lock); 1040 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1041 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode " 1042 "is clean", ui->ui_size, ui->synced_i_size); 1043 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1044 inode->i_mode, i_size_read(inode)); 1045 dbg_dump_stack(); 1046 err = -EINVAL; 1047 } 1048 spin_unlock(&ui->ui_lock); 1049 mutex_unlock(&ui->ui_mutex); 1050 return err; 1051 } 1052 1053 /* 1054 * dbg_check_dir - check directory inode size and link count. 1055 * @c: UBIFS file-system description object 1056 * @dir: the directory to calculate size for 1057 * @size: the result is returned here 1058 * 1059 * This function makes sure that directory size and link count are correct. 1060 * Returns zero in case of success and a negative error code in case of 1061 * failure. 1062 * 1063 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1064 * calling this function. 1065 */ 1066 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir) 1067 { 1068 unsigned int nlink = 2; 1069 union ubifs_key key; 1070 struct ubifs_dent_node *dent, *pdent = NULL; 1071 struct qstr nm = { .name = NULL }; 1072 loff_t size = UBIFS_INO_NODE_SZ; 1073 1074 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 1075 return 0; 1076 1077 if (!S_ISDIR(dir->i_mode)) 1078 return 0; 1079 1080 lowest_dent_key(c, &key, dir->i_ino); 1081 while (1) { 1082 int err; 1083 1084 dent = ubifs_tnc_next_ent(c, &key, &nm); 1085 if (IS_ERR(dent)) { 1086 err = PTR_ERR(dent); 1087 if (err == -ENOENT) 1088 break; 1089 return err; 1090 } 1091 1092 nm.name = dent->name; 1093 nm.len = le16_to_cpu(dent->nlen); 1094 size += CALC_DENT_SIZE(nm.len); 1095 if (dent->type == UBIFS_ITYPE_DIR) 1096 nlink += 1; 1097 kfree(pdent); 1098 pdent = dent; 1099 key_read(c, &dent->key, &key); 1100 } 1101 kfree(pdent); 1102 1103 if (i_size_read(dir) != size) { 1104 ubifs_err("directory inode %lu has size %llu, " 1105 "but calculated size is %llu", dir->i_ino, 1106 (unsigned long long)i_size_read(dir), 1107 (unsigned long long)size); 1108 dump_stack(); 1109 return -EINVAL; 1110 } 1111 if (dir->i_nlink != nlink) { 1112 ubifs_err("directory inode %lu has nlink %u, but calculated " 1113 "nlink is %u", dir->i_ino, dir->i_nlink, nlink); 1114 dump_stack(); 1115 return -EINVAL; 1116 } 1117 1118 return 0; 1119 } 1120 1121 /** 1122 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1123 * @c: UBIFS file-system description object 1124 * @zbr1: first zbranch 1125 * @zbr2: following zbranch 1126 * 1127 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1128 * names of the direntries/xentries which are referred by the keys. This 1129 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1130 * sure the name of direntry/xentry referred by @zbr1 is less than 1131 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1132 * and a negative error code in case of failure. 1133 */ 1134 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1135 struct ubifs_zbranch *zbr2) 1136 { 1137 int err, nlen1, nlen2, cmp; 1138 struct ubifs_dent_node *dent1, *dent2; 1139 union ubifs_key key; 1140 1141 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 1142 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1143 if (!dent1) 1144 return -ENOMEM; 1145 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1146 if (!dent2) { 1147 err = -ENOMEM; 1148 goto out_free; 1149 } 1150 1151 err = ubifs_tnc_read_node(c, zbr1, dent1); 1152 if (err) 1153 goto out_free; 1154 err = ubifs_validate_entry(c, dent1); 1155 if (err) 1156 goto out_free; 1157 1158 err = ubifs_tnc_read_node(c, zbr2, dent2); 1159 if (err) 1160 goto out_free; 1161 err = ubifs_validate_entry(c, dent2); 1162 if (err) 1163 goto out_free; 1164 1165 /* Make sure node keys are the same as in zbranch */ 1166 err = 1; 1167 key_read(c, &dent1->key, &key); 1168 if (keys_cmp(c, &zbr1->key, &key)) { 1169 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum, 1170 zbr1->offs, DBGKEY(&key)); 1171 dbg_err("but it should have key %s according to tnc", 1172 DBGKEY(&zbr1->key)); 1173 dbg_dump_node(c, dent1); 1174 goto out_free; 1175 } 1176 1177 key_read(c, &dent2->key, &key); 1178 if (keys_cmp(c, &zbr2->key, &key)) { 1179 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum, 1180 zbr1->offs, DBGKEY(&key)); 1181 dbg_err("but it should have key %s according to tnc", 1182 DBGKEY(&zbr2->key)); 1183 dbg_dump_node(c, dent2); 1184 goto out_free; 1185 } 1186 1187 nlen1 = le16_to_cpu(dent1->nlen); 1188 nlen2 = le16_to_cpu(dent2->nlen); 1189 1190 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1191 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1192 err = 0; 1193 goto out_free; 1194 } 1195 if (cmp == 0 && nlen1 == nlen2) 1196 dbg_err("2 xent/dent nodes with the same name"); 1197 else 1198 dbg_err("bad order of colliding key %s", 1199 DBGKEY(&key)); 1200 1201 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1202 dbg_dump_node(c, dent1); 1203 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1204 dbg_dump_node(c, dent2); 1205 1206 out_free: 1207 kfree(dent2); 1208 kfree(dent1); 1209 return err; 1210 } 1211 1212 /** 1213 * dbg_check_znode - check if znode is all right. 1214 * @c: UBIFS file-system description object 1215 * @zbr: zbranch which points to this znode 1216 * 1217 * This function makes sure that znode referred to by @zbr is all right. 