1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements most of the debugging stuff which is compiled in only 25 * when it is enabled. But some debugging check functions are implemented in 26 * corresponding subsystem, just because they are closely related and utilize 27 * various local functions of those subsystems. 28 */ 29 30 #define UBIFS_DBG_PRESERVE_UBI 31 32 #include "ubifs.h" 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/debugfs.h> 36 #include <linux/math64.h> 37 38 #ifdef CONFIG_UBIFS_FS_DEBUG 39 40 DEFINE_SPINLOCK(dbg_lock); 41 42 static char dbg_key_buf0[128]; 43 static char dbg_key_buf1[128]; 44 45 unsigned int ubifs_chk_flags; 46 unsigned int ubifs_tst_flags; 47 48 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR); 49 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR); 50 51 MODULE_PARM_DESC(debug_chks, "Debug check flags"); 52 MODULE_PARM_DESC(debug_tsts, "Debug special test flags"); 53 54 static const char *get_key_fmt(int fmt) 55 { 56 switch (fmt) { 57 case UBIFS_SIMPLE_KEY_FMT: 58 return "simple"; 59 default: 60 return "unknown/invalid format"; 61 } 62 } 63 64 static const char *get_key_hash(int hash) 65 { 66 switch (hash) { 67 case UBIFS_KEY_HASH_R5: 68 return "R5"; 69 case UBIFS_KEY_HASH_TEST: 70 return "test"; 71 default: 72 return "unknown/invalid name hash"; 73 } 74 } 75 76 static const char *get_key_type(int type) 77 { 78 switch (type) { 79 case UBIFS_INO_KEY: 80 return "inode"; 81 case UBIFS_DENT_KEY: 82 return "direntry"; 83 case UBIFS_XENT_KEY: 84 return "xentry"; 85 case UBIFS_DATA_KEY: 86 return "data"; 87 case UBIFS_TRUN_KEY: 88 return "truncate"; 89 default: 90 return "unknown/invalid key"; 91 } 92 } 93 94 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key, 95 char *buffer) 96 { 97 char *p = buffer; 98 int type = key_type(c, key); 99 100 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 101 switch (type) { 102 case UBIFS_INO_KEY: 103 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key), 104 get_key_type(type)); 105 break; 106 case UBIFS_DENT_KEY: 107 case UBIFS_XENT_KEY: 108 sprintf(p, "(%lu, %s, %#08x)", 109 (unsigned long)key_inum(c, key), 110 get_key_type(type), key_hash(c, key)); 111 break; 112 case UBIFS_DATA_KEY: 113 sprintf(p, "(%lu, %s, %u)", 114 (unsigned long)key_inum(c, key), 115 get_key_type(type), key_block(c, key)); 116 break; 117 case UBIFS_TRUN_KEY: 118 sprintf(p, "(%lu, %s)", 119 (unsigned long)key_inum(c, key), 120 get_key_type(type)); 121 break; 122 default: 123 sprintf(p, "(bad key type: %#08x, %#08x)", 124 key->u32[0], key->u32[1]); 125 } 126 } else 127 sprintf(p, "bad key format %d", c->key_fmt); 128 } 129 130 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key) 131 { 132 /* dbg_lock must be held */ 133 sprintf_key(c, key, dbg_key_buf0); 134 return dbg_key_buf0; 135 } 136 137 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key) 138 { 139 /* dbg_lock must be held */ 140 sprintf_key(c, key, dbg_key_buf1); 141 return dbg_key_buf1; 142 } 143 144 const char *dbg_ntype(int type) 145 { 146 switch (type) { 147 case UBIFS_PAD_NODE: 148 return "padding node"; 149 case UBIFS_SB_NODE: 150 return "superblock node"; 151 case UBIFS_MST_NODE: 152 return "master node"; 153 case UBIFS_REF_NODE: 154 return "reference node"; 155 case UBIFS_INO_NODE: 156 return "inode node"; 157 case UBIFS_DENT_NODE: 158 return "direntry node"; 159 case UBIFS_XENT_NODE: 160 return "xentry node"; 161 case UBIFS_DATA_NODE: 162 return "data node"; 163 case UBIFS_TRUN_NODE: 164 return "truncate node"; 165 case UBIFS_IDX_NODE: 166 return "indexing node"; 167 case UBIFS_CS_NODE: 168 return "commit start node"; 169 case UBIFS_ORPH_NODE: 170 return "orphan node"; 171 default: 172 return "unknown node"; 173 } 174 } 175 176 static const char *dbg_gtype(int type) 177 { 178 switch (type) { 179 case UBIFS_NO_NODE_GROUP: 180 return "no node group"; 181 case UBIFS_IN_NODE_GROUP: 182 return "in node group"; 183 case UBIFS_LAST_OF_NODE_GROUP: 184 return "last of node group"; 185 default: 186 return "unknown"; 187 } 188 } 189 190 const char *dbg_cstate(int cmt_state) 191 { 192 switch (cmt_state) { 193 case COMMIT_RESTING: 194 return "commit resting"; 195 case COMMIT_BACKGROUND: 196 return "background commit requested"; 197 case COMMIT_REQUIRED: 198 return "commit required"; 199 case COMMIT_RUNNING_BACKGROUND: 200 return "BACKGROUND commit running"; 201 case COMMIT_RUNNING_REQUIRED: 202 return "commit running and required"; 203 case COMMIT_BROKEN: 204 return "broken commit"; 205 default: 206 return "unknown commit state"; 207 } 208 } 209 210 const char *dbg_jhead(int jhead) 211 { 212 switch (jhead) { 213 case GCHD: 214 return "0 (GC)"; 215 case BASEHD: 216 return "1 (base)"; 217 case DATAHD: 218 return "2 (data)"; 219 default: 220 return "unknown journal head"; 221 } 222 } 223 224 static void dump_ch(const struct ubifs_ch *ch) 225 { 226 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic)); 227 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc)); 228 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type, 229 dbg_ntype(ch->node_type)); 230 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type, 231 dbg_gtype(ch->group_type)); 232 printk(KERN_DEBUG "\tsqnum %llu\n", 233 (unsigned long long)le64_to_cpu(ch->sqnum)); 234 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len)); 235 } 236 237 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode) 238 { 239 const struct ubifs_inode *ui = ubifs_inode(inode); 240 241 printk(KERN_DEBUG "Dump in-memory inode:"); 242 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino); 243 printk(KERN_DEBUG "\tsize %llu\n", 244 (unsigned long long)i_size_read(inode)); 245 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink); 246 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid); 247 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid); 248 printk(KERN_DEBUG "\tatime %u.%u\n", 249 (unsigned int)inode->i_atime.tv_sec, 250 (unsigned int)inode->i_atime.tv_nsec); 251 printk(KERN_DEBUG "\tmtime %u.%u\n", 252 (unsigned int)inode->i_mtime.tv_sec, 253 (unsigned int)inode->i_mtime.tv_nsec); 254 printk(KERN_DEBUG "\tctime %u.%u\n", 255 (unsigned int)inode->i_ctime.tv_sec, 256 (unsigned int)inode->i_ctime.tv_nsec); 257 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum); 258 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size); 259 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt); 260 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names); 261 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty); 262 printk(KERN_DEBUG "\txattr %u\n", ui->xattr); 263 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr); 264 printk(KERN_DEBUG "\tsynced_i_size %llu\n", 265 (unsigned long long)ui->synced_i_size); 266 printk(KERN_DEBUG "\tui_size %llu\n", 267 (unsigned long long)ui->ui_size); 268 printk(KERN_DEBUG "\tflags %d\n", ui->flags); 269 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type); 270 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read); 271 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row); 272 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len); 273 } 274 275 void dbg_dump_node(const struct ubifs_info *c, const void *node) 276 { 277 int i, n; 278 union ubifs_key key; 279 const struct ubifs_ch *ch = node; 280 281 if (dbg_failure_mode) 282 return; 283 284 /* If the magic is incorrect, just hexdump the first bytes */ 285 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 286 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ); 287 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 288 (void *)node, UBIFS_CH_SZ, 1); 289 return; 290 } 291 292 spin_lock(&dbg_lock); 293 dump_ch(node); 294 295 switch (ch->node_type) { 296 case UBIFS_PAD_NODE: 297 { 298 const struct ubifs_pad_node *pad = node; 299 300 printk(KERN_DEBUG "\tpad_len %u\n", 301 le32_to_cpu(pad->pad_len)); 302 break; 303 } 304 case UBIFS_SB_NODE: 305 { 306 const struct ubifs_sb_node *sup = node; 307 unsigned int sup_flags = le32_to_cpu(sup->flags); 308 309 printk(KERN_DEBUG "\tkey_hash %d (%s)\n", 310 (int)sup->key_hash, get_key_hash(sup->key_hash)); 311 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n", 312 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 313 printk(KERN_DEBUG "\tflags %#x\n", sup_flags); 314 printk(KERN_DEBUG "\t big_lpt %u\n", 315 !!(sup_flags & UBIFS_FLG_BIGLPT)); 316 printk(KERN_DEBUG "\t space_fixup %u\n", 317 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); 318 printk(KERN_DEBUG "\tmin_io_size %u\n", 319 le32_to_cpu(sup->min_io_size)); 320 printk(KERN_DEBUG "\tleb_size %u\n", 321 le32_to_cpu(sup->leb_size)); 322 printk(KERN_DEBUG "\tleb_cnt %u\n", 323 le32_to_cpu(sup->leb_cnt)); 324 printk(KERN_DEBUG "\tmax_leb_cnt %u\n", 325 le32_to_cpu(sup->max_leb_cnt)); 326 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n", 327 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 328 printk(KERN_DEBUG "\tlog_lebs %u\n", 329 le32_to_cpu(sup->log_lebs)); 330 printk(KERN_DEBUG "\tlpt_lebs %u\n", 331 le32_to_cpu(sup->lpt_lebs)); 332 printk(KERN_DEBUG "\torph_lebs %u\n", 333 le32_to_cpu(sup->orph_lebs)); 334 printk(KERN_DEBUG "\tjhead_cnt %u\n", 335 le32_to_cpu(sup->jhead_cnt)); 336 printk(KERN_DEBUG "\tfanout %u\n", 337 le32_to_cpu(sup->fanout)); 338 printk(KERN_DEBUG "\tlsave_cnt %u\n", 339 le32_to_cpu(sup->lsave_cnt)); 340 printk(KERN_DEBUG "\tdefault_compr %u\n", 341 (int)le16_to_cpu(sup->default_compr)); 342 printk(KERN_DEBUG "\trp_size %llu\n", 343 (unsigned long long)le64_to_cpu(sup->rp_size)); 344 printk(KERN_DEBUG "\trp_uid %u\n", 345 le32_to_cpu(sup->rp_uid)); 346 printk(KERN_DEBUG "\trp_gid %u\n", 347 le32_to_cpu(sup->rp_gid)); 348 printk(KERN_DEBUG "\tfmt_version %u\n", 349 le32_to_cpu(sup->fmt_version)); 350 printk(KERN_DEBUG "\ttime_gran %u\n", 351 le32_to_cpu(sup->time_gran)); 352 printk(KERN_DEBUG "\tUUID %pUB\n", 353 sup->uuid); 354 break; 355 } 356 case UBIFS_MST_NODE: 357 { 358 const struct ubifs_mst_node *mst = node; 359 360 printk(KERN_DEBUG "\thighest_inum %llu\n", 361 (unsigned long long)le64_to_cpu(mst->highest_inum)); 362 printk(KERN_DEBUG "\tcommit number %llu\n", 363 (unsigned long long)le64_to_cpu(mst->cmt_no)); 364 printk(KERN_DEBUG "\tflags %#x\n", 365 le32_to_cpu(mst->flags)); 366 printk(KERN_DEBUG "\tlog_lnum %u\n", 367 le32_to_cpu(mst->log_lnum)); 368 printk(KERN_DEBUG "\troot_lnum %u\n", 369 le32_to_cpu(mst->root_lnum)); 370 printk(KERN_DEBUG "\troot_offs %u\n", 371 le32_to_cpu(mst->root_offs)); 372 printk(KERN_DEBUG "\troot_len %u\n", 373 le32_to_cpu(mst->root_len)); 374 printk(KERN_DEBUG "\tgc_lnum %u\n", 375 le32_to_cpu(mst->gc_lnum)); 376 printk(KERN_DEBUG "\tihead_lnum %u\n", 377 le32_to_cpu(mst->ihead_lnum)); 