1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements most of the debugging stuff which is compiled in only 25 * when it is enabled. But some debugging check functions are implemented in 26 * corresponding subsystem, just because they are closely related and utilize 27 * various local functions of those subsystems. 28 */ 29 30 #include <linux/module.h> 31 #include <linux/debugfs.h> 32 #include <linux/math64.h> 33 #include <linux/uaccess.h> 34 #include <linux/random.h> 35 #include <linux/ctype.h> 36 #include "ubifs.h" 37 38 static DEFINE_SPINLOCK(dbg_lock); 39 40 static const char *get_key_fmt(int fmt) 41 { 42 switch (fmt) { 43 case UBIFS_SIMPLE_KEY_FMT: 44 return "simple"; 45 default: 46 return "unknown/invalid format"; 47 } 48 } 49 50 static const char *get_key_hash(int hash) 51 { 52 switch (hash) { 53 case UBIFS_KEY_HASH_R5: 54 return "R5"; 55 case UBIFS_KEY_HASH_TEST: 56 return "test"; 57 default: 58 return "unknown/invalid name hash"; 59 } 60 } 61 62 static const char *get_key_type(int type) 63 { 64 switch (type) { 65 case UBIFS_INO_KEY: 66 return "inode"; 67 case UBIFS_DENT_KEY: 68 return "direntry"; 69 case UBIFS_XENT_KEY: 70 return "xentry"; 71 case UBIFS_DATA_KEY: 72 return "data"; 73 case UBIFS_TRUN_KEY: 74 return "truncate"; 75 default: 76 return "unknown/invalid key"; 77 } 78 } 79 80 static const char *get_dent_type(int type) 81 { 82 switch (type) { 83 case UBIFS_ITYPE_REG: 84 return "file"; 85 case UBIFS_ITYPE_DIR: 86 return "dir"; 87 case UBIFS_ITYPE_LNK: 88 return "symlink"; 89 case UBIFS_ITYPE_BLK: 90 return "blkdev"; 91 case UBIFS_ITYPE_CHR: 92 return "char dev"; 93 case UBIFS_ITYPE_FIFO: 94 return "fifo"; 95 case UBIFS_ITYPE_SOCK: 96 return "socket"; 97 default: 98 return "unknown/invalid type"; 99 } 100 } 101 102 const char *dbg_snprintf_key(const struct ubifs_info *c, 103 const union ubifs_key *key, char *buffer, int len) 104 { 105 char *p = buffer; 106 int type = key_type(c, key); 107 108 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 109 switch (type) { 110 case UBIFS_INO_KEY: 111 len -= snprintf(p, len, "(%lu, %s)", 112 (unsigned long)key_inum(c, key), 113 get_key_type(type)); 114 break; 115 case UBIFS_DENT_KEY: 116 case UBIFS_XENT_KEY: 117 len -= snprintf(p, len, "(%lu, %s, %#08x)", 118 (unsigned long)key_inum(c, key), 119 get_key_type(type), key_hash(c, key)); 120 break; 121 case UBIFS_DATA_KEY: 122 len -= snprintf(p, len, "(%lu, %s, %u)", 123 (unsigned long)key_inum(c, key), 124 get_key_type(type), key_block(c, key)); 125 break; 126 case UBIFS_TRUN_KEY: 127 len -= snprintf(p, len, "(%lu, %s)", 128 (unsigned long)key_inum(c, key), 129 get_key_type(type)); 130 break; 131 default: 132 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)", 133 key->u32[0], key->u32[1]); 134 } 135 } else 136 len -= snprintf(p, len, "bad key format %d", c->key_fmt); 137 ubifs_assert(c, len > 0); 138 return p; 139 } 140 141 const char *dbg_ntype(int type) 142 { 143 switch (type) { 144 case UBIFS_PAD_NODE: 145 return "padding node"; 146 case UBIFS_SB_NODE: 147 return "superblock node"; 148 case UBIFS_MST_NODE: 149 return "master node"; 150 case UBIFS_REF_NODE: 151 return "reference node"; 152 case UBIFS_INO_NODE: 153 return "inode node"; 154 case UBIFS_DENT_NODE: 155 return "direntry node"; 156 case UBIFS_XENT_NODE: 157 return "xentry node"; 158 case UBIFS_DATA_NODE: 159 return "data node"; 160 case UBIFS_TRUN_NODE: 161 return "truncate node"; 162 case UBIFS_IDX_NODE: 163 return "indexing node"; 164 case UBIFS_CS_NODE: 165 return "commit start node"; 166 case UBIFS_ORPH_NODE: 167 return "orphan node"; 168 case UBIFS_AUTH_NODE: 169 return "auth node"; 170 default: 171 return "unknown node"; 172 } 173 } 174 175 static const char *dbg_gtype(int type) 176 { 177 switch (type) { 178 case UBIFS_NO_NODE_GROUP: 179 return "no node group"; 180 case UBIFS_IN_NODE_GROUP: 181 return "in node group"; 182 case UBIFS_LAST_OF_NODE_GROUP: 183 return "last of node group"; 184 default: 185 return "unknown"; 186 } 187 } 188 189 const char *dbg_cstate(int cmt_state) 190 { 191 switch (cmt_state) { 192 case COMMIT_RESTING: 193 return "commit resting"; 194 case COMMIT_BACKGROUND: 195 return "background commit requested"; 196 case COMMIT_REQUIRED: 197 return "commit required"; 198 case COMMIT_RUNNING_BACKGROUND: 199 return "BACKGROUND commit running"; 200 case COMMIT_RUNNING_REQUIRED: 201 return "commit running and required"; 202 case COMMIT_BROKEN: 203 return "broken commit"; 204 default: 205 return "unknown commit state"; 206 } 207 } 208 209 const char *dbg_jhead(int jhead) 210 { 211 switch (jhead) { 212 case GCHD: 213 return "0 (GC)"; 214 case BASEHD: 215 return "1 (base)"; 216 case DATAHD: 217 return "2 (data)"; 218 default: 219 return "unknown journal head"; 220 } 221 } 222 223 static void dump_ch(const struct ubifs_ch *ch) 224 { 225 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic)); 226 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc)); 227 pr_err("\tnode_type %d (%s)\n", ch->node_type, 228 dbg_ntype(ch->node_type)); 229 pr_err("\tgroup_type %d (%s)\n", ch->group_type, 230 dbg_gtype(ch->group_type)); 231 pr_err("\tsqnum %llu\n", 232 (unsigned long long)le64_to_cpu(ch->sqnum)); 233 pr_err("\tlen %u\n", le32_to_cpu(ch->len)); 234 } 235 236 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode) 237 { 238 const struct ubifs_inode *ui = ubifs_inode(inode); 239 struct fscrypt_name nm = {0}; 240 union ubifs_key key; 241 struct ubifs_dent_node *dent, *pdent = NULL; 242 int count = 2; 243 244 pr_err("Dump in-memory inode:"); 245 pr_err("\tinode %lu\n", inode->i_ino); 246 pr_err("\tsize %llu\n", 247 (unsigned long long)i_size_read(inode)); 248 pr_err("\tnlink %u\n", inode->i_nlink); 249 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode)); 250 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode)); 251 pr_err("\tatime %u.%u\n", 252 (unsigned int)inode->i_atime.tv_sec, 253 (unsigned int)inode->i_atime.tv_nsec); 254 pr_err("\tmtime %u.%u\n", 255 (unsigned int)inode->i_mtime.tv_sec, 256 (unsigned int)inode->i_mtime.tv_nsec); 257 pr_err("\tctime %u.%u\n", 258 (unsigned int)inode->i_ctime.tv_sec, 259 (unsigned int)inode->i_ctime.tv_nsec); 260 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum); 261 pr_err("\txattr_size %u\n", ui->xattr_size); 262 pr_err("\txattr_cnt %u\n", ui->xattr_cnt); 263 pr_err("\txattr_names %u\n", ui->xattr_names); 264 pr_err("\tdirty %u\n", ui->dirty); 265 pr_err("\txattr %u\n", ui->xattr); 266 pr_err("\tbulk_read %u\n", ui->bulk_read); 267 pr_err("\tsynced_i_size %llu\n", 268 (unsigned long long)ui->synced_i_size); 269 pr_err("\tui_size %llu\n", 270 (unsigned long long)ui->ui_size); 271 pr_err("\tflags %d\n", ui->flags); 272 pr_err("\tcompr_type %d\n", ui->compr_type); 273 pr_err("\tlast_page_read %lu\n", ui->last_page_read); 274 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row); 275 pr_err("\tdata_len %d\n", ui->data_len); 276 277 if (!S_ISDIR(inode->i_mode)) 278 return; 279 280 pr_err("List of directory entries:\n"); 281 ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex)); 282 283 lowest_dent_key(c, &key, inode->i_ino); 284 while (1) { 285 dent = ubifs_tnc_next_ent(c, &key, &nm); 286 if (IS_ERR(dent)) { 287 if (PTR_ERR(dent) != -ENOENT) 288 pr_err("error %ld\n", PTR_ERR(dent)); 289 break; 290 } 291 292 pr_err("\t%d: inode %llu, type %s, len %d\n", 293 count++, (unsigned long long) le64_to_cpu(dent->inum), 294 get_dent_type(dent->type), 295 le16_to_cpu(dent->nlen)); 296 297 fname_name(&nm) = dent->name; 298 fname_len(&nm) = le16_to_cpu(dent->nlen); 299 kfree(pdent); 300 pdent = dent; 301 key_read(c, &dent->key, &key); 302 } 303 kfree(pdent); 304 } 305 306 void ubifs_dump_node(const struct ubifs_info *c, const void *node) 307 { 308 int i, n; 309 union ubifs_key key; 310 const struct ubifs_ch *ch = node; 311 char key_buf[DBG_KEY_BUF_LEN]; 312 313 /* If the magic is incorrect, just hexdump the first bytes */ 314 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 315 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ); 316 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, 317 (void *)node, UBIFS_CH_SZ, 1); 318 return; 319 } 320 321 spin_lock(&dbg_lock); 322 dump_ch(node); 323 324 switch (ch->node_type) { 325 case UBIFS_PAD_NODE: 326 { 327 const struct ubifs_pad_node *pad = node; 328 329 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len)); 330 break; 331 } 332 case UBIFS_SB_NODE: 333 { 334 const struct ubifs_sb_node *sup = node; 335 unsigned int sup_flags = le32_to_cpu(sup->flags); 336 337 pr_err("\tkey_hash %d (%s)\n", 338 (int)sup->key_hash, get_key_hash(sup->key_hash)); 339 pr_err("\tkey_fmt %d (%s)\n", 340 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 341 pr_err("\tflags %#x\n", sup_flags); 342 pr_err("\tbig_lpt %u\n", 343 !!