xref: /openbmc/linux/fs/ubifs/debug.c (revision e8e0929d)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29 
30 #define UBIFS_DBG_PRESERVE_UBI
31 
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
37 
38 #ifdef CONFIG_UBIFS_FS_DEBUG
39 
40 DEFINE_SPINLOCK(dbg_lock);
41 
42 static char dbg_key_buf0[128];
43 static char dbg_key_buf1[128];
44 
45 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
46 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
47 unsigned int ubifs_tst_flags;
48 
49 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
50 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
51 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
52 
53 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
54 MODULE_PARM_DESC(debug_chks, "Debug check flags");
55 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
56 
57 static const char *get_key_fmt(int fmt)
58 {
59 	switch (fmt) {
60 	case UBIFS_SIMPLE_KEY_FMT:
61 		return "simple";
62 	default:
63 		return "unknown/invalid format";
64 	}
65 }
66 
67 static const char *get_key_hash(int hash)
68 {
69 	switch (hash) {
70 	case UBIFS_KEY_HASH_R5:
71 		return "R5";
72 	case UBIFS_KEY_HASH_TEST:
73 		return "test";
74 	default:
75 		return "unknown/invalid name hash";
76 	}
77 }
78 
79 static const char *get_key_type(int type)
80 {
81 	switch (type) {
82 	case UBIFS_INO_KEY:
83 		return "inode";
84 	case UBIFS_DENT_KEY:
85 		return "direntry";
86 	case UBIFS_XENT_KEY:
87 		return "xentry";
88 	case UBIFS_DATA_KEY:
89 		return "data";
90 	case UBIFS_TRUN_KEY:
91 		return "truncate";
92 	default:
93 		return "unknown/invalid key";
94 	}
95 }
96 
97 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
98 			char *buffer)
99 {
100 	char *p = buffer;
101 	int type = key_type(c, key);
102 
103 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
104 		switch (type) {
105 		case UBIFS_INO_KEY:
106 			sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
107 			       get_key_type(type));
108 			break;
109 		case UBIFS_DENT_KEY:
110 		case UBIFS_XENT_KEY:
111 			sprintf(p, "(%lu, %s, %#08x)",
112 				(unsigned long)key_inum(c, key),
113 				get_key_type(type), key_hash(c, key));
114 			break;
115 		case UBIFS_DATA_KEY:
116 			sprintf(p, "(%lu, %s, %u)",
117 				(unsigned long)key_inum(c, key),
118 				get_key_type(type), key_block(c, key));
119 			break;
120 		case UBIFS_TRUN_KEY:
121 			sprintf(p, "(%lu, %s)",
122 				(unsigned long)key_inum(c, key),
123 				get_key_type(type));
124 			break;
125 		default:
126 			sprintf(p, "(bad key type: %#08x, %#08x)",
127 				key->u32[0], key->u32[1]);
128 		}
129 	} else
130 		sprintf(p, "bad key format %d", c->key_fmt);
131 }
132 
133 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
134 {
135 	/* dbg_lock must be held */
136 	sprintf_key(c, key, dbg_key_buf0);
137 	return dbg_key_buf0;
138 }
139 
140 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
141 {
142 	/* dbg_lock must be held */
143 	sprintf_key(c, key, dbg_key_buf1);
144 	return dbg_key_buf1;
145 }
146 
147 const char *dbg_ntype(int type)
148 {
149 	switch (type) {
150 	case UBIFS_PAD_NODE:
151 		return "padding node";
152 	case UBIFS_SB_NODE:
153 		return "superblock node";
154 	case UBIFS_MST_NODE:
155 		return "master node";
156 	case UBIFS_REF_NODE:
157 		return "reference node";
158 	case UBIFS_INO_NODE:
159 		return "inode node";
160 	case UBIFS_DENT_NODE:
161 		return "direntry node";
162 	case UBIFS_XENT_NODE:
163 		return "xentry node";
164 	case UBIFS_DATA_NODE:
165 		return "data node";
166 	case UBIFS_TRUN_NODE:
167 		return "truncate node";
168 	case UBIFS_IDX_NODE:
169 		return "indexing node";
170 	case UBIFS_CS_NODE:
171 		return "commit start node";
172 	case UBIFS_ORPH_NODE:
173 		return "orphan node";
174 	default:
175 		return "unknown node";
176 	}
177 }
178 
179 static const char *dbg_gtype(int type)
180 {
181 	switch (type) {
182 	case UBIFS_NO_NODE_GROUP:
183 		return "no node group";
184 	case UBIFS_IN_NODE_GROUP:
185 		return "in node group";
186 	case UBIFS_LAST_OF_NODE_GROUP:
187 		return "last of node group";
188 	default:
189 		return "unknown";
190 	}
191 }
192 
193 const char *dbg_cstate(int cmt_state)
194 {
195 	switch (cmt_state) {
196 	case COMMIT_RESTING:
197 		return "commit resting";
198 	case COMMIT_BACKGROUND:
199 		return "background commit requested";
200 	case COMMIT_REQUIRED:
201 		return "commit required";
202 	case COMMIT_RUNNING_BACKGROUND:
203 		return "BACKGROUND commit running";
204 	case COMMIT_RUNNING_REQUIRED:
205 		return "commit running and required";
206 	case COMMIT_BROKEN:
207 		return "broken commit";
208 	default:
209 		return "unknown commit state";
210 	}
211 }
212 
213 const char *dbg_jhead(int jhead)
214 {
215 	switch (jhead) {
216 	case GCHD:
217 		return "0 (GC)";
218 	case BASEHD:
219 		return "1 (base)";
220 	case DATAHD:
221 		return "2 (data)";
222 	default:
223 		return "unknown journal head";
224 	}
225 }
226 
227 static void dump_ch(const struct ubifs_ch *ch)
228 {
229 	printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
230 	printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
231 	printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
232 	       dbg_ntype(ch->node_type));
233 	printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
234 	       dbg_gtype(ch->group_type));
235 	printk(KERN_DEBUG "\tsqnum          %llu\n",
236 	       (unsigned long long)le64_to_cpu(ch->sqnum));
237 	printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
238 }
239 
240 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
241 {
242 	const struct ubifs_inode *ui = ubifs_inode(inode);
243 
244 	printk(KERN_DEBUG "Dump in-memory inode:");
245 	printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
246 	printk(KERN_DEBUG "\tsize           %llu\n",
247 	       (unsigned long long)i_size_read(inode));
248 	printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
249 	printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
250 	printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
251 	printk(KERN_DEBUG "\tatime          %u.%u\n",
252 	       (unsigned int)inode->i_atime.tv_sec,
253 	       (unsigned int)inode->i_atime.tv_nsec);
254 	printk(KERN_DEBUG "\tmtime          %u.%u\n",
255 	       (unsigned int)inode->i_mtime.tv_sec,
256 	       (unsigned int)inode->i_mtime.tv_nsec);
257 	printk(KERN_DEBUG "\tctime          %u.%u\n",
258 	       (unsigned int)inode->i_ctime.tv_sec,
259 	       (unsigned int)inode->i_ctime.tv_nsec);
260 	printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
261 	printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
262 	printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
263 	printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
264 	printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
265 	printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
266 	printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
267 	printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
268 	       (unsigned long long)ui->synced_i_size);
269 	printk(KERN_DEBUG "\tui_size        %llu\n",
270 	       (unsigned long long)ui->ui_size);
271 	printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
272 	printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
273 	printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
274 	printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
275 	printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
276 }
277 
278 void dbg_dump_node(const struct ubifs_info *c, const void *node)
279 {
280 	int i, n;
281 	union ubifs_key key;
282 	const struct ubifs_ch *ch = node;
283 
284 	if (dbg_failure_mode)
285 		return;
286 
287 	/* If the magic is incorrect, just hexdump the first bytes */
288 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
289 		printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
290 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
291 			       (void *)node, UBIFS_CH_SZ, 1);
292 		return;
293 	}
294 
295 	spin_lock(&dbg_lock);
296 	dump_ch(node);
297 
298 	switch (ch->node_type) {
299 	case UBIFS_PAD_NODE:
300 	{
301 		const struct ubifs_pad_node *pad = node;
302 
303 		printk(KERN_DEBUG "\tpad_len        %u\n",
304 		       le32_to_cpu(pad->pad_len));
305 		break;
306 	}
307 	case UBIFS_SB_NODE:
308 	{
309 		const struct ubifs_sb_node *sup = node;
310 		unsigned int sup_flags = le32_to_cpu(sup->flags);
311 
312 		printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
313 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
314 		printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
315 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
316 		printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
317 		printk(KERN_DEBUG "\t  big_lpt      %u\n",
318 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
319 		printk(KERN_DEBUG "\tmin_io_size    %u\n",
320 		       le32_to_cpu(sup->min_io_size));
321 		printk(KERN_DEBUG "\tleb_size       %u\n",
322 		       le32_to_cpu(sup->leb_size));
323 		printk(KERN_DEBUG "\tleb_cnt        %u\n",
324 		       le32_to_cpu(sup->leb_cnt));
325 		printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
326 		       le32_to_cpu(sup->max_leb_cnt));
327 		printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
328 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
329 		printk(KERN_DEBUG "\tlog_lebs       %u\n",
330 		       le32_to_cpu(sup->log_lebs));
331 		printk(KERN_DEBUG "\tlpt_lebs       %u\n",
332 		       le32_to_cpu(sup->lpt_lebs));
333 		printk(KERN_DEBUG "\torph_lebs      %u\n",
334 		       le32_to_cpu(sup->orph_lebs));
335 		printk(KERN_DEBUG "\tjhead_cnt      %u\n",
336 		       le32_to_cpu(sup->jhead_cnt));
337 		printk(KERN_DEBUG "\tfanout         %u\n",
338 		       le32_to_cpu(sup->fanout));
339 		printk(KERN_DEBUG "\tlsave_cnt      %u\n",
340 		       le32_to_cpu(sup->lsave_cnt));
341 		printk(KERN_DEBUG "\tdefault_compr  %u\n",
342 		       (int)le16_to_cpu(sup->default_compr));
343 		printk(KERN_DEBUG "\trp_size        %llu\n",
344 		       (unsigned long long)le64_to_cpu(sup->rp_size));
345 		printk(KERN_DEBUG "\trp_uid         %u\n",
346 		       le32_to_cpu(sup->rp_uid));
347 		printk(KERN_DEBUG "\trp_gid         %u\n",
348 		       le32_to_cpu(sup->rp_gid));
349 		printk(KERN_DEBUG "\tfmt_version    %u\n",
350 		       le32_to_cpu(sup->fmt_version));
351 		printk(KERN_DEBUG "\ttime_gran      %u\n",
352 		       le32_to_cpu(sup->time_gran));
353 		printk(KERN_DEBUG "\tUUID           %02X%02X%02X%02X-%02X%02X"
354 		       "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
355 		       sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3],
356 		       sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7],
357 		       sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11],
358 		       sup->uuid[12], sup->uuid[13], sup->uuid[14],
359 		       sup->uuid[15]);
360 		break;
361 	}
362 	case UBIFS_MST_NODE:
363 	{
364 		const struct ubifs_mst_node *mst = node;
365 
366 		printk(KERN_DEBUG "\thighest_inum   %llu\n",
367 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
368 		printk(KERN_DEBUG "\tcommit number  %llu\n",
369 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