1218 * Returns zero if it is, and %-EINVAL if it is not. 1219 */ 1220 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1221 { 1222 struct ubifs_znode *znode = zbr->znode; 1223 struct ubifs_znode *zp = znode->parent; 1224 int n, err, cmp; 1225 1226 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1227 err = 1; 1228 goto out; 1229 } 1230 if (znode->level < 0) { 1231 err = 2; 1232 goto out; 1233 } 1234 if (znode->iip < 0 || znode->iip >= c->fanout) { 1235 err = 3; 1236 goto out; 1237 } 1238 1239 if (zbr->len == 0) 1240 /* Only dirty zbranch may have no on-flash nodes */ 1241 if (!ubifs_zn_dirty(znode)) { 1242 err = 4; 1243 goto out; 1244 } 1245 1246 if (ubifs_zn_dirty(znode)) { 1247 /* 1248 * If znode is dirty, its parent has to be dirty as well. The 1249 * order of the operation is important, so we have to have 1250 * memory barriers. 1251 */ 1252 smp_mb(); 1253 if (zp && !ubifs_zn_dirty(zp)) { 1254 /* 1255 * The dirty flag is atomic and is cleared outside the 1256 * TNC mutex, so znode's dirty flag may now have 1257 * been cleared. The child is always cleared before the 1258 * parent, so we just need to check again. 1259 */ 1260 smp_mb(); 1261 if (ubifs_zn_dirty(znode)) { 1262 err = 5; 1263 goto out; 1264 } 1265 } 1266 } 1267 1268 if (zp) { 1269 const union ubifs_key *min, *max; 1270 1271 if (znode->level != zp->level - 1) { 1272 err = 6; 1273 goto out; 1274 } 1275 1276 /* Make sure the 'parent' pointer in our znode is correct */ 1277 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1278 if (!err) { 1279 /* This zbranch does not exist in the parent */ 1280 err = 7; 1281 goto out; 1282 } 1283 1284 if (znode->iip >= zp->child_cnt) { 1285 err = 8; 1286 goto out; 1287 } 1288 1289 if (znode->iip != n) { 1290 /* This may happen only in case of collisions */ 1291 if (keys_cmp(c, &zp->zbranch[n].key, 1292 &zp->zbranch[znode->iip].key)) { 1293 err = 9; 1294 goto out; 1295 } 1296 n = znode->iip; 1297 } 1298 1299 /* 1300 * Make sure that the first key in our znode is greater than or 1301 * equal to the key in the pointing zbranch. 1302 */ 1303 min = &zbr->key; 1304 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1305 if (cmp == 1) { 1306 err = 10; 1307 goto out; 1308 } 1309 1310 if (n + 1 < zp->child_cnt) { 1311 max = &zp->zbranch[n + 1].key; 1312 1313 /* 1314 * Make sure the last key in our znode is less or 1315 * equivalent than the key in the zbranch which goes 1316 * after our pointing zbranch. 1317 */ 1318 cmp = keys_cmp(c, max, 1319 &znode->zbranch[znode->child_cnt - 1].key); 1320 if (cmp == -1) { 1321 err = 11; 1322 goto out; 1323 } 1324 } 1325 } else { 1326 /* This may only be root znode */ 1327 if (zbr != &c->zroot) { 1328 err = 12; 1329 goto out; 1330 } 1331 } 1332 1333 /* 1334 * Make sure that next key is greater or equivalent then the previous 1335 * one. 1336 */ 1337 for (n = 1; n < znode->child_cnt; n++) { 1338 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1339 &znode->zbranch[n].key); 1340 if (cmp > 0) { 1341 err = 13; 1342 goto out; 1343 } 1344 if (cmp == 0) { 1345 /* This can only be keys with colliding hash */ 1346 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1347 err = 14; 1348 goto out; 1349 } 1350 1351 if (znode->level != 0 || c->replaying) 1352 continue; 1353 1354 /* 1355 * Colliding keys should follow binary order of 1356 * corresponding xentry/dentry names. 1357 */ 1358 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1359 &znode->zbranch[n]); 1360 if (err < 0) 1361 return err; 1362 if (err) { 1363 err = 15; 1364 goto out; 1365 } 1366 } 1367 } 1368 1369 for (n = 0; n < znode->child_cnt; n++) { 1370 if (!znode->zbranch[n].znode && 1371 (znode->zbranch[n].lnum == 0 || 1372 znode->zbranch[n].len == 0)) { 1373 err = 16; 1374 goto out; 1375 } 1376 1377 if (znode->zbranch[n].lnum != 0 && 1378 znode->zbranch[n].len == 0) { 1379 err = 17; 1380 goto out; 1381 } 1382 1383 if (znode->zbranch[n].lnum == 0 && 1384 znode->zbranch[n].len != 0) { 1385 err = 18; 1386 goto out; 1387 } 1388 1389 if (znode->zbranch[n].lnum == 0 && 1390 znode->zbranch[n].offs != 0) { 1391 err = 19; 1392 goto out; 1393 } 1394 1395 if (znode->level != 0 && znode->zbranch[n].znode) 1396 if (znode->zbranch[n].znode->parent != znode) { 1397 err = 20; 1398 goto out; 1399 } 1400 } 1401 1402 return 0; 1403 1404 out: 1405 ubifs_err("failed, error %d", err); 1406 ubifs_msg("dump of the znode"); 1407 dbg_dump_znode(c, znode); 1408 if (zp) { 1409 ubifs_msg("dump of the parent znode"); 1410 dbg_dump_znode(c, zp); 1411 } 1412 dump_stack(); 1413 return -EINVAL; 1414 } 1415 1416 /** 1417 * dbg_check_tnc - check TNC tree. 1418 * @c: UBIFS file-system description object 1419 * @extra: do extra checks that are possible at start commit 1420 * 1421 * This function traverses whole TNC tree and checks every znode. Returns zero 1422 * if everything is all right and %-EINVAL if something is wrong with TNC. 1423 */ 1424 int dbg_check_tnc(struct ubifs_info *c, int extra) 1425 { 1426 struct ubifs_znode *znode; 1427 long clean_cnt = 0, dirty_cnt = 0; 1428 int err, last; 1429 1430 if (!(ubifs_chk_flags & UBIFS_CHK_TNC)) 1431 return 0; 1432 1433 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1434 if (!c->zroot.znode) 1435 return 0; 1436 1437 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1438 while (1) { 1439 struct ubifs_znode *prev; 1440 struct ubifs_zbranch *zbr; 1441 1442 if (!znode->parent) 1443 zbr = &c->zroot; 1444 else 1445 zbr = &znode->parent->zbranch[znode->iip]; 1446 1447 err = dbg_check_znode(c, zbr); 1448 if (err) 1449 return err; 1450 1451 if (extra) { 1452 if (ubifs_zn_dirty(znode)) 1453 dirty_cnt += 1; 1454 else 1455 clean_cnt += 1; 1456 } 1457 1458 prev = znode; 1459 znode = ubifs_tnc_postorder_next(znode); 1460 if (!znode) 1461 break; 1462 1463 /* 1464 * If the last key of this znode is equivalent to the first key 1465 * of the next znode (collision), then check order of the keys. 1466 */ 1467 last = prev->child_cnt - 1; 1468 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1469 !keys_cmp(c, &prev->zbranch[last].key, 1470 &znode->zbranch[0].key)) { 1471 err = dbg_check_key_order(c, &prev->zbranch[last], 1472 &znode->zbranch[0]); 1473 if (err < 0) 1474 return err; 1475 if (err) { 1476 ubifs_msg("first znode"); 1477 dbg_dump_znode(c, prev); 1478 ubifs_msg("second znode"); 1479 dbg_dump_znode(c, znode); 1480 return -EINVAL; 1481 } 1482 } 1483 } 1484 1485 if (extra) { 1486 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1487 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", 1488 atomic_long_read(&c->clean_zn_cnt), 1489 clean_cnt); 1490 return -EINVAL; 1491 } 1492 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1493 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", 1494 atomic_long_read(&c->dirty_zn_cnt), 1495 dirty_cnt); 1496 return -EINVAL; 1497 } 1498 } 1499 1500 return 0; 1501 } 1502 1503 /** 1504 * dbg_walk_index - walk the on-flash index. 