(sup_flags & UBIFS_FLG_BIGLPT)); 344 pr_err("\tspace_fixup %u\n", 345 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); 346 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size)); 347 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size)); 348 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt)); 349 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt)); 350 pr_err("\tmax_bud_bytes %llu\n", 351 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 352 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs)); 353 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs)); 354 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs)); 355 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt)); 356 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout)); 357 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt)); 358 pr_err("\tdefault_compr %u\n", 359 (int)le16_to_cpu(sup->default_compr)); 360 pr_err("\trp_size %llu\n", 361 (unsigned long long)le64_to_cpu(sup->rp_size)); 362 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid)); 363 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid)); 364 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version)); 365 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran)); 366 pr_err("\tUUID %pUB\n", sup->uuid); 367 break; 368 } 369 case UBIFS_MST_NODE: 370 { 371 const struct ubifs_mst_node *mst = node; 372 373 pr_err("\thighest_inum %llu\n", 374 (unsigned long long)le64_to_cpu(mst->highest_inum)); 375 pr_err("\tcommit number %llu\n", 376 (unsigned long long)le64_to_cpu(mst->cmt_no)); 377 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags)); 378 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum)); 379 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum)); 380 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs)); 381 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len)); 382 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum)); 383 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum)); 384 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs)); 385 pr_err("\tindex_size %llu\n", 386 (unsigned long long)le64_to_cpu(mst->index_size)); 387 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum)); 388 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs)); 389 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum)); 390 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs)); 391 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum)); 392 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs)); 393 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum)); 394 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs)); 395 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum)); 396 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt)); 397 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs)); 398 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs)); 399 pr_err("\ttotal_free %llu\n", 400 (unsigned long long)le64_to_cpu(mst->total_free)); 401 pr_err("\ttotal_dirty %llu\n", 402 (unsigned long long)le64_to_cpu(mst->total_dirty)); 403 pr_err("\ttotal_used %llu\n", 404 (unsigned long long)le64_to_cpu(mst->total_used)); 405 pr_err("\ttotal_dead %llu\n", 406 (unsigned long long)le64_to_cpu(mst->total_dead)); 407 pr_err("\ttotal_dark %llu\n", 408 (unsigned long long)le64_to_cpu(mst->total_dark)); 409 break; 410 } 411 case UBIFS_REF_NODE: 412 { 413 const struct ubifs_ref_node *ref = node; 414 415 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum)); 416 pr_err("\toffs %u\n", le32_to_cpu(ref->offs)); 417 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead)); 418 break; 419 } 420 case UBIFS_INO_NODE: 421 { 422 const struct ubifs_ino_node *ino = node; 423 424 key_read(c, &ino->key, &key); 425 pr_err("\tkey %s\n", 426 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 427 pr_err("\tcreat_sqnum %llu\n", 428 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 429 pr_err("\tsize %llu\n", 430 (unsigned long long)le64_to_cpu(ino->size)); 431 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink)); 432 pr_err("\tatime %lld.%u\n", 433 (long long)le64_to_cpu(ino->atime_sec), 434 le32_to_cpu(ino->atime_nsec)); 435 pr_err("\tmtime %lld.%u\n", 436 (long long)le64_to_cpu(ino->mtime_sec), 437 le32_to_cpu(ino->mtime_nsec)); 438 pr_err("\tctime %lld.%u\n", 439 (long long)le64_to_cpu(ino->ctime_sec), 440 le32_to_cpu(ino->ctime_nsec)); 441 pr_err("\tuid %u\n", le32_to_cpu(ino->uid)); 442 pr_err("\tgid %u\n", le32_to_cpu(ino->gid)); 443 pr_err("\tmode %u\n", le32_to_cpu(ino->mode)); 444 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags)); 445 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt)); 446 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size)); 447 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names)); 448 pr_err("\tcompr_type %#x\n", 449 (int)le16_to_cpu(ino->compr_type)); 450 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len)); 451 break; 452 } 453 case UBIFS_DENT_NODE: 454 case UBIFS_XENT_NODE: 455 { 456 const struct ubifs_dent_node *dent = node; 457 int nlen = le16_to_cpu(dent->nlen); 458 459 key_read(c, &dent->key, &key); 460 pr_err("\tkey %s\n", 461 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 462 pr_err("\tinum %llu\n", 463 (unsigned long long)le64_to_cpu(dent->inum)); 464 pr_err("\ttype %d\n", (int)dent->type); 465 pr_err("\tnlen %d\n", nlen); 466 pr_err("\tname "); 467 468 if (nlen > UBIFS_MAX_NLEN) 469 pr_err("(bad name length, not printing, bad or corrupted node)"); 470 else { 471 for (i = 0; i < nlen && dent->name[i]; i++) 472 pr_cont("%c", isprint(dent->name[i]) ? 473 dent->name[i] : '?'); 474 } 475 pr_cont("\n"); 476 477 break; 478 } 479 case UBIFS_DATA_NODE: 480 { 481 const struct ubifs_data_node *dn = node; 482 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 483 484 key_read(c, &dn->key, &key); 485 pr_err("\tkey %s\n", 486 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 487 pr_err("\tsize %u\n", le32_to_cpu(dn->size)); 488 pr_err("\tcompr_typ %d\n", 489 (int)le16_to_cpu(dn->compr_type)); 490 pr_err("\tdata size %d\n", dlen); 491 pr_err("\tdata:\n"); 492 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1, 493 (void *)&dn->data, dlen, 0); 494 break; 495 } 496 case UBIFS_TRUN_NODE: 497 { 498 const struct ubifs_trun_node *trun = node; 499 500 pr_err("\tinum %u\n", le32_to_cpu(trun->inum)); 501 pr_err("\told_size %llu\n", 502 (unsigned long long)le64_to_cpu(trun->old_size)); 503 pr_err("\tnew_size %llu\n", 504 (unsigned long long)le64_to_cpu(trun->new_size)); 505 break; 506 } 507 case UBIFS_IDX_NODE: 508 { 509 const struct ubifs_idx_node *idx = node; 510 511 n = le16_to_cpu(idx->child_cnt); 512 pr_err("\tchild_cnt %d\n", n); 513 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level)); 514 pr_err("\tBranches:\n"); 515 516 for (i = 0; i < n && i < c->fanout - 1; i++) { 517 const struct ubifs_branch *br; 518 519 br = ubifs_idx_branch(c, idx, i); 520 key_read(c, &br->key, &key); 521 pr_err("\t%d: LEB %d:%d len %d key %s\n", 522 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 523 le32_to_cpu(br->len), 524 dbg_snprintf_key(c, &key, key_buf, 525 DBG_KEY_BUF_LEN)); 526 } 527 break; 528 } 529 case UBIFS_CS_NODE: 530 break; 531 case UBIFS_ORPH_NODE: 532 { 533 const struct ubifs_orph_node *orph = node; 534 535 pr_err("\tcommit number %llu\n", 536 (unsigned long long) 537 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 538 