370 		printk(KERN_DEBUG "\tflags          %#x\n",
371 		       le32_to_cpu(mst->flags));
372 		printk(KERN_DEBUG "\tlog_lnum       %u\n",
373 		       le32_to_cpu(mst->log_lnum));
374 		printk(KERN_DEBUG "\troot_lnum      %u\n",
375 		       le32_to_cpu(mst->root_lnum));
376 		printk(KERN_DEBUG "\troot_offs      %u\n",
377 		       le32_to_cpu(mst->root_offs));
378 		printk(KERN_DEBUG "\troot_len       %u\n",
379 		       le32_to_cpu(mst->root_len));
380 		printk(KERN_DEBUG "\tgc_lnum        %u\n",
381 		       le32_to_cpu(mst->gc_lnum));
382 		printk(KERN_DEBUG "\tihead_lnum     %u\n",
383 		       le32_to_cpu(mst->ihead_lnum));
384 		printk(KERN_DEBUG "\tihead_offs     %u\n",
385 		       le32_to_cpu(mst->ihead_offs));
386 		printk(KERN_DEBUG "\tindex_size     %llu\n",
387 		       (unsigned long long)le64_to_cpu(mst->index_size));
388 		printk(KERN_DEBUG "\tlpt_lnum       %u\n",
389 		       le32_to_cpu(mst->lpt_lnum));
390 		printk(KERN_DEBUG "\tlpt_offs       %u\n",
391 		       le32_to_cpu(mst->lpt_offs));
392 		printk(KERN_DEBUG "\tnhead_lnum     %u\n",
393 		       le32_to_cpu(mst->nhead_lnum));
394 		printk(KERN_DEBUG "\tnhead_offs     %u\n",
395 		       le32_to_cpu(mst->nhead_offs));
396 		printk(KERN_DEBUG "\tltab_lnum      %u\n",
397 		       le32_to_cpu(mst->ltab_lnum));
398 		printk(KERN_DEBUG "\tltab_offs      %u\n",
399 		       le32_to_cpu(mst->ltab_offs));
400 		printk(KERN_DEBUG "\tlsave_lnum     %u\n",
401 		       le32_to_cpu(mst->lsave_lnum));
402 		printk(KERN_DEBUG "\tlsave_offs     %u\n",
403 		       le32_to_cpu(mst->lsave_offs));
404 		printk(KERN_DEBUG "\tlscan_lnum     %u\n",
405 		       le32_to_cpu(mst->lscan_lnum));
406 		printk(KERN_DEBUG "\tleb_cnt        %u\n",
407 		       le32_to_cpu(mst->leb_cnt));
408 		printk(KERN_DEBUG "\tempty_lebs     %u\n",
409 		       le32_to_cpu(mst->empty_lebs));
410 		printk(KERN_DEBUG "\tidx_lebs       %u\n",
411 		       le32_to_cpu(mst->idx_lebs));
412 		printk(KERN_DEBUG "\ttotal_free     %llu\n",
413 		       (unsigned long long)le64_to_cpu(mst->total_free));
414 		printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
415 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
416 		printk(KERN_DEBUG "\ttotal_used     %llu\n",
417 		       (unsigned long long)le64_to_cpu(mst->total_used));
418 		printk(KERN_DEBUG "\ttotal_dead     %llu\n",
419 		       (unsigned long long)le64_to_cpu(mst->total_dead));
420 		printk(KERN_DEBUG "\ttotal_dark     %llu\n",
421 		       (unsigned long long)le64_to_cpu(mst->total_dark));
422 		break;
423 	}
424 	case UBIFS_REF_NODE:
425 	{
426 		const struct ubifs_ref_node *ref = node;
427 
428 		printk(KERN_DEBUG "\tlnum           %u\n",
429 		       le32_to_cpu(ref->lnum));
430 		printk(KERN_DEBUG "\toffs           %u\n",
431 		       le32_to_cpu(ref->offs));
432 		printk(KERN_DEBUG "\tjhead          %u\n",
433 		       le32_to_cpu(ref->jhead));
434 		break;
435 	}
436 	case UBIFS_INO_NODE:
437 	{
438 		const struct ubifs_ino_node *ino = node;
439 
440 		key_read(c, &ino->key, &key);
441 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
442 		printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
443 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
444 		printk(KERN_DEBUG "\tsize           %llu\n",
445 		       (unsigned long long)le64_to_cpu(ino->size));
446 		printk(KERN_DEBUG "\tnlink          %u\n",
447 		       le32_to_cpu(ino->nlink));
448 		printk(KERN_DEBUG "\tatime          %lld.%u\n",
449 		       (long long)le64_to_cpu(ino->atime_sec),
450 		       le32_to_cpu(ino->atime_nsec));
451 		printk(KERN_DEBUG "\tmtime          %lld.%u\n",
452 		       (long long)le64_to_cpu(ino->mtime_sec),
453 		       le32_to_cpu(ino->mtime_nsec));
454 		printk(KERN_DEBUG "\tctime          %lld.%u\n",
455 		       (long long)le64_to_cpu(ino->ctime_sec),
456 		       le32_to_cpu(ino->ctime_nsec));
457 		printk(KERN_DEBUG "\tuid            %u\n",
458 		       le32_to_cpu(ino->uid));
459 		printk(KERN_DEBUG "\tgid            %u\n",
460 		       le32_to_cpu(ino->gid));
461 		printk(KERN_DEBUG "\tmode           %u\n",
462 		       le32_to_cpu(ino->mode));
463 		printk(KERN_DEBUG "\tflags          %#x\n",
464 		       le32_to_cpu(ino->flags));
465 		printk(KERN_DEBUG "\txattr_cnt      %u\n",
466 		       le32_to_cpu(ino->xattr_cnt));
467 		printk(KERN_DEBUG "\txattr_size     %u\n",
468 		       le32_to_cpu(ino->xattr_size));
469 		printk(KERN_DEBUG "\txattr_names    %u\n",
470 		       le32_to_cpu(ino->xattr_names));
471 		printk(KERN_DEBUG "\tcompr_type     %#x\n",
472 		       (int)le16_to_cpu(ino->compr_type));
473 		printk(KERN_DEBUG "\tdata len       %u\n",
474 		       le32_to_cpu(ino->data_len));
475 		break;
476 	}
477 	case UBIFS_DENT_NODE:
478 	case UBIFS_XENT_NODE:
479 	{
480 		const struct ubifs_dent_node *dent = node;
481 		int nlen = le16_to_cpu(dent->nlen);
482 
483 		key_read(c, &dent->key, &key);
484 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
485 		printk(KERN_DEBUG "\tinum           %llu\n",
486 		       (unsigned long long)le64_to_cpu(dent->inum));
487 		printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
488 		printk(KERN_DEBUG "\tnlen           %d\n", nlen);
489 		printk(KERN_DEBUG "\tname           ");
490 
491 		if (nlen > UBIFS_MAX_NLEN)
492 			printk(KERN_DEBUG "(bad name length, not printing, "
493 					  "bad or corrupted node)");
494 		else {
495 			for (i = 0; i < nlen && dent->name[i]; i++)
496 				printk(KERN_CONT "%c", dent->name[i]);
497 		}
498 		printk(KERN_CONT "\n");
499 
500 		break;
501 	}
502 	case UBIFS_DATA_NODE:
503 	{
504 		const struct ubifs_data_node *dn = node;
505 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
506 
507 		key_read(c, &dn->key, &key);
508 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
509 		printk(KERN_DEBUG "\tsize           %u\n",
510 		       le32_to_cpu(dn->size));
511 		printk(KERN_DEBUG "\tcompr_typ      %d\n",
512 		       (int)le16_to_cpu(dn->compr_type));
513 		printk(KERN_DEBUG "\tdata size      %d\n",
514 		       dlen);
515 		printk(KERN_DEBUG "\tdata:\n");
516 		print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
517 			       (void *)&dn->data, dlen, 0);
518 		break;
519 	}
520 	case UBIFS_TRUN_NODE:
521 	{
522 		const struct ubifs_trun_node *trun = node;
523 
524 		printk(KERN_DEBUG "\tinum           %u\n",
525 		       le32_to_cpu(trun->inum));
526 		printk(KERN_DEBUG "\told_size       %llu\n",
527 		       (unsigned long long)le64_to_cpu(trun->old_size));
528 		printk(KERN_DEBUG "\tnew_size       %llu\n",
529 		       (unsigned long long)le64_to_cpu(trun->new_size));
530 		break;
531 	}
532 	case UBIFS_IDX_NODE:
533 	{
534 		const struct ubifs_idx_node *idx = node;
535 
536 		n = le16_to_cpu(idx->child_cnt);
537 		printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
538 		printk(KERN_DEBUG "\tlevel          %d\n",
539 		       (int)le16_to_cpu(idx->level));
540 		printk(KERN_DEBUG "\tBranches:\n");
541 
542 		for (i = 0; i < n && i < c->fanout - 1; i++) {
543 			const struct ubifs_branch *br;
544 
545 			br = ubifs_idx_branch(c, idx, i);
546 			key_read(c, &br->key, &key);
547 			printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
548 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
549 			       le32_to_cpu(br->len), DBGKEY(&key));
550 		}
551 		break;
552 	}
553 	case UBIFS_CS_NODE:
554 		break;
555 	case UBIFS_ORPH_NODE:
556 	{
557 		const struct ubifs_orph_node *orph = node;
558 
559 		printk(KERN_DEBUG "\tcommit number  %llu\n",
560 		       (unsigned long long)
561 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
562 		printk(KERN_DEBUG "\tlast node flag %llu\n",
563 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
564 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
565 		printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
566 		for (i = 0; i < n; i++)
567 			printk(KERN_DEBUG "\t  ino %llu\n",
568 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
569 		break;
570 	}
571 	default:
572 		printk(KERN_DEBUG "node type %d was not recognized\n",
573 		       (int)ch->node_type);
574 	}
575 	spin_unlock(&dbg_lock);
576 }
577 
578 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
579 {
580 	spin_lock(&dbg_lock);
581 	printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
582 	       req->new_ino, req->dirtied_ino);
583 	printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
584 	       req->new_ino_d, req->dirtied_ino_d);
585 	printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
586 	       req->new_page, req->dirtied_page);
587 	printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
588 	       req->new_dent, req->mod_dent);
589 	printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
590 	printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
591 	       req->data_growth, req->dd_growth);
592 	spin_unlock(&dbg_lock);
593 }
594 
595 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
596 {
597 	spin_lock(&dbg_lock);
598 	printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
599 	       "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
600 	printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
601 	       "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
602 	       lst->total_dirty);
603 	printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
604 	       "total_dead %lld\n", lst->total_used, lst->total_dark,
605 	       lst->total_dead);
606 	spin_unlock(&dbg_lock);
607 }
608 
609 void dbg_dump_budg(struct ubifs_info *c)
610 {
611 	int i;
612 	struct rb_node *rb;
613 	struct ubifs_bud *bud;
614 	struct ubifs_gced_idx_leb *idx_gc;
615 	long long available, outstanding, free;
616 
617 	ubifs_assert(spin_is_locked(&c->space_lock));
618 	spin_lock(&dbg_lock);
619 	printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
620 	       "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
621 	       c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
622 	printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
623 	       "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
624 	       c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
625 	       c->freeable_cnt);
626 	printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
627 	       "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
628 	       c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
629 	printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
630 	       "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
631 	       atomic_long_read(&c->dirty_zn_cnt),
632 	       atomic_long_read(&c->clean_zn_cnt));
633 	printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
634 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
635 	printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
636 	       c->gc_lnum, c->ihead_lnum);
637 	/* If we are in R/O mode, journal heads do not exist */
638 	if (c->jheads)
639 		for (i = 0; i < c->jhead_cnt; i++)
640 			printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
641 			       dbg_jhead(c->jheads[i].wbuf.jhead),
642 			       c->jheads[i].wbuf.lnum);
643 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
644 		bud = rb_entry(rb, struct ubifs_bud, rb);
645 		printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