378 printk(KERN_DEBUG "\tihead_offs %u\n", 379 le32_to_cpu(mst->ihead_offs)); 380 printk(KERN_DEBUG "\tindex_size %llu\n", 381 (unsigned long long)le64_to_cpu(mst->index_size)); 382 printk(KERN_DEBUG "\tlpt_lnum %u\n", 383 le32_to_cpu(mst->lpt_lnum)); 384 printk(KERN_DEBUG "\tlpt_offs %u\n", 385 le32_to_cpu(mst->lpt_offs)); 386 printk(KERN_DEBUG "\tnhead_lnum %u\n", 387 le32_to_cpu(mst->nhead_lnum)); 388 printk(KERN_DEBUG "\tnhead_offs %u\n", 389 le32_to_cpu(mst->nhead_offs)); 390 printk(KERN_DEBUG "\tltab_lnum %u\n", 391 le32_to_cpu(mst->ltab_lnum)); 392 printk(KERN_DEBUG "\tltab_offs %u\n", 393 le32_to_cpu(mst->ltab_offs)); 394 printk(KERN_DEBUG "\tlsave_lnum %u\n", 395 le32_to_cpu(mst->lsave_lnum)); 396 printk(KERN_DEBUG "\tlsave_offs %u\n", 397 le32_to_cpu(mst->lsave_offs)); 398 printk(KERN_DEBUG "\tlscan_lnum %u\n", 399 le32_to_cpu(mst->lscan_lnum)); 400 printk(KERN_DEBUG "\tleb_cnt %u\n", 401 le32_to_cpu(mst->leb_cnt)); 402 printk(KERN_DEBUG "\tempty_lebs %u\n", 403 le32_to_cpu(mst->empty_lebs)); 404 printk(KERN_DEBUG "\tidx_lebs %u\n", 405 le32_to_cpu(mst->idx_lebs)); 406 printk(KERN_DEBUG "\ttotal_free %llu\n", 407 (unsigned long long)le64_to_cpu(mst->total_free)); 408 printk(KERN_DEBUG "\ttotal_dirty %llu\n", 409 (unsigned long long)le64_to_cpu(mst->total_dirty)); 410 printk(KERN_DEBUG "\ttotal_used %llu\n", 411 (unsigned long long)le64_to_cpu(mst->total_used)); 412 printk(KERN_DEBUG "\ttotal_dead %llu\n", 413 (unsigned long long)le64_to_cpu(mst->total_dead)); 414 printk(KERN_DEBUG "\ttotal_dark %llu\n", 415 (unsigned long long)le64_to_cpu(mst->total_dark)); 416 break; 417 } 418 case UBIFS_REF_NODE: 419 { 420 const struct ubifs_ref_node *ref = node; 421 422 printk(KERN_DEBUG "\tlnum %u\n", 423 le32_to_cpu(ref->lnum)); 424 printk(KERN_DEBUG "\toffs %u\n", 425 le32_to_cpu(ref->offs)); 426 printk(KERN_DEBUG "\tjhead %u\n", 427 le32_to_cpu(ref->jhead)); 428 break; 429 } 430 case UBIFS_INO_NODE: 431 { 432 const struct ubifs_ino_node *ino = node; 433 434 key_read(c, &ino->key, &key); 435 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 436 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", 437 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 438 printk(KERN_DEBUG "\tsize %llu\n", 439 (unsigned long long)le64_to_cpu(ino->size)); 440 printk(KERN_DEBUG "\tnlink %u\n", 441 le32_to_cpu(ino->nlink)); 442 printk(KERN_DEBUG "\tatime %lld.%u\n", 443 (long long)le64_to_cpu(ino->atime_sec), 444 le32_to_cpu(ino->atime_nsec)); 445 printk(KERN_DEBUG "\tmtime %lld.%u\n", 446 (long long)le64_to_cpu(ino->mtime_sec), 447 le32_to_cpu(ino->mtime_nsec)); 448 printk(KERN_DEBUG "\tctime %lld.%u\n", 449 (long long)le64_to_cpu(ino->ctime_sec), 450 le32_to_cpu(ino->ctime_nsec)); 451 printk(KERN_DEBUG "\tuid %u\n", 452 le32_to_cpu(ino->uid)); 453 printk(KERN_DEBUG "\tgid %u\n", 454 le32_to_cpu(ino->gid)); 455 printk(KERN_DEBUG "\tmode %u\n", 456 le32_to_cpu(ino->mode)); 457 printk(KERN_DEBUG "\tflags %#x\n", 458 le32_to_cpu(ino->flags)); 459 printk(KERN_DEBUG "\txattr_cnt %u\n", 460 le32_to_cpu(ino->xattr_cnt)); 461 printk(KERN_DEBUG "\txattr_size %u\n", 462 le32_to_cpu(ino->xattr_size)); 463 printk(KERN_DEBUG "\txattr_names %u\n", 464 le32_to_cpu(ino->xattr_names)); 465 printk(KERN_DEBUG "\tcompr_type %#x\n", 466 (int)le16_to_cpu(ino->compr_type)); 467 printk(KERN_DEBUG "\tdata len %u\n", 468 le32_to_cpu(ino->data_len)); 469 break; 470 } 471 case UBIFS_DENT_NODE: 472 case UBIFS_XENT_NODE: 473 { 474 const struct ubifs_dent_node *dent = node; 475 int nlen = le16_to_cpu(dent->nlen); 476 477 key_read(c, &dent->key, &key); 478 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 479 printk(KERN_DEBUG "\tinum %llu\n", 480 (unsigned long long)le64_to_cpu(dent->inum)); 481 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type); 482 printk(KERN_DEBUG "\tnlen %d\n", nlen); 483 printk(KERN_DEBUG "\tname "); 484 485 if (nlen > UBIFS_MAX_NLEN) 486 printk(KERN_DEBUG "(bad name length, not printing, " 487 "bad or corrupted node)"); 488 else { 489 for (i = 0; i < nlen && dent->name[i]; i++) 490 printk(KERN_CONT "%c", dent->name[i]); 491 } 492 printk(KERN_CONT "\n"); 493 494 break; 495 } 496 case UBIFS_DATA_NODE: 497 { 498 const struct ubifs_data_node *dn = node; 499 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 500 501 key_read(c, &dn->key, &key); 502 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 503 printk(KERN_DEBUG "\tsize %u\n", 504 le32_to_cpu(dn->size)); 505 printk(KERN_DEBUG "\tcompr_typ %d\n", 506 (int)le16_to_cpu(dn->compr_type)); 507 printk(KERN_DEBUG "\tdata size %d\n", 508 dlen); 509 printk(KERN_DEBUG "\tdata:\n"); 510 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1, 511 (void *)&dn->data, dlen, 0); 512 break; 513 } 514 case UBIFS_TRUN_NODE: 515 { 516 const struct ubifs_trun_node *trun = node; 517 518 printk(KERN_DEBUG "\tinum %u\n", 519 le32_to_cpu(trun->inum)); 520 printk(KERN_DEBUG "\told_size %llu\n", 521 (unsigned long long)le64_to_cpu(trun->old_size)); 522 printk(KERN_DEBUG "\tnew_size %llu\n", 523 (unsigned long long)le64_to_cpu(trun->new_size)); 524 break; 525 } 526 case UBIFS_IDX_NODE: 527 { 528 const struct ubifs_idx_node *idx = node; 529 530 n = le16_to_cpu(idx->child_cnt); 531 printk(KERN_DEBUG "\tchild_cnt %d\n", n); 532 printk(KERN_DEBUG "\tlevel %d\n", 533 (int)le16_to_cpu(idx->level)); 534 printk(KERN_DEBUG "\tBranches:\n"); 535 536 for (i = 0; i < n && i < c->fanout - 1; i++) { 537 const struct ubifs_branch *br; 538 539 br = ubifs_idx_branch(c, idx, i); 540 key_read(c, &br->key, &key); 541 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n", 542 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 543 le32_to_cpu(br->len), DBGKEY(&key)); 544 } 545 break; 546 } 547 case UBIFS_CS_NODE: 548 break; 549 case UBIFS_ORPH_NODE: 550 { 551 const struct ubifs_orph_node *orph = node; 552 553 printk(KERN_DEBUG "\tcommit number %llu\n", 554 (unsigned long long) 555 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 556 printk(KERN_DEBUG "\tlast node flag %llu\n", 557 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 558 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 559 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n); 560 for (i = 0; i < n; i++) 561 printk(KERN_DEBUG "\t ino %llu\n", 562 (unsigned long long)le64_to_cpu(orph->inos[i])); 563 break; 564 } 565 default: 566 printk(KERN_DEBUG "node type %d was not recognized\n", 567 (int)ch->node_type); 568 } 569 spin_unlock(&dbg_lock); 570 } 571 572 void dbg_dump_budget_req(const struct ubifs_budget_req *req) 573 { 574 spin_lock(&dbg_lock); 575 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n", 576 req->new_ino, req->dirtied_ino); 577 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n", 578 req->new_ino_d, req->dirtied_ino_d); 579 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n", 580 req->new_page, req->dirtied_page); 581 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n", 582 req->new_dent, req->mod_dent); 583 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth); 584 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n", 585 req->data_growth, req->dd_growth); 586 spin_unlock(&dbg_lock); 587 } 588 589 void dbg_dump_lstats(const struct ubifs_lp_stats *lst) 590 { 591 spin_lock(&dbg_lock); 592 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, " 593 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs); 594 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, " 595 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free, 596 lst->total_dirty); 597 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, " 598 "total_dead %lld\n", lst->total_used, lst->total_dark, 599 lst->total_dead); 600 spin_unlock(&dbg_lock); 601 } 602 603 void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 604 { 605 int i; 606 struct rb_node *rb; 607 struct ubifs_bud *bud; 608 struct ubifs_gced_idx_leb *idx_gc; 609 long long available, outstanding, free; 610 611 spin_lock(&c->space_lock); 612 spin_lock(&dbg_lock); 613 printk(KERN_DEBUG "(pid %d) Budgeting info: data budget sum %lld, " 614 "total budget sum %lld\n", current->pid, 615 bi->data_growth + bi->dd_growth, 616 bi->data_growth + bi->dd_growth + bi->idx_growth); 617 printk(KERN_DEBUG "\tbudg_data_growth %lld, budg_dd_growth %lld, " 618 "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth, 619 bi->idx_growth); 620 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %llu, " 621 "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz, 622 bi->uncommitted_idx); 623 printk(KERN_DEBUG "\tpage_budget %d, inode_budget %d, dent_budget %d\n", 624 bi->page_budget, bi->inode_budget, bi->dent_budget); 625 printk(KERN_DEBUG "\tnospace %u, nospace_rp %u\n", 626 bi->nospace, bi->nospace_rp); 627 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 628 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 629 630 if (bi != &c->bi) 631 /* 632 * If we are dumping saved budgeting data, do not print 633 * additional information which is about the current state, not 634 * the old one which corresponded to the saved budgeting data. 635 */ 636 goto out_unlock; 637 638 printk(KERN_DEBUG "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", 639 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); 640 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, " 641 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt), 642 atomic_long_read(&c->dirty_zn_cnt), 643 atomic_long_read(&c->clean_zn_cnt)); 644 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n", 645 c->gc_lnum, c->ihead_lnum); 646 647 /* If we are in R/O mode, journal heads do not exist */ 648 if (c->jheads) 649 for (i = 0; i < c->jhead_cnt; i++) 650 printk(KERN_DEBUG "\tjhead %s\t LEB %d\n", 651 dbg_jhead(c->jheads[i].wbuf.jhead), 652 c->jheads[i].wbuf.lnum); 653 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 654 bud = rb_entry(rb, struct ubifs_bud, rb); 655 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum); 656 } 657 list_for_each_entry(bud, &c->old_buds, list) 658 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum); 659 list_for_each_entry(idx_gc, &c->idx_gc, list) 660 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n", 661 idx_gc->lnum, idx_gc->unmap); 662 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state); 663 664 /* Print budgeting predictions */ 665 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 666 outstanding = c->bi.data_growth + c->bi.dd_growth; 667 free = ubifs_get_free_space_nolock(c); 668 printk(KERN_DEBUG "Budgeting predictions:\n"); 669 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n", 670 available, outstanding, free); 671 out_unlock: 672 spin_unlock(&dbg_lock); 673 spin_unlock(&c->space_lock); 674 } 675 676 