1505 * @c: UBIFS file-system description object 1506 * @leaf_cb: called for each leaf node 1507 * @znode_cb: called for each indexing node 1508 * @priv: private data which is passed to callbacks 1509 * 1510 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1511 * node and @znode_cb for each indexing node. Returns zero in case of success 1512 * and a negative error code in case of failure. 1513 * 1514 * It would be better if this function removed every znode it pulled to into 1515 * the TNC, so that the behavior more closely matched the non-debugging 1516 * behavior. 1517 */ 1518 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1519 dbg_znode_callback znode_cb, void *priv) 1520 { 1521 int err; 1522 struct ubifs_zbranch *zbr; 1523 struct ubifs_znode *znode, *child; 1524 1525 mutex_lock(&c->tnc_mutex); 1526 /* If the root indexing node is not in TNC - pull it */ 1527 if (!c->zroot.znode) { 1528 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1529 if (IS_ERR(c->zroot.znode)) { 1530 err = PTR_ERR(c->zroot.znode); 1531 c->zroot.znode = NULL; 1532 goto out_unlock; 1533 } 1534 } 1535 1536 /* 1537 * We are going to traverse the indexing tree in the postorder manner. 1538 * Go down and find the leftmost indexing node where we are going to 1539 * start from. 1540 */ 1541 znode = c->zroot.znode; 1542 while (znode->level > 0) { 1543 zbr = &znode->zbranch[0]; 1544 child = zbr->znode; 1545 if (!child) { 1546 child = ubifs_load_znode(c, zbr, znode, 0); 1547 if (IS_ERR(child)) { 1548 err = PTR_ERR(child); 1549 goto out_unlock; 1550 } 1551 zbr->znode = child; 1552 } 1553 1554 znode = child; 1555 } 1556 1557 /* Iterate over all indexing nodes */ 1558 while (1) { 1559 int idx; 1560 1561 cond_resched(); 1562 1563 if (znode_cb) { 1564 err = znode_cb(c, znode, priv); 1565 if (err) { 1566 ubifs_err("znode checking function returned " 1567 "error %d", err); 1568 dbg_dump_znode(c, znode); 1569 goto out_dump; 1570 } 1571 } 1572 if (leaf_cb && znode->level == 0) { 1573 for (idx = 0; idx < znode->child_cnt; idx++) { 1574 zbr = &znode->zbranch[idx]; 1575 err = leaf_cb(c, zbr, priv); 1576 if (err) { 1577 ubifs_err("leaf checking function " 1578 "returned error %d, for leaf " 1579 "at LEB %d:%d", 1580 err, zbr->lnum, zbr->offs); 1581 goto out_dump; 1582 } 1583 } 1584 } 1585 1586 if (!znode->parent) 1587 break; 1588 1589 idx = znode->iip + 1; 1590 znode = znode->parent; 1591 if (idx < znode->child_cnt) { 1592 /* Switch to the next index in the parent */ 1593 zbr = &znode->zbranch[idx]; 1594 child = zbr->znode; 1595 if (!child) { 1596 child = ubifs_load_znode(c, zbr, znode, idx); 1597 if (IS_ERR(child)) { 1598 err = PTR_ERR(child); 1599 goto out_unlock; 1600 } 1601 zbr->znode = child; 1602 } 1603 znode = child; 1604 } else 1605 /* 1606 * This is the last child, switch to the parent and 1607 * continue. 1608 */ 1609 continue; 1610 1611 /* Go to the lowest leftmost znode in the new sub-tree */ 1612 while (znode->level > 0) { 1613 zbr = &znode->zbranch[0]; 1614 child = zbr->znode; 1615 if (!child) { 1616 child = ubifs_load_znode(c, zbr, znode, 0); 1617 if (IS_ERR(child)) { 1618 err = PTR_ERR(child); 1619 goto out_unlock; 1620 } 1621 zbr->znode = child; 1622 } 1623 znode = child; 1624 } 1625 } 1626 1627 mutex_unlock(&c->tnc_mutex); 1628 return 0; 1629 1630 out_dump: 1631 if (znode->parent) 1632 zbr = &znode->parent->zbranch[znode->iip]; 1633 else 1634 zbr = &c->zroot; 1635 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1636 dbg_dump_znode(c, znode); 1637 out_unlock: 1638 mutex_unlock(&c->tnc_mutex); 1639 return err; 1640 } 1641 1642 /** 1643 * add_size - add znode size to partially calculated index size. 1644 * @c: UBIFS file-system description object 1645 * @znode: znode to add size for 1646 * @priv: partially calculated index size 1647 * 1648 * This is a helper function for 'dbg_check_idx_size()' which is called for 1649 * every indexing node and adds its size to the 'long long' variable pointed to 1650 * by @priv. 1651 */ 1652 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1653 { 1654 long long *idx_size = priv; 1655 int add; 1656 1657 add = ubifs_idx_node_sz(c, znode->child_cnt); 1658 add = ALIGN(add, 8); 1659 *idx_size += add; 1660 return 0; 1661 } 1662 1663 /** 1664 * dbg_check_idx_size - check index size. 1665 * @c: UBIFS file-system description object 1666 * @idx_size: size to check 1667 * 1668 * This function walks the UBIFS index, calculates its size and checks that the 1669 * size is equivalent to @idx_size. Returns zero in case of success and a 1670 * negative error code in case of failure. 1671 */ 1672 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1673 { 1674 int err; 1675 long long calc = 0; 1676 1677 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ)) 1678 return 0; 1679 1680 err = dbg_walk_index(c, NULL, add_size, &calc); 1681 if (err) { 1682 ubifs_err("error %d while walking the index", err); 1683 return err; 1684 } 1685 1686 if (calc != idx_size) { 1687 ubifs_err("index size check failed: calculated size is %lld, " 1688 "should be %lld", calc, idx_size); 1689 dump_stack(); 1690 return -EINVAL; 1691 } 1692 1693 return 0; 1694 } 1695 1696 /** 1697 * struct fsck_inode - information about an inode used when checking the file-system. 