646 	}
647 	list_for_each_entry(bud, &c->old_buds, list)
648 		printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
649 	list_for_each_entry(idx_gc, &c->idx_gc, list)
650 		printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
651 		       idx_gc->lnum, idx_gc->unmap);
652 	printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
653 
654 	/* Print budgeting predictions */
655 	available = ubifs_calc_available(c, c->min_idx_lebs);
656 	outstanding = c->budg_data_growth + c->budg_dd_growth;
657 	free = ubifs_get_free_space_nolock(c);
658 	printk(KERN_DEBUG "Budgeting predictions:\n");
659 	printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
660 	       available, outstanding, free);
661 	spin_unlock(&dbg_lock);
662 }
663 
664 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
665 {
666 	int i, spc, dark = 0, dead = 0;
667 	struct rb_node *rb;
668 	struct ubifs_bud *bud;
669 
670 	spc = lp->free + lp->dirty;
671 	if (spc < c->dead_wm)
672 		dead = spc;
673 	else
674 		dark = ubifs_calc_dark(c, spc);
675 
676 	if (lp->flags & LPROPS_INDEX)
677 		printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
678 		       "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
679 		       lp->dirty, c->leb_size - spc, spc, lp->flags);
680 	else
681 		printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
682 		       "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
683 		       "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
684 		       c->leb_size - spc, spc, dark, dead,
685 		       (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
686 
687 	if (lp->flags & LPROPS_TAKEN) {
688 		if (lp->flags & LPROPS_INDEX)
689 			printk(KERN_CONT "index, taken");
690 		else
691 			printk(KERN_CONT "taken");
692 	} else {
693 		const char *s;
694 
695 		if (lp->flags & LPROPS_INDEX) {
696 			switch (lp->flags & LPROPS_CAT_MASK) {
697 			case LPROPS_DIRTY_IDX:
698 				s = "dirty index";
699 				break;
700 			case LPROPS_FRDI_IDX:
701 				s = "freeable index";
702 				break;
703 			default:
704 				s = "index";
705 			}
706 		} else {
707 			switch (lp->flags & LPROPS_CAT_MASK) {
708 			case LPROPS_UNCAT:
709 				s = "not categorized";
710 				break;
711 			case LPROPS_DIRTY:
712 				s = "dirty";
713 				break;
714 			case LPROPS_FREE:
715 				s = "free";
716 				break;
717 			case LPROPS_EMPTY:
718 				s = "empty";
719 				break;
720 			case LPROPS_FREEABLE:
721 				s = "freeable";
722 				break;
723 			default:
724 				s = NULL;
725 				break;
726 			}
727 		}
728 		printk(KERN_CONT "%s", s);
729 	}
730 
731 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
732 		bud = rb_entry(rb, struct ubifs_bud, rb);
733 		if (bud->lnum == lp->lnum) {
734 			int head = 0;
735 			for (i = 0; i < c->jhead_cnt; i++) {
736 				if (lp->lnum == c->jheads[i].wbuf.lnum) {
737 					printk(KERN_CONT ", jhead %s",
738 					       dbg_jhead(i));
739 					head = 1;
740 				}
741 			}
742 			if (!head)
743 				printk(KERN_CONT ", bud of jhead %s",
744 				       dbg_jhead(bud->jhead));
745 		}
746 	}
747 	if (lp->lnum == c->gc_lnum)
748 		printk(KERN_CONT ", GC LEB");
749 	printk(KERN_CONT ")\n");
750 }
751 
752 void dbg_dump_lprops(struct ubifs_info *c)
753 {
754 	int lnum, err;
755 	struct ubifs_lprops lp;
756 	struct ubifs_lp_stats lst;
757 
758 	printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
759 	       current->pid);
760 	ubifs_get_lp_stats(c, &lst);
761 	dbg_dump_lstats(&lst);
762 
763 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
764 		err = ubifs_read_one_lp(c, lnum, &lp);
765 		if (err)
766 			ubifs_err("cannot read lprops for LEB %d", lnum);
767 
768 		dbg_dump_lprop(c, &lp);
769 	}
770 	printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
771 	       current->pid);
772 }
773 
774 void dbg_dump_lpt_info(struct ubifs_info *c)
775 {
776 	int i;
777 
778 	spin_lock(&dbg_lock);
779 	printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
780 	printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
781 	printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
782 	printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
783 	printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
784 	printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
785 	printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
786 	printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
787 	printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
788 	printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
789 	printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
790 	printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
791 	printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
792 	printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
793 	printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
794 	printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
795 	printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
796 	printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
797 	printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
798 	printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
799 	printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
800 	       c->nhead_lnum, c->nhead_offs);
801 	printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
802 	       c->ltab_lnum, c->ltab_offs);
803 	if (c->big_lpt)
804 		printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
805 		       c->lsave_lnum, c->lsave_offs);
806 	for (i = 0; i < c->lpt_lebs; i++)
807 		printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
808 		       "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
809 		       c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
810 	spin_unlock(&dbg_lock);
811 }
812 
813 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
814 {
815 	struct ubifs_scan_leb *sleb;
816 	struct ubifs_scan_node *snod;
817 
818 	if (dbg_failure_mode)
819 		return;
820 
821 	printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
822 	       current->pid, lnum);
823 	sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
824 	if (IS_ERR(sleb)) {
825 		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
826 		return;
827 	}
828 
829 	printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
830 	       sleb->nodes_cnt, sleb->endpt);
831 
832 	list_for_each_entry(snod, &sleb->nodes, list) {
833 		cond_resched();
834 		printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
835 		       snod->offs, snod->len);
836 		dbg_dump_node(c, snod->node);
837 	}
838 
839 	printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
840 	       current->pid, lnum);
841 	ubifs_scan_destroy(sleb);
842 	return;
843 }
844 
845 void dbg_dump_znode(const struct ubifs_info *c,
846 		    const struct ubifs_znode *znode)
847 {
848 	int n;
849 	const struct ubifs_zbranch *zbr;
850 
851 	spin_lock(&dbg_lock);
852 	if (znode->parent)
853 		zbr = &znode->parent->zbranch[znode->iip];
854 	else
855 		zbr = &c->zroot;
856 
857 	printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
858 	       " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
859 	       zbr->len, znode->parent, znode->iip, znode->level,
860 	       znode->child_cnt, znode->flags);
861 
862 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
863 		spin_unlock(&dbg_lock);
864 		return;
865 	}
866 
867 	printk(KERN_DEBUG "zbranches:\n");
868 	for (n = 0; n < znode->child_cnt; n++) {
869 		zbr = &znode->zbranch[n];
870 		if (znode->level > 0)
871 			printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
872 					  "%s\n", n, zbr->znode, zbr->lnum,
873 					  zbr->offs, zbr->len,
874 					  DBGKEY(&zbr->key));
875 		else
876 			printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
877 					  "%s\n", n, zbr->znode, zbr->lnum,
878 					  zbr->offs, zbr->len,
879 					  DBGKEY(&zbr->key));
880 	}
881 	spin_unlock(&dbg_lock);
882 }
883 
884 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
885 {
886 	int i;
887 
888 	printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
889 	       current->pid, cat, heap->cnt);
890 	for (i = 0; i < heap->cnt; i++) {
891 		struct ubifs_lprops *lprops = heap->arr[i];
892 
893 		printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
894 		       "flags %d\n", i, lprops->lnum, lprops->hpos,
895 		       lprops->free, lprops->dirty, lprops->flags);
896 	}
897 	printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
898 }
899 
900 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
901 		    struct ubifs_nnode *parent, int iip)
902 {
903 	int i;
904 
905 	printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
906 	printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
907 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
908 	printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
909 	       pnode->flags, iip, pnode->level, pnode->num);
910 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
911 		struct ubifs_lprops *lp = &pnode->lprops[i];
912 
913 		printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
914 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
915 	}
916 }
917 
918 void dbg_dump_tnc(struct ubifs_info *c)
919 {
920 	struct ubifs_znode *znode;
921 	int level;
922 
923 	printk(KERN_DEBUG "\n");
924 	printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
925 	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
926 	level = znode->level;
927 	printk(KERN_DEBUG "== Level %d ==\n", level);
928 	while (znode) {
929 		if (level != znode->level) {
930 			level = znode->level;
931 			printk(KERN_DEBUG "== Level %d ==\n", level);
932 		}
933 		dbg_dump_znode(c, znode);
934 		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
935 	}
936 	printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
937 }
938 
939 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
940 		      void *priv)
941 {
942 	dbg_dump_znode(c, znode);
943 	return 0;
944 }
945 
946 /**
947  * dbg_dump_index - dump the on-flash index.
948  * @c: UBIFS file-system description object
949  *
950  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
951  * which dumps only in-memory znodes and does not read znodes which from flash.
952  */
953 void dbg_dump_index(struct ubifs_info *c)
954 {
955 	dbg_walk_index(c, NULL, dump_znode, NULL);
956 }
957 
958 /**
959  * dbg_save_space_info - save information about flash space.
960  * @c: UBIFS file-system description object
961  *
962  * This function saves information about UBIFS free space, dirty space, etc, in
963  * order to check it later.
964  */
965 void dbg_save_space_info(struct ubifs_info *c)
966 {
967 	struct ubifs_debug_info *d = c->dbg;
968 
969 	ubifs_get_lp_stats(c, &d->saved_lst);
970 
971 	spin_lock(&c->space_lock);
972 	d->saved_free = ubifs_get_free_space_nolock(c);
973 	spin_unlock(&c->space_lock);
974 }
975 
976 /**
977  * dbg_check_space_info - check flash space information.
978  * @c: UBIFS file-system description object
979  *
980  * This function compares current flash space information with the information
981  * which was saved when the 'dbg_save_space_info()' function was called.
982  * Returns zero if the information has not changed, and %-EINVAL it it has
983  * changed.