pr_err("\tlast node flag %llu\n", 539 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 540 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 541 pr_err("\t%d orphan inode numbers:\n", n); 542 for (i = 0; i < n; i++) 543 pr_err("\t ino %llu\n", 544 (unsigned long long)le64_to_cpu(orph->inos[i])); 545 break; 546 } 547 case UBIFS_AUTH_NODE: 548 { 549 break; 550 } 551 default: 552 pr_err("node type %d was not recognized\n", 553 (int)ch->node_type); 554 } 555 spin_unlock(&dbg_lock); 556 } 557 558 void ubifs_dump_budget_req(const struct ubifs_budget_req *req) 559 { 560 spin_lock(&dbg_lock); 561 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n", 562 req->new_ino, req->dirtied_ino); 563 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n", 564 req->new_ino_d, req->dirtied_ino_d); 565 pr_err("\tnew_page %d, dirtied_page %d\n", 566 req->new_page, req->dirtied_page); 567 pr_err("\tnew_dent %d, mod_dent %d\n", 568 req->new_dent, req->mod_dent); 569 pr_err("\tidx_growth %d\n", req->idx_growth); 570 pr_err("\tdata_growth %d dd_growth %d\n", 571 req->data_growth, req->dd_growth); 572 spin_unlock(&dbg_lock); 573 } 574 575 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst) 576 { 577 spin_lock(&dbg_lock); 578 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n", 579 current->pid, lst->empty_lebs, lst->idx_lebs); 580 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n", 581 lst->taken_empty_lebs, lst->total_free, lst->total_dirty); 582 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n", 583 lst->total_used, lst->total_dark, lst->total_dead); 584 spin_unlock(&dbg_lock); 585 } 586 587 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 588 { 589 int i; 590 struct rb_node *rb; 591 struct ubifs_bud *bud; 592 struct ubifs_gced_idx_leb *idx_gc; 593 long long available, outstanding, free; 594 595 spin_lock(&c->space_lock); 596 spin_lock(&dbg_lock); 597 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n", 598 current->pid, bi->data_growth + bi->dd_growth, 599 bi->data_growth + bi->dd_growth + bi->idx_growth); 600 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n", 601 bi->data_growth, bi->dd_growth, bi->idx_growth); 602 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n", 603 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx); 604 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n", 605 bi->page_budget, bi->inode_budget, bi->dent_budget); 606 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp); 607 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 608 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 609 610 if (bi != &c->bi) 611 /* 612 * If we are dumping saved budgeting data, do not print 613 * additional information which is about the current state, not 614 * the old one which corresponded to the saved budgeting data. 615 */ 616 goto out_unlock; 617 618 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", 619 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); 620 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n", 621 atomic_long_read(&c->dirty_pg_cnt), 622 atomic_long_read(&c->dirty_zn_cnt), 623 atomic_long_read(&c->clean_zn_cnt)); 624 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum); 625 626 /* If we are in R/O mode, journal heads do not exist */ 627 if (c->jheads) 628 for (i = 0; i < c->jhead_cnt; i++) 629 pr_err("\tjhead %s\t LEB %d\n", 630 dbg_jhead(c->jheads[i].wbuf.jhead), 631 c->jheads[i].wbuf.lnum); 632 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 633 bud = rb_entry(rb, struct ubifs_bud, rb); 634 pr_err("\tbud LEB %d\n", bud->lnum); 635 } 636 list_for_each_entry(bud, &c->old_buds, list) 637 pr_err("\told bud LEB %d\n", bud->lnum); 638 list_for_each_entry(idx_gc, &c->idx_gc, list) 639 pr_err("\tGC'ed idx LEB %d unmap %d\n", 640 idx_gc->lnum, idx_gc->unmap); 641 pr_err("\tcommit state %d\n", c->cmt_state); 642 643 /* Print budgeting predictions */ 644 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 645 outstanding = c->bi.data_growth + c->bi.dd_growth; 646 free = ubifs_get_free_space_nolock(c); 647 pr_err("Budgeting predictions:\n"); 648 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n", 649 available, outstanding, free); 650 out_unlock: 651 spin_unlock(&dbg_lock); 652 spin_unlock(&c->space_lock); 653 } 654 655 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 656 { 657 int i, spc, dark = 0, dead = 0; 658 struct rb_node *rb; 659 struct ubifs_bud *bud; 660 661 spc = lp->free + lp->dirty; 662 if (spc < c->dead_wm) 663 dead = spc; 664 else 665 dark = ubifs_calc_dark(c, spc); 666 667 if (lp->flags & LPROPS_INDEX) 668 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (", 669 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 670 lp->flags); 671 else 672 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (", 673 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 674 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 675 676 if (lp->flags & LPROPS_TAKEN) { 677 if (lp->flags & LPROPS_INDEX) 678 pr_cont("index, taken"); 679 else 680 pr_cont("taken"); 681 } else { 682 const char *s; 683 684 if (lp->flags & LPROPS_INDEX) { 685 switch (lp->flags & LPROPS_CAT_MASK) { 686 case LPROPS_DIRTY_IDX: 687 s = "dirty index"; 688 break; 689 case LPROPS_FRDI_IDX: 690 s = "freeable index"; 691 break; 692 default: 693 s = "index"; 694 } 695 } else { 696 switch (lp->flags & LPROPS_CAT_MASK) { 697 case LPROPS_UNCAT: 698 s = "not categorized"; 699 break; 700 case LPROPS_DIRTY: 701 s = "dirty"; 702 break; 703 case LPROPS_FREE: 704 s = "free"; 705 break; 706 case LPROPS_EMPTY: 707 s = "empty"; 708 break; 709 case LPROPS_FREEABLE: 710 s = "freeable"; 711 break; 712 default: 713 s = NULL; 714 break; 715 } 716 } 717 pr_cont("%s", s); 718 } 719 720 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 721 bud = rb_entry(rb, struct ubifs_bud, rb); 722 if (bud->lnum == lp->lnum) { 723 int head = 0; 724 for (i = 0; i < c->jhead_cnt; i++) { 725 /* 726 * Note, if we are in R/O mode or in the middle 727 * of mounting/re-mounting, the write-buffers do 728 * not exist. 729 */ 730 if (c->jheads && 731 lp->lnum == c->jheads[i].wbuf.lnum) { 732 pr_cont(", jhead %s", dbg_jhead(i)); 733 head = 1; 734 } 735 } 736 if (!head) 737 pr_cont(", bud of jhead %s", 738 dbg_jhead(bud->jhead)); 739 } 740 } 741 if (lp->lnum == c->gc_lnum) 742 pr_cont(", GC LEB"); 743 pr_cont(")\n"); 744 } 745 746 void ubifs_dump_lprops(struct ubifs_info *c) 747 { 748 int lnum, err; 749 struct ubifs_lprops lp; 750 struct ubifs_lp_stats lst; 751 752 pr_err("(pid %d) start dumping LEB properties\n", current->pid); 753 ubifs_get_lp_stats(c, &lst); 754 ubifs_dump_lstats(&lst); 755 756 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 757 err = ubifs_read_one_lp(c, lnum, &lp); 758 if (err) { 759 ubifs_err(c, "cannot read lprops for LEB %d", lnum); 760 continue; 761 } 762 763 ubifs_dump_lprop(c, &lp); 764 } 765 pr_err("(pid %d) finish dumping LEB properties\n", current->pid); 766 } 767 768 void ubifs_dump_lpt_info(struct ubifs_info *c) 769 { 770 int i; 771 772 spin_lock(&dbg_lock); 773 pr_err("(pid %d) dumping LPT information\n", current->pid); 774 pr_err("\tlpt_sz: %lld\n", c->lpt_sz); 775 pr_err("\tpnode_sz: %d\n", c->pnode_sz); 776 pr_err("\tnnode_sz: %d\n", c->nnode_sz); 777 pr_err("\tltab_sz: %d\n", c->ltab_sz); 778 pr_err("\tlsave_sz: %d\n", c->lsave_sz); 779 pr_err("\tbig_lpt: %d\n", c->big_lpt); 780 pr_err("\tlpt_hght: %d\n", c->lpt_hght); 781 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt); 782 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt); 783 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 784 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 785 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt); 786 pr_err("\tspace_bits: %d\n", c->space_bits); 787 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 788 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 789 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 790 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits); 791 pr_err("\tlnum_bits: %d\n", c->lnum_bits); 792 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 793 