1698 * @rb: link in the RB-tree of inodes 1699 * @inum: inode number 1700 * @mode: inode type, permissions, etc 1701 * @nlink: inode link count 1702 * @xattr_cnt: count of extended attributes 1703 * @references: how many directory/xattr entries refer this inode (calculated 1704 * while walking the index) 1705 * @calc_cnt: for directory inode count of child directories 1706 * @size: inode size (read from on-flash inode) 1707 * @xattr_sz: summary size of all extended attributes (read from on-flash 1708 * inode) 1709 * @calc_sz: for directories calculated directory size 1710 * @calc_xcnt: count of extended attributes 1711 * @calc_xsz: calculated summary size of all extended attributes 1712 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1713 * inode (read from on-flash inode) 1714 * @calc_xnms: calculated sum of lengths of all extended attribute names 1715 */ 1716 struct fsck_inode { 1717 struct rb_node rb; 1718 ino_t inum; 1719 umode_t mode; 1720 unsigned int nlink; 1721 unsigned int xattr_cnt; 1722 int references; 1723 int calc_cnt; 1724 long long size; 1725 unsigned int xattr_sz; 1726 long long calc_sz; 1727 long long calc_xcnt; 1728 long long calc_xsz; 1729 unsigned int xattr_nms; 1730 long long calc_xnms; 1731 }; 1732 1733 /** 1734 * struct fsck_data - private FS checking information. 1735 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1736 */ 1737 struct fsck_data { 1738 struct rb_root inodes; 1739 }; 1740 1741 /** 1742 * add_inode - add inode information to RB-tree of inodes. 1743 * @c: UBIFS file-system description object 1744 * @fsckd: FS checking information 1745 * @ino: raw UBIFS inode to add 1746 * 1747 * This is a helper function for 'check_leaf()' which adds information about 1748 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1749 * case of success and a negative error code in case of failure. 1750 */ 1751 static struct fsck_inode *add_inode(struct ubifs_info *c, 1752 struct fsck_data *fsckd, 1753 struct ubifs_ino_node *ino) 1754 { 1755 struct rb_node **p, *parent = NULL; 1756 struct fsck_inode *fscki; 1757 ino_t inum = key_inum_flash(c, &ino->key); 1758 1759 p = &fsckd->inodes.rb_node; 1760 while (*p) { 1761 parent = *p; 1762 fscki = rb_entry(parent, struct fsck_inode, rb); 1763 if (inum < fscki->inum) 1764 p = &(*p)->rb_left; 1765 else if (inum > fscki->inum) 1766 p = &(*p)->rb_right; 1767 else 1768 return fscki; 1769 } 1770 1771 if (inum > c->highest_inum) { 1772 ubifs_err("too high inode number, max. is %lu", 1773 (unsigned long)c->highest_inum); 1774 return ERR_PTR(-EINVAL); 1775 } 1776 1777 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1778 if (!fscki) 1779 return ERR_PTR(-ENOMEM); 1780 1781 fscki->inum = inum; 1782 fscki->nlink = le32_to_cpu(ino->nlink); 1783 fscki->size = le64_to_cpu(ino->size); 1784 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1785 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1786 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1787 fscki->mode = le32_to_cpu(ino->mode); 1788 if (S_ISDIR(fscki->mode)) { 1789 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1790 fscki->calc_cnt = 2; 1791 } 1792 rb_link_node(&fscki->rb, parent, p); 1793 rb_insert_color(&fscki->rb, &fsckd->inodes); 1794 return fscki; 1795 } 1796 1797 /** 1798 * search_inode - search inode in the RB-tree of inodes. 1799 * @fsckd: FS checking information 1800 * @inum: inode number to search 1801 * 1802 * This is a helper function for 'check_leaf()' which searches inode @inum in 1803 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1804 * the inode was not found. 1805 */ 1806 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1807 { 1808 struct rb_node *p; 1809 struct fsck_inode *fscki; 1810 1811 p = fsckd->inodes.rb_node; 1812 while (p) { 1813 fscki = rb_entry(p, struct fsck_inode, rb); 1814 if (inum < fscki->inum) 1815 p = p->rb_left; 1816 else if (inum > fscki->inum) 1817 p = p->rb_right; 1818 else 1819 return fscki; 1820 } 1821 return NULL; 1822 } 1823 1824 /** 1825 * read_add_inode - read inode node and add it to RB-tree of inodes. 1826 * @c: UBIFS file-system description object 1827 * @fsckd: FS checking information 1828 * @inum: inode number to read 1829 * 1830 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1831 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1832 * information pointer in case of success and a negative error code in case of 1833 * failure. 1834 */ 1835 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1836 struct fsck_data *fsckd, ino_t inum) 1837 { 1838 int n, err; 1839 union ubifs_key key; 1840 struct ubifs_znode *znode; 1841 struct ubifs_zbranch *zbr; 1842 struct ubifs_ino_node *ino; 1843 struct fsck_inode *fscki; 1844 1845 fscki = search_inode(fsckd, inum); 1846 if (fscki) 1847 return fscki; 1848 1849 ino_key_init(c, &key, inum); 1850 err = ubifs_lookup_level0(c, &key, &znode, &n); 1851 if (!err) { 1852 ubifs_err("inode %lu not found in index", (unsigned long)inum); 1853 return ERR_PTR(-ENOENT); 1854 } else if (err < 0) { 1855 ubifs_err("error %d while looking up inode %lu", 1856 err, (unsigned long)inum); 1857 return ERR_PTR(err); 1858 } 1859 1860 zbr = &znode->zbranch[n]; 1861 if (zbr->len < UBIFS_INO_NODE_SZ) { 1862 ubifs_err("bad node %lu node length %d", 1863 (unsigned long)inum, zbr->len); 1864 return ERR_PTR(-EINVAL); 1865 } 1866 1867 ino = kmalloc(zbr->len, GFP_NOFS); 1868 if (!ino) 1869 return ERR_PTR(-ENOMEM); 1870 1871 err = ubifs_tnc_read_node(c, zbr, ino); 1872 if (err) { 1873 