xref: /openbmc/linux/fs/ubifs/debug.c (revision dba8b469)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29 
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include "ubifs.h"
36 
37 #ifdef CONFIG_UBIFS_FS_DEBUG
38 
39 DEFINE_SPINLOCK(dbg_lock);
40 
41 static char dbg_key_buf0[128];
42 static char dbg_key_buf1[128];
43 
44 static const char *get_key_fmt(int fmt)
45 {
46 	switch (fmt) {
47 	case UBIFS_SIMPLE_KEY_FMT:
48 		return "simple";
49 	default:
50 		return "unknown/invalid format";
51 	}
52 }
53 
54 static const char *get_key_hash(int hash)
55 {
56 	switch (hash) {
57 	case UBIFS_KEY_HASH_R5:
58 		return "R5";
59 	case UBIFS_KEY_HASH_TEST:
60 		return "test";
61 	default:
62 		return "unknown/invalid name hash";
63 	}
64 }
65 
66 static const char *get_key_type(int type)
67 {
68 	switch (type) {
69 	case UBIFS_INO_KEY:
70 		return "inode";
71 	case UBIFS_DENT_KEY:
72 		return "direntry";
73 	case UBIFS_XENT_KEY:
74 		return "xentry";
75 	case UBIFS_DATA_KEY:
76 		return "data";
77 	case UBIFS_TRUN_KEY:
78 		return "truncate";
79 	default:
80 		return "unknown/invalid key";
81 	}
82 }
83 
84 static const char *get_dent_type(int type)
85 {
86 	switch (type) {
87 	case UBIFS_ITYPE_REG:
88 		return "file";
89 	case UBIFS_ITYPE_DIR:
90 		return "dir";
91 	case UBIFS_ITYPE_LNK:
92 		return "symlink";
93 	case UBIFS_ITYPE_BLK:
94 		return "blkdev";
95 	case UBIFS_ITYPE_CHR:
96 		return "char dev";
97 	case UBIFS_ITYPE_FIFO:
98 		return "fifo";
99 	case UBIFS_ITYPE_SOCK:
100 		return "socket";
101 	default:
102 		return "unknown/invalid type";
103 	}
104 }
105 
106 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
107 			char *buffer)
108 {
109 	char *p = buffer;
110 	int type = key_type(c, key);
111 
112 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
113 		switch (type) {
114 		case UBIFS_INO_KEY:
115 			sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
116 			       get_key_type(type));
117 			break;
118 		case UBIFS_DENT_KEY:
119 		case UBIFS_XENT_KEY:
120 			sprintf(p, "(%lu, %s, %#08x)",
121 				(unsigned long)key_inum(c, key),
122 				get_key_type(type), key_hash(c, key));
123 			break;
124 		case UBIFS_DATA_KEY:
125 			sprintf(p, "(%lu, %s, %u)",
126 				(unsigned long)key_inum(c, key),
127 				get_key_type(type), key_block(c, key));
128 			break;
129 		case UBIFS_TRUN_KEY:
130 			sprintf(p, "(%lu, %s)",
131 				(unsigned long)key_inum(c, key),
132 				get_key_type(type));
133 			break;
134 		default:
135 			sprintf(p, "(bad key type: %#08x, %#08x)",
136 				key->u32[0], key->u32[1]);
137 		}
138 	} else
139 		sprintf(p, "bad key format %d", c->key_fmt);
140 }
141 
142 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
143 {
144 	/* dbg_lock must be held */
145 	sprintf_key(c, key, dbg_key_buf0);
146 	return dbg_key_buf0;
147 }
148 
149 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
150 {
151 	/* dbg_lock must be held */
152 	sprintf_key(c, key, dbg_key_buf1);
153 	return dbg_key_buf1;
154 }
155 
156 const char *dbg_ntype(int type)
157 {
158 	switch (type) {
159 	case UBIFS_PAD_NODE:
160 		return "padding node";
161 	case UBIFS_SB_NODE:
162 		return "superblock node";
163 	case UBIFS_MST_NODE:
164 		return "master node";
165 	case UBIFS_REF_NODE:
166 		return "reference node";
167 	case UBIFS_INO_NODE:
168 		return "inode node";
169 	case UBIFS_DENT_NODE:
170 		return "direntry node";
171 	case UBIFS_XENT_NODE:
172 		return "xentry node";
173 	case UBIFS_DATA_NODE:
174 		return "data node";
175 	case UBIFS_TRUN_NODE:
176 		return "truncate node";
177 	case UBIFS_IDX_NODE:
178 		return "indexing node";
179 	case UBIFS_CS_NODE:
180 		return "commit start node";
181 	case UBIFS_ORPH_NODE:
182 		return "orphan node";
183 	default:
184 		return "unknown node";
185 	}
186 }
187 
188 static const char *dbg_gtype(int type)
189 {
190 	switch (type) {
191 	case UBIFS_NO_NODE_GROUP:
192 		return "no node group";
193 	case UBIFS_IN_NODE_GROUP:
194 		return "in node group";
195 	case UBIFS_LAST_OF_NODE_GROUP:
196 		return "last of node group";
197 	default:
198 		return "unknown";
199 	}
200 }
201 
202 const char *dbg_cstate(int cmt_state)
203 {
204 	switch (cmt_state) {
205 	case COMMIT_RESTING:
206 		return "commit resting";
207 	case COMMIT_BACKGROUND:
208 		return "background commit requested";
209 	case COMMIT_REQUIRED:
210 		return "commit required";
211 	case COMMIT_RUNNING_BACKGROUND:
212 		return "BACKGROUND commit running";
213 	case COMMIT_RUNNING_REQUIRED:
214 		return "commit running and required";
215 	case COMMIT_BROKEN:
216 		return "broken commit";
217 	default:
218 		return "unknown commit state";
219 	}
220 }
221 
222 const char *dbg_jhead(int jhead)
223 {
224 	switch (jhead) {
225 	case GCHD:
226 		return "0 (GC)";
227 	case BASEHD:
228 		return "1 (base)";
229 	case DATAHD:
230 		return "2 (data)";
231 	default:
232 		return "unknown journal head";
233 	}
234 }
235 
236 static void dump_ch(const struct ubifs_ch *ch)
237 {
238 	printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
239 	printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
240 	printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
241 	       dbg_ntype(ch->node_type));
242 	printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
243 	       dbg_gtype(ch->group_type));
244 	printk(KERN_DEBUG "\tsqnum          %llu\n",
245 	       (unsigned long long)le64_to_cpu(ch->sqnum));
246 	printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
247 }
248 
249 void dbg_dump_inode(struct ubifs_info *c, const struct inode *inode)
250 {
251 	const struct ubifs_inode *ui = ubifs_inode(inode);
252 	struct qstr nm = { .name = NULL };
253 	union ubifs_key key;
254 	struct ubifs_dent_node *dent, *pdent = NULL;
255 	int count = 2;
256 
257 	printk(KERN_DEBUG "Dump in-memory inode:");
258 	printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
259 	printk(KERN_DEBUG "\tsize           %llu\n",
260 	       (unsigned long long)i_size_read(inode));
261 	printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
262 	printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
263 	printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
264 	printk(KERN_DEBUG "\tatime          %u.%u\n",
265 	       (unsigned int)inode->i_atime.tv_sec,
266 	       (unsigned int)inode->i_atime.tv_nsec);
267 	printk(KERN_DEBUG "\tmtime          %u.%u\n",
268 	       (unsigned int)inode->i_mtime.tv_sec,
269 	       (unsigned int)inode->i_mtime.tv_nsec);
270 	printk(KERN_DEBUG "\tctime          %u.%u\n",
271 	       (unsigned int)inode->i_ctime.tv_sec,
272 	       (unsigned int)inode->i_ctime.tv_nsec);
273 	printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
274 	printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
275 	printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
276 	printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
277 	printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
278 	printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
279 	printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
280 	printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
281 	       (unsigned long long)ui->synced_i_size);
282 	printk(KERN_DEBUG "\tui_size        %llu\n",
283 	       (unsigned long long)ui->ui_size);
284 	printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
285 	printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
286 	printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
287 	printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
288 	printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
289 
290 	if (!S_ISDIR(inode->i_mode))
291 		return;
292 
293 	printk(KERN_DEBUG "List of directory entries:\n");
294 	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
295 
296 	lowest_dent_key(c, &key, inode->i_ino);
297 	while (1) {
298 		dent = ubifs_tnc_next_ent(c, &key, &nm);
299 		if (IS_ERR(dent)) {
300 			if (PTR_ERR(dent) != -ENOENT)
301 				printk(KERN_DEBUG "error %ld\n", PTR_ERR(dent));
302 			break;
303 		}
304 
305 		printk(KERN_DEBUG "\t%d: %s (%s)\n",
306 		       count++, dent->name, get_dent_type(dent->type));
307 
308 		nm.name = dent->name;
309 		nm.len = le16_to_cpu(dent->nlen);
310 		kfree(pdent);
311 		pdent = dent;
312 		key_read(c, &dent->key, &key);
313 	}
314 	kfree(pdent);
315 }
316 
317 void dbg_dump_node(const struct ubifs_info *c, const void *node)
318 {
319 	int i, n;
320 	union ubifs_key key;
321 	const struct ubifs_ch *ch = node;
322 
323 	if (dbg_is_tst_rcvry(c))
324 		return;
325 
326 	/* If the magic is incorrect, just hexdump the first bytes */
327 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
328 		printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
329 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
330 			       (void *)node, UBIFS_CH_SZ, 1);
331 		return;
332 	}
333 
334 	spin_lock(&dbg_lock);
335 	dump_ch(node);
336 
337 	switch (ch->node_type) {
338 	case UBIFS_PAD_NODE:
339 	{
340 		const struct ubifs_pad_node *pad = node;
341 
342 		printk(KERN_DEBUG "\tpad_len        %u\n",
343 		       le32_to_cpu(pad->pad_len));
344 		break;
345 	}
346 	case UBIFS_SB_NODE:
347 	{
348 		const struct ubifs_sb_node *sup = node;
349 		unsigned int sup_flags = le32_to_cpu(sup->flags);
350 
351 		printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
352 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
353 		printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
354 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
355 		printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
356 		printk(KERN_DEBUG "\t  big_lpt      %u\n",
357 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
358 		printk(KERN_DEBUG "\t  space_fixup  %u\n",
359 		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
360 		printk(KERN_DEBUG "\tmin_io_size    %u\n",
361 		       le32_to_cpu(sup->min_io_size));
362 		printk(KERN_DEBUG "\tleb_size       %u\n",
363 		       le32_to_cpu(sup->leb_size));
364 		printk(KERN_DEBUG "\tleb_cnt        %u\n",
365 		       le32_to_cpu(sup->leb_cnt));
366 		printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
367 		       le32_to_cpu(sup->max_leb_cnt));
368 		printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
369 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
370 		printk(KERN_DEBUG "\tlog_lebs       %u\n",
371 		       le32_to_cpu(sup->log_lebs));
372 		printk(KERN_DEBUG "\tlpt_lebs       %u\n",
373 		       le32_to_cpu(sup->lpt_lebs));
374 		printk(KERN_DEBUG "\torph_lebs      %u\n",
375 		       le32_to_cpu(sup->orph_lebs));
376 		printk(KERN_DEBUG "\tjhead_cnt      %u\n",
377 		       le32_to_cpu(sup->jhead_cnt));
378 		printk(KERN_DEBUG "\tfanout         %u\n",
379 		       le32_to_cpu(sup->fanout));
380 		printk(KERN_DEBUG "\tlsave_cnt      %u\n",
381 		       le32_to_cpu(sup->lsave_cnt));
382 		printk(KERN_DEBUG "\tdefault_compr  %u\n",
383 		       (int)le16_to_cpu(sup->default_compr));
384 		printk(KERN_DEBUG "\trp_size        %llu\n",
385 		       (unsigned long long)le64_to_cpu(sup->rp_size));
386 		printk(KERN_DEBUG "\trp_uid         %u\n",
387 		       le32_to_cpu(sup->rp_uid));
388 		printk(KERN_DEBUG "\trp_gid         %u\n",
389 		       le32_to_cpu(sup->rp_gid));
390 		printk(KERN_DEBUG "\tfmt_version    %u\n",
391 		       le32_to_cpu(sup->fmt_version));
392 		printk(KERN_DEBUG "\ttime_gran      %u\n",