pr_err("\tLPT head is at %d:%d\n", 794 c->nhead_lnum, c->nhead_offs); 795 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs); 796 if (c->big_lpt) 797 pr_err("\tLPT lsave is at %d:%d\n", 798 c->lsave_lnum, c->lsave_offs); 799 for (i = 0; i < c->lpt_lebs; i++) 800 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n", 801 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty, 802 c->ltab[i].tgc, c->ltab[i].cmt); 803 spin_unlock(&dbg_lock); 804 } 805 806 void ubifs_dump_sleb(const struct ubifs_info *c, 807 const struct ubifs_scan_leb *sleb, int offs) 808 { 809 struct ubifs_scan_node *snod; 810 811 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n", 812 current->pid, sleb->lnum, offs); 813 814 list_for_each_entry(snod, &sleb->nodes, list) { 815 cond_resched(); 816 pr_err("Dumping node at LEB %d:%d len %d\n", 817 sleb->lnum, snod->offs, snod->len); 818 ubifs_dump_node(c, snod->node); 819 } 820 } 821 822 void ubifs_dump_leb(const struct ubifs_info *c, int lnum) 823 { 824 struct ubifs_scan_leb *sleb; 825 struct ubifs_scan_node *snod; 826 void *buf; 827 828 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); 829 830 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 831 if (!buf) { 832 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum); 833 return; 834 } 835 836 sleb = ubifs_scan(c, lnum, 0, buf, 0); 837 if (IS_ERR(sleb)) { 838 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb)); 839 goto out; 840 } 841 842 pr_err("LEB %d has %d nodes ending at %d\n", lnum, 843 sleb->nodes_cnt, sleb->endpt); 844 845 list_for_each_entry(snod, &sleb->nodes, list) { 846 cond_resched(); 847 pr_err("Dumping node at LEB %d:%d len %d\n", lnum, 848 snod->offs, snod->len); 849 ubifs_dump_node(c, snod->node); 850 } 851 852 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); 853 ubifs_scan_destroy(sleb); 854 855 out: 856 vfree(buf); 857 return; 858 } 859 860 void ubifs_dump_znode(const struct ubifs_info *c, 861 const struct ubifs_znode *znode) 862 { 863 int n; 864 const struct ubifs_zbranch *zbr; 865 char key_buf[DBG_KEY_BUF_LEN]; 866 867 spin_lock(&dbg_lock); 868 if (znode->parent) 869 zbr = &znode->parent->zbranch[znode->iip]; 870 else 871 zbr = &c->zroot; 872 873 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n", 874 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip, 875 znode->level, znode->child_cnt, znode->flags); 876 877 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 878 spin_unlock(&dbg_lock); 879 return; 880 } 881 882 pr_err("zbranches:\n"); 883 for (n = 0; n < znode->child_cnt; n++) { 884 zbr = &znode->zbranch[n]; 885 if (znode->level > 0) 886 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n", 887 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 888 dbg_snprintf_key(c, &zbr->key, key_buf, 889 DBG_KEY_BUF_LEN)); 890 else 891 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n", 892 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 893 dbg_snprintf_key(c, &zbr->key, key_buf, 894 DBG_KEY_BUF_LEN)); 895 } 896 spin_unlock(&dbg_lock); 897 } 898 899 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 900 { 901 int i; 902 903 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n", 904 current->pid, cat, heap->cnt); 905 for (i = 0; i < heap->cnt; i++) { 906 struct ubifs_lprops *lprops = heap->arr[i]; 907 908 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n", 909 i, lprops->lnum, lprops->hpos, lprops->free, 910 lprops->dirty, lprops->flags); 911 } 912 pr_err("(pid %d) finish dumping heap\n", current->pid); 913 } 914 915 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 916 struct ubifs_nnode *parent, int iip) 917 { 918 int i; 919 920 pr_err("(pid %d) dumping pnode:\n", current->pid); 921 pr_err("\taddress %zx parent %zx cnext %zx\n", 922 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 923 pr_err("\tflags %lu iip %d level %d num %d\n", 924 pnode->flags, iip, pnode->level, pnode->num); 925 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 926 struct ubifs_lprops *lp = &pnode->lprops[i]; 927 928 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n", 929 i, lp->free, lp->dirty, lp->flags, lp->lnum); 930 } 931 } 932 933 void ubifs_dump_tnc(struct ubifs_info *c) 934 { 935 struct ubifs_znode *znode; 936 int level; 937 938 pr_err("\n"); 939 pr_err("(pid %d) start dumping TNC tree\n", current->pid); 940 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL); 941 level = znode->level; 942 pr_err("== Level %d ==\n", level); 943 while (znode) { 944 if (level != znode->level) { 945 level = znode->level; 946 pr_err("== Level %d ==\n", level); 947 } 948 ubifs_dump_znode(c, znode); 949 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode); 950 } 951 pr_err("(pid %d) finish dumping TNC tree\n", current->pid); 952 } 953 954 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 955 void *priv) 956 { 957 ubifs_dump_znode(c, znode); 958 return 0; 959 } 960 961 /** 962 * ubifs_dump_index - dump the on-flash index. 963 * @c: UBIFS file-system description object 964 * 965 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()' 966 * which dumps only in-memory znodes and does not read znodes which from flash. 967 */ 968 void ubifs_dump_index(struct ubifs_info *c) 969 { 970 dbg_walk_index(c, NULL, dump_znode, NULL); 971 } 972 973 /** 974 * dbg_save_space_info - save information about flash space. 975 * @c: UBIFS file-system description object 976 * 977 * This function saves information about UBIFS free space, dirty space, etc, in 978 * order to check it later. 979 */ 980 void dbg_save_space_info(struct ubifs_info *c) 981 { 982 struct ubifs_debug_info *d = c->dbg; 983 int freeable_cnt; 984 985 spin_lock(&c->space_lock); 986 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); 987 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); 988 d->saved_idx_gc_cnt = c->idx_gc_cnt; 989 990 /* 991 * We use a dirty hack here and zero out @c->freeable_cnt, because it 992 * affects the free space calculations, and UBIFS might not know about 993 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks 994 * only when we read their lprops, and we do this only lazily, upon the 995 * need. So at any given point of time @c->freeable_cnt might be not 996 * exactly accurate. 997 * 998 * Just one example about the issue we hit when we did not zero 999 * @c->freeable_cnt. 1000 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the 1001 * amount of free space in @d->saved_free 1002 * 2. We re-mount R/W, which makes UBIFS to read the "lsave" 1003 * information from flash, where we cache LEBs from various 1004 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' 1005 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' 1006 * -> 'ubifs_get_pnode()' -> 'update_cats()' 1007 * -> 'ubifs_add_to_cat()'). 1008 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt 1009 * becomes %1. 1010 * 4. We calculate the amount of free space when the re-mount is 1011 * finished in 'dbg_check_space_info()' and it does not match 1012 * @d->saved_free. 1013 */ 1014 freeable_cnt = c->freeable_cnt; 1015 c->freeable_cnt = 0; 1016 d->saved_free = ubifs_get_free_space_nolock(c); 1017 c->freeable_cnt = freeable_cnt; 1018 spin_unlock(&c->space_lock); 1019 } 1020 1021 /** 1022 * dbg_check_space_info - check flash space information. 1023 * @c: UBIFS file-system description object 1024 * 1025 * This function compares current flash space information with the information 1026 * which was saved when the 'dbg_save_space_info()' function was called. 1027 * Returns zero if the information has not changed, and %-EINVAL it it has 1028 * changed. 