984  */
985 int dbg_check_space_info(struct ubifs_info *c)
986 {
987 	struct ubifs_debug_info *d = c->dbg;
988 	struct ubifs_lp_stats lst;
989 	long long avail, free;
990 
991 	spin_lock(&c->space_lock);
992 	avail = ubifs_calc_available(c, c->min_idx_lebs);
993 	spin_unlock(&c->space_lock);
994 	free = ubifs_get_free_space(c);
995 
996 	if (free != d->saved_free) {
997 		ubifs_err("free space changed from %lld to %lld",
998 			  d->saved_free, free);
999 		goto out;
1000 	}
1001 
1002 	return 0;
1003 
1004 out:
1005 	ubifs_msg("saved lprops statistics dump");
1006 	dbg_dump_lstats(&d->saved_lst);
1007 	ubifs_get_lp_stats(c, &lst);
1008 
1009 	ubifs_msg("current lprops statistics dump");
1010 	dbg_dump_lstats(&lst);
1011 
1012 	spin_lock(&c->space_lock);
1013 	dbg_dump_budg(c);
1014 	spin_unlock(&c->space_lock);
1015 	dump_stack();
1016 	return -EINVAL;
1017 }
1018 
1019 /**
1020  * dbg_check_synced_i_size - check synchronized inode size.
1021  * @inode: inode to check
1022  *
1023  * If inode is clean, synchronized inode size has to be equivalent to current
1024  * inode size. This function has to be called only for locked inodes (@i_mutex
1025  * has to be locked). Returns %0 if synchronized inode size if correct, and
1026  * %-EINVAL if not.
1027  */
1028 int dbg_check_synced_i_size(struct inode *inode)
1029 {
1030 	int err = 0;
1031 	struct ubifs_inode *ui = ubifs_inode(inode);
1032 
1033 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1034 		return 0;
1035 	if (!S_ISREG(inode->i_mode))
1036 		return 0;
1037 
1038 	mutex_lock(&ui->ui_mutex);
1039 	spin_lock(&ui->ui_lock);
1040 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1041 		ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1042 			  "is clean", ui->ui_size, ui->synced_i_size);
1043 		ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1044 			  inode->i_mode, i_size_read(inode));
1045 		dbg_dump_stack();
1046 		err = -EINVAL;
1047 	}
1048 	spin_unlock(&ui->ui_lock);
1049 	mutex_unlock(&ui->ui_mutex);
1050 	return err;
1051 }
1052 
1053 /*
1054  * dbg_check_dir - check directory inode size and link count.
1055  * @c: UBIFS file-system description object
1056  * @dir: the directory to calculate size for
1057  * @size: the result is returned here
1058  *
1059  * This function makes sure that directory size and link count are correct.
1060  * Returns zero in case of success and a negative error code in case of
1061  * failure.
1062  *
1063  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1064  * calling this function.
1065  */
1066 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
1067 {
1068 	unsigned int nlink = 2;
1069 	union ubifs_key key;
1070 	struct ubifs_dent_node *dent, *pdent = NULL;
1071 	struct qstr nm = { .name = NULL };
1072 	loff_t size = UBIFS_INO_NODE_SZ;
1073 
1074 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1075 		return 0;
1076 
1077 	if (!S_ISDIR(dir->i_mode))
1078 		return 0;
1079 
1080 	lowest_dent_key(c, &key, dir->i_ino);
1081 	while (1) {
1082 		int err;
1083 
1084 		dent = ubifs_tnc_next_ent(c, &key, &nm);
1085 		if (IS_ERR(dent)) {
1086 			err = PTR_ERR(dent);
1087 			if (err == -ENOENT)
1088 				break;
1089 			return err;
1090 		}
1091 
1092 		nm.name = dent->name;
1093 		nm.len = le16_to_cpu(dent->nlen);
1094 		size += CALC_DENT_SIZE(nm.len);
1095 		if (dent->type == UBIFS_ITYPE_DIR)
1096 			nlink += 1;
1097 		kfree(pdent);
1098 		pdent = dent;
1099 		key_read(c, &dent->key, &key);
1100 	}
1101 	kfree(pdent);
1102 
1103 	if (i_size_read(dir) != size) {
1104 		ubifs_err("directory inode %lu has size %llu, "
1105 			  "but calculated size is %llu", dir->i_ino,
1106 			  (unsigned long long)i_size_read(dir),
1107 			  (unsigned long long)size);
1108 		dump_stack();
1109 		return -EINVAL;
1110 	}
1111 	if (dir->i_nlink != nlink) {
1112 		ubifs_err("directory inode %lu has nlink %u, but calculated "
1113 			  "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1114 		dump_stack();
1115 		return -EINVAL;
1116 	}
1117 
1118 	return 0;
1119 }
1120 
1121 /**
1122  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1123  * @c: UBIFS file-system description object
1124  * @zbr1: first zbranch
1125  * @zbr2: following zbranch
1126  *
1127  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1128  * names of the direntries/xentries which are referred by the keys. This
1129  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1130  * sure the name of direntry/xentry referred by @zbr1 is less than
1131  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1132  * and a negative error code in case of failure.
1133  */
1134 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1135 			       struct ubifs_zbranch *zbr2)
1136 {
1137 	int err, nlen1, nlen2, cmp;
1138 	struct ubifs_dent_node *dent1, *dent2;
1139 	union ubifs_key key;
1140 
1141 	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1142 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1143 	if (!dent1)
1144 		return -ENOMEM;
1145 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1146 	if (!dent2) {
1147 		err = -ENOMEM;
1148 		goto out_free;
1149 	}
1150 
1151 	err = ubifs_tnc_read_node(c, zbr1, dent1);
1152 	if (err)
1153 		goto out_free;
1154 	err = ubifs_validate_entry(c, dent1);
1155 	if (err)
1156 		goto out_free;
1157 
1158 	err = ubifs_tnc_read_node(c, zbr2, dent2);
1159 	if (err)
1160 		goto out_free;
1161 	err = ubifs_validate_entry(c, dent2);
1162 	if (err)
1163 		goto out_free;
1164 
1165 	/* Make sure node keys are the same as in zbranch */
1166 	err = 1;
1167 	key_read(c, &dent1->key, &key);
1168 	if (keys_cmp(c, &zbr1->key, &key)) {
1169 		dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1170 			zbr1->offs, DBGKEY(&key));
1171 		dbg_err("but it should have key %s according to tnc",
1172 			DBGKEY(&zbr1->key));
1173 		dbg_dump_node(c, dent1);
1174 		goto out_free;
1175 	}
1176 
1177 	key_read(c, &dent2->key, &key);
1178 	if (keys_cmp(c, &zbr2->key, &key)) {
1179 		dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1180 			zbr1->offs, DBGKEY(&key));
1181 		dbg_err("but it should have key %s according to tnc",
1182 			DBGKEY(&zbr2->key));
1183 		dbg_dump_node(c, dent2);
1184 		goto out_free;
1185 	}
1186 
1187 	nlen1 = le16_to_cpu(dent1->nlen);
1188 	nlen2 = le16_to_cpu(dent2->nlen);
1189 
1190 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1191 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1192 		err = 0;
1193 		goto out_free;
1194 	}
1195 	if (cmp == 0 && nlen1 == nlen2)
1196 		dbg_err("2 xent/dent nodes with the same name");
1197 	else
1198 		dbg_err("bad order of colliding key %s",
1199 			DBGKEY(&key));
1200 
1201 	ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1202 	dbg_dump_node(c, dent1);
1203 	ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1204 	dbg_dump_node(c, dent2);
1205 
1206 out_free:
1207 	kfree(dent2);
1208 	kfree(dent1);
1209 	return err;
1210 }
1211 
1212 /**
1213  * dbg_check_znode - check if znode is all right.
1214  * @c: UBIFS file-system description object
1215  * @zbr: zbranch which points to this znode
1216  *
1217  * This function makes sure that znode referred to by @zbr is all right.
1218  * Returns zero if it is, and %-EINVAL if it is not.
1219  */
1220 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1221 {
1222 	struct ubifs_znode *znode = zbr->znode;
1223 	struct ubifs_znode *zp = znode->parent;
1224 	int n, err, cmp;
1225 
1226 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1227 		err = 1;
1228 		goto out;
1229 	}
1230 	if (znode->level < 0) {
1231 		err = 2;
1232 		goto out;
1233 	}
1234 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1235 		err = 3;
1236 		goto out;
1237 	}
1238 
1239 	if (zbr->len == 0)
1240 		/* Only dirty zbranch may have no on-flash nodes */
1241 		if (!ubifs_zn_dirty(znode)) {
1242 			err = 4;
1243 			goto out;
1244 		}
1245 
1246 	if (ubifs_zn_dirty(znode)) {
1247 		/*
1248 		 * If znode is dirty, its parent has to be dirty as well. The
1249 		 * order of the operation is important, so we have to have
1250 		 * memory barriers.
1251 		 */
1252 		smp_mb();
1253 		if (zp && !ubifs_zn_dirty(zp)) {
1254 			/*
1255 			 * The dirty flag is atomic and is cleared outside the
1256 			 * TNC mutex, so znode's dirty flag may now have
1257 			 * been cleared. The child is always cleared before the
1258 			 * parent, so we just need to check again.
1259 			 */
1260 			smp_mb();
1261 			if (ubifs_zn_dirty(znode)) {
1262 				err = 5;
1263 				goto out;
1264 			}
1265 		}
1266 	}
1267 
1268 	if (zp) {
1269 		const union ubifs_key *min, *max;
1270 
1271 		if (znode->level != zp->level - 1) {
1272 			err = 6;
1273 			goto out;
1274 		}
1275 
1276 		/* Make sure the 'parent' pointer in our znode is correct */
1277 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1278 		if (!err) {
1279 			/* This zbranch does not exist in the parent */
1280 			err = 7;
1281 			goto out;
1282 		}
1283 
1284 		if (znode->iip >= zp->child_cnt) {
1285 			err = 8;
1286 			goto out;
1287 		}
1288 
1289 		if (znode->iip != n) {
1290 			/* This may happen only in case of collisions */
1291 			if (keys_cmp(c, &zp->zbranch[n].key,
1292 				     &zp->zbranch[znode->iip].key)) {
1293 				err = 9;
1294 				goto out;
1295 			}
1296 			n = znode->iip;
1297 		}
1298 
1299 		/*
1300 		 * Make sure that the first key in our znode is greater than or
1301 		 * equal to the key in the pointing zbranch.
1302 		 */
1303 		min = &zbr->key;
1304 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1305 		if (cmp == 1) {
1306 			err = 10;
1307 			goto out;
1308 		}
1309 
1310 		if (n + 1 < zp->child_cnt) {
1311 			max = &zp->zbranch[n + 1].key;
1312 
1313 			/*
1314 			 * Make sure the last key in our znode is less or
1315 			 * equivalent than the key in the zbranch which goes
1316 			 * after our pointing zbranch.
1317 			 */
1318 			cmp = keys_cmp(c, max,
1319 				&znode->zbranch[znode->child_cnt - 1].key);
1320 			if (cmp == -1) {
1321 				err = 11;
1322 				goto out;
1323 			}
1324 		}
1325 	} else {
1326 		/* This may only be root znode */
1327 		if (zbr != &c->zroot) {
1328 			err = 12;
1329 			goto out;
1330 		}
1331 	}
1332 
1333 	/*
1334 	 * Make sure that next key is greater or equivalent then the previous
1335 	 * one.