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 1874 zbr->lnum, zbr->offs, err); 1875 kfree(ino); 1876 return ERR_PTR(err); 1877 } 1878 1879 fscki = add_inode(c, fsckd, ino); 1880 kfree(ino); 1881 if (IS_ERR(fscki)) { 1882 ubifs_err("error %ld while adding inode %lu node", 1883 PTR_ERR(fscki), (unsigned long)inum); 1884 return fscki; 1885 } 1886 1887 return fscki; 1888 } 1889 1890 /** 1891 * check_leaf - check leaf node. 1892 * @c: UBIFS file-system description object 1893 * @zbr: zbranch of the leaf node to check 1894 * @priv: FS checking information 1895 * 1896 * This is a helper function for 'dbg_check_filesystem()' which is called for 1897 * every single leaf node while walking the indexing tree. It checks that the 1898 * leaf node referred from the indexing tree exists, has correct CRC, and does 1899 * some other basic validation. This function is also responsible for building 1900 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 1901 * calculates reference count, size, etc for each inode in order to later 1902 * compare them to the information stored inside the inodes and detect possible 1903 * inconsistencies. Returns zero in case of success and a negative error code 1904 * in case of failure. 1905 */ 1906 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 1907 void *priv) 1908 { 1909 ino_t inum; 1910 void *node; 1911 struct ubifs_ch *ch; 1912 int err, type = key_type(c, &zbr->key); 1913 struct fsck_inode *fscki; 1914 1915 if (zbr->len < UBIFS_CH_SZ) { 1916 ubifs_err("bad leaf length %d (LEB %d:%d)", 1917 zbr->len, zbr->lnum, zbr->offs); 1918 return -EINVAL; 1919 } 1920 1921 node = kmalloc(zbr->len, GFP_NOFS); 1922 if (!node) 1923 return -ENOMEM; 1924 1925 err = ubifs_tnc_read_node(c, zbr, node); 1926 if (err) { 1927 ubifs_err("cannot read leaf node at LEB %d:%d, error %d", 1928 zbr->lnum, zbr->offs, err); 1929 goto out_free; 1930 } 1931 1932 /* If this is an inode node, add it to RB-tree of inodes */ 1933 if (type == UBIFS_INO_KEY) { 1934 fscki = add_inode(c, priv, node); 1935 if (IS_ERR(fscki)) { 1936 err = PTR_ERR(fscki); 1937 ubifs_err("error %d while adding inode node", err); 1938 goto out_dump; 1939 } 1940 goto out; 1941 } 1942 1943 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 1944 type != UBIFS_DATA_KEY) { 1945 ubifs_err("unexpected node type %d at LEB %d:%d", 1946 type, zbr->lnum, zbr->offs); 1947 err = -EINVAL; 1948 goto out_free; 1949 } 1950 1951 ch = node; 1952 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 1953 ubifs_err("too high sequence number, max. is %llu", 1954 c->max_sqnum); 1955 err = -EINVAL; 1956 goto out_dump; 1957 } 1958 1959 if (type == UBIFS_DATA_KEY) { 1960 long long blk_offs; 1961 struct ubifs_data_node *dn = node; 1962 1963 /* 1964 * Search the inode node this data node belongs to and insert 1965 * it to the RB-tree of inodes. 1966 */ 1967 inum = key_inum_flash(c, &dn->key); 1968 fscki = read_add_inode(c, priv, inum); 1969 if (IS_ERR(fscki)) { 1970 err = PTR_ERR(fscki); 1971 ubifs_err("error %d while processing data node and " 1972 "trying to find inode node %lu", 1973 err, (unsigned long)inum); 1974 goto out_dump; 1975 } 1976 1977 /* Make sure the data node is within inode size */ 1978 blk_offs = key_block_flash(c, &dn->key); 1979 blk_offs <<= UBIFS_BLOCK_SHIFT; 1980 blk_offs += le32_to_cpu(dn->size); 1981 if (blk_offs > fscki->size) { 1982 ubifs_err("data node at LEB %d:%d is not within inode " 1983 "size %lld", zbr->lnum, zbr->offs, 1984 fscki->size); 1985 err = -EINVAL; 1986 goto out_dump; 1987 } 1988 } else { 1989 int nlen; 1990 struct ubifs_dent_node *dent = node; 1991 struct fsck_inode *fscki1; 1992 1993 err = ubifs_validate_entry(c, dent); 1994 if (err) 1995 goto out_dump; 1996 1997 /* 1998 * Search the inode node this entry refers to and the parent 1999 * inode node and insert them to the RB-tree of inodes. 2000 */ 2001 inum = le64_to_cpu(dent->inum); 2002 fscki = read_add_inode(c, priv, inum); 2003 if (IS_ERR(fscki)) { 2004 err = PTR_ERR(fscki); 2005 ubifs_err("error %d while processing entry node and " 2006 "trying to find inode node %lu", 2007 err, (unsigned long)inum); 2008 goto out_dump; 2009 } 2010 2011 /* Count how many direntries or xentries refers this inode */ 2012 fscki->references += 1; 2013 2014 inum = key_inum_flash(c, &dent->key); 2015 fscki1 = read_add_inode(c, priv, inum); 2016 if (IS_ERR(fscki1)) { 2017 err = PTR_ERR(fscki); 2018 ubifs_err("error %d while processing entry node and " 2019 "trying to find parent inode node %lu", 2020 err, (unsigned long)inum); 2021 goto out_dump; 2022 } 2023 2024 nlen = le16_to_cpu(dent->nlen); 2025 if (type == UBIFS_XENT_KEY) { 2026 fscki1->calc_xcnt += 1; 2027 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2028 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2029 fscki1->calc_xnms += nlen; 2030 } else { 2031 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2032 if (dent->type == UBIFS_ITYPE_DIR) 2033 fscki1->calc_cnt += 1; 2034 } 2035 } 2036 2037 out: 2038 kfree(node); 2039 return 0; 2040 2041 out_dump: 2042 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2043 dbg_dump_node(c, node); 2044 out_free: 2045 kfree(node); 2046 return err; 2047 } 2048 2049 /** 2050 * free_inodes - free RB-tree of inodes. 2051 * @fsckd: FS checking information 2052 */ 2053 static void free_inodes(struct fsck_data *fsckd) 2054 { 2055 struct rb_node *this = fsckd->inodes.rb_node; 2056 struct fsck_inode *fscki; 2057 2058 while (this) { 2059 if (this->rb_left) 2060 this = this->rb_left; 2061 else if (this->rb_right) 2062 this = this->rb_right; 2063 else { 2064 fscki = rb_entry(this, struct fsck_inode, rb); 2065 this = rb_parent(this); 2066 if (this) { 2067 if (this->rb_left == &fscki->rb) 2068 this->rb_left = NULL; 2069 else 2070 this->rb_right = NULL; 2071 } 2072 kfree(fscki); 2073 } 2074 } 2075 } 2076 2077 /** 2078 * check_inodes - checks all inodes. 