1029 */ 1030 int dbg_check_space_info(struct ubifs_info *c) 1031 { 1032 struct ubifs_debug_info *d = c->dbg; 1033 struct ubifs_lp_stats lst; 1034 long long free; 1035 int freeable_cnt; 1036 1037 spin_lock(&c->space_lock); 1038 freeable_cnt = c->freeable_cnt; 1039 c->freeable_cnt = 0; 1040 free = ubifs_get_free_space_nolock(c); 1041 c->freeable_cnt = freeable_cnt; 1042 spin_unlock(&c->space_lock); 1043 1044 if (free != d->saved_free) { 1045 ubifs_err(c, "free space changed from %lld to %lld", 1046 d->saved_free, free); 1047 goto out; 1048 } 1049 1050 return 0; 1051 1052 out: 1053 ubifs_msg(c, "saved lprops statistics dump"); 1054 ubifs_dump_lstats(&d->saved_lst); 1055 ubifs_msg(c, "saved budgeting info dump"); 1056 ubifs_dump_budg(c, &d->saved_bi); 1057 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt); 1058 ubifs_msg(c, "current lprops statistics dump"); 1059 ubifs_get_lp_stats(c, &lst); 1060 ubifs_dump_lstats(&lst); 1061 ubifs_msg(c, "current budgeting info dump"); 1062 ubifs_dump_budg(c, &c->bi); 1063 dump_stack(); 1064 return -EINVAL; 1065 } 1066 1067 /** 1068 * dbg_check_synced_i_size - check synchronized inode size. 1069 * @c: UBIFS file-system description object 1070 * @inode: inode to check 1071 * 1072 * If inode is clean, synchronized inode size has to be equivalent to current 1073 * inode size. This function has to be called only for locked inodes (@i_mutex 1074 * has to be locked). Returns %0 if synchronized inode size if correct, and 1075 * %-EINVAL if not. 1076 */ 1077 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode) 1078 { 1079 int err = 0; 1080 struct ubifs_inode *ui = ubifs_inode(inode); 1081 1082 if (!dbg_is_chk_gen(c)) 1083 return 0; 1084 if (!S_ISREG(inode->i_mode)) 1085 return 0; 1086 1087 mutex_lock(&ui->ui_mutex); 1088 spin_lock(&ui->ui_lock); 1089 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1090 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean", 1091 ui->ui_size, ui->synced_i_size); 1092 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1093 inode->i_mode, i_size_read(inode)); 1094 dump_stack(); 1095 err = -EINVAL; 1096 } 1097 spin_unlock(&ui->ui_lock); 1098 mutex_unlock(&ui->ui_mutex); 1099 return err; 1100 } 1101 1102 /* 1103 * dbg_check_dir - check directory inode size and link count. 1104 * @c: UBIFS file-system description object 1105 * @dir: the directory to calculate size for 1106 * @size: the result is returned here 1107 * 1108 * This function makes sure that directory size and link count are correct. 1109 * Returns zero in case of success and a negative error code in case of 1110 * failure. 1111 * 1112 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1113 * calling this function. 1114 */ 1115 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1116 { 1117 unsigned int nlink = 2; 1118 union ubifs_key key; 1119 struct ubifs_dent_node *dent, *pdent = NULL; 1120 struct fscrypt_name nm = {0}; 1121 loff_t size = UBIFS_INO_NODE_SZ; 1122 1123 if (!dbg_is_chk_gen(c)) 1124 return 0; 1125 1126 if (!S_ISDIR(dir->i_mode)) 1127 return 0; 1128 1129 lowest_dent_key(c, &key, dir->i_ino); 1130 while (1) { 1131 int err; 1132 1133 dent = ubifs_tnc_next_ent(c, &key, &nm); 1134 if (IS_ERR(dent)) { 1135 err = PTR_ERR(dent); 1136 if (err == -ENOENT) 1137 break; 1138 return err; 1139 } 1140 1141 fname_name(&nm) = dent->name; 1142 fname_len(&nm) = le16_to_cpu(dent->nlen); 1143 size += CALC_DENT_SIZE(fname_len(&nm)); 1144 if (dent->type == UBIFS_ITYPE_DIR) 1145 nlink += 1; 1146 kfree(pdent); 1147 pdent = dent; 1148 key_read(c, &dent->key, &key); 1149 } 1150 kfree(pdent); 1151 1152 if (i_size_read(dir) != size) { 1153 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu", 1154 dir->i_ino, (unsigned long long)i_size_read(dir), 1155 (unsigned long long)size); 1156 ubifs_dump_inode(c, dir); 1157 dump_stack(); 1158 return -EINVAL; 1159 } 1160 if (dir->i_nlink != nlink) { 1161 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u", 1162 dir->i_ino, dir->i_nlink, nlink); 1163 ubifs_dump_inode(c, dir); 1164 dump_stack(); 1165 return -EINVAL; 1166 } 1167 1168 return 0; 1169 } 1170 1171 /** 1172 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1173 * @c: UBIFS file-system description object 1174 * @zbr1: first zbranch 1175 * @zbr2: following zbranch 1176 * 1177 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1178 * names of the direntries/xentries which are referred by the keys. This 1179 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1180 * sure the name of direntry/xentry referred by @zbr1 is less than 1181 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1182 * and a negative error code in case of failure. 1183 */ 1184 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1185 struct ubifs_zbranch *zbr2) 1186 { 1187 int err, nlen1, nlen2, cmp; 1188 struct ubifs_dent_node *dent1, *dent2; 1189 union ubifs_key key; 1190 char key_buf[DBG_KEY_BUF_LEN]; 1191 1192 ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key)); 1193 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1194 if (!dent1) 1195 return -ENOMEM; 1196 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1197 if (!dent2) { 1198 err = -ENOMEM; 1199 goto out_free; 1200 } 1201 1202 err = ubifs_tnc_read_node(c, zbr1, dent1); 1203 if (err) 1204 goto out_free; 1205 err = ubifs_validate_entry(c, dent1); 1206 if (err) 1207 goto out_free; 1208 1209 err = ubifs_tnc_read_node(c, zbr2, dent2); 1210 if (err) 1211 goto out_free; 1212 err = ubifs_validate_entry(c, dent2); 1213 if (err) 1214 goto out_free; 1215 1216 /* Make sure node keys are the same as in zbranch */ 1217 err = 1; 1218 key_read(c, &dent1->key, &key); 1219 if (keys_cmp(c, &zbr1->key, &key)) { 1220 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum, 1221 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1222 DBG_KEY_BUF_LEN)); 1223 ubifs_err(c, "but it should have key %s according to tnc", 1224 dbg_snprintf_key(c, &zbr1->key, key_buf, 1225 DBG_KEY_BUF_LEN)); 1226 ubifs_dump_node(c, dent1); 1227 goto out_free; 1228 } 1229 1230 key_read(c, &dent2->key, &key); 1231 if (keys_cmp(c, &zbr2->key, &key)) { 1232 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum, 1233 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1234 DBG_KEY_BUF_LEN)); 1235 ubifs_err(c, "but it should have key %s according to tnc", 1236 dbg_snprintf_key(c, &zbr2->key, key_buf, 1237 DBG_KEY_BUF_LEN)); 1238 ubifs_dump_node(c, dent2); 1239 goto out_free; 1240 } 1241 1242 nlen1 = le16_to_cpu(dent1->nlen); 1243 nlen2 = le16_to_cpu(dent2->nlen); 1244 1245 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1246 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1247 err = 0; 1248 goto out_free; 1249 } 1250 if (cmp == 0 && nlen1 == nlen2) 1251 ubifs_err(c, "2 xent/dent nodes with the same name"); 1252 else 1253 ubifs_err(c, "bad order of colliding key %s", 1254 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 1255 1256 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1257 ubifs_dump_node(c, dent1); 1258 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1259 ubifs_dump_node(c, dent2); 1260 1261 out_free: 1262 kfree(dent2); 1263 kfree(dent1); 1264 return err; 1265 } 1266 1267 /** 1268 * dbg_check_znode - check if znode is all right. 1269 * @c: UBIFS file-system description object 1270 * @zbr: zbranch which points to this znode 1271 * 1272 * This function makes sure that znode referred to by @zbr is all right. 1273 * Returns zero if it is, and %-EINVAL if it is not. 1274 */ 1275 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1276 { 1277 struct ubifs_znode *znode = zbr->znode; 1278 struct ubifs_znode *zp = znode->parent; 1279 int n, err, cmp; 1280 1281 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1282 err = 1; 1283 goto out; 1284 } 1285 if (znode->level < 0) { 1286 err = 2; 1287 goto out; 1288 } 1289 if (znode->iip < 0 || znode->iip >= c->fanout) { 1290 err = 3; 1291 goto out; 1292 } 1293 1294 if (zbr->len == 0) 1295 /* Only dirty zbranch may have no on-flash nodes */ 1296 if (!ubifs_zn_dirty(znode)) { 1297 err = 4; 1298 goto out; 1299 } 1300 1301 if (ubifs_zn_dirty(znode)) { 1302 /* 1303 * If znode is dirty, its parent has to be dirty as well. The 1304 * order of the operation is important, so we have to have 1305 * memory barriers. 1306 */ 1307 smp_mb(); 1308 if (zp && !ubifs_zn_dirty(zp)) { 1309 /* 1310 * The dirty flag is atomic and is cleared outside the 1311 * TNC mutex, so znode's dirty flag may now have 1312 * been cleared. The child is always cleared before the 1313 * parent, so we just need to check again. 