393 		       le32_to_cpu(sup->time_gran));
394 		printk(KERN_DEBUG "\tUUID           %pUB\n",
395 		       sup->uuid);
396 		break;
397 	}
398 	case UBIFS_MST_NODE:
399 	{
400 		const struct ubifs_mst_node *mst = node;
401 
402 		printk(KERN_DEBUG "\thighest_inum   %llu\n",
403 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
404 		printk(KERN_DEBUG "\tcommit number  %llu\n",
405 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
406 		printk(KERN_DEBUG "\tflags          %#x\n",
407 		       le32_to_cpu(mst->flags));
408 		printk(KERN_DEBUG "\tlog_lnum       %u\n",
409 		       le32_to_cpu(mst->log_lnum));
410 		printk(KERN_DEBUG "\troot_lnum      %u\n",
411 		       le32_to_cpu(mst->root_lnum));
412 		printk(KERN_DEBUG "\troot_offs      %u\n",
413 		       le32_to_cpu(mst->root_offs));
414 		printk(KERN_DEBUG "\troot_len       %u\n",
415 		       le32_to_cpu(mst->root_len));
416 		printk(KERN_DEBUG "\tgc_lnum        %u\n",
417 		       le32_to_cpu(mst->gc_lnum));
418 		printk(KERN_DEBUG "\tihead_lnum     %u\n",
419 		       le32_to_cpu(mst->ihead_lnum));
420 		printk(KERN_DEBUG "\tihead_offs     %u\n",
421 		       le32_to_cpu(mst->ihead_offs));
422 		printk(KERN_DEBUG "\tindex_size     %llu\n",
423 		       (unsigned long long)le64_to_cpu(mst->index_size));
424 		printk(KERN_DEBUG "\tlpt_lnum       %u\n",
425 		       le32_to_cpu(mst->lpt_lnum));
426 		printk(KERN_DEBUG "\tlpt_offs       %u\n",
427 		       le32_to_cpu(mst->lpt_offs));
428 		printk(KERN_DEBUG "\tnhead_lnum     %u\n",
429 		       le32_to_cpu(mst->nhead_lnum));
430 		printk(KERN_DEBUG "\tnhead_offs     %u\n",
431 		       le32_to_cpu(mst->nhead_offs));
432 		printk(KERN_DEBUG "\tltab_lnum      %u\n",
433 		       le32_to_cpu(mst->ltab_lnum));
434 		printk(KERN_DEBUG "\tltab_offs      %u\n",
435 		       le32_to_cpu(mst->ltab_offs));
436 		printk(KERN_DEBUG "\tlsave_lnum     %u\n",
437 		       le32_to_cpu(mst->lsave_lnum));
438 		printk(KERN_DEBUG "\tlsave_offs     %u\n",
439 		       le32_to_cpu(mst->lsave_offs));
440 		printk(KERN_DEBUG "\tlscan_lnum     %u\n",
441 		       le32_to_cpu(mst->lscan_lnum));
442 		printk(KERN_DEBUG "\tleb_cnt        %u\n",
443 		       le32_to_cpu(mst->leb_cnt));
444 		printk(KERN_DEBUG "\tempty_lebs     %u\n",
445 		       le32_to_cpu(mst->empty_lebs));
446 		printk(KERN_DEBUG "\tidx_lebs       %u\n",
447 		       le32_to_cpu(mst->idx_lebs));
448 		printk(KERN_DEBUG "\ttotal_free     %llu\n",
449 		       (unsigned long long)le64_to_cpu(mst->total_free));
450 		printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
451 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
452 		printk(KERN_DEBUG "\ttotal_used     %llu\n",
453 		       (unsigned long long)le64_to_cpu(mst->total_used));
454 		printk(KERN_DEBUG "\ttotal_dead     %llu\n",
455 		       (unsigned long long)le64_to_cpu(mst->total_dead));
456 		printk(KERN_DEBUG "\ttotal_dark     %llu\n",
457 		       (unsigned long long)le64_to_cpu(mst->total_dark));
458 		break;
459 	}
460 	case UBIFS_REF_NODE:
461 	{
462 		const struct ubifs_ref_node *ref = node;
463 
464 		printk(KERN_DEBUG "\tlnum           %u\n",
465 		       le32_to_cpu(ref->lnum));
466 		printk(KERN_DEBUG "\toffs           %u\n",
467 		       le32_to_cpu(ref->offs));
468 		printk(KERN_DEBUG "\tjhead          %u\n",
469 		       le32_to_cpu(ref->jhead));
470 		break;
471 	}
472 	case UBIFS_INO_NODE:
473 	{
474 		const struct ubifs_ino_node *ino = node;
475 
476 		key_read(c, &ino->key, &key);
477 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
478 		printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
479 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
480 		printk(KERN_DEBUG "\tsize           %llu\n",
481 		       (unsigned long long)le64_to_cpu(ino->size));
482 		printk(KERN_DEBUG "\tnlink          %u\n",
483 		       le32_to_cpu(ino->nlink));
484 		printk(KERN_DEBUG "\tatime          %lld.%u\n",
485 		       (long long)le64_to_cpu(ino->atime_sec),
486 		       le32_to_cpu(ino->atime_nsec));
487 		printk(KERN_DEBUG "\tmtime          %lld.%u\n",
488 		       (long long)le64_to_cpu(ino->mtime_sec),
489 		       le32_to_cpu(ino->mtime_nsec));
490 		printk(KERN_DEBUG "\tctime          %lld.%u\n",
491 		       (long long)le64_to_cpu(ino->ctime_sec),
492 		       le32_to_cpu(ino->ctime_nsec));
493 		printk(KERN_DEBUG "\tuid            %u\n",
494 		       le32_to_cpu(ino->uid));
495 		printk(KERN_DEBUG "\tgid            %u\n",
496 		       le32_to_cpu(ino->gid));
497 		printk(KERN_DEBUG "\tmode           %u\n",
498 		       le32_to_cpu(ino->mode));
499 		printk(KERN_DEBUG "\tflags          %#x\n",
500 		       le32_to_cpu(ino->flags));
501 		printk(KERN_DEBUG "\txattr_cnt      %u\n",
502 		       le32_to_cpu(ino->xattr_cnt));
503 		printk(KERN_DEBUG "\txattr_size     %u\n",
504 		       le32_to_cpu(ino->xattr_size));
505 		printk(KERN_DEBUG "\txattr_names    %u\n",
506 		       le32_to_cpu(ino->xattr_names));
507 		printk(KERN_DEBUG "\tcompr_type     %#x\n",
508 		       (int)le16_to_cpu(ino->compr_type));
509 		printk(KERN_DEBUG "\tdata len       %u\n",
510 		       le32_to_cpu(ino->data_len));
511 		break;
512 	}
513 	case UBIFS_DENT_NODE:
514 	case UBIFS_XENT_NODE:
515 	{
516 		const struct ubifs_dent_node *dent = node;
517 		int nlen = le16_to_cpu(dent->nlen);
518 
519 		key_read(c, &dent->key, &key);
520 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
521 		printk(KERN_DEBUG "\tinum           %llu\n",
522 		       (unsigned long long)le64_to_cpu(dent->inum));
523 		printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
524 		printk(KERN_DEBUG "\tnlen           %d\n", nlen);
525 		printk(KERN_DEBUG "\tname           ");
526 
527 		if (nlen > UBIFS_MAX_NLEN)
528 			printk(KERN_DEBUG "(bad name length, not printing, "
529 					  "bad or corrupted node)");
530 		else {
531 			for (i = 0; i < nlen && dent->name[i]; i++)
532 				printk(KERN_CONT "%c", dent->name[i]);
533 		}
534 		printk(KERN_CONT "\n");
535 
536 		break;
537 	}
538 	case UBIFS_DATA_NODE:
539 	{
540 		const struct ubifs_data_node *dn = node;
541 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
542 
543 		key_read(c, &dn->key, &key);
544 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
545 		printk(KERN_DEBUG "\tsize           %u\n",
546 		       le32_to_cpu(dn->size));
547 		printk(KERN_DEBUG "\tcompr_typ      %d\n",
548 		       (int)le16_to_cpu(dn->compr_type));
549 		printk(KERN_DEBUG "\tdata size      %d\n",
550 		       dlen);
551 		printk(KERN_DEBUG "\tdata:\n");
552 		print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
553 			       (void *)&dn->data, dlen, 0);
554 		break;
555 	}
556 	case UBIFS_TRUN_NODE:
557 	{
558 		const struct ubifs_trun_node *trun = node;
559 
560 		printk(KERN_DEBUG "\tinum           %u\n",
561 		       le32_to_cpu(trun->inum));
562 		printk(KERN_DEBUG "\told_size       %llu\n",
563 		       (unsigned long long)le64_to_cpu(trun->old_size));
564 		printk(KERN_DEBUG "\tnew_size       %llu\n",
565 		       (unsigned long long)le64_to_cpu(trun->new_size));
566 		break;
567 	}
568 	case UBIFS_IDX_NODE:
569 	{
570 		const struct ubifs_idx_node *idx = node;
571 
572 		n = le16_to_cpu(idx->child_cnt);
573 		printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
574 		printk(KERN_DEBUG "\tlevel          %d\n",
575 		       (int)le16_to_cpu(idx->level));
576 		printk(KERN_DEBUG "\tBranches:\n");
577 
578 		for (i = 0; i < n && i < c->fanout - 1; i++) {
579 			const struct ubifs_branch *br;
580 
581 			br = ubifs_idx_branch(c, idx, i);
582 			key_read(c, &br->key, &key);
583 			printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
584 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
585 			       le32_to_cpu(br->len), DBGKEY(&key));
586 		}
587 		break;
588 	}
589 	case UBIFS_CS_NODE:
590 		break;
591 	case UBIFS_ORPH_NODE:
592 	{
593 		const struct ubifs_orph_node *orph = node;
594 
595 		printk(KERN_DEBUG "\tcommit number  %llu\n",
596 		       (unsigned long long)
597 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
598 		printk(KERN_DEBUG "\tlast node flag %llu\n",
599 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
600 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
601 		printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
602 		for (i = 0; i < n; i++)
603 			printk(KERN_DEBUG "\t  ino %llu\n",
604 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
605 		break;
606 	}
607 	default:
608 		printk(KERN_DEBUG "node type %d was not recognized\n",
609 		       (int)ch->node_type);
610 	}
611 	spin_unlock(&dbg_lock);
612 }
613 
614 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
615 {
616 	spin_lock(&dbg_lock);
617 	printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
618 	       req->new_ino, req->dirtied_ino);
619 	printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
620 	       req->new_ino_d, req->dirtied_ino_d);
621 	printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
622 	       req->new_page, req->dirtied_page);
623 	printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
624 	       req->new_dent, req->mod_dent);
625 	printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
626 	printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
627 	       req->data_growth, req->dd_growth);
628 	spin_unlock(&dbg_lock);
629 }
630 
631 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
632 {
633 	spin_lock(&dbg_lock);
634 	printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
635 	       "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
636 	printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
637 	       "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
638 	       lst->total_dirty);
639 	printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
640 	       "total_dead %lld\n", lst->total_used, lst->total_dark,
641 	       lst->total_dead);
642 	spin_unlock(&dbg_lock);
643 }
644 
645 void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
646 {
647 	int i;
648 	struct rb_node *rb;
649 	struct ubifs_bud *bud;
650 	struct ubifs_gced_idx_leb *idx_gc;
651 	long long available, outstanding, free;
652 
653 	spin_lock(&c->space_lock);
654 	spin_lock(&dbg_lock);
655 	printk(KERN_DEBUG "(pid %d) Budgeting info: data budget sum %lld, "
656 	       "total budget sum %lld\n", current->pid,
657 	       bi->data_growth + bi->dd_growth,
658 	       bi->data_growth + bi->dd_growth + bi->idx_growth);
659 	printk(KERN_DEBUG "\tbudg_data_growth %lld, budg_dd_growth %lld, "
660 	       "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
661 	       bi->idx_growth);
662 	printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %llu, "
663 	       "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
664 	       bi->uncommitted_idx);
665 	printk(KERN_DEBUG "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
666 	       bi->page_budget, bi->inode_budget, bi->dent_budget);
667 	printk(KERN_DEBUG "\tnospace %u, nospace_rp %u\n",
668 	       bi->nospace, bi->nospace_rp);
669 	printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
670 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
671 
672 	if (bi != &c->bi)
673 		/*
674 		 * If we are dumping saved budgeting data, do not print
675 		 * additional information which is about the current state, not
676 		 * the old one which corresponded to the saved budgeting data.