1336 	 */
1337 	for (n = 1; n < znode->child_cnt; n++) {
1338 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1339 			       &znode->zbranch[n].key);
1340 		if (cmp > 0) {
1341 			err = 13;
1342 			goto out;
1343 		}
1344 		if (cmp == 0) {
1345 			/* This can only be keys with colliding hash */
1346 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1347 				err = 14;
1348 				goto out;
1349 			}
1350 
1351 			if (znode->level != 0 || c->replaying)
1352 				continue;
1353 
1354 			/*
1355 			 * Colliding keys should follow binary order of
1356 			 * corresponding xentry/dentry names.
1357 			 */
1358 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1359 						  &znode->zbranch[n]);
1360 			if (err < 0)
1361 				return err;
1362 			if (err) {
1363 				err = 15;
1364 				goto out;
1365 			}
1366 		}
1367 	}
1368 
1369 	for (n = 0; n < znode->child_cnt; n++) {
1370 		if (!znode->zbranch[n].znode &&
1371 		    (znode->zbranch[n].lnum == 0 ||
1372 		     znode->zbranch[n].len == 0)) {
1373 			err = 16;
1374 			goto out;
1375 		}
1376 
1377 		if (znode->zbranch[n].lnum != 0 &&
1378 		    znode->zbranch[n].len == 0) {
1379 			err = 17;
1380 			goto out;
1381 		}
1382 
1383 		if (znode->zbranch[n].lnum == 0 &&
1384 		    znode->zbranch[n].len != 0) {
1385 			err = 18;
1386 			goto out;
1387 		}
1388 
1389 		if (znode->zbranch[n].lnum == 0 &&
1390 		    znode->zbranch[n].offs != 0) {
1391 			err = 19;
1392 			goto out;
1393 		}
1394 
1395 		if (znode->level != 0 && znode->zbranch[n].znode)
1396 			if (znode->zbranch[n].znode->parent != znode) {
1397 				err = 20;
1398 				goto out;
1399 			}
1400 	}
1401 
1402 	return 0;
1403 
1404 out:
1405 	ubifs_err("failed, error %d", err);
1406 	ubifs_msg("dump of the znode");
1407 	dbg_dump_znode(c, znode);
1408 	if (zp) {
1409 		ubifs_msg("dump of the parent znode");
1410 		dbg_dump_znode(c, zp);
1411 	}
1412 	dump_stack();
1413 	return -EINVAL;
1414 }
1415 
1416 /**
1417  * dbg_check_tnc - check TNC tree.
1418  * @c: UBIFS file-system description object
1419  * @extra: do extra checks that are possible at start commit
1420  *
1421  * This function traverses whole TNC tree and checks every znode. Returns zero
1422  * if everything is all right and %-EINVAL if something is wrong with TNC.
1423  */
1424 int dbg_check_tnc(struct ubifs_info *c, int extra)
1425 {
1426 	struct ubifs_znode *znode;
1427 	long clean_cnt = 0, dirty_cnt = 0;
1428 	int err, last;
1429 
1430 	if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1431 		return 0;
1432 
1433 	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1434 	if (!c->zroot.znode)
1435 		return 0;
1436 
1437 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1438 	while (1) {
1439 		struct ubifs_znode *prev;
1440 		struct ubifs_zbranch *zbr;
1441 
1442 		if (!znode->parent)
1443 			zbr = &c->zroot;
1444 		else
1445 			zbr = &znode->parent->zbranch[znode->iip];
1446 
1447 		err = dbg_check_znode(c, zbr);
1448 		if (err)
1449 			return err;
1450 
1451 		if (extra) {
1452 			if (ubifs_zn_dirty(znode))
1453 				dirty_cnt += 1;
1454 			else
1455 				clean_cnt += 1;
1456 		}
1457 
1458 		prev = znode;
1459 		znode = ubifs_tnc_postorder_next(znode);
1460 		if (!znode)
1461 			break;
1462 
1463 		/*
1464 		 * If the last key of this znode is equivalent to the first key
1465 		 * of the next znode (collision), then check order of the keys.
1466 		 */
1467 		last = prev->child_cnt - 1;
1468 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1469 		    !keys_cmp(c, &prev->zbranch[last].key,
1470 			      &znode->zbranch[0].key)) {
1471 			err = dbg_check_key_order(c, &prev->zbranch[last],
1472 						  &znode->zbranch[0]);
1473 			if (err < 0)
1474 				return err;
1475 			if (err) {
1476 				ubifs_msg("first znode");
1477 				dbg_dump_znode(c, prev);
1478 				ubifs_msg("second znode");
1479 				dbg_dump_znode(c, znode);
1480 				return -EINVAL;
1481 			}
1482 		}
1483 	}
1484 
1485 	if (extra) {
1486 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1487 			ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1488 				  atomic_long_read(&c->clean_zn_cnt),
1489 				  clean_cnt);
1490 			return -EINVAL;
1491 		}
1492 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1493 			ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1494 				  atomic_long_read(&c->dirty_zn_cnt),
1495 				  dirty_cnt);
1496 			return -EINVAL;
1497 		}
1498 	}
1499 
1500 	return 0;
1501 }
1502 
1503 /**
1504  * dbg_walk_index - walk the on-flash index.
1505  * @c: UBIFS file-system description object
1506  * @leaf_cb: called for each leaf node
1507  * @znode_cb: called for each indexing node
1508  * @priv: private data which is passed to callbacks
1509  *
1510  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1511  * node and @znode_cb for each indexing node. Returns zero in case of success
1512  * and a negative error code in case of failure.
1513  *
1514  * It would be better if this function removed every znode it pulled to into
1515  * the TNC, so that the behavior more closely matched the non-debugging
1516  * behavior.
1517  */
1518 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1519 		   dbg_znode_callback znode_cb, void *priv)
1520 {
1521 	int err;
1522 	struct ubifs_zbranch *zbr;
1523 	struct ubifs_znode *znode, *child;
1524 
1525 	mutex_lock(&c->tnc_mutex);
1526 	/* If the root indexing node is not in TNC - pull it */
1527 	if (!c->zroot.znode) {
1528 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1529 		if (IS_ERR(c->zroot.znode)) {
1530 			err = PTR_ERR(c->zroot.znode);
1531 			c->zroot.znode = NULL;
1532 			goto out_unlock;
1533 		}
1534 	}
1535 
1536 	/*
1537 	 * We are going to traverse the indexing tree in the postorder manner.
1538 	 * Go down and find the leftmost indexing node where we are going to
1539 	 * start from.
1540 	 */
1541 	znode = c->zroot.znode;
1542 	while (znode->level > 0) {
1543 		zbr = &znode->zbranch[0];
1544 		child = zbr->znode;
1545 		if (!child) {
1546 			child = ubifs_load_znode(c, zbr, znode, 0);
1547 			if (IS_ERR(child)) {
1548 				err = PTR_ERR(child);
1549 				goto out_unlock;
1550 			}
1551 			zbr->znode = child;
1552 		}
1553 
1554 		znode = child;
1555 	}
1556 
1557 	/* Iterate over all indexing nodes */
1558 	while (1) {
1559 		int idx;
1560 
1561 		cond_resched();
1562 
1563 		if (znode_cb) {
1564 			err = znode_cb(c, znode, priv);
1565 			if (err) {
1566 				ubifs_err("znode checking function returned "
1567 					  "error %d", err);
1568 				dbg_dump_znode(c, znode);
1569 				goto out_dump;
1570 			}
1571 		}
1572 		if (leaf_cb && znode->level == 0) {
1573 			for (idx = 0; idx < znode->child_cnt; idx++) {
1574 				zbr = &znode->zbranch[idx];
1575 				err = leaf_cb(c, zbr, priv);
1576 				if (err) {
1577 					ubifs_err("leaf checking function "
1578 						  "returned error %d, for leaf "
1579 						  "at LEB %d:%d",
1580 						  err, zbr->lnum, zbr->offs);
1581 					goto out_dump;
1582 				}
1583 			}
1584 		}
1585 
1586 		if (!znode->parent)
1587 			break;
1588 
1589 		idx = znode->iip + 1;
1590 		znode = znode->parent;
1591 		if (idx < znode->child_cnt) {
1592 			/* Switch to the next index in the parent */
1593 			zbr = &znode->zbranch[idx];
1594 			child = zbr->znode;
1595 			if (!child) {
1596 				child = ubifs_load_znode(c, zbr, znode, idx);
1597 				if (IS_ERR(child)) {
1598 					err = PTR_ERR(child);
1599 					goto out_unlock;
1600 				}
1601 				zbr->znode = child;
1602 			}
1603 			znode = child;
1604 		} else
1605 			/*
1606 			 * This is the last child, switch to the parent and
1607 			 * continue.
1608 			 */
1609 			continue;
1610 
1611 		/* Go to the lowest leftmost znode in the new sub-tree */
1612 		while (znode->level > 0) {
1613 			zbr = &znode->zbranch[0];
1614 			child = zbr->znode;
1615 			if (!child) {
1616 				child = ubifs_load_znode(c, zbr, znode, 0);
1617 				if (IS_ERR(child)) {
1618 					err = PTR_ERR(child);
1619 					goto out_unlock;
1620 				}
1621 				zbr->znode = child;
1622 			}
1623 			znode = child;
1624 		}
1625 	}
1626 
1627 	mutex_unlock(&c->tnc_mutex);
1628 	return 0;
1629 
1630 out_dump:
1631 	if (znode->parent)
1632 		zbr = &znode->parent->zbranch[znode->iip];
1633 	else
1634 		zbr = &c->zroot;
1635 	ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1636 	dbg_dump_znode(c, znode);
1637 out_unlock:
1638 	mutex_unlock(&c->tnc_mutex);
1639 	return err;
1640 }
1641 
1642 /**
1643  * add_size - add znode size to partially calculated index size.
1644  * @c: UBIFS file-system description object
1645  * @znode: znode to add size for
1646  * @priv: partially calculated index size
1647  *
1648  * This is a helper function for 'dbg_check_idx_size()' which is called for
1649  * every indexing node and adds its size to the 'long long' variable pointed to
1650  * by @priv.
1651  */
1652 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1653 {
1654 	long long *idx_size = priv;
1655 	int add;
1656 
1657 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1658 	add = ALIGN(add, 8);
1659 	*idx_size += add;
1660 	return 0;
1661 }
1662 
1663 /**
1664  * dbg_check_idx_size - check index size.
1665  * @c: UBIFS file-system description object
1666  * @idx_size: size to check
1667  *
1668  * This function walks the UBIFS index, calculates its size and checks that the
1669  * size is equivalent to @idx_size. Returns zero in case of success and a
1670  * negative error code in case of failure.
1671  */
1672 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1673 {
1674 	int err;
1675 	long long calc = 0;
1676 
1677 	if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1678 		return 0;
1679 
1680 	err = dbg_walk_index(c, NULL, add_size, &calc);
1681 	if (err) {
1682 		ubifs_err("error %d while walking the index", err);
1683 		return err;
1684 	}
1685 
1686 	if (calc != idx_size) {
1687 		ubifs_err("index size check failed: calculated size is %lld, "
1688 			  "should be %lld", calc, idx_size);
1689 		dump_stack();
1690 		return -EINVAL;
1691 	}
1692 
1693 	return 0;
1694 }
1695 
1696 /**
1697  * struct fsck_inode - information about an inode used when checking the file-system.