2079 * @c: UBIFS file-system description object 2080 * @fsckd: FS checking information 2081 * 2082 * This is a helper function for 'dbg_check_filesystem()' which walks the 2083 * RB-tree of inodes after the index scan has been finished, and checks that 2084 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2085 * %-EINVAL if not, and a negative error code in case of failure. 2086 */ 2087 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2088 { 2089 int n, err; 2090 union ubifs_key key; 2091 struct ubifs_znode *znode; 2092 struct ubifs_zbranch *zbr; 2093 struct ubifs_ino_node *ino; 2094 struct fsck_inode *fscki; 2095 struct rb_node *this = rb_first(&fsckd->inodes); 2096 2097 while (this) { 2098 fscki = rb_entry(this, struct fsck_inode, rb); 2099 this = rb_next(this); 2100 2101 if (S_ISDIR(fscki->mode)) { 2102 /* 2103 * Directories have to have exactly one reference (they 2104 * cannot have hardlinks), although root inode is an 2105 * exception. 2106 */ 2107 if (fscki->inum != UBIFS_ROOT_INO && 2108 fscki->references != 1) { 2109 ubifs_err("directory inode %lu has %d " 2110 "direntries which refer it, but " 2111 "should be 1", 2112 (unsigned long)fscki->inum, 2113 fscki->references); 2114 goto out_dump; 2115 } 2116 if (fscki->inum == UBIFS_ROOT_INO && 2117 fscki->references != 0) { 2118 ubifs_err("root inode %lu has non-zero (%d) " 2119 "direntries which refer it", 2120 (unsigned long)fscki->inum, 2121 fscki->references); 2122 goto out_dump; 2123 } 2124 if (fscki->calc_sz != fscki->size) { 2125 ubifs_err("directory inode %lu size is %lld, " 2126 "but calculated size is %lld", 2127 (unsigned long)fscki->inum, 2128 fscki->size, fscki->calc_sz); 2129 goto out_dump; 2130 } 2131 if (fscki->calc_cnt != fscki->nlink) { 2132 ubifs_err("directory inode %lu nlink is %d, " 2133 "but calculated nlink is %d", 2134 (unsigned long)fscki->inum, 2135 fscki->nlink, fscki->calc_cnt); 2136 goto out_dump; 2137 } 2138 } else { 2139 if (fscki->references != fscki->nlink) { 2140 ubifs_err("inode %lu nlink is %d, but " 2141 "calculated nlink is %d", 2142 (unsigned long)fscki->inum, 2143 fscki->nlink, fscki->references); 2144 goto out_dump; 2145 } 2146 } 2147 if (fscki->xattr_sz != fscki->calc_xsz) { 2148 ubifs_err("inode %lu has xattr size %u, but " 2149 "calculated size is %lld", 2150 (unsigned long)fscki->inum, fscki->xattr_sz, 2151 fscki->calc_xsz); 2152 goto out_dump; 2153 } 2154 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2155 ubifs_err("inode %lu has %u xattrs, but " 2156 "calculated count is %lld", 2157 (unsigned long)fscki->inum, 2158 fscki->xattr_cnt, fscki->calc_xcnt); 2159 goto out_dump; 2160 } 2161 if (fscki->xattr_nms != fscki->calc_xnms) { 2162 ubifs_err("inode %lu has xattr names' size %u, but " 2163 "calculated names' size is %lld", 2164 (unsigned long)fscki->inum, fscki->xattr_nms, 2165 fscki->calc_xnms); 2166 goto out_dump; 2167 } 2168 } 2169 2170 return 0; 2171 2172 out_dump: 2173 /* Read the bad inode and dump it */ 2174 ino_key_init(c, &key, fscki->inum); 2175 err = ubifs_lookup_level0(c, &key, &znode, &n); 2176 if (!err) { 2177 ubifs_err("inode %lu not found in index", 2178 (unsigned long)fscki->inum); 2179 return -ENOENT; 2180 } else if (err < 0) { 2181 ubifs_err("error %d while looking up inode %lu", 2182 err, (unsigned long)fscki->inum); 2183 return err; 2184 } 2185 2186 zbr = &znode->zbranch[n]; 2187 ino = kmalloc(zbr->len, GFP_NOFS); 2188 if (!ino) 2189 return -ENOMEM; 2190 2191 err = ubifs_tnc_read_node(c, zbr, ino); 2192 if (err) { 2193 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 2194 zbr->lnum, zbr->offs, err); 2195 kfree(ino); 2196 return err; 2197 } 2198 2199 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", 2200 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2201 dbg_dump_node(c, ino); 2202 kfree(ino); 2203 return -EINVAL; 2204 } 2205 2206 /** 2207 * dbg_check_filesystem - check the file-system. 2208 * @c: UBIFS file-system description object 2209 * 2210 * This function checks the file system, namely: 2211 * o makes sure that all leaf nodes exist and their CRCs are correct; 2212 * o makes sure inode nlink, size, xattr size/count are correct (for all 2213 * inodes). 2214 * 2215 * The function reads whole indexing tree and all nodes, so it is pretty 2216 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2217 * not, and a negative error code in case of failure. 2218 */ 2219 int dbg_check_filesystem(struct ubifs_info *c) 2220 { 2221 int err; 2222 struct fsck_data fsckd; 2223 2224 if (!(ubifs_chk_flags & UBIFS_CHK_FS)) 2225 return 0; 2226 2227 fsckd.inodes = RB_ROOT; 2228 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2229 if (err) 2230 goto out_free; 2231 2232 err = check_inodes(c, &fsckd); 2233 if (err) 2234 goto out_free; 2235 2236 free_inodes(&fsckd); 2237 return 0; 2238 2239 out_free: 2240 ubifs_err("file-system check failed with error %d", err); 2241 dump_stack(); 2242 free_inodes(&fsckd); 2243 return err; 2244 } 2245 2246 static int invocation_cnt; 2247 2248 int dbg_force_in_the_gaps(void) 2249 { 2250 if (!dbg_force_in_the_gaps_enabled) 2251 return 0; 2252 /* Force in-the-gaps every 8th commit */ 2253 return !