677 		 */
678 		goto out_unlock;
679 
680 	printk(KERN_DEBUG "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
681 	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
682 	printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
683 	       "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
684 	       atomic_long_read(&c->dirty_zn_cnt),
685 	       atomic_long_read(&c->clean_zn_cnt));
686 	printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
687 	       c->gc_lnum, c->ihead_lnum);
688 
689 	/* If we are in R/O mode, journal heads do not exist */
690 	if (c->jheads)
691 		for (i = 0; i < c->jhead_cnt; i++)
692 			printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
693 			       dbg_jhead(c->jheads[i].wbuf.jhead),
694 			       c->jheads[i].wbuf.lnum);
695 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
696 		bud = rb_entry(rb, struct ubifs_bud, rb);
697 		printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
698 	}
699 	list_for_each_entry(bud, &c->old_buds, list)
700 		printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
701 	list_for_each_entry(idx_gc, &c->idx_gc, list)
702 		printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
703 		       idx_gc->lnum, idx_gc->unmap);
704 	printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
705 
706 	/* Print budgeting predictions */
707 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
708 	outstanding = c->bi.data_growth + c->bi.dd_growth;
709 	free = ubifs_get_free_space_nolock(c);
710 	printk(KERN_DEBUG "Budgeting predictions:\n");
711 	printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
712 	       available, outstanding, free);
713 out_unlock:
714 	spin_unlock(&dbg_lock);
715 	spin_unlock(&c->space_lock);
716 }
717 
718 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
719 {
720 	int i, spc, dark = 0, dead = 0;
721 	struct rb_node *rb;
722 	struct ubifs_bud *bud;
723 
724 	spc = lp->free + lp->dirty;
725 	if (spc < c->dead_wm)
726 		dead = spc;
727 	else
728 		dark = ubifs_calc_dark(c, spc);
729 
730 	if (lp->flags & LPROPS_INDEX)
731 		printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
732 		       "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
733 		       lp->dirty, c->leb_size - spc, spc, lp->flags);
734 	else
735 		printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
736 		       "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
737 		       "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
738 		       c->leb_size - spc, spc, dark, dead,
739 		       (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
740 
741 	if (lp->flags & LPROPS_TAKEN) {
742 		if (lp->flags & LPROPS_INDEX)
743 			printk(KERN_CONT "index, taken");
744 		else
745 			printk(KERN_CONT "taken");
746 	} else {
747 		const char *s;
748 
749 		if (lp->flags & LPROPS_INDEX) {
750 			switch (lp->flags & LPROPS_CAT_MASK) {
751 			case LPROPS_DIRTY_IDX:
752 				s = "dirty index";
753 				break;
754 			case LPROPS_FRDI_IDX:
755 				s = "freeable index";
756 				break;
757 			default:
758 				s = "index";
759 			}
760 		} else {
761 			switch (lp->flags & LPROPS_CAT_MASK) {
762 			case LPROPS_UNCAT:
763 				s = "not categorized";
764 				break;
765 			case LPROPS_DIRTY:
766 				s = "dirty";
767 				break;
768 			case LPROPS_FREE:
769 				s = "free";
770 				break;
771 			case LPROPS_EMPTY:
772 				s = "empty";
773 				break;
774 			case LPROPS_FREEABLE:
775 				s = "freeable";
776 				break;
777 			default:
778 				s = NULL;
779 				break;
780 			}
781 		}
782 		printk(KERN_CONT "%s", s);
783 	}
784 
785 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
786 		bud = rb_entry(rb, struct ubifs_bud, rb);
787 		if (bud->lnum == lp->lnum) {
788 			int head = 0;
789 			for (i = 0; i < c->jhead_cnt; i++) {
790 				/*
791 				 * Note, if we are in R/O mode or in the middle
792 				 * of mounting/re-mounting, the write-buffers do
793 				 * not exist.
794 				 */
795 				if (c->jheads &&
796 				    lp->lnum == c->jheads[i].wbuf.lnum) {
797 					printk(KERN_CONT ", jhead %s",
798 					       dbg_jhead(i));
799 					head = 1;
800 				}
801 			}
802 			if (!head)
803 				printk(KERN_CONT ", bud of jhead %s",
804 				       dbg_jhead(bud->jhead));
805 		}
806 	}
807 	if (lp->lnum == c->gc_lnum)
808 		printk(KERN_CONT ", GC LEB");
809 	printk(KERN_CONT ")\n");
810 }
811 
812 void dbg_dump_lprops(struct ubifs_info *c)
813 {
814 	int lnum, err;
815 	struct ubifs_lprops lp;
816 	struct ubifs_lp_stats lst;
817 
818 	printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
819 	       current->pid);
820 	ubifs_get_lp_stats(c, &lst);
821 	dbg_dump_lstats(&lst);
822 
823 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
824 		err = ubifs_read_one_lp(c, lnum, &lp);
825 		if (err)
826 			ubifs_err("cannot read lprops for LEB %d", lnum);
827 
828 		dbg_dump_lprop(c, &lp);
829 	}
830 	printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
831 	       current->pid);
832 }
833 
834 void dbg_dump_lpt_info(struct ubifs_info *c)
835 {
836 	int i;
837 
838 	spin_lock(&dbg_lock);
839 	printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
840 	printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
841 	printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
842 	printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
843 	printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
844 	printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
845 	printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
846 	printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
847 	printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
848 	printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
849 	printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
850 	printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
851 	printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
852 	printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
853 	printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
854 	printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
855 	printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
856 	printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
857 	printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
858 	printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
859 	printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
860 	       c->nhead_lnum, c->nhead_offs);
861 	printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
862 	       c->ltab_lnum, c->ltab_offs);
863 	if (c->big_lpt)
864 		printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
865 		       c->lsave_lnum, c->lsave_offs);
866 	for (i = 0; i < c->lpt_lebs; i++)
867 		printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
868 		       "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
869 		       c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
870 	spin_unlock(&dbg_lock);
871 }
872 
873 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
874 {
875 	struct ubifs_scan_leb *sleb;
876 	struct ubifs_scan_node *snod;
877 	void *buf;
878 
879 	if (dbg_is_tst_rcvry(c))
880 		return;
881 
882 	printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
883 	       current->pid, lnum);
884 
885 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
886 	if (!buf) {
887 		ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
888 		return;
889 	}
890 
891 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
892 	if (IS_ERR(sleb)) {
893 		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
894 		goto out;
895 	}
896 
897 	printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
898 	       sleb->nodes_cnt, sleb->endpt);
899 
900 	list_for_each_entry(snod, &sleb->nodes, list) {
901 		cond_resched();
902 		printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
903 		       snod->offs, snod->len);
904 		dbg_dump_node(c, snod->node);
905 	}
906 
907 	printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
908 	       current->pid, lnum);
909 	ubifs_scan_destroy(sleb);
910 
911 out:
912 	vfree(buf);
913 	return;
914 }
915 
916 void dbg_dump_znode(const struct ubifs_info *c,
917 		    const struct ubifs_znode *znode)
918 {
919 	int n;
920 	const struct ubifs_zbranch *zbr;
921 
922 	spin_lock(&dbg_lock);
923 	if (znode->parent)
924 		zbr = &znode->parent->zbranch[znode->iip];
925 	else
926 		zbr = &c->zroot;
927 
928 	printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
929 	       " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
930 	       zbr->len, znode->parent, znode->iip, znode->level,
931 	       znode->child_cnt, znode->flags);
932 
933 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
934 		spin_unlock(&dbg_lock);
935 		return;
936 	}
937 
938 	printk(KERN_DEBUG "zbranches:\n");
939 	for (n = 0; n < znode->child_cnt; n++) {
940 		zbr = &znode->zbranch[n];
941 		if (znode->level > 0)
942 			printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
943 					  "%s\n", n, zbr->znode, zbr->lnum,
944 					  zbr->offs, zbr->len,
945 					  DBGKEY(&zbr->key));
946 		else
947 			printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
948 					  "%s\n", n, zbr->znode, zbr->lnum,
949 					  zbr->offs, zbr->len,
950 					  DBGKEY(&zbr->key));
951 	}
952 	spin_unlock(&dbg_lock);
953 }
954 
955 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
956 {
957 	int i;
958 
959 	printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
960 	       current->pid, cat, heap->cnt);
961 	for (i = 0; i < heap->cnt; i++) {
962 		struct ubifs_lprops *lprops = heap->arr[i];
963 
964 		printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
965 		       "flags %d\n", i, lprops->lnum, lprops->hpos,
966 		       lprops->free, lprops->dirty, lprops->flags);
967 	}
968 	printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
969 }
970 
971 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
972 		    struct ubifs_nnode *parent, int iip)
973 {
974 	int i;
975 
976 	printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
977 	printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
978 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
979 	printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
980 	       pnode->flags, iip, pnode->level, pnode->num);
981 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
982 		struct ubifs_lprops *lp = &pnode->lprops[i];
983 
984 		printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
985 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
986 	}
987 }
988 
989 void dbg_dump_tnc(struct ubifs_info *c)
990 {
991 	struct ubifs_znode *znode;
992 	int level;
993 
994 	printk(KERN_DEBUG "\n");
995 	printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
996 	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
997 	level = znode->level;
998 	printk(KERN_DEBUG "== Level %d ==\n", level);
999 	while (znode) {
1000 		if (level != znode->level) {
1001 			level = znode->level;
1002 			printk(KERN_DEBUG "== Level %d ==\n", level);
1003 		}
1004 		dbg_dump_znode(c, znode);
1005 		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1006 	}
1007 	printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
1008 }
1009 
1010 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1011 		      void *priv)
1012 {
1013 	dbg_dump_znode(c, znode);
1014 	return 0;
1015 }
1016 
1017 /**
1018  * dbg_dump_index - dump the on-flash index.
1019  * @c: UBIFS file-system description object
1020  *
1021  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
1022  * which dumps only in-memory znodes and does not read znodes which from flash.
1023  */
1024 void dbg_dump_index(struct ubifs_info *c)
1025 {
1026 	dbg_walk_index(c, NULL, dump_znode, NULL);
1027 }
1028 
1029 /**
1030  * dbg_save_space_info - save information about flash space.
1031  * @c: UBIFS file-system description object
1032  *
1033  * This function saves information about UBIFS free space, dirty space, etc, in
1034  * order to check it later.
1035  */
1036 void dbg_save_space_info(struct ubifs_info *c)
1037 {
1038 	struct ubifs_debug_info *d = c->dbg;
1039 	int freeable_cnt;
1040 
1041 	spin_lock(&c->space_lock);
1042 	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1043 	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1044 	d->saved_idx_gc_cnt = c->idx_gc_cnt;
1045 
1046 	/*
1047 	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1048 	 * affects the free space calculations, and UBIFS might not know about
1049 	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1050 	 * only when we read their lprops, and we do this only lazily, upon the
1051 	 * need. So at any given point of time @c->freeable_cnt might be not
1052 	 * exactly accurate.
1053 	 *
1054 	 * Just one example about the issue we hit when we did not zero
1055 	 * @c->freeable_cnt.
1056 	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1057 	 *    amount of free space in @d->saved_free
1058 	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1059 	 *    information from flash, where we cache LEBs from various
1060 	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1061 	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1062 	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1063 	 *    -> 'ubifs_add_to_cat()').
1064 	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1065 	 *    becomes %1.
1066 	 * 4. We calculate the amount of free space when the re-mount is
1067 	 *    finished in 'dbg_check_space_info()' and it does not match
1068 	 *    @d->saved_free.
1069 	 */
1070 	freeable_cnt = c->freeable_cnt;
1071 	c->freeable_cnt = 0;
1072 	d->saved_free = ubifs_get_free_space_nolock(c);
1073 	c->freeable_cnt = freeable_cnt;
1074 	spin_unlock(&c->space_lock);
1075 }
1076 
1077 /**
1078  * dbg_check_space_info - check flash space information.
1079  * @c: UBIFS file-system description object
1080  *
1081  * This function compares current flash space information with the information
1082  * which was saved when the 'dbg_save_space_info()' function was called.
1083  * Returns zero if the information has not changed, and %-EINVAL it it has
1084  * changed.
1085  */
1086 int dbg_check_space_info(struct ubifs_info *c)
1087 {
1088 	struct ubifs_debug_info *d = c->dbg;
1089 	struct ubifs_lp_stats lst;
1090 	long long free;
1091 	int freeable_cnt;
1092 
1093 	spin_lock(&c->space_lock);
1094 	freeable_cnt = c->freeable_cnt;
1095 	c->freeable_cnt = 0;
1096 	free = ubifs_get_free_space_nolock(c);
1097 	c->freeable_cnt = freeable_cnt;
1098 	spin_unlock(&c->space_lock);
1099 
1100 	if (free != d->saved_free) {
1101 		ubifs_err("free space changed from %lld to %lld",
1102 			  d->saved_free, free);
1103 		goto out;
1104 	}
1105 
1106 	return 0;
1107 
1108 out:
1109 	ubifs_msg("saved lprops statistics dump");
1110 	dbg_dump_lstats(&d->saved_lst);
1111 	ubifs_msg("saved budgeting info dump");
1112 	dbg_dump_budg(c, &d->saved_bi);
1113 	ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1114 	ubifs_msg("current lprops statistics dump");
1115 	ubifs_get_lp_stats(c, &lst);
1116 	dbg_dump_lstats(&lst);
1117 	ubifs_msg("current budgeting info dump");
1118 	dbg_dump_budg(c, &c->bi);
1119 	dump_stack();
1120 	return -EINVAL;
1121 }
1122 
1123 /**
1124  * dbg_check_synced_i_size - check synchronized inode size.
1125  * @c: UBIFS file-system description object
1126  * @inode: inode to check
1127  *
1128  * If inode is clean, synchronized inode size has to be equivalent to current
1129  * inode size. This function has to be called only for locked inodes (@i_mutex
1130  * has to be locked). Returns %0 if synchronized inode size if correct, and
1131  * %-EINVAL if not.
1132  */
1133 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1134 {
1135 	int err = 0;
1136 	struct ubifs_inode *ui = ubifs_inode(inode);
1137 
1138 	if (!dbg_is_chk_gen(c))
1139 		return 0;
1140 	if (!S_ISREG(inode->i_mode))
1141 		return 0;
1142 
1143 	mutex_lock(&ui->ui_mutex);
1144 	spin_lock(&ui->ui_lock);
1145 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1146 		ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1147 			  "is clean", ui->ui_size, ui->synced_i_size);
1148 		ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1149 			  inode->i_mode, i_size_read(inode));
1150 		dbg_dump_stack();
1151 		err = -EINVAL;
1152 	}
1153 	spin_unlock(&ui->ui_lock);
1154 	mutex_unlock(&ui->ui_mutex);
1155 	return err;
1156 }
1157 
1158 /*
1159  * dbg_check_dir - check directory inode size and link count.
1160  * @c: UBIFS file-system description object
1161  * @dir: the directory to calculate size for
1162  * @size: the result is returned here
1163  *
1164  * This function makes sure that directory size and link count are correct.
1165  * Returns zero in case of success and a negative error code in case of
1166  * failure.
1167  *
1168  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1169  * calling this function.