1698  * @rb: link in the RB-tree of inodes
1699  * @inum: inode number
1700  * @mode: inode type, permissions, etc
1701  * @nlink: inode link count
1702  * @xattr_cnt: count of extended attributes
1703  * @references: how many directory/xattr entries refer this inode (calculated
1704  *              while walking the index)
1705  * @calc_cnt: for directory inode count of child directories
1706  * @size: inode size (read from on-flash inode)
1707  * @xattr_sz: summary size of all extended attributes (read from on-flash
1708  *            inode)
1709  * @calc_sz: for directories calculated directory size
1710  * @calc_xcnt: count of extended attributes
1711  * @calc_xsz: calculated summary size of all extended attributes
1712  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1713  *             inode (read from on-flash inode)
1714  * @calc_xnms: calculated sum of lengths of all extended attribute names
1715  */
1716 struct fsck_inode {
1717 	struct rb_node rb;
1718 	ino_t inum;
1719 	umode_t mode;
1720 	unsigned int nlink;
1721 	unsigned int xattr_cnt;
1722 	int references;
1723 	int calc_cnt;
1724 	long long size;
1725 	unsigned int xattr_sz;
1726 	long long calc_sz;
1727 	long long calc_xcnt;
1728 	long long calc_xsz;
1729 	unsigned int xattr_nms;
1730 	long long calc_xnms;
1731 };
1732 
1733 /**
1734  * struct fsck_data - private FS checking information.
1735  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1736  */
1737 struct fsck_data {
1738 	struct rb_root inodes;
1739 };
1740 
1741 /**
1742  * add_inode - add inode information to RB-tree of inodes.
1743  * @c: UBIFS file-system description object
1744  * @fsckd: FS checking information
1745  * @ino: raw UBIFS inode to add
1746  *
1747  * This is a helper function for 'check_leaf()' which adds information about
1748  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1749  * case of success and a negative error code in case of failure.
1750  */
1751 static struct fsck_inode *add_inode(struct ubifs_info *c,
1752 				    struct fsck_data *fsckd,
1753 				    struct ubifs_ino_node *ino)
1754 {
1755 	struct rb_node **p, *parent = NULL;
1756 	struct fsck_inode *fscki;
1757 	ino_t inum = key_inum_flash(c, &ino->key);
1758 
1759 	p = &fsckd->inodes.rb_node;
1760 	while (*p) {
1761 		parent = *p;
1762 		fscki = rb_entry(parent, struct fsck_inode, rb);
1763 		if (inum < fscki->inum)
1764 			p = &(*p)->rb_left;
1765 		else if (inum > fscki->inum)
1766 			p = &(*p)->rb_right;
1767 		else
1768 			return fscki;
1769 	}
1770 
1771 	if (inum > c->highest_inum) {
1772 		ubifs_err("too high inode number, max. is %lu",
1773 			  (unsigned long)c->highest_inum);
1774 		return ERR_PTR(-EINVAL);
1775 	}
1776 
1777 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1778 	if (!fscki)
1779 		return ERR_PTR(-ENOMEM);
1780 
1781 	fscki->inum = inum;
1782 	fscki->nlink = le32_to_cpu(ino->nlink);
1783 	fscki->size = le64_to_cpu(ino->size);
1784 	fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1785 	fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1786 	fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1787 	fscki->mode = le32_to_cpu(ino->mode);
1788 	if (S_ISDIR(fscki->mode)) {
1789 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1790 		fscki->calc_cnt = 2;
1791 	}
1792 	rb_link_node(&fscki->rb, parent, p);
1793 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1794 	return fscki;
1795 }
1796 
1797 /**
1798  * search_inode - search inode in the RB-tree of inodes.
1799  * @fsckd: FS checking information
1800  * @inum: inode number to search
1801  *
1802  * This is a helper function for 'check_leaf()' which searches inode @inum in
1803  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1804  * the inode was not found.
1805  */
1806 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1807 {
1808 	struct rb_node *p;
1809 	struct fsck_inode *fscki;
1810 
1811 	p = fsckd->inodes.rb_node;
1812 	while (p) {
1813 		fscki = rb_entry(p, struct fsck_inode, rb);
1814 		if (inum < fscki->inum)
1815 			p = p->rb_left;
1816 		else if (inum > fscki->inum)
1817 			p = p->rb_right;
1818 		else
1819 			return fscki;
1820 	}
1821 	return NULL;
1822 }
1823 
1824 /**
1825  * read_add_inode - read inode node and add it to RB-tree of inodes.
1826  * @c: UBIFS file-system description object
1827  * @fsckd: FS checking information
1828  * @inum: inode number to read
1829  *
1830  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1831  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1832  * information pointer in case of success and a negative error code in case of
1833  * failure.
1834  */
1835 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1836 					 struct fsck_data *fsckd, ino_t inum)
1837 {
1838 	int n, err;
1839 	union ubifs_key key;
1840 	struct ubifs_znode *znode;
1841 	struct ubifs_zbranch *zbr;
1842 	struct ubifs_ino_node *ino;
1843 	struct fsck_inode *fscki;
1844 
1845 	fscki = search_inode(fsckd, inum);
1846 	if (fscki)
1847 		return fscki;
1848 
1849 	ino_key_init(c, &key, inum);
1850 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1851 	if (!err) {
1852 		ubifs_err("inode %lu not found in index", (unsigned long)inum);
1853 		return ERR_PTR(-ENOENT);
1854 	} else if (err < 0) {
1855 		ubifs_err("error %d while looking up inode %lu",
1856 			  err, (unsigned long)inum);
1857 		return ERR_PTR(err);
1858 	}
1859 
1860 	zbr = &znode->zbranch[n];
1861 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1862 		ubifs_err("bad node %lu node length %d",
1863 			  (unsigned long)inum, zbr->len);
1864 		return ERR_PTR(-EINVAL);
1865 	}
1866 
1867 	ino = kmalloc(zbr->len, GFP_NOFS);
1868 	if (!ino)
1869 		return ERR_PTR(-ENOMEM);
1870 
1871 	err = ubifs_tnc_read_node(c, zbr, ino);
1872 	if (err) {
1873 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1874 			  zbr->lnum, zbr->offs, err);
1875 		kfree(ino);
1876 		return ERR_PTR(err);
1877 	}
1878 
1879 	fscki = add_inode(c, fsckd, ino);
1880 	kfree(ino);
1881 	if (IS_ERR(fscki)) {
1882 		ubifs_err("error %ld while adding inode %lu node",
1883 			  PTR_ERR(fscki), (unsigned long)inum);
1884 		return fscki;
1885 	}
1886 
1887 	return fscki;
1888 }
1889 
1890 /**
1891  * check_leaf - check leaf node.
1892  * @c: UBIFS file-system description object
1893  * @zbr: zbranch of the leaf node to check
1894  * @priv: FS checking information
1895  *
1896  * This is a helper function for 'dbg_check_filesystem()' which is called for
1897  * every single leaf node while walking the indexing tree. It checks that the
1898  * leaf node referred from the indexing tree exists, has correct CRC, and does
1899  * some other basic validation. This function is also responsible for building
1900  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1901  * calculates reference count, size, etc for each inode in order to later
1902  * compare them to the information stored inside the inodes and detect possible
1903  * inconsistencies. Returns zero in case of success and a negative error code
1904  * in case of failure.
1905  */
1906 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1907 		      void *priv)
1908 {
1909 	ino_t inum;
1910 	void *node;
1911 	struct ubifs_ch *ch;
1912 	int err, type = key_type(c, &zbr->key);
1913 	struct fsck_inode *fscki;
1914 
1915 	if (zbr->len < UBIFS_CH_SZ) {
1916 		ubifs_err("bad leaf length %d (LEB %d:%d)",
1917 			  zbr->len, zbr->lnum, zbr->offs);
1918 		return -EINVAL;
1919 	}
1920 
1921 	node = kmalloc(zbr->len, GFP_NOFS);
1922 	if (!node)
1923 		return -ENOMEM;
1924 
1925 	err = ubifs_tnc_read_node(c, zbr, node);
1926 	if (err) {
1927 		ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1928 			  zbr->lnum, zbr->offs, err);
1929 		goto out_free;
1930 	}
1931 
1932 	/* If this is an inode node, add it to RB-tree of inodes */
1933 	if (type == UBIFS_INO_KEY) {
1934 		fscki = add_inode(c, priv, node);
1935 		if (IS_ERR(fscki)) {
1936 			err = PTR_ERR(fscki);
1937 			ubifs_err("error %d while adding inode node", err);
1938 			goto out_dump;
1939 		}
1940 		goto out;
1941 	}
1942 
1943 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1944 	    type != UBIFS_DATA_KEY) {
1945 		ubifs_err("unexpected node type %d at LEB %d:%d",
1946 			  type, zbr->lnum, zbr->offs);
1947 		err = -EINVAL;
1948 		goto out_free;
1949 	}
1950 
1951 	ch = node;
1952 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1953 		ubifs_err("too high sequence number, max. is %llu",
1954 			  c->max_sqnum);
1955 		err = -EINVAL;
1956 		goto out_dump;
1957 	}
1958 
1959 	if (type == UBIFS_DATA_KEY) {
1960 		long long blk_offs;
1961 		struct ubifs_data_node *dn = node;
1962 
1963 		/*
1964 		 * Search the inode node this data node belongs to and insert
1965 		 * it to the RB-tree of inodes.
1966 		 */
1967 		inum = key_inum_flash(c, &dn->key);
1968 		fscki = read_add_inode(c, priv, inum);
1969 		if (IS_ERR(fscki)) {
1970 			err = PTR_ERR(fscki);
1971 			ubifs_err("error %d while processing data node and "
1972 				  "trying to find inode node %lu",
1973 				  err, (unsigned long)inum);
1974 			goto out_dump;
1975 		}
1976 
1977 		/* Make sure the data node is within inode size */
1978 		blk_offs = key_block_flash(c, &dn->key);
1979 		blk_offs <<= UBIFS_BLOCK_SHIFT;
1980 		blk_offs += le32_to_cpu(dn->size);
1981 		if (blk_offs > fscki->size) {
1982 			ubifs_err("data node at LEB %d:%d is not within inode "
1983 				  "size %lld", zbr->lnum, zbr->offs,
1984 				  fscki->size);
1985 			err = -EINVAL;
1986 			goto out_dump;
1987 		}
1988 	} else {
1989 		int nlen;
1990 		struct ubifs_dent_node *dent = node;
1991 		struct fsck_inode *fscki1;
1992 
1993 		err = ubifs_validate_entry(c, dent);
1994 		if (err)
1995 			goto out_dump;
1996 
1997 		/*
1998 		 * Search the inode node this entry refers to and the parent
1999 		 * inode node and insert them to the RB-tree of inodes.