((invocation_cnt++) & 0x7); 2254 } 2255 2256 /* Failure mode for recovery testing */ 2257 2258 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d)) 2259 2260 struct failure_mode_info { 2261 struct list_head list; 2262 struct ubifs_info *c; 2263 }; 2264 2265 static LIST_HEAD(fmi_list); 2266 static DEFINE_SPINLOCK(fmi_lock); 2267 2268 static unsigned int next; 2269 2270 static int simple_rand(void) 2271 { 2272 if (next == 0) 2273 next = current->pid; 2274 next = next * 1103515245 + 12345; 2275 return (next >> 16) & 32767; 2276 } 2277 2278 static void failure_mode_init(struct ubifs_info *c) 2279 { 2280 struct failure_mode_info *fmi; 2281 2282 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS); 2283 if (!fmi) { 2284 ubifs_err("Failed to register failure mode - no memory"); 2285 return; 2286 } 2287 fmi->c = c; 2288 spin_lock(&fmi_lock); 2289 list_add_tail(&fmi->list, &fmi_list); 2290 spin_unlock(&fmi_lock); 2291 } 2292 2293 static void failure_mode_exit(struct ubifs_info *c) 2294 { 2295 struct failure_mode_info *fmi, *tmp; 2296 2297 spin_lock(&fmi_lock); 2298 list_for_each_entry_safe(fmi, tmp, &fmi_list, list) 2299 if (fmi->c == c) { 2300 list_del(&fmi->list); 2301 kfree(fmi); 2302 } 2303 spin_unlock(&fmi_lock); 2304 } 2305 2306 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc) 2307 { 2308 struct failure_mode_info *fmi; 2309 2310 spin_lock(&fmi_lock); 2311 list_for_each_entry(fmi, &fmi_list, list) 2312 if (fmi->c->ubi == desc) { 2313 struct ubifs_info *c = fmi->c; 2314 2315 spin_unlock(&fmi_lock); 2316 return c; 2317 } 2318 spin_unlock(&fmi_lock); 2319 return NULL; 2320 } 2321 2322 static int in_failure_mode(struct ubi_volume_desc *desc) 2323 { 2324 struct ubifs_info *c = dbg_find_info(desc); 2325 2326 if (c && dbg_failure_mode) 2327 return c->dbg->failure_mode; 2328 return 0; 2329 } 2330 2331 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write) 2332 { 2333 struct ubifs_info *c = dbg_find_info(desc); 2334 struct ubifs_debug_info *d; 2335 2336 if (!c || !dbg_failure_mode) 2337 return 0; 2338 d = c->dbg; 2339 if (d->failure_mode) 2340 return 1; 2341 if (!d->fail_cnt) { 2342 /* First call - decide delay to failure */ 2343 if (chance(1, 2)) { 2344 unsigned int delay = 1 << (simple_rand() >> 11); 2345 2346 if (chance(1, 2)) { 2347 d->fail_delay = 1; 2348 d->fail_timeout = jiffies + 2349 msecs_to_jiffies(delay); 2350 dbg_rcvry("failing after %ums", delay); 2351 } else { 2352 d->fail_delay = 2; 2353 d->fail_cnt_max = delay; 2354 dbg_rcvry("failing after %u calls", delay); 2355 } 2356 } 2357 d->fail_cnt += 1; 2358 } 2359 /* Determine if failure delay has expired */ 2360 if (d->fail_delay == 1) { 2361 if (time_before(jiffies, d->fail_timeout)) 2362 return 0; 2363 } else if (d->fail_delay == 2) 2364 if (d->fail_cnt++ < d->fail_cnt_max) 2365 return 0; 2366 if (lnum == UBIFS_SB_LNUM) { 2367 if (write) { 2368 if (chance(1, 2)) 2369 return 0; 2370 } else if (chance(19, 20)) 2371 return 0; 2372 dbg_rcvry("failing in super block LEB %d", lnum); 2373 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2374 if (chance(19, 20)) 2375 return 0; 2376 dbg_rcvry("failing in master LEB %d", lnum); 2377 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2378 if (write) { 2379 if (chance(99, 100)) 2380 return 0; 2381 } else if (chance(399, 400)) 2382 return 0; 2383 dbg_rcvry("failing in log LEB %d", lnum); 2384 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2385 if (write) { 2386 if (chance(7, 8)) 2387 return 0; 2388 } else if (chance(19, 20)) 2389 return 0; 2390 dbg_rcvry("failing in LPT LEB %d", lnum); 2391 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2392 if (write) { 2393 if (chance(1, 2)) 2394 return 0; 2395 } else if (chance(9, 10)) 2396 return 0; 2397 dbg_rcvry("failing in orphan LEB %d", lnum); 2398 } else if (lnum == c->ihead_lnum) { 2399 if (chance(99, 100)) 2400 return 0; 2401 dbg_rcvry("failing in index head LEB %d", lnum); 2402 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2403 if (chance(9, 10)) 2404 return 0; 2405 dbg_rcvry("failing in GC head LEB %d", lnum); 2406 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2407 !ubifs_search_bud(c, lnum)) { 2408 if (chance(19, 20)) 2409 return 0; 2410 dbg_rcvry("failing in non-bud LEB %d", lnum); 2411 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2412 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2413 if (chance(999, 1000)) 2414 return 0; 2415 dbg_rcvry("failing in bud LEB %d commit running", lnum); 2416 } else { 2417 if (chance(9999, 10000)) 2418 return 0; 2419 dbg_rcvry("failing in bud LEB %d commit not running", lnum); 2420 } 2421 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum); 2422 d->failure_mode = 1; 2423 dump_stack(); 2424 return 1; 2425 } 2426 2427 static void cut_data(const void *buf, int len) 2428 { 2429 int flen, i; 2430 unsigned char *p = (void *)buf; 2431 2432 flen = (len * (long long)simple_rand()) >> 15; 2433 for (i = flen; i < len; i++) 2434 p[i] = 0xff; 2435 } 2436 2437 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset, 2438 int len, int check) 2439 { 2440 if (in_failure_mode(desc)) 2441 return -EIO; 2442 return ubi_leb_read(desc, lnum, buf, offset, len, check); 2443 } 2444 2445 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf, 2446 int offset, int len, int dtype) 2447 { 2448 int err, failing; 2449 2450 if (in_failure_mode(desc)) 2451 return -EIO; 2452 failing = do_fail(desc, lnum, 1); 2453 if (failing) 2454 cut_data(buf, len); 2455 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype); 2456 if (err) 2457 return err; 2458 if (failing) 2459 return -EIO; 2460 return 0; 2461 } 2462 2463 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf, 2464 int len, int dtype) 2465 { 2466 int err; 2467 2468 if (do_fail(desc, lnum, 1)) 2469 return -EIO; 2470 err = ubi_leb_change(desc, lnum, buf, len, dtype); 2471 if (err) 2472 return err; 2473 if (do_fail(desc, lnum, 1)) 2474 return -EIO; 2475 return 0; 2476 } 2477 2478 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum) 2479 { 2480 int err; 2481 2482 if (do_fail(desc, lnum, 0)) 2483 return -EIO; 2484 err = ubi_leb_erase(desc, lnum); 2485 if (err) 2486 return err; 2487 if (do_fail(desc, lnum, 0)) 2488 return -EIO; 2489 return 0; 2490 } 2491 2492 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum) 2493 { 2494 int err; 2495 2496 if (do_fail(desc, lnum, 0)) 2497 return -EIO; 2498 err = ubi_leb_unmap(desc, lnum); 2499 if (err) 2500 return err; 2501 if (do_fail(desc, lnum, 0)) 2502 return -EIO; 2503 return 0; 2504 } 2505 2506 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum) 2507 { 2508 if (in_failure_mode(desc)) 2509 return -EIO; 2510 return ubi_is_mapped(desc, lnum); 2511 } 2512 2513 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype) 2514 { 2515 int err; 2516 2517 if (do_fail(desc, lnum, 0)) 2518 return -EIO; 2519 err = ubi_leb_map(desc, lnum, dtype); 2520 if (err) 2521 return err; 2522 if (do_fail(desc, lnum, 0)) 2523 return -EIO; 2524 return 0; 2525 } 2526 2527 /** 2528 * ubifs_debugging_init - initialize UBIFS debugging. 