1170  */
1171 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1172 {
1173 	unsigned int nlink = 2;
1174 	union ubifs_key key;
1175 	struct ubifs_dent_node *dent, *pdent = NULL;
1176 	struct qstr nm = { .name = NULL };
1177 	loff_t size = UBIFS_INO_NODE_SZ;
1178 
1179 	if (!dbg_is_chk_gen(c))
1180 		return 0;
1181 
1182 	if (!S_ISDIR(dir->i_mode))
1183 		return 0;
1184 
1185 	lowest_dent_key(c, &key, dir->i_ino);
1186 	while (1) {
1187 		int err;
1188 
1189 		dent = ubifs_tnc_next_ent(c, &key, &nm);
1190 		if (IS_ERR(dent)) {
1191 			err = PTR_ERR(dent);
1192 			if (err == -ENOENT)
1193 				break;
1194 			return err;
1195 		}
1196 
1197 		nm.name = dent->name;
1198 		nm.len = le16_to_cpu(dent->nlen);
1199 		size += CALC_DENT_SIZE(nm.len);
1200 		if (dent->type == UBIFS_ITYPE_DIR)
1201 			nlink += 1;
1202 		kfree(pdent);
1203 		pdent = dent;
1204 		key_read(c, &dent->key, &key);
1205 	}
1206 	kfree(pdent);
1207 
1208 	if (i_size_read(dir) != size) {
1209 		ubifs_err("directory inode %lu has size %llu, "
1210 			  "but calculated size is %llu", dir->i_ino,
1211 			  (unsigned long long)i_size_read(dir),
1212 			  (unsigned long long)size);
1213 		dbg_dump_inode(c, dir);
1214 		dump_stack();
1215 		return -EINVAL;
1216 	}
1217 	if (dir->i_nlink != nlink) {
1218 		ubifs_err("directory inode %lu has nlink %u, but calculated "
1219 			  "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1220 		dbg_dump_inode(c, dir);
1221 		dump_stack();
1222 		return -EINVAL;
1223 	}
1224 
1225 	return 0;
1226 }
1227 
1228 /**
1229  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1230  * @c: UBIFS file-system description object
1231  * @zbr1: first zbranch
1232  * @zbr2: following zbranch
1233  *
1234  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1235  * names of the direntries/xentries which are referred by the keys. This
1236  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1237  * sure the name of direntry/xentry referred by @zbr1 is less than
1238  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1239  * and a negative error code in case of failure.
1240  */
1241 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1242 			       struct ubifs_zbranch *zbr2)
1243 {
1244 	int err, nlen1, nlen2, cmp;
1245 	struct ubifs_dent_node *dent1, *dent2;
1246 	union ubifs_key key;
1247 
1248 	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1249 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1250 	if (!dent1)
1251 		return -ENOMEM;
1252 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1253 	if (!dent2) {
1254 		err = -ENOMEM;
1255 		goto out_free;
1256 	}
1257 
1258 	err = ubifs_tnc_read_node(c, zbr1, dent1);
1259 	if (err)
1260 		goto out_free;
1261 	err = ubifs_validate_entry(c, dent1);
1262 	if (err)
1263 		goto out_free;
1264 
1265 	err = ubifs_tnc_read_node(c, zbr2, dent2);
1266 	if (err)
1267 		goto out_free;
1268 	err = ubifs_validate_entry(c, dent2);
1269 	if (err)
1270 		goto out_free;
1271 
1272 	/* Make sure node keys are the same as in zbranch */
1273 	err = 1;
1274 	key_read(c, &dent1->key, &key);
1275 	if (keys_cmp(c, &zbr1->key, &key)) {
1276 		dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1277 			zbr1->offs, DBGKEY(&key));
1278 		dbg_err("but it should have key %s according to tnc",
1279 			DBGKEY(&zbr1->key));
1280 		dbg_dump_node(c, dent1);
1281 		goto out_free;
1282 	}
1283 
1284 	key_read(c, &dent2->key, &key);
1285 	if (keys_cmp(c, &zbr2->key, &key)) {
1286 		dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1287 			zbr1->offs, DBGKEY(&key));
1288 		dbg_err("but it should have key %s according to tnc",
1289 			DBGKEY(&zbr2->key));
1290 		dbg_dump_node(c, dent2);
1291 		goto out_free;
1292 	}
1293 
1294 	nlen1 = le16_to_cpu(dent1->nlen);
1295 	nlen2 = le16_to_cpu(dent2->nlen);
1296 
1297 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1298 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1299 		err = 0;
1300 		goto out_free;
1301 	}
1302 	if (cmp == 0 && nlen1 == nlen2)
1303 		dbg_err("2 xent/dent nodes with the same name");
1304 	else
1305 		dbg_err("bad order of colliding key %s",
1306 			DBGKEY(&key));
1307 
1308 	ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1309 	dbg_dump_node(c, dent1);
1310 	ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1311 	dbg_dump_node(c, dent2);
1312 
1313 out_free:
1314 	kfree(dent2);
1315 	kfree(dent1);
1316 	return err;
1317 }
1318 
1319 /**
1320  * dbg_check_znode - check if znode is all right.
1321  * @c: UBIFS file-system description object
1322  * @zbr: zbranch which points to this znode
1323  *
1324  * This function makes sure that znode referred to by @zbr is all right.
1325  * Returns zero if it is, and %-EINVAL if it is not.
1326  */
1327 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1328 {
1329 	struct ubifs_znode *znode = zbr->znode;
1330 	struct ubifs_znode *zp = znode->parent;
1331 	int n, err, cmp;
1332 
1333 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1334 		err = 1;
1335 		goto out;
1336 	}
1337 	if (znode->level < 0) {
1338 		err = 2;
1339 		goto out;
1340 	}
1341 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1342 		err = 3;
1343 		goto out;
1344 	}
1345 
1346 	if (zbr->len == 0)
1347 		/* Only dirty zbranch may have no on-flash nodes */
1348 		if (!ubifs_zn_dirty(znode)) {
1349 			err = 4;
1350 			goto out;
1351 		}
1352 
1353 	if (ubifs_zn_dirty(znode)) {
1354 		/*
1355 		 * If znode is dirty, its parent has to be dirty as well. The
1356 		 * order of the operation is important, so we have to have
1357 		 * memory barriers.
1358 		 */
1359 		smp_mb();
1360 		if (zp && !ubifs_zn_dirty(zp)) {
1361 			/*
1362 			 * The dirty flag is atomic and is cleared outside the
1363 			 * TNC mutex, so znode's dirty flag may now have
1364 			 * been cleared. The child is always cleared before the
1365 			 * parent, so we just need to check again.
1366 			 */
1367 			smp_mb();
1368 			if (ubifs_zn_dirty(znode)) {
1369 				err = 5;
1370 				goto out;
1371 			}
1372 		}
1373 	}
1374 
1375 	if (zp) {
1376 		const union ubifs_key *min, *max;
1377 
1378 		if (znode->level != zp->level - 1) {
1379 			err = 6;
1380 			goto out;
1381 		}
1382 
1383 		/* Make sure the 'parent' pointer in our znode is correct */
1384 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1385 		if (!err) {
1386 			/* This zbranch does not exist in the parent */
1387 			err = 7;
1388 			goto out;
1389 		}
1390 
1391 		if (znode->iip >= zp->child_cnt) {
1392 			err = 8;
1393 			goto out;
1394 		}
1395 
1396 		if (znode->iip != n) {
1397 			/* This may happen only in case of collisions */
1398 			if (keys_cmp(c, &zp->zbranch[n].key,
1399 				     &zp->zbranch[znode->iip].key)) {
1400 				err = 9;
1401 				goto out;
1402 			}
1403 			n = znode->iip;
1404 		}
1405 
1406 		/*
1407 		 * Make sure that the first key in our znode is greater than or
1408 		 * equal to the key in the pointing zbranch.
1409 		 */
1410 		min = &zbr->key;
1411 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1412 		if (cmp == 1) {
1413 			err = 10;
1414 			goto out;
1415 		}
1416 
1417 		if (n + 1 < zp->child_cnt) {
1418 			max = &zp->zbranch[n + 1].key;
1419 
1420 			/*
1421 			 * Make sure the last key in our znode is less or
1422 			 * equivalent than the key in the zbranch which goes
1423 			 * after our pointing zbranch.
1424 			 */
1425 			cmp = keys_cmp(c, max,
1426 				&znode->zbranch[znode->child_cnt - 1].key);
1427 			if (cmp == -1) {
1428 				err = 11;
1429 				goto out;
1430 			}
1431 		}
1432 	} else {
1433 		/* This may only be root znode */
1434 		if (zbr != &c->zroot) {
1435 			err = 12;
1436 			goto out;
1437 		}
1438 	}
1439 
1440 	/*
1441 	 * Make sure that next key is greater or equivalent then the previous
1442 	 * one.
1443 	 */
1444 	for (n = 1; n < znode->child_cnt; n++) {
1445 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1446 			       &znode->zbranch[n].key);
1447 		if (cmp > 0) {
1448 			err = 13;
1449 			goto out;
1450 		}
1451 		if (cmp == 0) {
1452 			/* This can only be keys with colliding hash */
1453 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1454 				err = 14;
1455 				goto out;
1456 			}
1457 
1458 			if (znode->level != 0 || c->replaying)
1459 				continue;
1460 
1461 			/*
1462 			 * Colliding keys should follow binary order of
1463 			 * corresponding xentry/dentry names.
1464 			 */
1465 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1466 						  &znode->zbranch[n]);
1467 			if (err < 0)
1468 				return err;
1469 			if (err) {
1470 				err = 15;
1471 				goto out;
1472 			}
1473 		}
1474 	}
1475 
1476 	for (n = 0; n < znode->child_cnt; n++) {
1477 		if (!znode->zbranch[n].znode &&
1478 		    (znode->zbranch[n].lnum == 0 ||
1479 		     znode->zbranch[n].len == 0)) {
1480 			err = 16;
1481 			goto out;
1482 		}
1483 
1484 		if (znode->zbranch[n].lnum != 0 &&
1485 		    znode->zbranch[n].len == 0) {
1486 			err = 17;
1487 			goto out;
1488 		}
1489 
1490 		if (znode->zbranch[n].lnum == 0 &&
1491 		    znode->zbranch[n].len != 0) {
1492 			err = 18;
1493 			goto out;
1494 		}
1495 
1496 		if (znode->zbranch[n].lnum == 0 &&
1497 		    znode->zbranch[n].offs != 0) {
1498 			err = 19;
1499 			goto out;
1500 		}
1501 
1502 		if (znode->level != 0 && znode->zbranch[n].znode)
1503 			if (znode->zbranch[n].znode->parent != znode) {
1504 				err = 20;
1505 				goto out;
1506 			}
1507 	}
1508 
1509 	return 0;
1510 
1511 out:
1512 	ubifs_err("failed, error %d", err);
1513 	ubifs_msg("dump of the znode");
1514 	dbg_dump_znode(c, znode);
1515 	if (zp) {
1516 		ubifs_msg("dump of the parent znode");
1517 		dbg_dump_znode(c, zp);
1518 	}
1519 	dump_stack();
1520 	return -EINVAL;
1521 }
1522 
1523 /**
1524  * dbg_check_tnc - check TNC tree.
1525  * @c: UBIFS file-system description object
1526  * @extra: do extra checks that are possible at start commit
1527  *
1528  * This function traverses whole TNC tree and checks every znode. Returns zero
1529  * if everything is all right and %-EINVAL if something is wrong with TNC.
1530  */
1531 int dbg_check_tnc(struct ubifs_info *c, int extra)
1532 {
1533 	struct ubifs_znode *znode;
1534 	long clean_cnt = 0, dirty_cnt = 0;
1535 	int err, last;
1536 
1537 	if (!dbg_is_chk_index(c))
1538 		return 0;
1539 
1540 	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1541 	if (!c->zroot.znode)
1542 		return 0;
1543 
1544 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1545 	while (1) {
1546 		struct ubifs_znode *prev;
1547 		struct ubifs_zbranch *zbr;
1548 
1549 		if (!znode->parent)
1550 			zbr = &c->zroot;
1551 		else
1552 			zbr = &znode->parent->zbranch[znode->iip];
1553 
1554 		err = dbg_check_znode(c, zbr);
1555 		if (err)
1556 			return err;
1557 
1558 		if (extra) {
1559 			if (ubifs_zn_dirty(znode))
1560 				dirty_cnt += 1;
1561 			else
1562 				clean_cnt += 1;
1563 		}
1564 
1565 		prev = znode;
1566 		znode = ubifs_tnc_postorder_next(znode);
1567 		if (!znode)
1568 			break;
1569 
1570 		/*
1571 		 * If the last key of this znode is equivalent to the first key
1572 		 * of the next znode (collision), then check order of the keys.
1573 		 */
1574 		last = prev->child_cnt - 1;
1575 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1576 		    !keys_cmp(c, &prev->zbranch[last].key,
1577 			      &znode->zbranch[0].key)) {
1578 			err = dbg_check_key_order(c, &prev->zbranch[last],
1579 						  &znode->zbranch[0]);
1580 			if (err < 0)
1581 				return err;
1582 			if (err) {
1583 				ubifs_msg("first znode");
1584 				dbg_dump_znode(c, prev);
1585 				ubifs_msg("second znode");
1586 				dbg_dump_znode(c, znode);
1587 				return -EINVAL;
1588 			}
1589 		}
1590 	}
1591 
1592 	if (extra) {
1593 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1594 			ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1595 				  atomic_long_read(&c->clean_zn_cnt),
1596 				  clean_cnt);
1597 			return -EINVAL;
1598 		}
1599 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1600 			ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1601 				  atomic_long_read(&c->dirty_zn_cnt),
1602 				  dirty_cnt);
1603 			return -EINVAL;
1604 		}
1605 	}
1606 
1607 	return 0;
1608 }
1609 
1610 /**
1611  * dbg_walk_index - walk the on-flash index.