2000 		 */
2001 		inum = le64_to_cpu(dent->inum);
2002 		fscki = read_add_inode(c, priv, inum);
2003 		if (IS_ERR(fscki)) {
2004 			err = PTR_ERR(fscki);
2005 			ubifs_err("error %d while processing entry node and "
2006 				  "trying to find inode node %lu",
2007 				  err, (unsigned long)inum);
2008 			goto out_dump;
2009 		}
2010 
2011 		/* Count how many direntries or xentries refers this inode */
2012 		fscki->references += 1;
2013 
2014 		inum = key_inum_flash(c, &dent->key);
2015 		fscki1 = read_add_inode(c, priv, inum);
2016 		if (IS_ERR(fscki1)) {
2017 			err = PTR_ERR(fscki);
2018 			ubifs_err("error %d while processing entry node and "
2019 				  "trying to find parent inode node %lu",
2020 				  err, (unsigned long)inum);
2021 			goto out_dump;
2022 		}
2023 
2024 		nlen = le16_to_cpu(dent->nlen);
2025 		if (type == UBIFS_XENT_KEY) {
2026 			fscki1->calc_xcnt += 1;
2027 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2028 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2029 			fscki1->calc_xnms += nlen;
2030 		} else {
2031 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2032 			if (dent->type == UBIFS_ITYPE_DIR)
2033 				fscki1->calc_cnt += 1;
2034 		}
2035 	}
2036 
2037 out:
2038 	kfree(node);
2039 	return 0;
2040 
2041 out_dump:
2042 	ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2043 	dbg_dump_node(c, node);
2044 out_free:
2045 	kfree(node);
2046 	return err;
2047 }
2048 
2049 /**
2050  * free_inodes - free RB-tree of inodes.
2051  * @fsckd: FS checking information
2052  */
2053 static void free_inodes(struct fsck_data *fsckd)
2054 {
2055 	struct rb_node *this = fsckd->inodes.rb_node;
2056 	struct fsck_inode *fscki;
2057 
2058 	while (this) {
2059 		if (this->rb_left)
2060 			this = this->rb_left;
2061 		else if (this->rb_right)
2062 			this = this->rb_right;
2063 		else {
2064 			fscki = rb_entry(this, struct fsck_inode, rb);
2065 			this = rb_parent(this);
2066 			if (this) {
2067 				if (this->rb_left == &fscki->rb)
2068 					this->rb_left = NULL;
2069 				else
2070 					this->rb_right = NULL;
2071 			}
2072 			kfree(fscki);
2073 		}
2074 	}
2075 }
2076 
2077 /**
2078  * check_inodes - checks all inodes.
2079  * @c: UBIFS file-system description object
2080  * @fsckd: FS checking information
2081  *
2082  * This is a helper function for 'dbg_check_filesystem()' which walks the
2083  * RB-tree of inodes after the index scan has been finished, and checks that
2084  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2085  * %-EINVAL if not, and a negative error code in case of failure.
2086  */
2087 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2088 {
2089 	int n, err;
2090 	union ubifs_key key;
2091 	struct ubifs_znode *znode;
2092 	struct ubifs_zbranch *zbr;
2093 	struct ubifs_ino_node *ino;
2094 	struct fsck_inode *fscki;
2095 	struct rb_node *this = rb_first(&fsckd->inodes);
2096 
2097 	while (this) {
2098 		fscki = rb_entry(this, struct fsck_inode, rb);
2099 		this = rb_next(this);
2100 
2101 		if (S_ISDIR(fscki->mode)) {
2102 			/*
2103 			 * Directories have to have exactly one reference (they
2104 			 * cannot have hardlinks), although root inode is an
2105 			 * exception.
2106 			 */
2107 			if (fscki->inum != UBIFS_ROOT_INO &&
2108 			    fscki->references != 1) {
2109 				ubifs_err("directory inode %lu has %d "
2110 					  "direntries which refer it, but "
2111 					  "should be 1",
2112 					  (unsigned long)fscki->inum,
2113 					  fscki->references);
2114 				goto out_dump;
2115 			}
2116 			if (fscki->inum == UBIFS_ROOT_INO &&
2117 			    fscki->references != 0) {
2118 				ubifs_err("root inode %lu has non-zero (%d) "
2119 					  "direntries which refer it",
2120 					  (unsigned long)fscki->inum,
2121 					  fscki->references);
2122 				goto out_dump;
2123 			}
2124 			if (fscki->calc_sz != fscki->size) {
2125 				ubifs_err("directory inode %lu size is %lld, "
2126 					  "but calculated size is %lld",
2127 					  (unsigned long)fscki->inum,
2128 					  fscki->size, fscki->calc_sz);
2129 				goto out_dump;
2130 			}
2131 			if (fscki->calc_cnt != fscki->nlink) {
2132 				ubifs_err("directory inode %lu nlink is %d, "
2133 					  "but calculated nlink is %d",
2134 					  (unsigned long)fscki->inum,
2135 					  fscki->nlink, fscki->calc_cnt);
2136 				goto out_dump;
2137 			}
2138 		} else {
2139 			if (fscki->references != fscki->nlink) {
2140 				ubifs_err("inode %lu nlink is %d, but "
2141 					  "calculated nlink is %d",
2142 					  (unsigned long)fscki->inum,
2143 					  fscki->nlink, fscki->references);
2144 				goto out_dump;
2145 			}
2146 		}
2147 		if (fscki->xattr_sz != fscki->calc_xsz) {
2148 			ubifs_err("inode %lu has xattr size %u, but "
2149 				  "calculated size is %lld",
2150 				  (unsigned long)fscki->inum, fscki->xattr_sz,
2151 				  fscki->calc_xsz);
2152 			goto out_dump;
2153 		}
2154 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2155 			ubifs_err("inode %lu has %u xattrs, but "
2156 				  "calculated count is %lld",
2157 				  (unsigned long)fscki->inum,
2158 				  fscki->xattr_cnt, fscki->calc_xcnt);
2159 			goto out_dump;
2160 		}
2161 		if (fscki->xattr_nms != fscki->calc_xnms) {
2162 			ubifs_err("inode %lu has xattr names' size %u, but "
2163 				  "calculated names' size is %lld",
2164 				  (unsigned long)fscki->inum, fscki->xattr_nms,
2165 				  fscki->calc_xnms);
2166 			goto out_dump;
2167 		}
2168 	}
2169 
2170 	return 0;
2171 
2172 out_dump:
2173 	/* Read the bad inode and dump it */
2174 	ino_key_init(c, &key, fscki->inum);
2175 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2176 	if (!err) {
2177 		ubifs_err("inode %lu not found in index",
2178 			  (unsigned long)fscki->inum);
2179 		return -ENOENT;
2180 	} else if (err < 0) {
2181 		ubifs_err("error %d while looking up inode %lu",
2182 			  err, (unsigned long)fscki->inum);
2183 		return err;
2184 	}
2185 
2186 	zbr = &znode->zbranch[n];
2187 	ino = kmalloc(zbr->len, GFP_NOFS);
2188 	if (!ino)
2189 		return -ENOMEM;
2190 
2191 	err = ubifs_tnc_read_node(c, zbr, ino);
2192 	if (err) {
2193 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2194 			  zbr->lnum, zbr->offs, err);
2195 		kfree(ino);
2196 		return err;
2197 	}
2198 
2199 	ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2200 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2201 	dbg_dump_node(c, ino);
2202 	kfree(ino);
2203 	return -EINVAL;
2204 }
2205 
2206 /**
2207  * dbg_check_filesystem - check the file-system.
2208  * @c: UBIFS file-system description object
2209  *
2210  * This function checks the file system, namely:
2211  * o makes sure that all leaf nodes exist and their CRCs are correct;
2212  * o makes sure inode nlink, size, xattr size/count are correct (for all
2213  *   inodes).
2214  *
2215  * The function reads whole indexing tree and all nodes, so it is pretty
2216  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2217  * not, and a negative error code in case of failure.
2218  */
2219 int dbg_check_filesystem(struct ubifs_info *c)
2220 {
2221 	int err;
2222 	struct fsck_data fsckd;
2223 
2224 	if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2225 		return 0;
2226 
2227 	fsckd.inodes = RB_ROOT;
2228 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2229 	if (err)
2230 		goto out_free;
2231 
2232 	err = check_inodes(c, &fsckd);
2233 	if (err)
2234 		goto out_free;
2235 
2236 	free_inodes(&fsckd);
2237 	return 0;
2238 
2239 out_free:
2240 	ubifs_err("file-system check failed with error %d", err);
2241 	dump_stack();
2242 	free_inodes(&fsckd);
2243 	return err;
2244 }
2245 
2246 static int invocation_cnt;
2247 
2248 int dbg_force_in_the_gaps(void)
2249 {
2250 	if (!dbg_force_in_the_gaps_enabled)
2251 		return 0;
2252 	/* Force in-the-gaps every 8th commit */
2253 	return !((invocation_cnt++) & 0x7);
2254 }
2255 
2256 /* Failure mode for recovery testing */
2257 
2258 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2259 
2260 struct failure_mode_info {
2261 	struct list_head list;
2262 	struct ubifs_info *c;
2263 };
2264 
2265 static LIST_HEAD(fmi_list);
2266 static DEFINE_SPINLOCK(fmi_lock);
2267 
2268 static unsigned int next;
2269 
2270 static int simple_rand(void)
2271 {
2272 	if (next == 0)
2273 		next = current->pid;
2274 	next = next * 1103515245 + 12345;
2275 	return (next >> 16) & 32767;
2276 }
2277 
2278 static void failure_mode_init(struct ubifs_info *c)
2279 {
2280 	struct failure_mode_info *fmi;
2281 
2282 	fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2283 	if (!fmi) {
2284 		ubifs_err("Failed to register failure mode - no memory");
2285 		return;
2286 	}
2287 	fmi->c = c;
2288 	spin_lock(&fmi_lock);
2289 	list_add_tail(&fmi->list, &fmi_list);
2290 	spin_unlock(&fmi_lock);
2291 }
2292 
2293 static void failure_mode_exit(struct ubifs_info *c)
2294 {
2295 	struct failure_mode_info *fmi, *tmp;
2296 
2297 	spin_lock(&fmi_lock);
2298 	list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2299 		if (fmi->c == c) {
2300 			list_del(&fmi->list);
2301 			kfree(fmi);
2302 		}
2303 	spin_unlock(&fmi_lock);
2304 }
2305 
2306 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2307 {
2308 	struct failure_mode_info *fmi;
2309 
2310 	spin_lock(&fmi_lock);
2311 	list_for_each_entry(fmi, &fmi_list, list)
2312 		if (fmi->c->ubi == desc) {
2313 			struct ubifs_info *c = fmi->c;
2314 
2315 			spin_unlock(&fmi_lock);
2316 			return c;
2317 		}
2318 	spin_unlock(&fmi_lock);
2319 	return NULL;
2320 }
2321 
2322 static int in_failure_mode(struct ubi_volume_desc *desc)
2323 {
2324 	struct ubifs_info *c = dbg_find_info(desc);
2325 
2326 	if (c && dbg_failure_mode)
2327 		return c->dbg->failure_mode;
2328 	return 0;
2329 }
2330 
2331 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2332 {
2333 	struct ubifs_info *c = dbg_find_info(desc);
2334 	struct ubifs_debug_info *d;
2335 
2336 	if (!c || !dbg_failure_mode)
2337 		return 0;
2338 	d = c->dbg;
2339 	if (d->failure_mode)
2340 		return 1;
2341 	if (!d->fail_cnt) {
2342 		/* First call - decide delay to failure */
2343 		if (chance(1, 2)) {
2344 			unsigned int delay = 1 << (simple_rand() >> 11);