1314 */ 1315 smp_mb(); 1316 if (ubifs_zn_dirty(znode)) { 1317 err = 5; 1318 goto out; 1319 } 1320 } 1321 } 1322 1323 if (zp) { 1324 const union ubifs_key *min, *max; 1325 1326 if (znode->level != zp->level - 1) { 1327 err = 6; 1328 goto out; 1329 } 1330 1331 /* Make sure the 'parent' pointer in our znode is correct */ 1332 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1333 if (!err) { 1334 /* This zbranch does not exist in the parent */ 1335 err = 7; 1336 goto out; 1337 } 1338 1339 if (znode->iip >= zp->child_cnt) { 1340 err = 8; 1341 goto out; 1342 } 1343 1344 if (znode->iip != n) { 1345 /* This may happen only in case of collisions */ 1346 if (keys_cmp(c, &zp->zbranch[n].key, 1347 &zp->zbranch[znode->iip].key)) { 1348 err = 9; 1349 goto out; 1350 } 1351 n = znode->iip; 1352 } 1353 1354 /* 1355 * Make sure that the first key in our znode is greater than or 1356 * equal to the key in the pointing zbranch. 1357 */ 1358 min = &zbr->key; 1359 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1360 if (cmp == 1) { 1361 err = 10; 1362 goto out; 1363 } 1364 1365 if (n + 1 < zp->child_cnt) { 1366 max = &zp->zbranch[n + 1].key; 1367 1368 /* 1369 * Make sure the last key in our znode is less or 1370 * equivalent than the key in the zbranch which goes 1371 * after our pointing zbranch. 1372 */ 1373 cmp = keys_cmp(c, max, 1374 &znode->zbranch[znode->child_cnt - 1].key); 1375 if (cmp == -1) { 1376 err = 11; 1377 goto out; 1378 } 1379 } 1380 } else { 1381 /* This may only be root znode */ 1382 if (zbr != &c->zroot) { 1383 err = 12; 1384 goto out; 1385 } 1386 } 1387 1388 /* 1389 * Make sure that next key is greater or equivalent then the previous 1390 * one. 1391 */ 1392 for (n = 1; n < znode->child_cnt; n++) { 1393 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1394 &znode->zbranch[n].key); 1395 if (cmp > 0) { 1396 err = 13; 1397 goto out; 1398 } 1399 if (cmp == 0) { 1400 /* This can only be keys with colliding hash */ 1401 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1402 err = 14; 1403 goto out; 1404 } 1405 1406 if (znode->level != 0 || c->replaying) 1407 continue; 1408 1409 /* 1410 * Colliding keys should follow binary order of 1411 * corresponding xentry/dentry names. 1412 */ 1413 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1414 &znode->zbranch[n]); 1415 if (err < 0) 1416 return err; 1417 if (err) { 1418 err = 15; 1419 goto out; 1420 } 1421 } 1422 } 1423 1424 for (n = 0; n < znode->child_cnt; n++) { 1425 if (!znode->zbranch[n].znode && 1426 (znode->zbranch[n].lnum == 0 || 1427 znode->zbranch[n].len == 0)) { 1428 err = 16; 1429 goto out; 1430 } 1431 1432 if (znode->zbranch[n].lnum != 0 && 1433 znode->zbranch[n].len == 0) { 1434 err = 17; 1435 goto out; 1436 } 1437 1438 if (znode->zbranch[n].lnum == 0 && 1439 znode->zbranch[n].len != 0) { 1440 err = 18; 1441 goto out; 1442 } 1443 1444 if (znode->zbranch[n].lnum == 0 && 1445 znode->zbranch[n].offs != 0) { 1446 err = 19; 1447 goto out; 1448 } 1449 1450 if (znode->level != 0 && znode->zbranch[n].znode) 1451 if (znode->zbranch[n].znode->parent != znode) { 1452 err = 20; 1453 goto out; 1454 } 1455 } 1456 1457 return 0; 1458 1459 out: 1460 ubifs_err(c, "failed, error %d", err); 1461 ubifs_msg(c, "dump of the znode"); 1462 ubifs_dump_znode(c, znode); 1463 if (zp) { 1464 ubifs_msg(c, "dump of the parent znode"); 1465 ubifs_dump_znode(c, zp); 1466 } 1467 dump_stack(); 1468 return -EINVAL; 1469 } 1470 1471 /** 1472 * dbg_check_tnc - check TNC tree. 1473 * @c: UBIFS file-system description object 1474 * @extra: do extra checks that are possible at start commit 1475 * 1476 * This function traverses whole TNC tree and checks every znode. Returns zero 1477 * if everything is all right and %-EINVAL if something is wrong with TNC. 1478 */ 1479 int dbg_check_tnc(struct ubifs_info *c, int extra) 1480 { 1481 struct ubifs_znode *znode; 1482 long clean_cnt = 0, dirty_cnt = 0; 1483 int err, last; 1484 1485 if (!dbg_is_chk_index(c)) 1486 return 0; 1487 1488 ubifs_assert(c, mutex_is_locked(&c->tnc_mutex)); 1489 if (!c->zroot.znode) 1490 return 0; 1491 1492 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1493 while (1) { 1494 struct ubifs_znode *prev; 1495 struct ubifs_zbranch *zbr; 1496 1497 if (!znode->parent) 1498 zbr = &c->zroot; 1499 else 1500 zbr = &znode->parent->zbranch[znode->iip]; 1501 1502 err = dbg_check_znode(c, zbr); 1503 if (err) 1504 return err; 1505 1506 if (extra) { 1507 if (ubifs_zn_dirty(znode)) 1508 dirty_cnt += 1; 1509 else 1510 clean_cnt += 1; 1511 } 1512 1513 prev = znode; 1514 znode = ubifs_tnc_postorder_next(c, znode); 1515 if (!znode) 1516 break; 1517 1518 /* 1519 * If the last key of this znode is equivalent to the first key 1520 * of the next znode (collision), then check order of the keys. 1521 */ 1522 last = prev->child_cnt - 1; 1523 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1524 !keys_cmp(c, &prev->zbranch[last].key, 1525 &znode->zbranch[0].key)) { 1526 err = dbg_check_key_order(c, &prev->zbranch[last], 1527 &znode->zbranch[0]); 1528 if (err < 0) 1529 return err; 1530 if (err) { 1531 ubifs_msg(c, "first znode"); 1532 ubifs_dump_znode(c, prev); 1533 ubifs_msg(c, "second znode"); 1534 ubifs_dump_znode(c, znode); 1535 return -EINVAL; 1536 } 1537 } 1538 } 1539 1540 if (extra) { 1541 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1542 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld", 1543 atomic_long_read(&c->clean_zn_cnt), 1544 clean_cnt); 1545 return -EINVAL; 1546 } 1547 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1548 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld", 1549 atomic_long_read(&c->dirty_zn_cnt), 1550 dirty_cnt); 1551 return -EINVAL; 1552 } 1553 } 1554 1555 return 0; 1556 } 1557 1558 /** 1559 * dbg_walk_index - walk the on-flash index. 1560 * @c: UBIFS file-system description object 1561 * @leaf_cb: called for each leaf node 1562 * @znode_cb: called for each indexing node 1563 * @priv: private data which is passed to callbacks 1564 * 1565 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1566 * node and @znode_cb for each indexing node. Returns zero in case of success 1567 * and a negative error code in case of failure. 1568 * 1569 * It would be better if this function removed every znode it pulled to into 1570 * the TNC, so that the behavior more closely matched the non-debugging 1571 * behavior. 1572 */ 1573 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1574 dbg_znode_callback znode_cb, void *priv) 1575 { 1576 int err; 1577 struct ubifs_zbranch *zbr; 1578 struct ubifs_znode *znode, *child; 1579 1580 mutex_lock(&c->tnc_mutex); 1581 /* If the root indexing node is not in TNC - pull it */ 1582 if (!c->zroot.znode) { 1583 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1584 if (IS_ERR(c->zroot.znode)) { 1585 err = PTR_ERR(c->zroot.znode); 1586 c->zroot.znode = NULL; 1587 goto out_unlock; 1588 } 1589 } 1590 1591 /* 1592 * We are going to traverse the indexing tree in the postorder manner. 1593 * Go down and find the leftmost indexing node where we are going to 1594 * start from. 1595 */ 1596 znode = c->zroot.znode; 1597 while (znode->level > 0) { 1598 zbr = &znode->zbranch[0]; 1599 child = zbr->znode; 1600 if (!child) { 1601 child = ubifs_load_znode(c, zbr, znode, 0); 1602 if (IS_ERR(child)) { 1603 err = PTR_ERR(child); 1604 goto out_unlock; 1605 } 1606 } 1607 1608 znode = child; 1609 } 1610 1611 /* Iterate over all indexing nodes */ 1612 while (1) { 1613 int idx; 1614 1615 cond_resched(); 1616 1617 if (znode_cb) { 1618 err = znode_cb(c, znode, priv); 1619 if (err) { 1620 ubifs_err(c, "znode checking function returned error %d", 1621 err); 1622 ubifs_dump_znode(c, znode); 1623 goto out_dump; 1624 } 1625 } 1626 if (leaf_cb && znode->level == 0) { 1627 for (idx = 0; idx < znode->child_cnt; idx++) { 1628 zbr = &znode->zbranch[idx]; 1629 err = leaf_cb(c, zbr, priv); 1630 if (err) { 1631 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d", 1632 err, zbr->lnum, zbr->offs); 1633 goto out_dump; 1634 } 1635 } 1636 } 1637 1638 if (!znode->parent) 1639 break; 1640 1641 idx = znode->iip + 1; 1642 znode = znode->parent; 1643 if (idx < znode->child_cnt) { 1644 /* Switch to the next index in the parent */ 1645 zbr = &znode->zbranch[idx]; 1646 child = zbr->znode; 1647 if (!child) { 1648 child = ubifs_load_znode(c, zbr, znode, idx); 1649 if (IS_ERR(child)) { 1650 err = PTR_ERR(child); 1651 goto out_unlock; 1652 } 1653 zbr->znode = child; 1654 } 1655 znode = child; 1656 } else 1657 /* 1658 * This is the last child, switch to the parent and 1659 * continue. 