2529 * @c: UBIFS file-system description object 2530 * 2531 * This function initializes debugging-related data for the file system. 2532 * Returns zero in case of success and a negative error code in case of 2533 * failure. 2534 */ 2535 int ubifs_debugging_init(struct ubifs_info *c) 2536 { 2537 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 2538 if (!c->dbg) 2539 return -ENOMEM; 2540 2541 c->dbg->buf = vmalloc(c->leb_size); 2542 if (!c->dbg->buf) 2543 goto out; 2544 2545 failure_mode_init(c); 2546 return 0; 2547 2548 out: 2549 kfree(c->dbg); 2550 return -ENOMEM; 2551 } 2552 2553 /** 2554 * ubifs_debugging_exit - free debugging data. 2555 * @c: UBIFS file-system description object 2556 */ 2557 void ubifs_debugging_exit(struct ubifs_info *c) 2558 { 2559 failure_mode_exit(c); 2560 vfree(c->dbg->buf); 2561 kfree(c->dbg); 2562 } 2563 2564 /* 2565 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2566 * contain the stuff specific to particular file-system mounts. 2567 */ 2568 static struct dentry *dfs_rootdir; 2569 2570 /** 2571 * dbg_debugfs_init - initialize debugfs file-system. 2572 * 2573 * UBIFS uses debugfs file-system to expose various debugging knobs to 2574 * user-space. This function creates "ubifs" directory in the debugfs 2575 * file-system. Returns zero in case of success and a negative error code in 2576 * case of failure. 2577 */ 2578 int dbg_debugfs_init(void) 2579 { 2580 dfs_rootdir = debugfs_create_dir("ubifs", NULL); 2581 if (IS_ERR(dfs_rootdir)) { 2582 int err = PTR_ERR(dfs_rootdir); 2583 ubifs_err("cannot create \"ubifs\" debugfs directory, " 2584 "error %d\n", err); 2585 return err; 2586 } 2587 2588 return 0; 2589 } 2590 2591 /** 2592 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 2593 */ 2594 void dbg_debugfs_exit(void) 2595 { 2596 debugfs_remove(dfs_rootdir); 2597 } 2598 2599 static int open_debugfs_file(struct inode *inode, struct file *file) 2600 { 2601 file->private_data = inode->i_private; 2602 return 0; 2603 } 2604 2605 static ssize_t write_debugfs_file(struct file *file, const char __user *buf, 2606 size_t count, loff_t *ppos) 2607 { 2608 struct ubifs_info *c = file->private_data; 2609 struct ubifs_debug_info *d = c->dbg; 2610 2611 if (file->f_path.dentry == d->dfs_dump_lprops) 2612 dbg_dump_lprops(c); 2613 else if (file->f_path.dentry == d->dfs_dump_budg) { 2614 spin_lock(&c->space_lock); 2615 dbg_dump_budg(c); 2616 spin_unlock(&c->space_lock); 2617 } else if (file->f_path.dentry == d->dfs_dump_tnc) { 2618 mutex_lock(&c->tnc_mutex); 2619 dbg_dump_tnc(c); 2620 mutex_unlock(&c->tnc_mutex); 2621 } else 2622 return -EINVAL; 2623 2624 *ppos += count; 2625 return count; 2626 } 2627 2628 static const struct file_operations dfs_fops = { 2629 .open = open_debugfs_file, 2630 .write = write_debugfs_file, 2631 .owner = THIS_MODULE, 2632 }; 2633 2634 /** 2635 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2636 * @c: UBIFS file-system description object 2637 * 2638 * This function creates all debugfs files for this instance of UBIFS. Returns 2639 * zero in case of success and a negative error code in case of failure. 2640 * 2641 * Note, the only reason we have not merged this function with the 2642 * 'ubifs_debugging_init()' function is because it is better to initialize 2643 * debugfs interfaces at the very end of the mount process, and remove them at 2644 * the very beginning of the mount process. 2645 */ 2646 int dbg_debugfs_init_fs(struct ubifs_info *c) 2647 { 2648 int err; 2649 const char *fname; 2650 struct dentry *dent; 2651 struct ubifs_debug_info *d = c->dbg; 2652 2653 sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2654 d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir); 2655 if (IS_ERR(d->dfs_dir)) { 2656 err = PTR_ERR(d->dfs_dir); 2657 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n", 2658 d->dfs_dir_name, err); 2659 goto out; 2660 } 2661 2662 fname = "dump_lprops"; 2663 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops); 2664 if (IS_ERR(dent)) 2665 goto out_remove; 2666 d->dfs_dump_lprops = dent; 2667 2668 fname = "dump_budg"; 2669 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops); 2670 if (IS_ERR(dent)) 2671 goto out_remove; 2672 d->dfs_dump_budg = dent; 2673 2674 fname = "dump_tnc"; 2675 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops); 2676 if (IS_ERR(dent)) 2677 goto out_remove; 2678 d->dfs_dump_tnc = dent; 2679 2680 return 0; 2681 2682 out_remove: 2683 err = PTR_ERR(dent); 2684 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n", 2685 fname, err); 2686 debugfs_remove_recursive(d->dfs_dir); 2687 out: 2688 return err; 2689 } 2690 2691 /** 2692 * dbg_debugfs_exit_fs - remove all debugfs files. 2693 * @c: UBIFS file-system description object 2694 */ 2695 void dbg_debugfs_exit_fs(struct ubifs_info *c) 2696 { 2697 debugfs_remove_recursive(c->dbg->dfs_dir); 2698 } 2699 2700 #endif /* CONFIG_UBIFS_FS_DEBUG */ 2701