1612  * @c: UBIFS file-system description object
1613  * @leaf_cb: called for each leaf node
1614  * @znode_cb: called for each indexing node
1615  * @priv: private data which is passed to callbacks
1616  *
1617  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1618  * node and @znode_cb for each indexing node. Returns zero in case of success
1619  * and a negative error code in case of failure.
1620  *
1621  * It would be better if this function removed every znode it pulled to into
1622  * the TNC, so that the behavior more closely matched the non-debugging
1623  * behavior.
1624  */
1625 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1626 		   dbg_znode_callback znode_cb, void *priv)
1627 {
1628 	int err;
1629 	struct ubifs_zbranch *zbr;
1630 	struct ubifs_znode *znode, *child;
1631 
1632 	mutex_lock(&c->tnc_mutex);
1633 	/* If the root indexing node is not in TNC - pull it */
1634 	if (!c->zroot.znode) {
1635 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1636 		if (IS_ERR(c->zroot.znode)) {
1637 			err = PTR_ERR(c->zroot.znode);
1638 			c->zroot.znode = NULL;
1639 			goto out_unlock;
1640 		}
1641 	}
1642 
1643 	/*
1644 	 * We are going to traverse the indexing tree in the postorder manner.
1645 	 * Go down and find the leftmost indexing node where we are going to
1646 	 * start from.
1647 	 */
1648 	znode = c->zroot.znode;
1649 	while (znode->level > 0) {
1650 		zbr = &znode->zbranch[0];
1651 		child = zbr->znode;
1652 		if (!child) {
1653 			child = ubifs_load_znode(c, zbr, znode, 0);
1654 			if (IS_ERR(child)) {
1655 				err = PTR_ERR(child);
1656 				goto out_unlock;
1657 			}
1658 			zbr->znode = child;
1659 		}
1660 
1661 		znode = child;
1662 	}
1663 
1664 	/* Iterate over all indexing nodes */
1665 	while (1) {
1666 		int idx;
1667 
1668 		cond_resched();
1669 
1670 		if (znode_cb) {
1671 			err = znode_cb(c, znode, priv);
1672 			if (err) {
1673 				ubifs_err("znode checking function returned "
1674 					  "error %d", err);
1675 				dbg_dump_znode(c, znode);
1676 				goto out_dump;
1677 			}
1678 		}
1679 		if (leaf_cb && znode->level == 0) {
1680 			for (idx = 0; idx < znode->child_cnt; idx++) {
1681 				zbr = &znode->zbranch[idx];
1682 				err = leaf_cb(c, zbr, priv);
1683 				if (err) {
1684 					ubifs_err("leaf checking function "
1685 						  "returned error %d, for leaf "
1686 						  "at LEB %d:%d",
1687 						  err, zbr->lnum, zbr->offs);
1688 					goto out_dump;
1689 				}
1690 			}
1691 		}
1692 
1693 		if (!znode->parent)
1694 			break;
1695 
1696 		idx = znode->iip + 1;
1697 		znode = znode->parent;
1698 		if (idx < znode->child_cnt) {
1699 			/* Switch to the next index in the parent */
1700 			zbr = &znode->zbranch[idx];
1701 			child = zbr->znode;
1702 			if (!child) {
1703 				child = ubifs_load_znode(c, zbr, znode, idx);
1704 				if (IS_ERR(child)) {
1705 					err = PTR_ERR(child);
1706 					goto out_unlock;
1707 				}
1708 				zbr->znode = child;
1709 			}
1710 			znode = child;
1711 		} else
1712 			/*
1713 			 * This is the last child, switch to the parent and
1714 			 * continue.
1715 			 */
1716 			continue;
1717 
1718 		/* Go to the lowest leftmost znode in the new sub-tree */
1719 		while (znode->level > 0) {
1720 			zbr = &znode->zbranch[0];
1721 			child = zbr->znode;
1722 			if (!child) {
1723 				child = ubifs_load_znode(c, zbr, znode, 0);
1724 				if (IS_ERR(child)) {
1725 					err = PTR_ERR(child);
1726 					goto out_unlock;
1727 				}
1728 				zbr->znode = child;
1729 			}
1730 			znode = child;
1731 		}
1732 	}
1733 
1734 	mutex_unlock(&c->tnc_mutex);
1735 	return 0;
1736 
1737 out_dump:
1738 	if (znode->parent)
1739 		zbr = &znode->parent->zbranch[znode->iip];
1740 	else
1741 		zbr = &c->zroot;
1742 	ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1743 	dbg_dump_znode(c, znode);
1744 out_unlock:
1745 	mutex_unlock(&c->tnc_mutex);
1746 	return err;
1747 }
1748 
1749 /**
1750  * add_size - add znode size to partially calculated index size.
1751  * @c: UBIFS file-system description object
1752  * @znode: znode to add size for
1753  * @priv: partially calculated index size
1754  *
1755  * This is a helper function for 'dbg_check_idx_size()' which is called for
1756  * every indexing node and adds its size to the 'long long' variable pointed to
1757  * by @priv.
1758  */
1759 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1760 {
1761 	long long *idx_size = priv;
1762 	int add;
1763 
1764 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1765 	add = ALIGN(add, 8);
1766 	*idx_size += add;
1767 	return 0;
1768 }
1769 
1770 /**
1771  * dbg_check_idx_size - check index size.
1772  * @c: UBIFS file-system description object
1773  * @idx_size: size to check
1774  *
1775  * This function walks the UBIFS index, calculates its size and checks that the
1776  * size is equivalent to @idx_size. Returns zero in case of success and a
1777  * negative error code in case of failure.
1778  */
1779 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1780 {
1781 	int err;
1782 	long long calc = 0;
1783 
1784 	if (!dbg_is_chk_index(c))
1785 		return 0;
1786 
1787 	err = dbg_walk_index(c, NULL, add_size, &calc);
1788 	if (err) {
1789 		ubifs_err("error %d while walking the index", err);
1790 		return err;
1791 	}
1792 
1793 	if (calc != idx_size) {
1794 		ubifs_err("index size check failed: calculated size is %lld, "
1795 			  "should be %lld", calc, idx_size);
1796 		dump_stack();
1797 		return -EINVAL;
1798 	}
1799 
1800 	return 0;
1801 }
1802 
1803 /**
1804  * struct fsck_inode - information about an inode used when checking the file-system.
1805  * @rb: link in the RB-tree of inodes
1806  * @inum: inode number
1807  * @mode: inode type, permissions, etc
1808  * @nlink: inode link count
1809  * @xattr_cnt: count of extended attributes
1810  * @references: how many directory/xattr entries refer this inode (calculated
1811  *              while walking the index)
1812  * @calc_cnt: for directory inode count of child directories
1813  * @size: inode size (read from on-flash inode)
1814  * @xattr_sz: summary size of all extended attributes (read from on-flash
1815  *            inode)
1816  * @calc_sz: for directories calculated directory size
1817  * @calc_xcnt: count of extended attributes
1818  * @calc_xsz: calculated summary size of all extended attributes
1819  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1820  *             inode (read from on-flash inode)
1821  * @calc_xnms: calculated sum of lengths of all extended attribute names
1822  */
1823 struct fsck_inode {
1824 	struct rb_node rb;
1825 	ino_t inum;
1826 	umode_t mode;
1827 	unsigned int nlink;
1828 	unsigned int xattr_cnt;
1829 	int references;
1830 	int calc_cnt;
1831 	long long size;
1832 	unsigned int xattr_sz;
1833 	long long calc_sz;
1834 	long long calc_xcnt;
1835 	long long calc_xsz;
1836 	unsigned int xattr_nms;
1837 	long long calc_xnms;
1838 };
1839 
1840 /**
1841  * struct fsck_data - private FS checking information.
1842  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1843  */
1844 struct fsck_data {
1845 	struct rb_root inodes;
1846 };
1847 
1848 /**
1849  * add_inode - add inode information to RB-tree of inodes.
1850  * @c: UBIFS file-system description object
1851  * @fsckd: FS checking information
1852  * @ino: raw UBIFS inode to add
1853  *
1854  * This is a helper function for 'check_leaf()' which adds information about
1855  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1856  * case of success and a negative error code in case of failure.
1857  */
1858 static struct fsck_inode *add_inode(struct ubifs_info *c,
1859 				    struct fsck_data *fsckd,
1860 				    struct ubifs_ino_node *ino)
1861 {
1862 	struct rb_node **p, *parent = NULL;
1863 	struct fsck_inode *fscki;
1864 	ino_t inum = key_inum_flash(c, &ino->key);
1865 	struct inode *inode;
1866 	struct ubifs_inode *ui;
1867 
1868 	p = &fsckd->inodes.rb_node;
1869 	while (*p) {
1870 		parent = *p;
1871 		fscki = rb_entry(parent, struct fsck_inode, rb);
1872 		if (inum < fscki->inum)
1873 			p = &(*p)->rb_left;
1874 		else if (inum > fscki->inum)
1875 			p = &(*p)->rb_right;
1876 		else
1877 			return fscki;
1878 	}
1879 
1880 	if (inum > c->highest_inum) {
1881 		ubifs_err("too high inode number, max. is %lu",
1882 			  (unsigned long)c->highest_inum);
1883 		return ERR_PTR(-EINVAL);
1884 	}
1885 
1886 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1887 	if (!fscki)
1888 		return ERR_PTR(-ENOMEM);
1889 
1890 	inode = ilookup(c->vfs_sb, inum);
1891 
1892 	fscki->inum = inum;
1893 	/*
1894 	 * If the inode is present in the VFS inode cache, use it instead of
1895 	 * the on-flash inode which might be out-of-date. E.g., the size might
1896 	 * be out-of-date. If we do not do this, the following may happen, for
1897 	 * example:
1898 	 *   1. A power cut happens
1899 	 *   2. We mount the file-system R/O, the replay process fixes up the
1900 	 *      inode size in the VFS cache, but on on-flash.
1901 	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1902 	 *      size.
1903 	 */
1904 	if (!inode) {
1905 		fscki->nlink = le32_to_cpu(ino->nlink);
1906 		fscki->size = le64_to_cpu(ino->size);
1907 		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1908 		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1909 		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1910 		fscki->mode = le32_to_cpu(ino->mode);
1911 	} else {
1912 		ui = ubifs_inode(inode);
1913 		fscki->nlink = inode->i_nlink;
1914 		fscki->size = inode->i_size;
1915 		fscki->xattr_cnt = ui->xattr_cnt;
1916 		fscki->xattr_sz = ui->xattr_size;
1917 		fscki->xattr_nms = ui->xattr_names;
1918 		fscki->mode = inode->i_mode;
1919 		iput(inode);
1920 	}
1921 
1922 	if (S_ISDIR(fscki->mode)) {
1923 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1924 		fscki->calc_cnt = 2;
1925 	}
1926 
1927 	rb_link_node(&fscki->rb, parent, p);
1928 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1929 
1930 	return fscki;
1931 }
1932 
1933 /**
1934  * search_inode - search inode in the RB-tree of inodes.
1935  * @fsckd: FS checking information
1936  * @inum: inode number to search
1937  *
1938  * This is a helper function for 'check_leaf()' which searches inode @inum in
1939  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1940  * the inode was not found.
1941  */
1942 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1943 {
1944 	struct rb_node *p;
1945 	struct fsck_inode *fscki;
1946 
1947 	p = fsckd->inodes.rb_node;
1948 	while (p) {
1949 		fscki = rb_entry(p, struct fsck_inode, rb);
1950 		if (inum < fscki->inum)
1951 			p = p->rb_left;
1952 		else if (inum > fscki->inum)
1953 			p = p->rb_right;
1954 		else
1955 			return fscki;
1956 	}
1957 	return NULL;
1958 }
1959 
1960 /**
1961  * read_add_inode - read inode node and add it to RB-tree of inodes.
1962  * @c: UBIFS file-system description object
1963  * @fsckd: FS checking information
1964  * @inum: inode number to read
1965  *
1966  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1967  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1968  * information pointer in case of success and a negative error code in case of
1969  * failure.