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 677 { 678 int i, spc, dark = 0, dead = 0; 679 struct rb_node *rb; 680 struct ubifs_bud *bud; 681 682 spc = lp->free + lp->dirty; 683 if (spc < c->dead_wm) 684 dead = spc; 685 else 686 dark = ubifs_calc_dark(c, spc); 687 688 if (lp->flags & LPROPS_INDEX) 689 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d " 690 "free + dirty %-8d flags %#x (", lp->lnum, lp->free, 691 lp->dirty, c->leb_size - spc, spc, lp->flags); 692 else 693 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d " 694 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d " 695 "flags %#-4x (", lp->lnum, lp->free, lp->dirty, 696 c->leb_size - spc, spc, dark, dead, 697 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 698 699 if (lp->flags & LPROPS_TAKEN) { 700 if (lp->flags & LPROPS_INDEX) 701 printk(KERN_CONT "index, taken"); 702 else 703 printk(KERN_CONT "taken"); 704 } else { 705 const char *s; 706 707 if (lp->flags & LPROPS_INDEX) { 708 switch (lp->flags & LPROPS_CAT_MASK) { 709 case LPROPS_DIRTY_IDX: 710 s = "dirty index"; 711 break; 712 case LPROPS_FRDI_IDX: 713 s = "freeable index"; 714 break; 715 default: 716 s = "index"; 717 } 718 } else { 719 switch (lp->flags & LPROPS_CAT_MASK) { 720 case LPROPS_UNCAT: 721 s = "not categorized"; 722 break; 723 case LPROPS_DIRTY: 724 s = "dirty"; 725 break; 726 case LPROPS_FREE: 727 s = "free"; 728 break; 729 case LPROPS_EMPTY: 730 s = "empty"; 731 break; 732 case LPROPS_FREEABLE: 733 s = "freeable"; 734 break; 735 default: 736 s = NULL; 737 break; 738 } 739 } 740 printk(KERN_CONT "%s", s); 741 } 742 743 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 744 bud = rb_entry(rb, struct ubifs_bud, rb); 745 if (bud->lnum == lp->lnum) { 746 int head = 0; 747 for (i = 0; i < c->jhead_cnt; i++) { 748 /* 749 * Note, if we are in R/O mode or in the middle 750 * of mounting/re-mounting, the write-buffers do 751 * not exist. 752 */ 753 if (c->jheads && 754 lp->lnum == c->jheads[i].wbuf.lnum) { 755 printk(KERN_CONT ", jhead %s", 756 dbg_jhead(i)); 757 head = 1; 758 } 759 } 760 if (!head) 761 printk(KERN_CONT ", bud of jhead %s", 762 dbg_jhead(bud->jhead)); 763 } 764 } 765 if (lp->lnum == c->gc_lnum) 766 printk(KERN_CONT ", GC LEB"); 767 printk(KERN_CONT ")\n"); 768 } 769 770 void dbg_dump_lprops(struct ubifs_info *c) 771 { 772 int lnum, err; 773 struct ubifs_lprops lp; 774 struct ubifs_lp_stats lst; 775 776 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n", 777 current->pid); 778 ubifs_get_lp_stats(c, &lst); 779 dbg_dump_lstats(&lst); 780 781 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 782 err = ubifs_read_one_lp(c, lnum, &lp); 783 if (err) 784 ubifs_err("cannot read lprops for LEB %d", lnum); 785 786 dbg_dump_lprop(c, &lp); 787 } 788 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n", 789 current->pid); 790 } 791 792 void dbg_dump_lpt_info(struct ubifs_info *c) 793 { 794 int i; 795 796 spin_lock(&dbg_lock); 797 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid); 798 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz); 799 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz); 800 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz); 801 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz); 802 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz); 803 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt); 804 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght); 805 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt); 806 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt); 807 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 808 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 809 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt); 810 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits); 811 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 812 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 813 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 814 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits); 815 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits); 816 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 817 printk(KERN_DEBUG "\tLPT head is at %d:%d\n", 818 c->nhead_lnum, c->nhead_offs); 819 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", 820 c->ltab_lnum, c->ltab_offs); 821 if (c->big_lpt) 822 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n", 823 c->lsave_lnum, c->lsave_offs); 824 for (i = 0; i < c->lpt_lebs; i++) 825 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d " 826 "cmt %d\n", i + c->lpt_first, c->ltab[i].free, 827 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt); 828 spin_unlock(&dbg_lock); 829 } 830 831 void dbg_dump_leb(const struct ubifs_info *c, int lnum) 832 { 833 struct ubifs_scan_leb *sleb; 834 struct ubifs_scan_node *snod; 835 void *buf; 836 837 if (dbg_failure_mode) 838 return; 839 840 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n", 841 current->pid, lnum); 842 843 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 844 if (!buf) { 845 ubifs_err("cannot allocate memory for dumping LEB %d", lnum); 846 return; 847 } 848 849 sleb = ubifs_scan(c, lnum, 0, buf, 0); 850 if (IS_ERR(sleb)) { 851 ubifs_err("scan error %d", (int)PTR_ERR(sleb)); 852 goto out; 853 } 854 855 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum, 856 sleb->nodes_cnt, sleb->endpt); 857 858 list_for_each_entry(snod, &sleb->nodes, list) { 859 cond_resched(); 860 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum, 861 snod->offs, snod->len); 862 dbg_dump_node(c, snod->node); 863 } 864 865 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n", 866 current->pid, lnum); 867 ubifs_scan_destroy(sleb); 868 869 out: 870 vfree(buf); 871 return; 872 } 873 874 void dbg_dump_znode(const struct ubifs_info *c, 875 const struct ubifs_znode *znode) 876 { 877 int n; 878 const struct ubifs_zbranch *zbr; 879 880 spin_lock(&dbg_lock); 881 if (znode->parent) 882 zbr = &znode->parent->zbranch[znode->iip]; 883 else 884 zbr = &c->zroot; 885 886 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d" 887 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs, 888 zbr->len, znode->parent, znode->iip, znode->level, 889 znode->child_cnt, znode->flags); 890 891 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 892 spin_unlock(&dbg_lock); 893 return; 894 } 895 896 printk(KERN_DEBUG "zbranches:\n"); 897 for (n = 0; n < znode->child_cnt; n++) { 898 zbr = &znode->zbranch[n]; 899 if (znode->level > 0) 900 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key " 901 "%s\n", n, zbr->znode, zbr->lnum, 902 zbr->offs, zbr->len, 903 DBGKEY(&zbr->key)); 904 else 905 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key " 906 "%s\n", n, zbr->znode, zbr->lnum, 907 zbr->offs, zbr->len, 908 DBGKEY(&zbr->key)); 909 } 910 spin_unlock(&dbg_lock); 911 } 912 913 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 914 { 915 int i; 916 917 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n", 918 current->pid, cat, heap->cnt); 919 for (i = 0; i < heap->cnt; i++) { 920 struct ubifs_lprops *lprops = heap->arr[i]; 921 922 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d " 923 "flags %d\n", i, lprops->lnum, lprops->hpos, 924 lprops->free, lprops->dirty, lprops->flags); 925 } 926 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid); 927 } 928 929 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 930 struct ubifs_nnode *parent, int iip) 931 { 932 int i; 933 934 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid); 935 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n", 936 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 937 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n", 938 pnode->flags, iip, pnode->level, pnode->num); 939 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 940 struct ubifs_lprops *lp = &pnode->lprops[i]; 941 942 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n", 943 i, lp->free, lp->dirty, lp->flags, lp->lnum); 944 } 945 } 946 947 void dbg_dump_tnc(struct ubifs_info *c) 948 { 949 struct ubifs_znode *znode; 950 int level; 951 952 printk(KERN_DEBUG "\n"); 953 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid); 954 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 955 level = znode->level; 956 printk(KERN_DEBUG "== Level %d ==\n", level); 957 while (znode) { 958 if (level != znode->level) { 959 level = znode->level; 960 printk(KERN_DEBUG "== Level %d ==\n", level); 961 } 962 dbg_dump_znode(c, znode); 963 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 964 } 965 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid); 966 } 967 968 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 969 void *priv) 970 { 971 dbg_dump_znode(c, znode); 972 return 0; 973 } 974 975 /** 976 * dbg_dump_index - dump the on-flash index. 977 * @c: UBIFS file-system description object 978 * 979 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()' 980 * which dumps only in-memory znodes and does not read znodes which from flash. 981 */ 982 void dbg_dump_index(struct ubifs_info *c) 983 { 984 dbg_walk_index(c, NULL, dump_znode, NULL); 985 } 986 987 /** 988 * dbg_save_space_info - save information about flash space. 989 * @c: UBIFS file-system description object 990 * 991 * This function saves information about UBIFS free space, dirty space, etc, in 992 * order to check it later. 993 */ 994 void dbg_save_space_info(struct ubifs_info *c) 995 { 996 struct ubifs_debug_info *d = c->dbg; 997 int freeable_cnt; 998 999 spin_lock(&c->space_lock); 1000 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); 1001 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); 1002 d->saved_idx_gc_cnt = c->idx_gc_cnt; 1003 1004 /* 1005 * We use a dirty hack here and zero out @c->freeable_cnt, because it 1006 * affects the free space calculations, and UBIFS might not know about 1007 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks 1008 * only when we read their lprops, and we do this only lazily, upon the 1009 * need. So at any given point of time @c->freeable_cnt might be not 1010 * exactly accurate. 1011 * 1012 * Just one example about the issue we hit when we did not zero 1013 * @c->freeable_cnt. 1014 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the 1015 * amount of free space in @d->saved_free 1016 * 2. We re-mount R/W, which makes UBIFS to read the "lsave" 1017 * information from flash, where we cache LEBs from various 1018 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' 1019 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' 1020 * -> 'ubifs_get_pnode()' -> 'update_cats()' 1021 * -> 'ubifs_add_to_cat()'). 1022 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt 1023 * becomes %1. 