1660 */ 1661 continue; 1662 1663 /* Go to the lowest leftmost znode in the new sub-tree */ 1664 while (znode->level > 0) { 1665 zbr = &znode->zbranch[0]; 1666 child = zbr->znode; 1667 if (!child) { 1668 child = ubifs_load_znode(c, zbr, znode, 0); 1669 if (IS_ERR(child)) { 1670 err = PTR_ERR(child); 1671 goto out_unlock; 1672 } 1673 zbr->znode = child; 1674 } 1675 znode = child; 1676 } 1677 } 1678 1679 mutex_unlock(&c->tnc_mutex); 1680 return 0; 1681 1682 out_dump: 1683 if (znode->parent) 1684 zbr = &znode->parent->zbranch[znode->iip]; 1685 else 1686 zbr = &c->zroot; 1687 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1688 ubifs_dump_znode(c, znode); 1689 out_unlock: 1690 mutex_unlock(&c->tnc_mutex); 1691 return err; 1692 } 1693 1694 /** 1695 * add_size - add znode size to partially calculated index size. 1696 * @c: UBIFS file-system description object 1697 * @znode: znode to add size for 1698 * @priv: partially calculated index size 1699 * 1700 * This is a helper function for 'dbg_check_idx_size()' which is called for 1701 * every indexing node and adds its size to the 'long long' variable pointed to 1702 * by @priv. 1703 */ 1704 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1705 { 1706 long long *idx_size = priv; 1707 int add; 1708 1709 add = ubifs_idx_node_sz(c, znode->child_cnt); 1710 add = ALIGN(add, 8); 1711 *idx_size += add; 1712 return 0; 1713 } 1714 1715 /** 1716 * dbg_check_idx_size - check index size. 1717 * @c: UBIFS file-system description object 1718 * @idx_size: size to check 1719 * 1720 * This function walks the UBIFS index, calculates its size and checks that the 1721 * size is equivalent to @idx_size. Returns zero in case of success and a 1722 * negative error code in case of failure. 1723 */ 1724 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1725 { 1726 int err; 1727 long long calc = 0; 1728 1729 if (!dbg_is_chk_index(c)) 1730 return 0; 1731 1732 err = dbg_walk_index(c, NULL, add_size, &calc); 1733 if (err) { 1734 ubifs_err(c, "error %d while walking the index", err); 1735 return err; 1736 } 1737 1738 if (calc != idx_size) { 1739 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld", 1740 calc, idx_size); 1741 dump_stack(); 1742 return -EINVAL; 1743 } 1744 1745 return 0; 1746 } 1747 1748 /** 1749 * struct fsck_inode - information about an inode used when checking the file-system. 1750 * @rb: link in the RB-tree of inodes 1751 * @inum: inode number 1752 * @mode: inode type, permissions, etc 1753 * @nlink: inode link count 1754 * @xattr_cnt: count of extended attributes 1755 * @references: how many directory/xattr entries refer this inode (calculated 1756 * while walking the index) 1757 * @calc_cnt: for directory inode count of child directories 1758 * @size: inode size (read from on-flash inode) 1759 * @xattr_sz: summary size of all extended attributes (read from on-flash 1760 * inode) 1761 * @calc_sz: for directories calculated directory size 1762 * @calc_xcnt: count of extended attributes 1763 * @calc_xsz: calculated summary size of all extended attributes 1764 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1765 * inode (read from on-flash inode) 1766 * @calc_xnms: calculated sum of lengths of all extended attribute names 1767 */ 1768 struct fsck_inode { 1769 struct rb_node rb; 1770 ino_t inum; 1771 umode_t mode; 1772 unsigned int nlink; 1773 unsigned int xattr_cnt; 1774 int references; 1775 int calc_cnt; 1776 long long size; 1777 unsigned int xattr_sz; 1778 long long calc_sz; 1779 long long calc_xcnt; 1780 long long calc_xsz; 1781 unsigned int xattr_nms; 1782 long long calc_xnms; 1783 }; 1784 1785 /** 1786 * struct fsck_data - private FS checking information. 1787 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1788 */ 1789 struct fsck_data { 1790 struct rb_root inodes; 1791 }; 1792 1793 /** 1794 * add_inode - add inode information to RB-tree of inodes. 1795 * @c: UBIFS file-system description object 1796 * @fsckd: FS checking information 1797 * @ino: raw UBIFS inode to add 1798 * 1799 * This is a helper function for 'check_leaf()' which adds information about 1800 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1801 * case of success and a negative error code in case of failure. 1802 */ 1803 static struct fsck_inode *add_inode(struct ubifs_info *c, 1804 struct fsck_data *fsckd, 1805 struct ubifs_ino_node *ino) 1806 { 1807 struct rb_node **p, *parent = NULL; 1808 struct fsck_inode *fscki; 1809 ino_t inum = key_inum_flash(c, &ino->key); 1810 struct inode *inode; 1811 struct ubifs_inode *ui; 1812 1813 p = &fsckd->inodes.rb_node; 1814 while (*p) { 1815 parent = *p; 1816 fscki = rb_entry(parent, struct fsck_inode, rb); 1817 if (inum < fscki->inum) 1818 p = &(*p)->rb_left; 1819 else if (inum > fscki->inum) 1820 p = &(*p)->rb_right; 1821 else 1822 return fscki; 1823 } 1824 1825 if (inum > c->highest_inum) { 1826 ubifs_err(c, "too high inode number, max. is %lu", 1827 (unsigned long)c->highest_inum); 1828 return ERR_PTR(-EINVAL); 1829 } 1830 1831 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1832 if (!fscki) 1833 return ERR_PTR(-ENOMEM); 1834 1835 inode = ilookup(c->vfs_sb, inum); 1836 1837 fscki->inum = inum; 1838 /* 1839 * If the inode is present in the VFS inode cache, use it instead of 1840 * the on-flash inode which might be out-of-date. E.g., the size might 1841 * be out-of-date. If we do not do this, the following may happen, for 1842 * example: 1843 * 1. A power cut happens 1844 * 2. We mount the file-system R/O, the replay process fixes up the 1845 * inode size in the VFS cache, but on on-flash. 1846 * 3. 'check_leaf()' fails because it hits a data node beyond inode 1847 * size. 1848 */ 1849 if (!inode) { 1850 fscki->nlink = le32_to_cpu(ino->nlink); 1851 fscki->size = le64_to_cpu(ino->size); 1852 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1853 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1854 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1855 fscki->mode = le32_to_cpu(ino->mode); 1856 } else { 1857 ui = ubifs_inode(inode); 1858 fscki->nlink = inode->i_nlink; 1859 fscki->size = inode->i_size; 1860 fscki->xattr_cnt = ui->xattr_cnt; 1861 fscki->xattr_sz = ui->xattr_size; 1862 fscki->xattr_nms = ui->xattr_names; 1863 fscki->mode = inode->i_mode; 1864 iput(inode); 1865 } 1866 1867 if (S_ISDIR(fscki->mode)) { 1868 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1869 fscki->calc_cnt = 2; 1870 } 1871 1872 rb_link_node(&fscki->rb, parent, p); 1873 rb_insert_color(&fscki->rb, &fsckd->inodes); 1874 1875 return fscki; 1876 } 1877 1878 /** 1879 * search_inode - search inode in the RB-tree of inodes. 1880 * @fsckd: FS checking information 1881 * @inum: inode number to search 1882 * 1883 * This is a helper function for 'check_leaf()' which searches inode @inum in 1884 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1885 * the inode was not found. 1886 */ 1887 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1888 { 1889 struct rb_node *p; 1890 struct fsck_inode *fscki; 1891 1892 p = fsckd->inodes.rb_node; 1893 while (p) { 1894 fscki = rb_entry(p, struct fsck_inode, rb); 1895 if (inum < fscki->inum) 1896 p = p->rb_left; 1897 else if (inum > fscki->inum) 1898 p = p->rb_right; 1899 else 1900 return fscki; 1901 } 1902 return NULL; 1903 } 1904 1905 /** 1906 * read_add_inode - read inode node and add it to RB-tree of inodes. 1907 * @c: UBIFS file-system description object 1908 * @fsckd: FS checking information 1909 * @inum: inode number to read 1910 * 1911 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1912 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1913 * information pointer in case of success and a negative error code in case of 1914 * failure. 