2345 
2346 			if (chance(1, 2)) {
2347 				d->fail_delay = 1;
2348 				d->fail_timeout = jiffies +
2349 						  msecs_to_jiffies(delay);
2350 				dbg_rcvry("failing after %ums", delay);
2351 			} else {
2352 				d->fail_delay = 2;
2353 				d->fail_cnt_max = delay;
2354 				dbg_rcvry("failing after %u calls", delay);
2355 			}
2356 		}
2357 		d->fail_cnt += 1;
2358 	}
2359 	/* Determine if failure delay has expired */
2360 	if (d->fail_delay == 1) {
2361 		if (time_before(jiffies, d->fail_timeout))
2362 			return 0;
2363 	} else if (d->fail_delay == 2)
2364 		if (d->fail_cnt++ < d->fail_cnt_max)
2365 			return 0;
2366 	if (lnum == UBIFS_SB_LNUM) {
2367 		if (write) {
2368 			if (chance(1, 2))
2369 				return 0;
2370 		} else if (chance(19, 20))
2371 			return 0;
2372 		dbg_rcvry("failing in super block LEB %d", lnum);
2373 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2374 		if (chance(19, 20))
2375 			return 0;
2376 		dbg_rcvry("failing in master LEB %d", lnum);
2377 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2378 		if (write) {
2379 			if (chance(99, 100))
2380 				return 0;
2381 		} else if (chance(399, 400))
2382 			return 0;
2383 		dbg_rcvry("failing in log LEB %d", lnum);
2384 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2385 		if (write) {
2386 			if (chance(7, 8))
2387 				return 0;
2388 		} else if (chance(19, 20))
2389 			return 0;
2390 		dbg_rcvry("failing in LPT LEB %d", lnum);
2391 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2392 		if (write) {
2393 			if (chance(1, 2))
2394 				return 0;
2395 		} else if (chance(9, 10))
2396 			return 0;
2397 		dbg_rcvry("failing in orphan LEB %d", lnum);
2398 	} else if (lnum == c->ihead_lnum) {
2399 		if (chance(99, 100))
2400 			return 0;
2401 		dbg_rcvry("failing in index head LEB %d", lnum);
2402 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2403 		if (chance(9, 10))
2404 			return 0;
2405 		dbg_rcvry("failing in GC head LEB %d", lnum);
2406 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2407 		   !ubifs_search_bud(c, lnum)) {
2408 		if (chance(19, 20))
2409 			return 0;
2410 		dbg_rcvry("failing in non-bud LEB %d", lnum);
2411 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2412 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2413 		if (chance(999, 1000))
2414 			return 0;
2415 		dbg_rcvry("failing in bud LEB %d commit running", lnum);
2416 	} else {
2417 		if (chance(9999, 10000))
2418 			return 0;
2419 		dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2420 	}
2421 	ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2422 	d->failure_mode = 1;
2423 	dump_stack();
2424 	return 1;
2425 }
2426 
2427 static void cut_data(const void *buf, int len)
2428 {
2429 	int flen, i;
2430 	unsigned char *p = (void *)buf;
2431 
2432 	flen = (len * (long long)simple_rand()) >> 15;
2433 	for (i = flen; i < len; i++)
2434 		p[i] = 0xff;
2435 }
2436 
2437 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2438 		 int len, int check)
2439 {
2440 	if (in_failure_mode(desc))
2441 		return -EIO;
2442 	return ubi_leb_read(desc, lnum, buf, offset, len, check);
2443 }
2444 
2445 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2446 		  int offset, int len, int dtype)
2447 {
2448 	int err, failing;
2449 
2450 	if (in_failure_mode(desc))
2451 		return -EIO;
2452 	failing = do_fail(desc, lnum, 1);
2453 	if (failing)
2454 		cut_data(buf, len);
2455 	err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2456 	if (err)
2457 		return err;
2458 	if (failing)
2459 		return -EIO;
2460 	return 0;
2461 }
2462 
2463 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2464 		   int len, int dtype)
2465 {
2466 	int err;
2467 
2468 	if (do_fail(desc, lnum, 1))
2469 		return -EIO;
2470 	err = ubi_leb_change(desc, lnum, buf, len, dtype);
2471 	if (err)
2472 		return err;
2473 	if (do_fail(desc, lnum, 1))
2474 		return -EIO;
2475 	return 0;
2476 }
2477 
2478 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2479 {
2480 	int err;
2481 
2482 	if (do_fail(desc, lnum, 0))
2483 		return -EIO;
2484 	err = ubi_leb_erase(desc, lnum);
2485 	if (err)
2486 		return err;
2487 	if (do_fail(desc, lnum, 0))
2488 		return -EIO;
2489 	return 0;
2490 }
2491 
2492 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2493 {
2494 	int err;
2495 
2496 	if (do_fail(desc, lnum, 0))
2497 		return -EIO;
2498 	err = ubi_leb_unmap(desc, lnum);
2499 	if (err)
2500 		return err;
2501 	if (do_fail(desc, lnum, 0))
2502 		return -EIO;
2503 	return 0;
2504 }
2505 
2506 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2507 {
2508 	if (in_failure_mode(desc))
2509 		return -EIO;
2510 	return ubi_is_mapped(desc, lnum);
2511 }
2512 
2513 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2514 {
2515 	int err;
2516 
2517 	if (do_fail(desc, lnum, 0))
2518 		return -EIO;
2519 	err = ubi_leb_map(desc, lnum, dtype);
2520 	if (err)
2521 		return err;
2522 	if (do_fail(desc, lnum, 0))
2523 		return -EIO;
2524 	return 0;
2525 }
2526 
2527 /**
2528  * ubifs_debugging_init - initialize UBIFS debugging.
2529  * @c: UBIFS file-system description object
2530  *
2531  * This function initializes debugging-related data for the file system.
2532  * Returns zero in case of success and a negative error code in case of
2533  * failure.
2534  */
2535 int ubifs_debugging_init(struct ubifs_info *c)
2536 {
2537 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2538 	if (!c->dbg)
2539 		return -ENOMEM;
2540 
2541 	c->dbg->buf = vmalloc(c->leb_size);
2542 	if (!c->dbg->buf)
2543 		goto out;
2544 
2545 	failure_mode_init(c);
2546 	return 0;
2547 
2548 out:
2549 	kfree(c->dbg);
2550 	return -ENOMEM;
2551 }
2552 
2553 /**
2554  * ubifs_debugging_exit - free debugging data.
2555  * @c: UBIFS file-system description object
2556  */
2557 void ubifs_debugging_exit(struct ubifs_info *c)
2558 {
2559 	failure_mode_exit(c);
2560 	vfree(c->dbg->buf);
2561 	kfree(c->dbg);
2562 }
2563 
2564 /*
2565  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2566  * contain the stuff specific to particular file-system mounts.
2567  */
2568 static struct dentry *dfs_rootdir;
2569 
2570 /**
2571  * dbg_debugfs_init - initialize debugfs file-system.
2572  *
2573  * UBIFS uses debugfs file-system to expose various debugging knobs to
2574  * user-space. This function creates "ubifs" directory in the debugfs
2575  * file-system. Returns zero in case of success and a negative error code in
2576  * case of failure.
2577  */
2578 int dbg_debugfs_init(void)
2579 {
2580 	dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2581 	if (IS_ERR(dfs_rootdir)) {
2582 		int err = PTR_ERR(dfs_rootdir);
2583 		ubifs_err("cannot create \"ubifs\" debugfs directory, "
2584 			  "error %d\n", err);
2585 		return err;
2586 	}
2587 
2588 	return 0;
2589 }
2590 
2591 /**
2592  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2593  */
2594 void dbg_debugfs_exit(void)
2595 {
2596 	debugfs_remove(dfs_rootdir);
2597 }
2598 
2599 static int open_debugfs_file(struct inode *inode, struct file *file)
2600 {
2601 	file->private_data = inode->i_private;
2602 	return 0;
2603 }
2604 
2605 static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2606 				  size_t count, loff_t *ppos)
2607 {
2608 	struct ubifs_info *c = file->private_data;
2609 	struct ubifs_debug_info *d = c->dbg;
2610 
2611 	if (file->f_path.dentry == d->dfs_dump_lprops)
2612 		dbg_dump_lprops(c);
2613 	else if (file->f_path.dentry == d->dfs_dump_budg) {
2614 		spin_lock(&c->space_lock);
2615 		dbg_dump_budg(c);
2616 		spin_unlock(&c->space_lock);
2617 	} else if (file->f_path.dentry == d->dfs_dump_tnc) {
2618 		mutex_lock(&c->tnc_mutex);
2619 		dbg_dump_tnc(c);
2620 		mutex_unlock(&c->tnc_mutex);
2621 	} else
2622 		return -EINVAL;
2623 
2624 	*ppos += count;
2625 	return count;
2626 }
2627 
2628 static const struct file_operations dfs_fops = {
2629 	.open = open_debugfs_file,
2630 	.write = write_debugfs_file,
2631 	.owner = THIS_MODULE,
2632 };
2633 
2634 /**
2635  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2636  * @c: UBIFS file-system description object
2637  *
2638  * This function creates all debugfs files for this instance of UBIFS. Returns
2639  * zero in case of success and a negative error code in case of failure.
2640  *
2641  * Note, the only reason we have not merged this function with the
2642  * 'ubifs_debugging_init()' function is because it is better to initialize
2643  * debugfs interfaces at the very end of the mount process, and remove them at
2644  * the very beginning of the mount process.
2645  */
2646 int dbg_debugfs_init_fs(struct ubifs_info *c)
2647 {
2648 	int err;
2649 	const char *fname;
2650 	struct dentry *dent;
2651 	struct ubifs_debug_info *d = c->dbg;
2652 
2653 	sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2654 	d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir);
2655 	if (IS_ERR(d->dfs_dir)) {
2656 		err = PTR_ERR(d->dfs_dir);
2657 		ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2658 			  d->dfs_dir_name, err);
2659 		goto out;
2660 	}
2661 
2662 	fname = "dump_lprops";
2663 	dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2664 	if (IS_ERR(dent))
2665 		goto out_remove;
2666 	d->dfs_dump_lprops = dent;
2667 
2668 	fname = "dump_budg";
2669 	dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2670 	if (IS_ERR(dent))
2671 		goto out_remove;
2672 	d->dfs_dump_budg = dent;
2673 
2674 	fname = "dump_tnc";
2675 	dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2676 	if (IS_ERR(dent))
2677 		goto out_remove;
2678 	d->dfs_dump_tnc = dent;
2679 
2680 	return 0;
2681 
2682 out_remove:
2683 	err = PTR_ERR(dent);
2684 	ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2685 		  fname, err);
2686 	debugfs_remove_recursive(d->dfs_dir);
2687 out:
2688 	return err;
2689 }
2690 
2691 /**
2692  * dbg_debugfs_exit_fs - remove all debugfs files.
2693  * @c: UBIFS file-system description object
2694  */
2695 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2696 {
2697 	debugfs_remove_recursive(c->dbg->dfs_dir);
2698 }
2699 
2700 #endif /* CONFIG_UBIFS_FS_DEBUG */
2701