1024 * 4. We calculate the amount of free space when the re-mount is 1025 * finished in 'dbg_check_space_info()' and it does not match 1026 * @d->saved_free. 1027 */ 1028 freeable_cnt = c->freeable_cnt; 1029 c->freeable_cnt = 0; 1030 d->saved_free = ubifs_get_free_space_nolock(c); 1031 c->freeable_cnt = freeable_cnt; 1032 spin_unlock(&c->space_lock); 1033 } 1034 1035 /** 1036 * dbg_check_space_info - check flash space information. 1037 * @c: UBIFS file-system description object 1038 * 1039 * This function compares current flash space information with the information 1040 * which was saved when the 'dbg_save_space_info()' function was called. 1041 * Returns zero if the information has not changed, and %-EINVAL it it has 1042 * changed. 1043 */ 1044 int dbg_check_space_info(struct ubifs_info *c) 1045 { 1046 struct ubifs_debug_info *d = c->dbg; 1047 struct ubifs_lp_stats lst; 1048 long long free; 1049 int freeable_cnt; 1050 1051 spin_lock(&c->space_lock); 1052 freeable_cnt = c->freeable_cnt; 1053 c->freeable_cnt = 0; 1054 free = ubifs_get_free_space_nolock(c); 1055 c->freeable_cnt = freeable_cnt; 1056 spin_unlock(&c->space_lock); 1057 1058 if (free != d->saved_free) { 1059 ubifs_err("free space changed from %lld to %lld", 1060 d->saved_free, free); 1061 goto out; 1062 } 1063 1064 return 0; 1065 1066 out: 1067 ubifs_msg("saved lprops statistics dump"); 1068 dbg_dump_lstats(&d->saved_lst); 1069 ubifs_msg("saved budgeting info dump"); 1070 dbg_dump_budg(c, &d->saved_bi); 1071 ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt); 1072 ubifs_msg("current lprops statistics dump"); 1073 ubifs_get_lp_stats(c, &lst); 1074 dbg_dump_lstats(&lst); 1075 ubifs_msg("current budgeting info dump"); 1076 dbg_dump_budg(c, &c->bi); 1077 dump_stack(); 1078 return -EINVAL; 1079 } 1080 1081 /** 1082 * dbg_check_synced_i_size - check synchronized inode size. 1083 * @inode: inode to check 1084 * 1085 * If inode is clean, synchronized inode size has to be equivalent to current 1086 * inode size. This function has to be called only for locked inodes (@i_mutex 1087 * has to be locked). Returns %0 if synchronized inode size if correct, and 1088 * %-EINVAL if not. 1089 */ 1090 int dbg_check_synced_i_size(struct inode *inode) 1091 { 1092 int err = 0; 1093 struct ubifs_inode *ui = ubifs_inode(inode); 1094 1095 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 1096 return 0; 1097 if (!S_ISREG(inode->i_mode)) 1098 return 0; 1099 1100 mutex_lock(&ui->ui_mutex); 1101 spin_lock(&ui->ui_lock); 1102 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1103 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode " 1104 "is clean", ui->ui_size, ui->synced_i_size); 1105 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1106 inode->i_mode, i_size_read(inode)); 1107 dbg_dump_stack(); 1108 err = -EINVAL; 1109 } 1110 spin_unlock(&ui->ui_lock); 1111 mutex_unlock(&ui->ui_mutex); 1112 return err; 1113 } 1114 1115 /* 1116 * dbg_check_dir - check directory inode size and link count. 1117 * @c: UBIFS file-system description object 1118 * @dir: the directory to calculate size for 1119 * @size: the result is returned here 1120 * 1121 * This function makes sure that directory size and link count are correct. 1122 * Returns zero in case of success and a negative error code in case of 1123 * failure. 1124 * 1125 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1126 * calling this function. 1127 */ 1128 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir) 1129 { 1130 unsigned int nlink = 2; 1131 union ubifs_key key; 1132 struct ubifs_dent_node *dent, *pdent = NULL; 1133 struct qstr nm = { .name = NULL }; 1134 loff_t size = UBIFS_INO_NODE_SZ; 1135 1136 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 1137 return 0; 1138 1139 if (!S_ISDIR(dir->i_mode)) 1140 return 0; 1141 1142 lowest_dent_key(c, &key, dir->i_ino); 1143 while (1) { 1144 int err; 1145 1146 dent = ubifs_tnc_next_ent(c, &key, &nm); 1147 if (IS_ERR(dent)) { 1148 err = PTR_ERR(dent); 1149 if (err == -ENOENT) 1150 break; 1151 return err; 1152 } 1153 1154 nm.name = dent->name; 1155 nm.len = le16_to_cpu(dent->nlen); 1156 size += CALC_DENT_SIZE(nm.len); 1157 if (dent->type == UBIFS_ITYPE_DIR) 1158 nlink += 1; 1159 kfree(pdent); 1160 pdent = dent; 1161 key_read(c, &dent->key, &key); 1162 } 1163 kfree(pdent); 1164 1165 if (i_size_read(dir) != size) { 1166 ubifs_err("directory inode %lu has size %llu, " 1167 "but calculated size is %llu", dir->i_ino, 1168 (unsigned long long)i_size_read(dir), 1169 (unsigned long long)size); 1170 dump_stack(); 1171 return -EINVAL; 1172 } 1173 if (dir->i_nlink != nlink) { 1174 ubifs_err("directory inode %lu has nlink %u, but calculated " 1175 "nlink is %u", dir->i_ino, dir->i_nlink, nlink); 1176 dump_stack(); 1177 return -EINVAL; 1178 } 1179 1180 return 0; 1181 } 1182 1183 /** 1184 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1185 * @c: UBIFS file-system description object 1186 * @zbr1: first zbranch 1187 * @zbr2: following zbranch 1188 * 1189 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1190 * names of the direntries/xentries which are referred by the keys. This 1191 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1192 * sure the name of direntry/xentry referred by @zbr1 is less than 1193 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1194 * and a negative error code in case of failure. 1195 */ 1196 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1197 struct ubifs_zbranch *zbr2) 1198 { 1199 int err, nlen1, nlen2, cmp; 1200 struct ubifs_dent_node *dent1, *dent2; 1201 union ubifs_key key; 1202 1203 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 1204 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1205 if (!dent1) 1206 return -ENOMEM; 1207 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1208 if (!dent2) { 1209 err = -ENOMEM; 1210 goto out_free; 1211 } 1212 1213 err = ubifs_tnc_read_node(c, zbr1, dent1); 1214 if (err) 1215 goto out_free; 1216 err = ubifs_validate_entry(c, dent1); 1217 if (err) 1218 goto out_free; 1219 1220 err = ubifs_tnc_read_node(c, zbr2, dent2); 1221 if (err) 1222 goto out_free; 1223 err = ubifs_validate_entry(c, dent2); 1224 if (err) 1225 goto out_free; 1226 1227 /* Make sure node keys are the same as in zbranch */ 1228 err = 1; 1229 key_read(c, &dent1->key, &key); 1230 if (keys_cmp(c, &zbr1->key, &key)) { 1231 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum, 1232 zbr1->offs, DBGKEY(&key)); 1233 dbg_err("but it should have key %s according to tnc", 1234 DBGKEY(&zbr1->key)); 1235 dbg_dump_node(c, dent1); 1236 goto out_free; 1237 } 1238 1239 key_read(c, &dent2->key, &key); 1240 if (keys_cmp(c, &zbr2->key, &key)) { 1241 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum, 1242 zbr1->offs, DBGKEY(&key)); 1243 dbg_err("but it should have key %s according to tnc", 1244 DBGKEY(&zbr2->key)); 1245 dbg_dump_node(c, dent2); 1246 goto out_free; 1247 } 1248 1249 nlen1 = le16_to_cpu(dent1->nlen); 1250 nlen2 = le16_to_cpu(dent2->nlen); 1251 1252 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1253 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1254 err = 0; 1255 goto out_free; 1256 } 1257 if (cmp == 0 && nlen1 == nlen2) 1258 dbg_err("2 xent/dent nodes with the same name"); 1259 else 1260 dbg_err("bad order of colliding key %s", 1261 DBGKEY(&key)); 1262 1263 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1264 dbg_dump_node(c, dent1); 1265 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1266 dbg_dump_node(c, dent2); 1267 1268 out_free: 1269 kfree(dent2); 1270 kfree(dent1); 1271 return err; 1272 } 1273 1274 /** 1275 * dbg_check_znode - check if znode is all right. 1276 * @c: UBIFS file-system description object 1277 * @zbr: zbranch which points to this znode 1278 * 1279 * This function makes sure that znode referred to by @zbr is all right. 1280 * Returns zero if it is, and %-EINVAL if it is not. 1281 */ 1282 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1283 { 1284 struct ubifs_znode *znode = zbr->znode; 1285 struct ubifs_znode *zp = znode->parent; 1286 int n, err, cmp; 1287 1288 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1289 err = 1; 1290 goto out; 1291 } 1292 if (znode->level < 0) { 1293 err = 2; 1294 goto out; 1295 } 1296 if (znode->iip < 0 || znode->iip >= c->fanout) { 1297 err = 3; 1298 goto out; 1299 } 1300 1301 if (zbr->len == 0) 1302 /* Only dirty zbranch may have no on-flash nodes */ 1303 if (!ubifs_zn_dirty(znode)) { 1304 err = 4; 1305 goto out; 1306 } 1307 1308 if (ubifs_zn_dirty(znode)) { 1309 /* 1310 * If znode is dirty, its parent has to be dirty as well. The 1311 * order of the operation is important, so we have to have 1312 * memory barriers. 1313 */ 1314 smp_mb(); 1315 if (zp && !ubifs_zn_dirty(zp)) { 1316 /* 1317 * The dirty flag is atomic and is cleared outside the 1318 * TNC mutex, so znode's dirty flag may now have 1319 * been cleared. The child is always cleared before the 1320 * parent, so we just need to check again. 1321 */ 1322 smp_mb(); 1323 if (ubifs_zn_dirty(znode)) { 1324 err = 5; 1325 goto out; 1326 } 1327 } 1328 } 1329 1330 if (zp) { 1331 const union ubifs_key *min, *max; 1332 1333 if (znode->level != zp->level - 1) { 1334 err = 6; 1335 goto out; 1336 } 1337 1338 /* Make sure the 'parent' pointer in our znode is correct */ 1339 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1340 if (!err) { 1341 /* This zbranch does not exist in the parent */ 1342 err = 7; 1343 goto out; 1344 } 1345 1346 if (znode->iip >= zp->child_cnt) { 1347 err = 8; 1348 goto out; 1349 } 1350 1351 if (znode->iip != n) { 1352 /* This may happen only in case of collisions */ 1353 if (keys_cmp(c, &zp->zbranch[n].key, 1354 &zp->zbranch[znode->iip].key)) { 1355 err = 9; 1356 goto out; 1357 } 1358 n = znode->iip; 1359 } 1360 1361 /* 1362 * Make sure that the first key in our znode is greater than or 1363 * equal to the key in the pointing zbranch. 1364 */ 1365 min = &zbr->key; 1366 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1367 if (cmp == 1) { 1368 err = 10; 1369 goto out; 1370 } 1371 1372 if (n + 1 < zp->child_cnt) { 1373 max = &zp->zbranch[n + 1].key; 1374 1375 /* 1376 * Make sure the last key in our znode is less or 1377 * equivalent than the key in the zbranch which goes 1378 * after our pointing zbranch. 