1970  */
1971 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1972 					 struct fsck_data *fsckd, ino_t inum)
1973 {
1974 	int n, err;
1975 	union ubifs_key key;
1976 	struct ubifs_znode *znode;
1977 	struct ubifs_zbranch *zbr;
1978 	struct ubifs_ino_node *ino;
1979 	struct fsck_inode *fscki;
1980 
1981 	fscki = search_inode(fsckd, inum);
1982 	if (fscki)
1983 		return fscki;
1984 
1985 	ino_key_init(c, &key, inum);
1986 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1987 	if (!err) {
1988 		ubifs_err("inode %lu not found in index", (unsigned long)inum);
1989 		return ERR_PTR(-ENOENT);
1990 	} else if (err < 0) {
1991 		ubifs_err("error %d while looking up inode %lu",
1992 			  err, (unsigned long)inum);
1993 		return ERR_PTR(err);
1994 	}
1995 
1996 	zbr = &znode->zbranch[n];
1997 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1998 		ubifs_err("bad node %lu node length %d",
1999 			  (unsigned long)inum, zbr->len);
2000 		return ERR_PTR(-EINVAL);
2001 	}
2002 
2003 	ino = kmalloc(zbr->len, GFP_NOFS);
2004 	if (!ino)
2005 		return ERR_PTR(-ENOMEM);
2006 
2007 	err = ubifs_tnc_read_node(c, zbr, ino);
2008 	if (err) {
2009 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2010 			  zbr->lnum, zbr->offs, err);
2011 		kfree(ino);
2012 		return ERR_PTR(err);
2013 	}
2014 
2015 	fscki = add_inode(c, fsckd, ino);
2016 	kfree(ino);
2017 	if (IS_ERR(fscki)) {
2018 		ubifs_err("error %ld while adding inode %lu node",
2019 			  PTR_ERR(fscki), (unsigned long)inum);
2020 		return fscki;
2021 	}
2022 
2023 	return fscki;
2024 }
2025 
2026 /**
2027  * check_leaf - check leaf node.
2028  * @c: UBIFS file-system description object
2029  * @zbr: zbranch of the leaf node to check
2030  * @priv: FS checking information
2031  *
2032  * This is a helper function for 'dbg_check_filesystem()' which is called for
2033  * every single leaf node while walking the indexing tree. It checks that the
2034  * leaf node referred from the indexing tree exists, has correct CRC, and does
2035  * some other basic validation. This function is also responsible for building
2036  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2037  * calculates reference count, size, etc for each inode in order to later
2038  * compare them to the information stored inside the inodes and detect possible
2039  * inconsistencies. Returns zero in case of success and a negative error code
2040  * in case of failure.
2041  */
2042 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2043 		      void *priv)
2044 {
2045 	ino_t inum;
2046 	void *node;
2047 	struct ubifs_ch *ch;
2048 	int err, type = key_type(c, &zbr->key);
2049 	struct fsck_inode *fscki;
2050 
2051 	if (zbr->len < UBIFS_CH_SZ) {
2052 		ubifs_err("bad leaf length %d (LEB %d:%d)",
2053 			  zbr->len, zbr->lnum, zbr->offs);
2054 		return -EINVAL;
2055 	}
2056 
2057 	node = kmalloc(zbr->len, GFP_NOFS);
2058 	if (!node)
2059 		return -ENOMEM;
2060 
2061 	err = ubifs_tnc_read_node(c, zbr, node);
2062 	if (err) {
2063 		ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2064 			  zbr->lnum, zbr->offs, err);
2065 		goto out_free;
2066 	}
2067 
2068 	/* If this is an inode node, add it to RB-tree of inodes */
2069 	if (type == UBIFS_INO_KEY) {
2070 		fscki = add_inode(c, priv, node);
2071 		if (IS_ERR(fscki)) {
2072 			err = PTR_ERR(fscki);
2073 			ubifs_err("error %d while adding inode node", err);
2074 			goto out_dump;
2075 		}
2076 		goto out;
2077 	}
2078 
2079 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2080 	    type != UBIFS_DATA_KEY) {
2081 		ubifs_err("unexpected node type %d at LEB %d:%d",
2082 			  type, zbr->lnum, zbr->offs);
2083 		err = -EINVAL;
2084 		goto out_free;
2085 	}
2086 
2087 	ch = node;
2088 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2089 		ubifs_err("too high sequence number, max. is %llu",
2090 			  c->max_sqnum);
2091 		err = -EINVAL;
2092 		goto out_dump;
2093 	}
2094 
2095 	if (type == UBIFS_DATA_KEY) {
2096 		long long blk_offs;
2097 		struct ubifs_data_node *dn = node;
2098 
2099 		/*
2100 		 * Search the inode node this data node belongs to and insert
2101 		 * it to the RB-tree of inodes.
2102 		 */
2103 		inum = key_inum_flash(c, &dn->key);
2104 		fscki = read_add_inode(c, priv, inum);
2105 		if (IS_ERR(fscki)) {
2106 			err = PTR_ERR(fscki);
2107 			ubifs_err("error %d while processing data node and "
2108 				  "trying to find inode node %lu",
2109 				  err, (unsigned long)inum);
2110 			goto out_dump;
2111 		}
2112 
2113 		/* Make sure the data node is within inode size */
2114 		blk_offs = key_block_flash(c, &dn->key);
2115 		blk_offs <<= UBIFS_BLOCK_SHIFT;
2116 		blk_offs += le32_to_cpu(dn->size);
2117 		if (blk_offs > fscki->size) {
2118 			ubifs_err("data node at LEB %d:%d is not within inode "
2119 				  "size %lld", zbr->lnum, zbr->offs,
2120 				  fscki->size);
2121 			err = -EINVAL;
2122 			goto out_dump;
2123 		}
2124 	} else {
2125 		int nlen;
2126 		struct ubifs_dent_node *dent = node;
2127 		struct fsck_inode *fscki1;
2128 
2129 		err = ubifs_validate_entry(c, dent);
2130 		if (err)
2131 			goto out_dump;
2132 
2133 		/*
2134 		 * Search the inode node this entry refers to and the parent
2135 		 * inode node and insert them to the RB-tree of inodes.
2136 		 */
2137 		inum = le64_to_cpu(dent->inum);
2138 		fscki = read_add_inode(c, priv, inum);
2139 		if (IS_ERR(fscki)) {
2140 			err = PTR_ERR(fscki);
2141 			ubifs_err("error %d while processing entry node and "
2142 				  "trying to find inode node %lu",
2143 				  err, (unsigned long)inum);
2144 			goto out_dump;
2145 		}
2146 
2147 		/* Count how many direntries or xentries refers this inode */
2148 		fscki->references += 1;
2149 
2150 		inum = key_inum_flash(c, &dent->key);
2151 		fscki1 = read_add_inode(c, priv, inum);
2152 		if (IS_ERR(fscki1)) {
2153 			err = PTR_ERR(fscki1);
2154 			ubifs_err("error %d while processing entry node and "
2155 				  "trying to find parent inode node %lu",
2156 				  err, (unsigned long)inum);
2157 			goto out_dump;
2158 		}
2159 
2160 		nlen = le16_to_cpu(dent->nlen);
2161 		if (type == UBIFS_XENT_KEY) {
2162 			fscki1->calc_xcnt += 1;
2163 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2164 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2165 			fscki1->calc_xnms += nlen;
2166 		} else {
2167 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2168 			if (dent->type == UBIFS_ITYPE_DIR)
2169 				fscki1->calc_cnt += 1;
2170 		}
2171 	}
2172 
2173 out:
2174 	kfree(node);
2175 	return 0;
2176 
2177 out_dump:
2178 	ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2179 	dbg_dump_node(c, node);
2180 out_free:
2181 	kfree(node);
2182 	return err;
2183 }
2184 
2185 /**
2186  * free_inodes - free RB-tree of inodes.
2187  * @fsckd: FS checking information
2188  */
2189 static void free_inodes(struct fsck_data *fsckd)
2190 {
2191 	struct rb_node *this = fsckd->inodes.rb_node;
2192 	struct fsck_inode *fscki;
2193 
2194 	while (this) {
2195 		if (this->rb_left)
2196 			this = this->rb_left;
2197 		else if (this->rb_right)
2198 			this = this->rb_right;
2199 		else {
2200 			fscki = rb_entry(this, struct fsck_inode, rb);
2201 			this = rb_parent(this);
2202 			if (this) {
2203 				if (this->rb_left == &fscki->rb)
2204 					this->rb_left = NULL;
2205 				else
2206 					this->rb_right = NULL;
2207 			}
2208 			kfree(fscki);
2209 		}
2210 	}
2211 }
2212 
2213 /**
2214  * check_inodes - checks all inodes.
2215  * @c: UBIFS file-system description object
2216  * @fsckd: FS checking information
2217  *
2218  * This is a helper function for 'dbg_check_filesystem()' which walks the
2219  * RB-tree of inodes after the index scan has been finished, and checks that
2220  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2221  * %-EINVAL if not, and a negative error code in case of failure.
2222  */
2223 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2224 {
2225 	int n, err;
2226 	union ubifs_key key;
2227 	struct ubifs_znode *znode;
2228 	struct ubifs_zbranch *zbr;
2229 	struct ubifs_ino_node *ino;
2230 	struct fsck_inode *fscki;
2231 	struct rb_node *this = rb_first(&fsckd->inodes);
2232 
2233 	while (this) {
2234 		fscki = rb_entry(this, struct fsck_inode, rb);
2235 		this = rb_next(this);
2236 
2237 		if (S_ISDIR(fscki->mode)) {
2238 			/*
2239 			 * Directories have to have exactly one reference (they
2240 			 * cannot have hardlinks), although root inode is an
2241 			 * exception.
2242 			 */
2243 			if (fscki->inum != UBIFS_ROOT_INO &&
2244 			    fscki->references != 1) {
2245 				ubifs_err("directory inode %lu has %d "
2246 					  "direntries which refer it, but "
2247 					  "should be 1",
2248 					  (unsigned long)fscki->inum,
2249 					  fscki->references);
2250 				goto out_dump;
2251 			}
2252 			if (fscki->inum == UBIFS_ROOT_INO &&
2253 			    fscki->references != 0) {
2254 				ubifs_err("root inode %lu has non-zero (%d) "
2255 					  "direntries which refer it",
2256 					  (unsigned long)fscki->inum,
2257 					  fscki->references);
2258 				goto out_dump;
2259 			}
2260 			if (fscki->calc_sz != fscki->size) {
2261 				ubifs_err("directory inode %lu size is %lld, "
2262 					  "but calculated size is %lld",
2263 					  (unsigned long)fscki->inum,
2264 					  fscki->size, fscki->calc_sz);
2265 				goto out_dump;
2266 			}
2267 			if (fscki->calc_cnt != fscki->nlink) {
2268 				ubifs_err("directory inode %lu nlink is %d, "
2269 					  "but calculated nlink is %d",
2270 					  (unsigned long)fscki->inum,
2271 					  fscki->nlink, fscki->calc_cnt);
2272 				goto out_dump;
2273 			}
2274 		} else {
2275 			if (fscki->references != fscki->nlink) {
2276 				ubifs_err("inode %lu nlink is %d, but "
2277 					  "calculated nlink is %d",
2278 					  (unsigned long)fscki->inum,
2279 					  fscki->nlink, fscki->references);
2280 				goto out_dump;
2281 			}
2282 		}
2283 		if (fscki->xattr_sz != fscki->calc_xsz) {
2284 			ubifs_err("inode %lu has xattr size %u, but "
2285 				  "calculated size is %lld",
2286 				  (unsigned long)fscki->inum, fscki->xattr_sz,
2287 				  fscki->calc_xsz);
2288 			goto out_dump;
2289 		}
2290 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2291 			ubifs_err("inode %lu has %u xattrs, but "
2292 				  "calculated count is %lld",
2293 				  (unsigned long)fscki->inum,
2294 				  fscki->xattr_cnt, fscki->calc_xcnt);
2295 			goto out_dump;
2296 		}
2297 		if (fscki->xattr_nms != fscki->calc_xnms) {
2298 			ubifs_err("inode %lu has xattr names' size %u, but "
2299 				  "calculated names' size is %lld",
2300 				  (unsigned long)fscki->inum, fscki->xattr_nms,
2301 				  fscki->calc_xnms);
2302 			goto out_dump;
2303 		}
2304 	}
2305 
2306 	return 0;
2307 
2308 out_dump:
2309 	/* Read the bad inode and dump it */
2310 	ino_key_init(c, &key, fscki->inum);
2311 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2312 	if (!err) {
2313 		ubifs_err("inode %lu not found in index",
2314 			  (unsigned long)fscki->inum);
2315 		return -ENOENT;
2316 	} else if (err < 0) {
2317 		ubifs_err("error %d while looking up inode %lu",
2318 			  err, (unsigned long)fscki->inum);
2319 		return err;
2320 	}
2321 
2322 	zbr = &znode->zbranch[n];
2323 	ino = kmalloc(zbr->len, GFP_NOFS);
2324 	if (!ino)
2325 		return -ENOMEM;
2326 
2327 	err = ubifs_tnc_read_node(c, zbr, ino);
2328 	if (err) {
2329 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2330 			  zbr->lnum, zbr->offs, err);
2331 		kfree(ino);
2332 		return err;
2333 	}
2334 
2335 	ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2336 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2337 	dbg_dump_node(c, ino);
2338 	kfree(ino);
2339 	return -EINVAL;
2340 }
2341 
2342 /**
2343  * dbg_check_filesystem - check the file-system.
2344  * @c: UBIFS file-system description object
2345  *
2346  * This function checks the file system, namely:
2347  * o makes sure that all leaf nodes exist and their CRCs are correct;
2348  * o makes sure inode nlink, size, xattr size/count are correct (for all
2349  *   inodes).
2350  *
2351  * The function reads whole indexing tree and all nodes, so it is pretty
2352  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2353  * not, and a negative error code in case of failure.