1379 */ 1380 cmp = keys_cmp(c, max, 1381 &znode->zbranch[znode->child_cnt - 1].key); 1382 if (cmp == -1) { 1383 err = 11; 1384 goto out; 1385 } 1386 } 1387 } else { 1388 /* This may only be root znode */ 1389 if (zbr != &c->zroot) { 1390 err = 12; 1391 goto out; 1392 } 1393 } 1394 1395 /* 1396 * Make sure that next key is greater or equivalent then the previous 1397 * one. 1398 */ 1399 for (n = 1; n < znode->child_cnt; n++) { 1400 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1401 &znode->zbranch[n].key); 1402 if (cmp > 0) { 1403 err = 13; 1404 goto out; 1405 } 1406 if (cmp == 0) { 1407 /* This can only be keys with colliding hash */ 1408 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1409 err = 14; 1410 goto out; 1411 } 1412 1413 if (znode->level != 0 || c->replaying) 1414 continue; 1415 1416 /* 1417 * Colliding keys should follow binary order of 1418 * corresponding xentry/dentry names. 1419 */ 1420 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1421 &znode->zbranch[n]); 1422 if (err < 0) 1423 return err; 1424 if (err) { 1425 err = 15; 1426 goto out; 1427 } 1428 } 1429 } 1430 1431 for (n = 0; n < znode->child_cnt; n++) { 1432 if (!znode->zbranch[n].znode && 1433 (znode->zbranch[n].lnum == 0 || 1434 znode->zbranch[n].len == 0)) { 1435 err = 16; 1436 goto out; 1437 } 1438 1439 if (znode->zbranch[n].lnum != 0 && 1440 znode->zbranch[n].len == 0) { 1441 err = 17; 1442 goto out; 1443 } 1444 1445 if (znode->zbranch[n].lnum == 0 && 1446 znode->zbranch[n].len != 0) { 1447 err = 18; 1448 goto out; 1449 } 1450 1451 if (znode->zbranch[n].lnum == 0 && 1452 znode->zbranch[n].offs != 0) { 1453 err = 19; 1454 goto out; 1455 } 1456 1457 if (znode->level != 0 && znode->zbranch[n].znode) 1458 if (znode->zbranch[n].znode->parent != znode) { 1459 err = 20; 1460 goto out; 1461 } 1462 } 1463 1464 return 0; 1465 1466 out: 1467 ubifs_err("failed, error %d", err); 1468 ubifs_msg("dump of the znode"); 1469 dbg_dump_znode(c, znode); 1470 if (zp) { 1471 ubifs_msg("dump of the parent znode"); 1472 dbg_dump_znode(c, zp); 1473 } 1474 dump_stack(); 1475 return -EINVAL; 1476 } 1477 1478 /** 1479 * dbg_check_tnc - check TNC tree. 1480 * @c: UBIFS file-system description object 1481 * @extra: do extra checks that are possible at start commit 1482 * 1483 * This function traverses whole TNC tree and checks every znode. Returns zero 1484 * if everything is all right and %-EINVAL if something is wrong with TNC. 1485 */ 1486 int dbg_check_tnc(struct ubifs_info *c, int extra) 1487 { 1488 struct ubifs_znode *znode; 1489 long clean_cnt = 0, dirty_cnt = 0; 1490 int err, last; 1491 1492 if (!(ubifs_chk_flags & UBIFS_CHK_TNC)) 1493 return 0; 1494 1495 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1496 if (!c->zroot.znode) 1497 return 0; 1498 1499 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1500 while (1) { 1501 struct ubifs_znode *prev; 1502 struct ubifs_zbranch *zbr; 1503 1504 if (!znode->parent) 1505 zbr = &c->zroot; 1506 else 1507 zbr = &znode->parent->zbranch[znode->iip]; 1508 1509 err = dbg_check_znode(c, zbr); 1510 if (err) 1511 return err; 1512 1513 if (extra) { 1514 if (ubifs_zn_dirty(znode)) 1515 dirty_cnt += 1; 1516 else 1517 clean_cnt += 1; 1518 } 1519 1520 prev = znode; 1521 znode = ubifs_tnc_postorder_next(znode); 1522 if (!znode) 1523 break; 1524 1525 /* 1526 * If the last key of this znode is equivalent to the first key 1527 * of the next znode (collision), then check order of the keys. 1528 */ 1529 last = prev->child_cnt - 1; 1530 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1531 !keys_cmp(c, &prev->zbranch[last].key, 1532 &znode->zbranch[0].key)) { 1533 err = dbg_check_key_order(c, &prev->zbranch[last], 1534 &znode->zbranch[0]); 1535 if (err < 0) 1536 return err; 1537 if (err) { 1538 ubifs_msg("first znode"); 1539 dbg_dump_znode(c, prev); 1540 ubifs_msg("second znode"); 1541 dbg_dump_znode(c, znode); 1542 return -EINVAL; 1543 } 1544 } 1545 } 1546 1547 if (extra) { 1548 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1549 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", 1550 atomic_long_read(&c->clean_zn_cnt), 1551 clean_cnt); 1552 return -EINVAL; 1553 } 1554 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1555 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", 1556 atomic_long_read(&c->dirty_zn_cnt), 1557 dirty_cnt); 1558 return -EINVAL; 1559 } 1560 } 1561 1562 return 0; 1563 } 1564 1565 /** 1566 * dbg_walk_index - walk the on-flash index. 1567 * @c: UBIFS file-system description object 1568 * @leaf_cb: called for each leaf node 1569 * @znode_cb: called for each indexing node 1570 * @priv: private data which is passed to callbacks 1571 * 1572 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1573 * node and @znode_cb for each indexing node. Returns zero in case of success 1574 * and a negative error code in case of failure. 1575 * 1576 * It would be better if this function removed every znode it pulled to into 1577 * the TNC, so that the behavior more closely matched the non-debugging 1578 * behavior. 1579 */ 1580 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1581 dbg_znode_callback znode_cb, void *priv) 1582 { 1583 int err; 1584 struct ubifs_zbranch *zbr; 1585 struct ubifs_znode *znode, *child; 1586 1587 mutex_lock(&c->tnc_mutex); 1588 /* If the root indexing node is not in TNC - pull it */ 1589 if (!c->zroot.znode) { 1590 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1591 if (IS_ERR(c->zroot.znode)) { 1592 err = PTR_ERR(c->zroot.znode); 1593 c->zroot.znode = NULL; 1594 goto out_unlock; 1595 } 1596 } 1597 1598 /* 1599 * We are going to traverse the indexing tree in the postorder manner. 1600 * Go down and find the leftmost indexing node where we are going to 1601 * start from. 1602 */ 1603 znode = c->zroot.znode; 1604 while (znode->level > 0) { 1605 zbr = &znode->zbranch[0]; 1606 child = zbr->znode; 1607 if (!child) { 1608 child = ubifs_load_znode(c, zbr, znode, 0); 1609 if (IS_ERR(child)) { 1610 err = PTR_ERR(child); 1611 goto out_unlock; 1612 } 1613 zbr->znode = child; 1614 } 1615 1616 znode = child; 1617 } 1618 1619 /* Iterate over all indexing nodes */ 1620 while (1) { 1621 int idx; 1622 1623 cond_resched(); 1624 1625 if (znode_cb) { 1626 err = znode_cb(c, znode, priv); 1627 if (err) { 1628 ubifs_err("znode checking function returned " 1629 "error %d", err); 1630 dbg_dump_znode(c, znode); 1631 goto out_dump; 1632 } 1633 } 1634 if (leaf_cb && znode->level == 0) { 1635 for (idx = 0; idx < znode->child_cnt; idx++) { 1636 zbr = &znode->zbranch[idx]; 1637 err = leaf_cb(c, zbr, priv); 1638 if (err) { 1639 ubifs_err("leaf checking function " 1640 "returned error %d, for leaf " 1641 "at LEB %d:%d", 1642 err, zbr->lnum, zbr->offs); 1643 goto out_dump; 1644 } 1645 } 1646 } 1647 1648 if (!znode->parent) 1649 break; 1650 1651 idx = znode->iip + 1; 1652 znode = znode->parent; 1653 if (idx < znode->child_cnt) { 1654 /* Switch to the next index in the parent */ 1655 zbr = &znode->zbranch[idx]; 1656 child = zbr->znode; 1657 if (!child) { 1658 child = ubifs_load_znode(c, zbr, znode, idx); 1659 if (IS_ERR(child)) { 1660 err = PTR_ERR(child); 1661 goto out_unlock; 1662 } 1663 zbr->znode = child; 1664 } 1665 znode = child; 1666 } else 1667 /* 1668 * This is the last child, switch to the parent and 1669 * continue. 1670 */ 1671 continue; 1672 1673 /* Go to the lowest leftmost znode in the new sub-tree */ 1674 while (znode->level > 0) { 1675 zbr = &znode->zbranch[0]; 1676 child = zbr->znode; 1677 if (!child) { 1678 child = ubifs_load_znode(c, zbr, znode, 0); 1679 if (IS_ERR(child)) { 1680 err = PTR_ERR(child); 1681 goto out_unlock; 1682 } 1683 zbr->znode = child; 1684 } 1685 znode = child; 1686 } 1687 } 1688 1689 mutex_unlock(&c->tnc_mutex); 1690 return 0; 1691 1692 out_dump: 1693 if (znode->parent) 1694 zbr = &znode->parent->zbranch[znode->iip]; 1695 else 1696 zbr = &c->zroot; 1697 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1698 dbg_dump_znode(c, znode); 1699 out_unlock: 1700 mutex_unlock(&c->tnc_mutex); 1701 return err; 1702 } 1703 1704 /** 1705 * add_size - add znode size to partially calculated index size. 1706 * @c: UBIFS file-system description object 1707 * @znode: znode to add size for 1708 * @priv: partially calculated index size 1709 * 1710 * This is a helper function for 'dbg_check_idx_size()' which is called for 1711 * every indexing node and adds its size to the 'long long' variable pointed to 1712 * by @priv. 1713 */ 1714 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1715 { 1716 long long *idx_size = priv; 1717 int add; 1718 1719 add = ubifs_idx_node_sz(c, znode->child_cnt); 1720 add = ALIGN(add, 8); 1721 *idx_size += add; 1722 return 0; 1723 } 1724 1725 /** 1726 * dbg_check_idx_size - check index size. 1727 * @c: UBIFS file-system description object 1728 * @idx_size: size to check 1729 * 1730 * This function walks the UBIFS index, calculates its size and checks that the 1731 * size is equivalent to @idx_size. Returns zero in case of success and a 1732 * negative error code in case of failure. 1733 */ 1734 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1735 { 1736 int err; 1737 long long calc = 0; 1738 1739 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ)) 1740 return 0; 1741 1742 err = dbg_walk_index(c, NULL, add_size, &calc); 1743 if (err) { 1744 ubifs_err("error %d while walking the index", err); 1745 return err; 1746 } 1747 1748 if (calc != idx_size) { 1749 ubifs_err("index size check failed: calculated size is %lld, " 1750 "should be %lld", calc, idx_size); 1751 dump_stack(); 1752 return -EINVAL; 1753 } 1754 1755 return 0; 1756 } 1757 1758 /** 1759 * struct fsck_inode - information about an inode used when checking the file-system. 1760 * @rb: link in the RB-tree of inodes 1761 * @inum: inode number 1762 * @mode: inode type, permissions, etc 1763 * @nlink: inode link count 1764 * @xattr_cnt: count of extended attributes 1765 * @references: how many directory/xattr entries refer this inode (calculated 1766 * while walking the index) 1767 * @calc_cnt: for directory inode count of child directories 1768 * @size: inode size (read from on-flash inode) 1769 * @xattr_sz: summary size of all extended attributes (read from on-flash 1770 * inode) 1771 * @calc_sz: for directories calculated directory size 1772 * @calc_xcnt: count of extended attributes 1773 * @calc_xsz: calculated summary size of all extended attributes 1774 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1775 * inode (read from on-flash inode) 1776 * @calc_xnms: calculated sum of lengths of all extended attribute names 1777 */ 1778 struct fsck_inode { 1779 struct rb_node rb; 1780 ino_t inum; 1781 umode_t mode; 1782 unsigned int nlink; 1783 unsigned int xattr_cnt; 1784 int references; 1785 int calc_cnt; 1786 long long size; 1787 unsigned int xattr_sz; 1788 long long calc_sz; 1789 long long calc_xcnt; 1790 long long calc_xsz; 1791 unsigned int xattr_nms; 1792 long long calc_xnms; 1793 }; 1794 1795 /** 1796 * struct fsck_data - private FS checking information. 1797 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1798 */ 1799 struct fsck_data { 1800 struct rb_root inodes; 1801 }; 1802 1803 /** 1804 * add_inode - add inode information to RB-tree of inodes. 1805 * @c: UBIFS file-system description object 1806 * @fsckd: FS checking information 1807 * @ino: raw UBIFS inode to add 1808 * 1809 * This is a helper function for 'check_leaf()' which adds information about 1810 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1811 * case of success and a negative error code in case of failure. 1812 */ 1813 static struct fsck_inode *add_inode(struct ubifs_info *c, 1814 struct fsck_data *fsckd, 1815 struct ubifs_ino_node *ino) 1816 { 1817 struct rb_node **p, *parent = NULL; 1818 struct fsck_inode *fscki; 1819 ino_t inum = key_inum_flash(c, &ino->key); 1820 struct inode *inode; 1821 struct ubifs_inode *ui; 1822 1823 p = &fsckd->inodes.rb_node; 1824 while (*p) { 1825 parent = *p; 1826 fscki = rb_entry(parent, struct fsck_inode, rb); 1827 if (inum < fscki->inum) 1828 p = &(*p)->rb_left; 1829 else if (inum > fscki->inum) 1830 p = &(*p)->rb_right; 1831 else 1832 return fscki; 1833 } 1834 1835 if (inum > c->highest_inum) { 1836 ubifs_err("too high inode number, max. is %lu", 1837 (unsigned long)c->highest_inum); 1838 return ERR_PTR(-EINVAL); 1839 } 1840 1841 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1842 if (!fscki) 1843 return ERR_PTR(-ENOMEM); 1844 1845 inode = ilookup(c->vfs_sb, inum); 1846 1847 fscki->inum = inum; 1848 /* 1849 * If the inode is present in the VFS inode cache, use it instead of 1850 * the on-flash inode which might be out-of-date. E.g., the size might 1851 * be out-of-date. If we do not do this, the following may happen, for 1852 * example: 1853 * 1. A power cut happens 1854 * 2. We mount the file-system R/O, the replay process fixes up the 1855 * inode size in the VFS cache, but on on-flash. 1856 * 3. 'check_leaf()' fails because it hits a data node beyond inode 1857 * size. 1858 */ 1859 if (!inode) { 1860 fscki->nlink = le32_to_cpu(ino->nlink); 1861 fscki->size = le64_to_cpu(ino->size); 1862 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1863 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1864 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1865 fscki->mode = le32_to_cpu(ino->mode); 1866 } else { 1867 ui = ubifs_inode(inode); 1868 fscki->nlink = inode->i_nlink; 1869 fscki->size = inode->i_size; 1870 fscki->xattr_cnt = ui->xattr_cnt; 1871 fscki->xattr_sz = ui->xattr_size; 1872 fscki->xattr_nms = ui->xattr_names; 1873 fscki->mode = inode->i_mode; 1874 iput(inode); 1875 } 1876 1877 if (S_ISDIR(fscki->mode)) { 1878 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1879 fscki->calc_cnt = 2; 1880 } 1881 1882 rb_link_node(&fscki->rb, parent, p); 1883 rb_insert_color(&fscki->rb, &fsckd->inodes); 1884 1885 return fscki; 1886 } 1887 1888 /** 1889 * search_inode - search inode in the RB-tree of inodes. 1890 * @fsckd: FS checking information 1891 * @inum: inode number to search 1892 * 1893 * This is a helper function for 'check_leaf()' which searches inode @inum in 1894 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1895 * the inode was not found. 1896 */ 1897 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1898 { 1899 struct rb_node *p; 1900 struct fsck_inode *fscki; 1901 1902 p = fsckd->inodes.rb_node; 1903 while (p) { 1904 fscki = rb_entry(p, struct fsck_inode, rb); 1905 if (inum < fscki->inum) 1906 p = p->rb_left; 1907 else if (inum > fscki->inum) 1908 p = p->rb_right; 1909 else 1910 return fscki; 1911 } 1912 return NULL; 1913 } 1914 1915 /** 1916 * read_add_inode - read inode node and add it to RB-tree of inodes. 1917 * @c: UBIFS file-system description object 1918 * @fsckd: FS checking information 1919 * @inum: inode number to read 1920 * 1921 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1922 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1923 * information pointer in case of success and a negative error code in case of 1924 * failure. 1925 */ 1926 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1927 struct fsck_data *fsckd, ino_t inum) 1928 { 1929 int n, err; 1930 union ubifs_key key; 1931 struct ubifs_znode *znode; 1932 struct ubifs_zbranch *zbr; 1933 struct ubifs_ino_node *ino; 1934 struct fsck_inode *fscki; 1935 1936 fscki = search_inode(fsckd, inum); 1937 if (fscki) 1938 return fscki; 1939 1940 ino_key_init(c, &key, inum); 1941 err = ubifs_lookup_level0(c, &key, &znode, &n); 1942 if (!err) { 1943 ubifs_err("inode %lu not found in index", (unsigned long)inum); 1944 return ERR_PTR(-ENOENT); 1945 } else if (err < 0) { 1946 ubifs_err("error %d while looking up inode %lu", 1947 err, (unsigned long)inum); 1948 return ERR_PTR(err); 1949 } 1950 1951 zbr = &znode->zbranch[n]; 1952 if (zbr->len < UBIFS_INO_NODE_SZ) { 1953 ubifs_err("bad node %lu node length %d", 1954 (unsigned long)inum, zbr->len); 1955 return ERR_PTR(-EINVAL); 1956 } 1957 1958 ino = kmalloc(zbr->len, GFP_NOFS); 1959 if (!ino) 1960 return ERR_PTR(-ENOMEM); 1961 1962 err = ubifs_tnc_read_node(c, zbr, ino); 1963 if (err) { 1964 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 1965 zbr->lnum, zbr->offs, err); 1966 kfree(ino); 1967 return ERR_PTR(err); 1968 } 1969 1970 fscki = add_inode(c, fsckd, ino); 1971 kfree(ino); 1972 if (IS_ERR(fscki)) { 1973 ubifs_err("error %ld while adding inode %lu node", 1974 PTR_ERR(fscki), (unsigned long)inum); 1975 return fscki; 1976 } 1977 1978 return fscki; 1979 } 1980 1981 /** 1982 * check_leaf - check leaf node. 1983 * @c: UBIFS file-system description object 1984 * @zbr: zbranch of the leaf node to check 1985 * @priv: FS checking information 1986 * 1987 * This is a helper function for 'dbg_check_filesystem()' which is called for 1988 * every single leaf node while walking the indexing tree. It checks that the 1989 * leaf node referred from the indexing tree exists, has correct CRC, and does 1990 * some other basic validation. This function is also responsible for building 1991 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 1992 * calculates reference count, size, etc for each inode in order to later 1993 * compare them to the information stored inside the inodes and detect possible 1994 * inconsistencies. Returns zero in case of success and a negative error code 1995 * in case of failure. 1996 */ 1997 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 1998 void *priv) 1999 { 2000 ino_t inum; 2001 void *node; 2002 struct ubifs_ch *ch; 2003 int err, type = key_type(c, &zbr->key); 2004 struct fsck_inode *fscki; 2005 2006 if (zbr->len < UBIFS_CH_SZ) { 2007 ubifs_err("bad leaf length %d (LEB %d:%d)", 2008 zbr->len, zbr->lnum, zbr->offs); 2009 return -EINVAL; 2010 } 2011 2012 node = kmalloc(zbr->len, GFP_NOFS); 2013 if (!node) 2014 return -ENOMEM; 2015 2016 err = ubifs_tnc_read_node(c, zbr, node); 2017 if (err) { 2018 ubifs_err("cannot read leaf node at LEB %d:%d, error %d", 2019 zbr->lnum, zbr->offs, err); 2020 goto out_free; 2021 } 2022 2023 /* If this is an inode node, add it to RB-tree of inodes */ 2024 if (type == UBIFS_INO_KEY) { 2025 fscki = add_inode(c, priv, node); 2026 if (IS_ERR(fscki)) { 2027 err = PTR_ERR(fscki); 2028 ubifs_err("error %d while adding inode node", err); 2029 goto out_dump; 2030 } 2031 goto out; 2032 } 2033 2034 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 2035 type != UBIFS_DATA_KEY) { 2036 ubifs_err("unexpected node type %d at LEB %d:%d", 2037 type, zbr->lnum, zbr->offs); 2038 err = -EINVAL; 2039 goto out_free; 2040 } 2041 2042 ch = node; 2043 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 2044 ubifs_err("too high sequence number, max. is %llu", 2045 c->max_sqnum); 2046 err = -EINVAL; 2047 goto out_dump; 2048 } 2049 2050 if (type == UBIFS_DATA_KEY) { 2051 long long blk_offs; 2052 struct ubifs_data_node *dn = node; 2053 2054 /* 2055 * Search the inode node this data node belongs to and insert 2056 * it to the RB-tree of inodes. 2057 */ 2058 inum = key_inum_flash(c, &dn->key); 2059 fscki = read_add_inode(c, priv, inum); 2060 if (IS_ERR(fscki)) { 2061 err = PTR_ERR(fscki); 2062 ubifs_err("error %d while processing data node and " 2063 "trying to find inode node %lu", 2064 err, (unsigned long)inum); 2065 goto out_dump; 2066 } 2067 2068 /* Make sure the data node is within inode size */ 2069 blk_offs = key_block_flash(c, &dn->key); 2070 blk_offs <<= UBIFS_BLOCK_SHIFT; 2071 blk_offs += le32_to_cpu(dn->size); 2072 if (blk_offs > fscki->size) { 2073 ubifs_err("data node at LEB %d:%d is not within inode " 2074 "size %lld", zbr->lnum, zbr->offs, 2075 fscki->size); 2076 err = -EINVAL; 2077 goto out_dump; 2078 } 2079 } else { 2080 int nlen; 2081 struct ubifs_dent_node *dent = node; 2082 struct fsck_inode *fscki1; 2083 2084 err = ubifs_validate_entry(c, dent); 2085 if (err) 2086 goto out_dump; 2087 2088 /* 2089 * Search the inode node this entry refers to and the parent 2090 * inode node and insert them to the RB-tree of inodes. 2091 */ 2092 inum = le64_to_cpu(dent->inum); 2093 fscki = read_add_inode(c, priv, inum); 2094 if (IS_ERR(fscki)) { 2095 err = PTR_ERR(fscki); 2096 ubifs_err("error %d while processing entry node and " 2097 "trying to find inode node %lu", 2098 err, (unsigned long)inum); 2099 goto out_dump; 2100 } 2101 2102 /* Count how many direntries or xentries refers this inode */ 2103 fscki->references += 1; 2104 2105 inum = key_inum_flash(c, &dent->key); 2106 fscki1 = read_add_inode(c, priv, inum); 2107 if (IS_ERR(fscki1)) { 2108 err = PTR_ERR(fscki1); 2109 ubifs_err("error %d while processing entry node and " 2110 "trying to find parent inode node %lu", 2111 err, (unsigned long)inum); 2112 goto out_dump; 2113 } 2114 2115 nlen = le16_to_cpu(dent->nlen); 2116 if (type == UBIFS_XENT_KEY) { 2117 fscki1->calc_xcnt += 1; 2118 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2119 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2120 fscki1->calc_xnms += nlen; 2121 } else { 2122 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2123 if (dent->type == UBIFS_ITYPE_DIR) 2124 fscki1->calc_cnt += 1; 2125 } 2126 } 2127 2128 out: 2129 kfree(node); 2130 return 0; 2131 2132 out_dump: 2133 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2134 dbg_dump_node(c, node); 2135 out_free: 2136 kfree(node); 2137 return err; 2138 } 2139 2140 /** 2141 * free_inodes - free RB-tree of inodes. 2142 * @fsckd: FS checking information 2143 */ 2144 static void free_inodes(struct fsck_data *fsckd) 2145 { 2146 struct rb_node *this = fsckd->inodes.rb_node; 2147 struct fsck_inode *fscki; 2148 2149 while (this) { 2150 if (this->rb_left) 2151 this = this->rb_left; 2152 else if (this->rb_right) 2153 this = this->rb_right; 2154 else { 2155 fscki = rb_entry(this, struct fsck_inode, rb); 2156 this = rb_parent(this); 2157 if (this) { 2158 if (this->rb_left == &fscki->rb) 2159 this->rb_left = NULL; 2160 else 2161 this->rb_right = NULL; 2162 } 2163 kfree(fscki); 2164 } 2165 } 2166 } 2167 2168 /** 2169 * check_inodes - checks all inodes. 