2354  */
2355 int dbg_check_filesystem(struct ubifs_info *c)
2356 {
2357 	int err;
2358 	struct fsck_data fsckd;
2359 
2360 	if (!dbg_is_chk_fs(c))
2361 		return 0;
2362 
2363 	fsckd.inodes = RB_ROOT;
2364 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2365 	if (err)
2366 		goto out_free;
2367 
2368 	err = check_inodes(c, &fsckd);
2369 	if (err)
2370 		goto out_free;
2371 
2372 	free_inodes(&fsckd);
2373 	return 0;
2374 
2375 out_free:
2376 	ubifs_err("file-system check failed with error %d", err);
2377 	dump_stack();
2378 	free_inodes(&fsckd);
2379 	return err;
2380 }
2381 
2382 /**
2383  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2384  * @c: UBIFS file-system description object
2385  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2386  *
2387  * This function returns zero if the list of data nodes is sorted correctly,
2388  * and %-EINVAL if not.
2389  */
2390 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2391 {
2392 	struct list_head *cur;
2393 	struct ubifs_scan_node *sa, *sb;
2394 
2395 	if (!dbg_is_chk_gen(c))
2396 		return 0;
2397 
2398 	for (cur = head->next; cur->next != head; cur = cur->next) {
2399 		ino_t inuma, inumb;
2400 		uint32_t blka, blkb;
2401 
2402 		cond_resched();
2403 		sa = container_of(cur, struct ubifs_scan_node, list);
2404 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2405 
2406 		if (sa->type != UBIFS_DATA_NODE) {
2407 			ubifs_err("bad node type %d", sa->type);
2408 			dbg_dump_node(c, sa->node);
2409 			return -EINVAL;
2410 		}
2411 		if (sb->type != UBIFS_DATA_NODE) {
2412 			ubifs_err("bad node type %d", sb->type);
2413 			dbg_dump_node(c, sb->node);
2414 			return -EINVAL;
2415 		}
2416 
2417 		inuma = key_inum(c, &sa->key);
2418 		inumb = key_inum(c, &sb->key);
2419 
2420 		if (inuma < inumb)
2421 			continue;
2422 		if (inuma > inumb) {
2423 			ubifs_err("larger inum %lu goes before inum %lu",
2424 				  (unsigned long)inuma, (unsigned long)inumb);
2425 			goto error_dump;
2426 		}
2427 
2428 		blka = key_block(c, &sa->key);
2429 		blkb = key_block(c, &sb->key);
2430 
2431 		if (blka > blkb) {
2432 			ubifs_err("larger block %u goes before %u", blka, blkb);
2433 			goto error_dump;
2434 		}
2435 		if (blka == blkb) {
2436 			ubifs_err("two data nodes for the same block");
2437 			goto error_dump;
2438 		}
2439 	}
2440 
2441 	return 0;
2442 
2443 error_dump:
2444 	dbg_dump_node(c, sa->node);
2445 	dbg_dump_node(c, sb->node);
2446 	return -EINVAL;
2447 }
2448 
2449 /**
2450  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2451  * @c: UBIFS file-system description object
2452  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2453  *
2454  * This function returns zero if the list of non-data nodes is sorted correctly,
2455  * and %-EINVAL if not.
2456  */
2457 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2458 {
2459 	struct list_head *cur;
2460 	struct ubifs_scan_node *sa, *sb;
2461 
2462 	if (!dbg_is_chk_gen(c))
2463 		return 0;
2464 
2465 	for (cur = head->next; cur->next != head; cur = cur->next) {
2466 		ino_t inuma, inumb;
2467 		uint32_t hasha, hashb;
2468 
2469 		cond_resched();
2470 		sa = container_of(cur, struct ubifs_scan_node, list);
2471 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2472 
2473 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2474 		    sa->type != UBIFS_XENT_NODE) {
2475 			ubifs_err("bad node type %d", sa->type);
2476 			dbg_dump_node(c, sa->node);
2477 			return -EINVAL;
2478 		}
2479 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2480 		    sa->type != UBIFS_XENT_NODE) {
2481 			ubifs_err("bad node type %d", sb->type);
2482 			dbg_dump_node(c, sb->node);
2483 			return -EINVAL;
2484 		}
2485 
2486 		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2487 			ubifs_err("non-inode node goes before inode node");
2488 			goto error_dump;
2489 		}
2490 
2491 		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2492 			continue;
2493 
2494 		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2495 			/* Inode nodes are sorted in descending size order */
2496 			if (sa->len < sb->len) {
2497 				ubifs_err("smaller inode node goes first");
2498 				goto error_dump;
2499 			}
2500 			continue;
2501 		}
2502 
2503 		/*
2504 		 * This is either a dentry or xentry, which should be sorted in
2505 		 * ascending (parent ino, hash) order.
2506 		 */
2507 		inuma = key_inum(c, &sa->key);
2508 		inumb = key_inum(c, &sb->key);
2509 
2510 		if (inuma < inumb)
2511 			continue;
2512 		if (inuma > inumb) {
2513 			ubifs_err("larger inum %lu goes before inum %lu",
2514 				  (unsigned long)inuma, (unsigned long)inumb);
2515 			goto error_dump;
2516 		}
2517 
2518 		hasha = key_block(c, &sa->key);
2519 		hashb = key_block(c, &sb->key);
2520 
2521 		if (hasha > hashb) {
2522 			ubifs_err("larger hash %u goes before %u",
2523 				  hasha, hashb);
2524 			goto error_dump;
2525 		}
2526 	}
2527 
2528 	return 0;
2529 
2530 error_dump:
2531 	ubifs_msg("dumping first node");
2532 	dbg_dump_node(c, sa->node);
2533 	ubifs_msg("dumping second node");
2534 	dbg_dump_node(c, sb->node);
2535 	return -EINVAL;
2536 	return 0;
2537 }
2538 
2539 static inline int chance(unsigned int n, unsigned int out_of)
2540 {
2541 	return !!((random32() % out_of) + 1 <= n);
2542 
2543 }
2544 
2545 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2546 {
2547 	struct ubifs_debug_info *d = c->dbg;
2548 
2549 	ubifs_assert(dbg_is_tst_rcvry(c));
2550 
2551 	if (!d->pc_cnt) {
2552 		/* First call - decide delay to the power cut */
2553 		if (chance(1, 2)) {
2554 			unsigned long delay;
2555 
2556 			if (chance(1, 2)) {
2557 				d->pc_delay = 1;
2558 				/* Fail withing 1 minute */
2559 				delay = random32() % 60000;
2560 				d->pc_timeout = jiffies;
2561 				d->pc_timeout += msecs_to_jiffies(delay);
2562 				ubifs_warn("failing after %lums", delay);
2563 			} else {
2564 				d->pc_delay = 2;
2565 				delay = random32() % 10000;
2566 				/* Fail within 10000 operations */
2567 				d->pc_cnt_max = delay;
2568 				ubifs_warn("failing after %lu calls", delay);
2569 			}
2570 		}
2571 
2572 		d->pc_cnt += 1;
2573 	}
2574 
2575 	/* Determine if failure delay has expired */
2576 	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2577 			return 0;
2578 	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2579 			return 0;
2580 
2581 	if (lnum == UBIFS_SB_LNUM) {
2582 		if (write && chance(1, 2))
2583 			return 0;
2584 		if (chance(19, 20))
2585 			return 0;
2586 		ubifs_warn("failing in super block LEB %d", lnum);
2587 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2588 		if (chance(19, 20))
2589 			return 0;
2590 		ubifs_warn("failing in master LEB %d", lnum);
2591 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2592 		if (write && chance(99, 100))
2593 			return 0;
2594 		if (chance(399, 400))
2595 			return 0;
2596 		ubifs_warn("failing in log LEB %d", lnum);
2597 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2598 		if (write && chance(7, 8))
2599 			return 0;
2600 		if (chance(19, 20))
2601 			return 0;
2602 		ubifs_warn("failing in LPT LEB %d", lnum);
2603 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2604 		if (write && chance(1, 2))
2605 			return 0;
2606 		if (chance(9, 10))
2607 			return 0;
2608 		ubifs_warn("failing in orphan LEB %d", lnum);
2609 	} else if (lnum == c->ihead_lnum) {
2610 		if (chance(99, 100))
2611 			return 0;
2612 		ubifs_warn("failing in index head LEB %d", lnum);
2613 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2614 		if (chance(9, 10))
2615 			return 0;
2616 		ubifs_warn("failing in GC head LEB %d", lnum);
2617 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2618 		   !ubifs_search_bud(c, lnum)) {
2619 		if (chance(19, 20))
2620 			return 0;
2621 		ubifs_warn("failing in non-bud LEB %d", lnum);
2622 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2623 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2624 		if (chance(999, 1000))
2625 			return 0;
2626 		ubifs_warn("failing in bud LEB %d commit running", lnum);
2627 	} else {
2628 		if (chance(9999, 10000))
2629 			return 0;
2630 		ubifs_warn("failing in bud LEB %d commit not running", lnum);
2631 	}
2632 
2633 	d->pc_happened = 1;
2634 	ubifs_warn("========== Power cut emulated ==========");
2635 	dump_stack();
2636 	return 1;
2637 }
2638 
2639 static void cut_data(const void *buf, unsigned int len)
2640 {
2641 	unsigned int from, to, i, ffs = chance(1, 2);
2642 	unsigned char *p = (void *)buf;
2643 
2644 	from = random32() % (len + 1);
2645 	if (chance(1, 2))
2646 		to = random32() % (len - from + 1);
2647 	else
2648 		to = len;
2649 
2650 	if (from < to)
2651 		ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2652 			   ffs ? "0xFFs" : "random data");
2653 
2654 	if (ffs)
2655 		for (i = from; i < to; i++)
2656 			p[i] = 0xFF;
2657 	else
2658 		for (i = from; i < to; i++)
2659 			p[i] = random32() % 0x100;
2660 }
2661 
2662 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2663 		  int offs, int len, int dtype)
2664 {
2665 	int err, failing;
2666 
2667 	if (c->dbg->pc_happened)
2668 		return -EROFS;
2669 
2670 	failing = power_cut_emulated(c, lnum, 1);
2671 	if (failing)
2672 		cut_data(buf, len);
2673 	err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype);
2674 	if (err)
2675 		return err;
2676 	if (failing)
2677 		return -EROFS;
2678 	return 0;
2679 }
2680 
2681 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2682 		   int len, int dtype)
2683 {
2684 	int err;
2685 
2686 	if (c->dbg->pc_happened)
2687 		return -EROFS;
2688 	if (power_cut_emulated(c, lnum, 1))
2689 		return -EROFS;
2690 	err = ubi_leb_change(c->ubi, lnum, buf, len, dtype);
2691 	if (err)
2692 		return err;
2693 	if (power_cut_emulated(c, lnum, 1))
2694 		return -EROFS;
2695 	return 0;
2696 }
2697 
2698 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2699 {
2700 	int err;
2701 
2702 	if (c->dbg->pc_happened)
2703 		return -EROFS;
2704 	if (power_cut_emulated(c, lnum, 0))
2705 		return -EROFS;
2706 	err = ubi_leb_unmap(c->ubi, lnum);
2707 	if (err)
2708 		return err;
2709 	if (power_cut_emulated(c, lnum, 0))
2710 		return -EROFS;
2711 	return 0;
2712 }
2713 
2714 int dbg_leb_map(struct ubifs_info *c, int lnum, int dtype)
2715 {
2716 	int err;
2717 
2718 	if (c->dbg->pc_happened)
2719 		return -EROFS;
2720 	if (power_cut_emulated(c, lnum, 0))
2721 		return -EROFS;
2722 	err = ubi_leb_map(c->ubi, lnum, dtype);
2723 	if (err)
2724 		return err;
2725 	if (power_cut_emulated(c, lnum, 0))
2726 		return -EROFS;
2727 	return 0;
2728 }
2729 
2730 /*
2731  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2732  * contain the stuff specific to particular file-system mounts.
2733  */
2734 static struct dentry *dfs_rootdir;
2735 
2736 static int dfs_file_open(struct inode *inode, struct file *file)
2737 {
2738 	file->private_data = inode->i_private;
2739 	return nonseekable_open(inode, file);
2740 }
2741 
2742 /**
2743  * provide_user_output - provide output to the user reading a debugfs file.
2744  * @val: boolean value for the answer
2745  * @u: the buffer to store the answer at
2746  * @count: size of the buffer
2747  * @ppos: position in the @u output buffer
2748  *
2749  * This is a simple helper function which stores @val boolean value in the user
2750  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2751  * bytes written to @u in case of success and a negative error code in case of
2752  * failure.
2753  */
2754 static int provide_user_output(int val, char __user *u, size_t count,
2755 			       loff_t *ppos)
2756 {
2757 	char buf[3];
2758 
2759 	if (val)
2760 		buf[0] = '1';
2761 	else
2762 		buf[0] = '0';
2763 	buf[1] = '\n';
2764 	buf[2] = 0x00;
2765 
2766 	return simple_read_from_buffer(u, count, ppos, buf, 2);
2767 }
2768 
2769 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2770 			     loff_t *ppos)
2771 {
2772 	struct dentry *dent = file->f_path.dentry;
2773 	struct ubifs_info *c = file->private_data;
2774 	struct ubifs_debug_info *d = c->dbg;
2775 	int val;
2776 
2777 	if (dent == d->dfs_chk_gen)
2778 		val = d->chk_gen;
2779 	else if (dent == d->dfs_chk_index)
2780 		val = d->chk_index;
2781 	else if (dent == d->dfs_chk_orph)
2782 		val = d->chk_orph;
2783 	else if (dent == d->dfs_chk_lprops)
2784 		val = d->chk_lprops;
2785 	else if (dent == d->dfs_chk_fs)
2786 		val = d->chk_fs;
2787 	else if (dent == d->dfs_tst_rcvry)
2788 		val = d->tst_rcvry;
2789 	else
2790 		return -EINVAL;
2791 
2792 	return provide_user_output(val, u, count, ppos);
2793 }
2794 
2795 /**
2796  * interpret_user_input - interpret user debugfs file input.
2797  * @u: user-provided buffer with the input
2798  * @count: buffer size
2799  *
2800  * This is a helper function which interpret user input to a boolean UBIFS
2801  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2802  * in case of failure.
2803  */
2804 static int interpret_user_input(const char __user *u, size_t count)
2805 {
2806 	size_t buf_size;
2807 	char buf[8];
2808 
2809 	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2810 	if (copy_from_user(buf, u, buf_size))
2811 		return -EFAULT;
2812 
2813 	if (buf[0] == '1')
2814 		return 1;
2815 	else if (buf[0] == '0')
2816 		return 0;
2817 
2818 	return -EINVAL;
2819 }
2820 
2821 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2822 			      size_t count, loff_t *ppos)
2823 {
2824 	struct ubifs_info *c = file->private_data;
2825 	struct ubifs_debug_info *d = c->dbg;
2826 	struct dentry *dent = file->f_path.dentry;
2827 	int val;
2828 
2829 	/*
2830 	 * TODO: this is racy - the file-system might have already been
2831 	 * unmounted and we'd oops in this case. The plan is to fix it with
2832 	 * help of 'iterate_supers_type()' which we should have in v3.0: when
2833 	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2834 	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2835 	 * superblocks and fine the one with the same UUID, and take the
2836 	 * locking right.
2837 	 *
2838 	 * The other way to go suggested by Al Viro is to create a separate
2839 	 * 'ubifs-debug' file-system instead.
2840 	 */
2841 	if (file->f_path.dentry == d->dfs_dump_lprops) {
2842 		dbg_dump_lprops(c);
2843 		return count;
2844 	}
2845 	if (file->f_path.dentry == d->dfs_dump_budg) {
2846 		dbg_dump_budg(c, &c->bi);
2847 		return count;
2848 	}
2849 	if (file->f_path.dentry == d->dfs_dump_tnc) {
2850 		mutex_lock(&c->tnc_mutex);
2851 		dbg_dump_tnc(c);
2852 		mutex_unlock(&c->tnc_mutex);
2853 		return count;
2854 	}
2855 
2856 	val = interpret_user_input(u, count);
2857 	if (val < 0)
2858 		return val;
2859 
2860 	if (dent == d->dfs_chk_gen)
2861 		d->chk_gen = val;
2862 	else if (dent == d->dfs_chk_index)
2863 		d->chk_index = val;
2864 	else if (dent == d->dfs_chk_orph)
2865 		d->chk_orph = val;
2866 	else if (dent == d->dfs_chk_lprops)
2867 		d->chk_lprops = val;
2868 	else if (dent == d->dfs_chk_fs)
2869 		d->chk_fs = val;
2870 	else if (dent == d->dfs_tst_rcvry)
2871 		d->tst_rcvry = val;
2872 	else
2873 		return -EINVAL;
2874 
2875 	return count;
2876 }
2877 
2878 static const struct file_operations dfs_fops = {
2879 	.open = dfs_file_open,
2880 	.read = dfs_file_read,
2881 	.write = dfs_file_write,
2882 	.owner = THIS_MODULE,
2883 	.llseek = no_llseek,
2884 };
2885 
2886 /**
2887  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2888  * @c: UBIFS file-system description object
2889  *
2890  * This function creates all debugfs files for this instance of UBIFS. Returns
2891  * zero in case of success and a negative error code in case of failure.
2892  *
2893  * Note, the only reason we have not merged this function with the
2894  * 'ubifs_debugging_init()' function is because it is better to initialize
2895  * debugfs interfaces at the very end of the mount process, and remove them at
2896  * the very beginning of the mount process.
2897  */
2898 int dbg_debugfs_init_fs(struct ubifs_info *c)
2899 {
2900 	int err, n;
2901 	const char *fname;
2902 	struct dentry *dent;
2903 	struct ubifs_debug_info *d = c->dbg;
2904 
2905 	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2906 		     c->vi.ubi_num, c->vi.vol_id);
2907 	if (n == UBIFS_DFS_DIR_LEN) {
2908 		/* The array size is too small */
2909 		fname = UBIFS_DFS_DIR_NAME;
2910 		dent = ERR_PTR(-EINVAL);
2911 		goto out;
2912 	}
2913 
2914 	fname = d->dfs_dir_name;
2915 	dent = debugfs_create_dir(fname, dfs_rootdir);
2916 	if (IS_ERR_OR_NULL(dent))
2917 		goto out;
2918 	d->dfs_dir = dent;
2919 
2920 	fname = "dump_lprops";
2921 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2922 	if (IS_ERR_OR_NULL(dent))
2923 		goto out_remove;
2924 	d->dfs_dump_lprops = dent;
2925 
2926 	fname = "dump_budg";
2927 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2928 	if (IS_ERR_OR_NULL(dent))
2929 		goto out_remove;
2930 	d->dfs_dump_budg = dent;
2931 
2932 	fname = "dump_tnc";
2933 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2934 	if (IS_ERR_OR_NULL(dent))
2935 		goto out_remove;
2936 	d->dfs_dump_tnc = dent;
2937 
2938 	fname = "chk_general";
2939 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2940 				   &dfs_fops);
2941 	if (IS_ERR_OR_NULL(dent))
2942 		goto out_remove;
2943 	d->dfs_chk_gen = dent;
2944 
2945 	fname = "chk_index";
2946 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2947 				   &dfs_fops);
2948 	if (IS_ERR_OR_NULL(dent))
2949 		goto out_remove;
2950 	d->dfs_chk_index = dent;
2951 
2952 	fname = "chk_orphans";
2953 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2954 				   &dfs_fops);
2955 	if (IS_ERR_OR_NULL(dent))
2956 		goto out_remove;
2957 	d->dfs_chk_orph = dent;
2958 
2959 	fname = "chk_lprops";
2960 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2961 				   &dfs_fops);
2962 	if (IS_ERR_OR_NULL(dent))
2963 		goto out_remove;
2964 	d->dfs_chk_lprops = dent;
2965 
2966 	fname = "chk_fs";
2967 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2968 				   &dfs_fops);
2969 	if (IS_ERR_OR_NULL(dent))
2970 		goto out_remove;
2971 	d->dfs_chk_fs = dent;
2972 
2973 	fname = "tst_recovery";
2974 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2975 				   &dfs_fops);
2976 	if (IS_ERR_OR_NULL(dent))
2977 		goto out_remove;
2978 	d->dfs_tst_rcvry = dent;
2979 
2980 	return 0;
2981 
2982 out_remove:
2983 	debugfs_remove_recursive(d->dfs_dir);
2984 out:
2985 	err = dent ? PTR_ERR(dent) : -ENODEV;
2986 	ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
2987 		  fname, err);
2988 	return err;
2989 }
2990 
2991 /**
2992  * dbg_debugfs_exit_fs - remove all debugfs files.
2993  * @c: UBIFS file-system description object
2994  */
2995 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2996 {
2997 	debugfs_remove_recursive(c->dbg->dfs_dir);
2998 }
2999 
3000 struct ubifs_global_debug_info ubifs_dbg;
3001 
3002 static struct dentry *dfs_chk_gen;
3003 static struct dentry *dfs_chk_index;
3004 static struct dentry *dfs_chk_orph;
3005 static struct dentry *dfs_chk_lprops;
3006 static struct dentry *dfs_chk_fs;
3007 static struct dentry *dfs_tst_rcvry;
3008 
3009 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3010 				    size_t count, loff_t *ppos)
3011 {
3012 	struct dentry *dent = file->f_path.dentry;
3013 	int val;
3014 
3015 	if (dent == dfs_chk_gen)
3016 		val = ubifs_dbg.chk_gen;
3017 	else if (dent == dfs_chk_index)
3018 		val = ubifs_dbg.chk_index;
3019 	else if (dent == dfs_chk_orph)
3020 		val = ubifs_dbg.chk_orph;
3021 	else if (dent == dfs_chk_lprops)
3022 		val = ubifs_dbg.chk_lprops;
3023 	else if (dent == dfs_chk_fs)
3024 		val = ubifs_dbg.chk_fs;
3025 	else if (dent == dfs_tst_rcvry)
3026 		val = ubifs_dbg.tst_rcvry;
3027 	else
3028 		return -EINVAL;
3029 
3030 	return provide_user_output(val, u, count, ppos);
3031 }
3032 
3033 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3034 				     size_t count, loff_t *ppos)
3035 {
3036 	struct dentry *dent = file->f_path.dentry;
3037 	int val;
3038 
3039 	val = interpret_user_input(u, count);
3040 	if (val < 0)
3041 		return val;
3042 
3043 	if (dent == dfs_chk_gen)
3044 		ubifs_dbg.chk_gen = val;
3045 	else if (dent == dfs_chk_index)
3046 		ubifs_dbg.chk_index = val;
3047 	else if (dent == dfs_chk_orph)
3048 		ubifs_dbg.chk_orph = val;
3049 	else if (dent == dfs_chk_lprops)
3050 		ubifs_dbg.chk_lprops = val;
3051 	else if (dent == dfs_chk_fs)
3052 		ubifs_dbg.chk_fs = val;
3053 	else if (dent == dfs_tst_rcvry)
3054 		ubifs_dbg.tst_rcvry = val;
3055 	else
3056 		return -EINVAL;
3057 
3058 	return count;
3059 }
3060 
3061 static const struct file_operations dfs_global_fops = {
3062 	.read = dfs_global_file_read,
3063 	.write = dfs_global_file_write,
3064 	.owner = THIS_MODULE,
3065 	.llseek = no_llseek,
3066 };
3067 
3068 /**
3069  * dbg_debugfs_init - initialize debugfs file-system.
3070  *
3071  * UBIFS uses debugfs file-system to expose various debugging knobs to
3072  * user-space. This function creates "ubifs" directory in the debugfs
3073  * file-system. Returns zero in case of success and a negative error code in
3074  * case of failure.
3075  */
3076 int dbg_debugfs_init(void)
3077 {
3078 	int err;
3079 	const char *fname;
3080 	struct dentry *dent;
3081 
3082 	fname = "ubifs";
3083 	dent = debugfs_create_dir(fname, NULL);
3084 	if (IS_ERR_OR_NULL(dent))
3085 		goto out;
3086 	dfs_rootdir = dent;
3087 
3088 	fname = "chk_general";
3089 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3090 				   &dfs_global_fops);
3091 	if (IS_ERR_OR_NULL(dent))
3092 		goto out_remove;
3093 	dfs_chk_gen = dent;
3094 
3095 	fname = "chk_index";
3096 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3097 				   &dfs_global_fops);
3098 	if (IS_ERR_OR_NULL(dent))
3099 		goto out_remove;
3100 	dfs_chk_index = dent;
3101 
3102 	fname = "chk_orphans";
3103 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3104 				   &dfs_global_fops);
3105 	if (IS_ERR_OR_NULL(dent))
3106 		goto out_remove;
3107 	dfs_chk_orph = dent;
3108 
3109 	fname = "chk_lprops";
3110 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3111 				   &dfs_global_fops);
3112 	if (IS_ERR_OR_NULL(dent))
3113 		goto out_remove;
3114 	dfs_chk_lprops = dent;
3115 
3116 	fname = "chk_fs";
3117 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3118 				   &dfs_global_fops);
3119 	if (IS_ERR_OR_NULL(dent))
3120 		goto out_remove;
3121 	dfs_chk_fs = dent;
3122 
3123 	fname = "tst_recovery";
3124 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3125 				   &dfs_global_fops);
3126 	if (IS_ERR_OR_NULL(dent))
3127 		goto out_remove;
3128 	dfs_tst_rcvry = dent;
3129 
3130 	return 0;
3131 
3132 out_remove:
3133 	debugfs_remove_recursive(dfs_rootdir);
3134 out:
3135 	err = dent ? PTR_ERR(dent) : -ENODEV;
3136 	ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3137 		  fname, err);
3138 	return err;
3139 }
3140 
3141 /**
3142  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3143  */
3144 void dbg_debugfs_exit(void)
3145 {
3146 	debugfs_remove_recursive(dfs_rootdir);
3147 }
3148 
3149 /**
3150  * ubifs_debugging_init - initialize UBIFS debugging.
3151  * @c: UBIFS file-system description object
3152  *
3153  * This function initializes debugging-related data for the file system.
3154  * Returns zero in case of success and a negative error code in case of
3155  * failure.
3156  */
3157 int ubifs_debugging_init(struct ubifs_info *c)
3158 {
3159 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3160 	if (!c->dbg)
3161 		return -ENOMEM;
3162 
3163 	return 0;
3164 }
3165 
3166 /**
3167  * ubifs_debugging_exit - free debugging data.
3168  * @c: UBIFS file-system description object
3169  */
3170 void ubifs_debugging_exit(struct ubifs_info *c)
3171 {
3172 	kfree(c->dbg);
3173 }
3174 
3175 #endif /* CONFIG_UBIFS_FS_DEBUG */
3176