2170 * @c: UBIFS file-system description object 2171 * @fsckd: FS checking information 2172 * 2173 * This is a helper function for 'dbg_check_filesystem()' which walks the 2174 * RB-tree of inodes after the index scan has been finished, and checks that 2175 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2176 * %-EINVAL if not, and a negative error code in case of failure. 2177 */ 2178 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2179 { 2180 int n, err; 2181 union ubifs_key key; 2182 struct ubifs_znode *znode; 2183 struct ubifs_zbranch *zbr; 2184 struct ubifs_ino_node *ino; 2185 struct fsck_inode *fscki; 2186 struct rb_node *this = rb_first(&fsckd->inodes); 2187 2188 while (this) { 2189 fscki = rb_entry(this, struct fsck_inode, rb); 2190 this = rb_next(this); 2191 2192 if (S_ISDIR(fscki->mode)) { 2193 /* 2194 * Directories have to have exactly one reference (they 2195 * cannot have hardlinks), although root inode is an 2196 * exception. 2197 */ 2198 if (fscki->inum != UBIFS_ROOT_INO && 2199 fscki->references != 1) { 2200 ubifs_err("directory inode %lu has %d " 2201 "direntries which refer it, but " 2202 "should be 1", 2203 (unsigned long)fscki->inum, 2204 fscki->references); 2205 goto out_dump; 2206 } 2207 if (fscki->inum == UBIFS_ROOT_INO && 2208 fscki->references != 0) { 2209 ubifs_err("root inode %lu has non-zero (%d) " 2210 "direntries which refer it", 2211 (unsigned long)fscki->inum, 2212 fscki->references); 2213 goto out_dump; 2214 } 2215 if (fscki->calc_sz != fscki->size) { 2216 ubifs_err("directory inode %lu size is %lld, " 2217 "but calculated size is %lld", 2218 (unsigned long)fscki->inum, 2219 fscki->size, fscki->calc_sz); 2220 goto out_dump; 2221 } 2222 if (fscki->calc_cnt != fscki->nlink) { 2223 ubifs_err("directory inode %lu nlink is %d, " 2224 "but calculated nlink is %d", 2225 (unsigned long)fscki->inum, 2226 fscki->nlink, fscki->calc_cnt); 2227 goto out_dump; 2228 } 2229 } else { 2230 if (fscki->references != fscki->nlink) { 2231 ubifs_err("inode %lu nlink is %d, but " 2232 "calculated nlink is %d", 2233 (unsigned long)fscki->inum, 2234 fscki->nlink, fscki->references); 2235 goto out_dump; 2236 } 2237 } 2238 if (fscki->xattr_sz != fscki->calc_xsz) { 2239 ubifs_err("inode %lu has xattr size %u, but " 2240 "calculated size is %lld", 2241 (unsigned long)fscki->inum, fscki->xattr_sz, 2242 fscki->calc_xsz); 2243 goto out_dump; 2244 } 2245 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2246 ubifs_err("inode %lu has %u xattrs, but " 2247 "calculated count is %lld", 2248 (unsigned long)fscki->inum, 2249 fscki->xattr_cnt, fscki->calc_xcnt); 2250 goto out_dump; 2251 } 2252 if (fscki->xattr_nms != fscki->calc_xnms) { 2253 ubifs_err("inode %lu has xattr names' size %u, but " 2254 "calculated names' size is %lld", 2255 (unsigned long)fscki->inum, fscki->xattr_nms, 2256 fscki->calc_xnms); 2257 goto out_dump; 2258 } 2259 } 2260 2261 return 0; 2262 2263 out_dump: 2264 /* Read the bad inode and dump it */ 2265 ino_key_init(c, &key, fscki->inum); 2266 err = ubifs_lookup_level0(c, &key, &znode, &n); 2267 if (!err) { 2268 ubifs_err("inode %lu not found in index", 2269 (unsigned long)fscki->inum); 2270 return -ENOENT; 2271 } else if (err < 0) { 2272 ubifs_err("error %d while looking up inode %lu", 2273 err, (unsigned long)fscki->inum); 2274 return err; 2275 } 2276 2277 zbr = &znode->zbranch[n]; 2278 ino = kmalloc(zbr->len, GFP_NOFS); 2279 if (!ino) 2280 return -ENOMEM; 2281 2282 err = ubifs_tnc_read_node(c, zbr, ino); 2283 if (err) { 2284 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 2285 zbr->lnum, zbr->offs, err); 2286 kfree(ino); 2287 return err; 2288 } 2289 2290 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", 2291 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2292 dbg_dump_node(c, ino); 2293 kfree(ino); 2294 return -EINVAL; 2295 } 2296 2297 /** 2298 * dbg_check_filesystem - check the file-system. 2299 * @c: UBIFS file-system description object 2300 * 2301 * This function checks the file system, namely: 2302 * o makes sure that all leaf nodes exist and their CRCs are correct; 2303 * o makes sure inode nlink, size, xattr size/count are correct (for all 2304 * inodes). 2305 * 2306 * The function reads whole indexing tree and all nodes, so it is pretty 2307 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2308 * not, and a negative error code in case of failure. 2309 */ 2310 int dbg_check_filesystem(struct ubifs_info *c) 2311 { 2312 int err; 2313 struct fsck_data fsckd; 2314 2315 if (!(ubifs_chk_flags & UBIFS_CHK_FS)) 2316 return 0; 2317 2318 fsckd.inodes = RB_ROOT; 2319 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2320 if (err) 2321 goto out_free; 2322 2323 err = check_inodes(c, &fsckd); 2324 if (err) 2325 goto out_free; 2326 2327 free_inodes(&fsckd); 2328 return 0; 2329 2330 out_free: 2331 ubifs_err("file-system check failed with error %d", err); 2332 dump_stack(); 2333 free_inodes(&fsckd); 2334 return err; 2335 } 2336 2337 /** 2338 * dbg_check_data_nodes_order - check that list of data nodes is sorted. 2339 * @c: UBIFS file-system description object 2340 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2341 * 2342 * This function returns zero if the list of data nodes is sorted correctly, 2343 * and %-EINVAL if not. 2344 */ 2345 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) 2346 { 2347 struct list_head *cur; 2348 struct ubifs_scan_node *sa, *sb; 2349 2350 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 2351 return 0; 2352 2353 for (cur = head->next; cur->next != head; cur = cur->next) { 2354 ino_t inuma, inumb; 2355 uint32_t blka, blkb; 2356 2357 cond_resched(); 2358 sa = container_of(cur, struct ubifs_scan_node, list); 2359 sb = container_of(cur->next, struct ubifs_scan_node, list); 2360 2361 if (sa->type != UBIFS_DATA_NODE) { 2362 ubifs_err("bad node type %d", sa->type); 2363 dbg_dump_node(c, sa->node); 2364 return -EINVAL; 2365 } 2366 if (sb->type != UBIFS_DATA_NODE) { 2367 ubifs_err("bad node type %d", sb->type); 2368 dbg_dump_node(c, sb->node); 2369 return -EINVAL; 2370 } 2371 2372 inuma = key_inum(c, &sa->key); 2373 inumb = key_inum(c, &sb->key); 2374 2375 if (inuma < inumb) 2376 continue; 2377 if (inuma > inumb) { 2378 ubifs_err("larger inum %lu goes before inum %lu", 2379 (unsigned long)inuma, (unsigned long)inumb); 2380 goto error_dump; 2381 } 2382 2383 blka = key_block(c, &sa->key); 2384 blkb = key_block(c, &sb->key); 2385 2386 if (blka > blkb) { 2387 ubifs_err("larger block %u goes before %u", blka, blkb); 2388 goto error_dump; 2389 } 2390 if (blka == blkb) { 2391 ubifs_err("two data nodes for the same block"); 2392 goto error_dump; 2393 } 2394 } 2395 2396 return 0; 2397 2398 error_dump: 2399 dbg_dump_node(c, sa->node); 2400 dbg_dump_node(c, sb->node); 2401 return -EINVAL; 2402 } 2403 2404 /** 2405 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. 2406 * @c: UBIFS file-system description object 2407 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2408 * 2409 * This function returns zero if the list of non-data nodes is sorted correctly, 2410 * and %-EINVAL if not. 2411 */ 2412 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) 2413 { 2414 struct list_head *cur; 2415 struct ubifs_scan_node *sa, *sb; 2416 2417 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 2418 return 0; 2419 2420 for (cur = head->next; cur->next != head; cur = cur->next) { 2421 ino_t inuma, inumb; 2422 uint32_t hasha, hashb; 2423 2424 cond_resched(); 2425 sa = container_of(cur, struct ubifs_scan_node, list); 2426 sb = container_of(cur->next, struct ubifs_scan_node, list); 2427 2428 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2429 sa->type != UBIFS_XENT_NODE) { 2430 ubifs_err("bad node type %d", sa->type); 2431 dbg_dump_node(c, sa->node); 2432 return -EINVAL; 2433 } 2434 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2435 sa->type != UBIFS_XENT_NODE) { 2436 ubifs_err("bad node type %d", sb->type); 2437 dbg_dump_node(c, sb->node); 2438 return -EINVAL; 2439 } 2440 2441 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2442 ubifs_err("non-inode node goes before inode node"); 2443 goto error_dump; 2444 } 2445 2446 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) 2447 continue; 2448 2449 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2450 /* Inode nodes are sorted in descending size order */ 2451 if (sa->len < sb->len) { 2452 ubifs_err("smaller inode node goes first"); 2453 goto error_dump; 2454 } 2455 continue; 2456 } 2457 2458 /* 2459 * This is either a dentry or xentry, which should be sorted in 2460 * ascending (parent ino, hash) order. 2461 */ 2462 inuma = key_inum(c, &sa->key); 2463 inumb = key_inum(c, &sb->key); 2464 2465 if (inuma < inumb) 2466 continue; 2467 if (inuma > inumb) { 2468 ubifs_err("larger inum %lu goes before inum %lu", 2469 (unsigned long)inuma, (unsigned long)inumb); 2470 goto error_dump; 2471 } 2472 2473 hasha = key_block(c, &sa->key); 2474 hashb = key_block(c, &sb->key); 2475 2476 if (hasha > hashb) { 2477 ubifs_err("larger hash %u goes before %u", 2478 hasha, hashb); 2479 goto error_dump; 2480 } 2481 } 2482 2483 return 0; 2484 2485 error_dump: 2486 ubifs_msg("dumping first node"); 2487 dbg_dump_node(c, sa->node); 2488 ubifs_msg("dumping second node"); 2489 dbg_dump_node(c, sb->node); 2490 return -EINVAL; 2491 return 0; 2492 } 2493 2494 int dbg_force_in_the_gaps(void) 2495 { 2496 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 2497 return 0; 2498 2499 return !(random32() & 7); 2500 } 2501 2502 /* Failure mode for recovery testing */ 2503 2504 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d)) 2505 2506 struct failure_mode_info { 2507 struct list_head list; 2508 struct ubifs_info *c; 2509 }; 2510 2511 static LIST_HEAD(fmi_list); 2512 static DEFINE_SPINLOCK(fmi_lock); 2513 2514 static unsigned int next; 2515 2516 static int simple_rand(void) 2517 { 2518 if (next == 0) 2519 next = current->pid; 2520 next = next * 1103515245 + 12345; 2521 return (next >> 16) & 32767; 2522 } 2523 2524 static void failure_mode_init(struct ubifs_info *c) 2525 { 2526 struct failure_mode_info *fmi; 2527 2528 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS); 2529 if (!fmi) { 2530 ubifs_err("Failed to register failure mode - no memory"); 2531 return; 2532 } 2533 fmi->c = c; 2534 spin_lock(&fmi_lock); 2535 list_add_tail(&fmi->list, &fmi_list); 2536 spin_unlock(&fmi_lock); 2537 } 2538 2539 static void failure_mode_exit(struct ubifs_info *c) 2540 { 2541 struct failure_mode_info *fmi, *tmp; 2542 2543 spin_lock(&fmi_lock); 2544 list_for_each_entry_safe(fmi, tmp, &fmi_list, list) 2545 if (fmi->c == c) { 2546 list_del(&fmi->list); 2547 kfree(fmi); 2548 } 2549 spin_unlock(&fmi_lock); 2550 } 2551 2552 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc) 2553 { 2554 struct failure_mode_info *fmi; 2555 2556 spin_lock(&fmi_lock); 2557 list_for_each_entry(fmi, &fmi_list, list) 2558 if (fmi->c->ubi == desc) { 2559 struct ubifs_info *c = fmi->c; 2560 2561 spin_unlock(&fmi_lock); 2562 return c; 2563 } 2564 spin_unlock(&fmi_lock); 2565 return NULL; 2566 } 2567 2568 static int in_failure_mode(struct ubi_volume_desc *desc) 2569 { 2570 struct ubifs_info *c = dbg_find_info(desc); 2571 2572 if (c && dbg_failure_mode) 2573 return c->dbg->failure_mode; 2574 return 0; 2575 } 2576 2577 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write) 2578 { 2579 struct ubifs_info *c = dbg_find_info(desc); 2580 struct ubifs_debug_info *d; 2581 2582 if (!c || !dbg_failure_mode) 2583 return 0; 2584 d = c->dbg; 2585 if (d->failure_mode) 2586 return 1; 2587 if (!d->fail_cnt) { 2588 /* First call - decide delay to failure */ 2589 if (chance(1, 2)) { 2590 unsigned int delay = 1 << (simple_rand() >> 11); 2591 2592 if (chance(1, 2)) { 2593 d->fail_delay = 1; 2594 d->fail_timeout = jiffies + 2595 msecs_to_jiffies(delay); 2596 dbg_rcvry("failing after %ums", delay); 2597 } else { 2598 d->fail_delay = 2; 2599 d->fail_cnt_max = delay; 2600 dbg_rcvry("failing after %u calls", delay); 2601 } 2602 } 2603 d->fail_cnt += 1; 2604 } 2605 /* Determine if failure delay has expired */ 2606 if (d->fail_delay == 1) { 2607 if (time_before(jiffies, d->fail_timeout)) 2608 return 0; 2609 } else if (d->fail_delay == 2) 2610 if (d->fail_cnt++ < d->fail_cnt_max) 2611 return 0; 2612 if (lnum == UBIFS_SB_LNUM) { 2613 if (write) { 2614 if (chance(1, 2)) 2615 return 0; 2616 } else if (chance(19, 20)) 2617 return 0; 2618 dbg_rcvry("failing in super block LEB %d", lnum); 2619 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2620 if (chance(19, 20)) 2621 return 0; 2622 dbg_rcvry("failing in master LEB %d", lnum); 2623 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2624 if (write) { 2625 if (chance(99, 100)) 2626 return 0; 2627 } else if (chance(399, 400)) 2628 return 0; 2629 dbg_rcvry("failing in log LEB %d", lnum); 2630 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2631 if (write) { 2632 if (chance(7, 8)) 2633 return 0; 2634 } else if (chance(19, 20)) 2635 return 0; 2636 dbg_rcvry("failing in LPT LEB %d", lnum); 2637 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2638 if (write) { 2639 if (chance(1, 2)) 2640 return 0; 2641 } else if (chance(9, 10)) 2642 return 0; 2643 dbg_rcvry("failing in orphan LEB %d", lnum); 2644 } else if (lnum == c->ihead_lnum) { 2645 if (chance(99, 100)) 2646 return 0; 2647 dbg_rcvry("failing in index head LEB %d", lnum); 2648 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2649 if (chance(9, 10)) 2650 return 0; 2651 dbg_rcvry("failing in GC head LEB %d", lnum); 2652 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2653 !ubifs_search_bud(c, lnum)) { 2654 if (chance(19, 20)) 2655 return 0; 2656 dbg_rcvry("failing in non-bud LEB %d", lnum); 2657 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2658 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2659 if (chance(999, 1000)) 2660 return 0; 2661 dbg_rcvry("failing in bud LEB %d commit running", lnum); 2662 } else { 2663 if (chance(9999, 10000)) 2664 return 0; 2665 dbg_rcvry("failing in bud LEB %d commit not running", lnum); 2666 } 2667 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum); 2668 d->failure_mode = 1; 2669 dump_stack(); 2670 return 1; 2671 } 2672 2673 static void cut_data(const void *buf, int len) 2674 { 2675 int flen, i; 2676 unsigned char *p = (void *)buf; 2677 2678 flen = (len * (long long)simple_rand()) >> 15; 2679 for (i = flen; i < len; i++) 2680 p[i] = 0xff; 2681 } 2682 2683 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset, 2684 int len, int check) 2685 { 2686 if (in_failure_mode(desc)) 2687 return -EROFS; 2688 return ubi_leb_read(desc, lnum, buf, offset, len, check); 2689 } 2690 2691 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf, 2692 int offset, int len, int dtype) 2693 { 2694 int err, failing; 2695 2696 if (in_failure_mode(desc)) 2697 return -EROFS; 2698 failing = do_fail(desc, lnum, 1); 2699 if (failing) 2700 cut_data(buf, len); 2701 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype); 2702 if (err) 2703 return err; 2704 if (failing) 2705 return -EROFS; 2706 return 0; 2707 } 2708 2709 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf, 2710 int len, int dtype) 2711 { 2712 int err; 2713 2714 if (do_fail(desc, lnum, 1)) 2715 return -EROFS; 2716 err = ubi_leb_change(desc, lnum, buf, len, dtype); 2717 if (err) 2718 return err; 2719 if (do_fail(desc, lnum, 1)) 2720 return -EROFS; 2721 return 0; 2722 } 2723 2724 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum) 2725 { 2726 int err; 2727 2728 if (do_fail(desc, lnum, 0)) 2729 return -EROFS; 2730 err = ubi_leb_erase(desc, lnum); 2731 if (err) 2732 return err; 2733 if (do_fail(desc, lnum, 0)) 2734 return -EROFS; 2735 return 0; 2736 } 2737 2738 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum) 2739 { 2740 int err; 2741 2742 if (do_fail(desc, lnum, 0)) 2743 return -EROFS; 2744 err = ubi_leb_unmap(desc, lnum); 2745 if (err) 2746 return err; 2747 if (do_fail(desc, lnum, 0)) 2748 return -EROFS; 2749 return 0; 2750 } 2751 2752 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum) 2753 { 2754 if (in_failure_mode(desc)) 2755 return -EROFS; 2756 return ubi_is_mapped(desc, lnum); 2757 } 2758 2759 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype) 2760 { 2761 int err; 2762 2763 if (do_fail(desc, lnum, 0)) 2764 return -EROFS; 2765 err = ubi_leb_map(desc, lnum, dtype); 2766 if (err) 2767 return err; 2768 if (do_fail(desc, lnum, 0)) 2769 return -EROFS; 2770 return 0; 2771 } 2772 2773 /** 2774 * ubifs_debugging_init - initialize UBIFS debugging. 2775 * @c: UBIFS file-system description object 2776 * 2777 * This function initializes debugging-related data for the file system. 2778 * Returns zero in case of success and a negative error code in case of 2779 * failure. 2780 */ 2781 int ubifs_debugging_init(struct ubifs_info *c) 2782 { 2783 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 2784 if (!c->dbg) 2785 return -ENOMEM; 2786 2787 failure_mode_init(c); 2788 return 0; 2789 } 2790 2791 /** 2792 * ubifs_debugging_exit - free debugging data. 2793 * @c: UBIFS file-system description object 2794 */ 2795 void ubifs_debugging_exit(struct ubifs_info *c) 2796 { 2797 failure_mode_exit(c); 2798 kfree(c->dbg); 2799 } 2800 2801 /* 2802 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2803 * contain the stuff specific to particular file-system mounts. 2804 */ 2805 static struct dentry *dfs_rootdir; 2806 2807 /** 2808 * dbg_debugfs_init - initialize debugfs file-system. 2809 * 2810 * UBIFS uses debugfs file-system to expose various debugging knobs to 2811 * user-space. This function creates "ubifs" directory in the debugfs 2812 * file-system. Returns zero in case of success and a negative error code in 2813 * case of failure. 2814 */ 2815 int dbg_debugfs_init(void) 2816 { 2817 dfs_rootdir = debugfs_create_dir("ubifs", NULL); 2818 if (IS_ERR(dfs_rootdir)) { 2819 int err = PTR_ERR(dfs_rootdir); 2820 ubifs_err("cannot create \"ubifs\" debugfs directory, " 2821 "error %d\n", err); 2822 return err; 2823 } 2824 2825 return 0; 2826 } 2827 2828 /** 2829 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 2830 */ 2831 void dbg_debugfs_exit(void) 2832 { 2833 debugfs_remove(dfs_rootdir); 2834 } 2835 2836 static int open_debugfs_file(struct inode *inode, struct file *file) 2837 { 2838 file->private_data = inode->i_private; 2839 return nonseekable_open(inode, file); 2840 } 2841 2842 static ssize_t write_debugfs_file(struct file *file, const char __user *buf, 2843 size_t count, loff_t *ppos) 2844 { 2845 struct ubifs_info *c = file->private_data; 2846 struct ubifs_debug_info *d = c->dbg; 2847 2848 if (file->f_path.dentry == d->dfs_dump_lprops) 2849 dbg_dump_lprops(c); 2850 else if (file->f_path.dentry == d->dfs_dump_budg) 2851 dbg_dump_budg(c, &c->bi); 2852 else if (file->f_path.dentry == d->dfs_dump_tnc) { 2853 mutex_lock(&c->tnc_mutex); 2854 dbg_dump_tnc(c); 2855 mutex_unlock(&c->tnc_mutex); 2856 } else 2857 return -EINVAL; 2858 2859 return count; 2860 } 2861 2862 static const struct file_operations dfs_fops = { 2863 .open = open_debugfs_file, 2864 .write = write_debugfs_file, 2865 .owner = THIS_MODULE, 2866 .llseek = no_llseek, 2867 }; 2868 2869 /** 2870 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2871 * @c: UBIFS file-system description object 2872 * 2873 * This function creates all debugfs files for this instance of UBIFS. Returns 2874 * zero in case of success and a negative error code in case of failure. 2875 * 2876 * Note, the only reason we have not merged this function with the 2877 * 'ubifs_debugging_init()' function is because it is better to initialize 2878 * debugfs interfaces at the very end of the mount process, and remove them at 2879 * the very beginning of the mount process. 2880 */ 2881 int dbg_debugfs_init_fs(struct ubifs_info *c) 2882 { 2883 int err; 2884 const char *fname; 2885 struct dentry *dent; 2886 struct ubifs_debug_info *d = c->dbg; 2887 2888 sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2889 fname = d->dfs_dir_name; 2890 dent = debugfs_create_dir(fname, dfs_rootdir); 2891 if (IS_ERR_OR_NULL(dent)) 2892 goto out; 2893 d->dfs_dir = dent; 2894 2895 fname = "dump_lprops"; 2896 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2897 if (IS_ERR_OR_NULL(dent)) 2898 goto out_remove; 2899 d->dfs_dump_lprops = dent; 2900 2901 fname = "dump_budg"; 2902 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2903 if (IS_ERR_OR_NULL(dent)) 2904 goto out_remove; 2905 d->dfs_dump_budg = dent; 2906 2907 fname = "dump_tnc"; 2908 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2909 if (IS_ERR_OR_NULL(dent)) 2910 goto out_remove; 2911 d->dfs_dump_tnc = dent; 2912 2913 return 0; 2914 2915 out_remove: 2916 debugfs_remove_recursive(d->dfs_dir); 2917 out: 2918 err = dent ? PTR_ERR(dent) : -ENODEV; 2919 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n", 2920 fname, err); 2921 return err; 2922 } 2923 2924 /** 2925 * dbg_debugfs_exit_fs - remove all debugfs files. 2926 * @c: UBIFS file-system description object 2927 */ 2928 void dbg_debugfs_exit_fs(struct ubifs_info *c) 2929 { 2930 debugfs_remove_recursive(c->dbg->dfs_dir); 2931 } 2932 2933 #endif /* CONFIG_UBIFS_FS_DEBUG */ 2934