1915 */ 1916 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1917 struct fsck_data *fsckd, ino_t inum) 1918 { 1919 int n, err; 1920 union ubifs_key key; 1921 struct ubifs_znode *znode; 1922 struct ubifs_zbranch *zbr; 1923 struct ubifs_ino_node *ino; 1924 struct fsck_inode *fscki; 1925 1926 fscki = search_inode(fsckd, inum); 1927 if (fscki) 1928 return fscki; 1929 1930 ino_key_init(c, &key, inum); 1931 err = ubifs_lookup_level0(c, &key, &znode, &n); 1932 if (!err) { 1933 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum); 1934 return ERR_PTR(-ENOENT); 1935 } else if (err < 0) { 1936 ubifs_err(c, "error %d while looking up inode %lu", 1937 err, (unsigned long)inum); 1938 return ERR_PTR(err); 1939 } 1940 1941 zbr = &znode->zbranch[n]; 1942 if (zbr->len < UBIFS_INO_NODE_SZ) { 1943 ubifs_err(c, "bad node %lu node length %d", 1944 (unsigned long)inum, zbr->len); 1945 return ERR_PTR(-EINVAL); 1946 } 1947 1948 ino = kmalloc(zbr->len, GFP_NOFS); 1949 if (!ino) 1950 return ERR_PTR(-ENOMEM); 1951 1952 err = ubifs_tnc_read_node(c, zbr, ino); 1953 if (err) { 1954 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 1955 zbr->lnum, zbr->offs, err); 1956 kfree(ino); 1957 return ERR_PTR(err); 1958 } 1959 1960 fscki = add_inode(c, fsckd, ino); 1961 kfree(ino); 1962 if (IS_ERR(fscki)) { 1963 ubifs_err(c, "error %ld while adding inode %lu node", 1964 PTR_ERR(fscki), (unsigned long)inum); 1965 return fscki; 1966 } 1967 1968 return fscki; 1969 } 1970 1971 /** 1972 * check_leaf - check leaf node. 1973 * @c: UBIFS file-system description object 1974 * @zbr: zbranch of the leaf node to check 1975 * @priv: FS checking information 1976 * 1977 * This is a helper function for 'dbg_check_filesystem()' which is called for 1978 * every single leaf node while walking the indexing tree. It checks that the 1979 * leaf node referred from the indexing tree exists, has correct CRC, and does 1980 * some other basic validation. This function is also responsible for building 1981 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 1982 * calculates reference count, size, etc for each inode in order to later 1983 * compare them to the information stored inside the inodes and detect possible 1984 * inconsistencies. Returns zero in case of success and a negative error code 1985 * in case of failure. 1986 */ 1987 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 1988 void *priv) 1989 { 1990 ino_t inum; 1991 void *node; 1992 struct ubifs_ch *ch; 1993 int err, type = key_type(c, &zbr->key); 1994 struct fsck_inode *fscki; 1995 1996 if (zbr->len < UBIFS_CH_SZ) { 1997 ubifs_err(c, "bad leaf length %d (LEB %d:%d)", 1998 zbr->len, zbr->lnum, zbr->offs); 1999 return -EINVAL; 2000 } 2001 2002 node = kmalloc(zbr->len, GFP_NOFS); 2003 if (!node) 2004 return -ENOMEM; 2005 2006 err = ubifs_tnc_read_node(c, zbr, node); 2007 if (err) { 2008 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d", 2009 zbr->lnum, zbr->offs, err); 2010 goto out_free; 2011 } 2012 2013 /* If this is an inode node, add it to RB-tree of inodes */ 2014 if (type == UBIFS_INO_KEY) { 2015 fscki = add_inode(c, priv, node); 2016 if (IS_ERR(fscki)) { 2017 err = PTR_ERR(fscki); 2018 ubifs_err(c, "error %d while adding inode node", err); 2019 goto out_dump; 2020 } 2021 goto out; 2022 } 2023 2024 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 2025 type != UBIFS_DATA_KEY) { 2026 ubifs_err(c, "unexpected node type %d at LEB %d:%d", 2027 type, zbr->lnum, zbr->offs); 2028 err = -EINVAL; 2029 goto out_free; 2030 } 2031 2032 ch = node; 2033 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 2034 ubifs_err(c, "too high sequence number, max. is %llu", 2035 c->max_sqnum); 2036 err = -EINVAL; 2037 goto out_dump; 2038 } 2039 2040 if (type == UBIFS_DATA_KEY) { 2041 long long blk_offs; 2042 struct ubifs_data_node *dn = node; 2043 2044 ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ); 2045 2046 /* 2047 * Search the inode node this data node belongs to and insert 2048 * it to the RB-tree of inodes. 2049 */ 2050 inum = key_inum_flash(c, &dn->key); 2051 fscki = read_add_inode(c, priv, inum); 2052 if (IS_ERR(fscki)) { 2053 err = PTR_ERR(fscki); 2054 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu", 2055 err, (unsigned long)inum); 2056 goto out_dump; 2057 } 2058 2059 /* Make sure the data node is within inode size */ 2060 blk_offs = key_block_flash(c, &dn->key); 2061 blk_offs <<= UBIFS_BLOCK_SHIFT; 2062 blk_offs += le32_to_cpu(dn->size); 2063 if (blk_offs > fscki->size) { 2064 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld", 2065 zbr->lnum, zbr->offs, fscki->size); 2066 err = -EINVAL; 2067 goto out_dump; 2068 } 2069 } else { 2070 int nlen; 2071 struct ubifs_dent_node *dent = node; 2072 struct fsck_inode *fscki1; 2073 2074 ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ); 2075 2076 err = ubifs_validate_entry(c, dent); 2077 if (err) 2078 goto out_dump; 2079 2080 /* 2081 * Search the inode node this entry refers to and the parent 2082 * inode node and insert them to the RB-tree of inodes. 2083 */ 2084 inum = le64_to_cpu(dent->inum); 2085 fscki = read_add_inode(c, priv, inum); 2086 if (IS_ERR(fscki)) { 2087 err = PTR_ERR(fscki); 2088 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu", 2089 err, (unsigned long)inum); 2090 goto out_dump; 2091 } 2092 2093 /* Count how many direntries or xentries refers this inode */ 2094 fscki->references += 1; 2095 2096 inum = key_inum_flash(c, &dent->key); 2097 fscki1 = read_add_inode(c, priv, inum); 2098 if (IS_ERR(fscki1)) { 2099 err = PTR_ERR(fscki1); 2100 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu", 2101 err, (unsigned long)inum); 2102 goto out_dump; 2103 } 2104 2105 nlen = le16_to_cpu(dent->nlen); 2106 if (type == UBIFS_XENT_KEY) { 2107 fscki1->calc_xcnt += 1; 2108 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2109 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2110 fscki1->calc_xnms += nlen; 2111 } else { 2112 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2113 if (dent->type == UBIFS_ITYPE_DIR) 2114 fscki1->calc_cnt += 1; 2115 } 2116 } 2117 2118 out: 2119 kfree(node); 2120 return 0; 2121 2122 out_dump: 2123 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2124 ubifs_dump_node(c, node); 2125 out_free: 2126 kfree(node); 2127 return err; 2128 } 2129 2130 /** 2131 * free_inodes - free RB-tree of inodes. 2132 * @fsckd: FS checking information 2133 */ 2134 static void free_inodes(struct fsck_data *fsckd) 2135 { 2136 struct fsck_inode *fscki, *n; 2137 2138 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb) 2139 kfree(fscki); 2140 } 2141 2142 /** 2143 * check_inodes - checks all inodes. 2144 * @c: UBIFS file-system description object 2145 * @fsckd: FS checking information 2146 * 2147 * This is a helper function for 'dbg_check_filesystem()' which walks the 2148 * RB-tree of inodes after the index scan has been finished, and checks that 2149 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2150 * %-EINVAL if not, and a negative error code in case of failure. 2151 */ 2152 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2153 { 2154 int n, err; 2155 union ubifs_key key; 2156 struct ubifs_znode *znode; 2157 struct ubifs_zbranch *zbr; 2158 struct ubifs_ino_node *ino; 2159 struct fsck_inode *fscki; 2160 struct rb_node *this = rb_first(&fsckd->inodes); 2161 2162 while (this) { 2163 fscki = rb_entry(this, struct fsck_inode, rb); 2164 this = rb_next(this); 2165 2166 if (S_ISDIR(fscki->mode)) { 2167 /* 2168 * Directories have to have exactly one reference (they 2169 * cannot have hardlinks), although root inode is an 2170 * exception. 2171 */ 2172 if (fscki->inum != UBIFS_ROOT_INO && 2173 fscki->references != 1) { 2174 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1", 2175 (unsigned long)fscki->inum, 2176 fscki->references); 2177 goto out_dump; 2178 } 2179 if (fscki->inum == UBIFS_ROOT_INO && 2180 fscki->references != 0) { 2181 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it", 2182 (unsigned long)fscki->inum, 2183 fscki->references); 2184 goto out_dump; 2185 } 2186 if (fscki->calc_sz != fscki->size) { 2187 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld", 2188 (unsigned long)fscki->inum, 2189 fscki->size, fscki->calc_sz); 2190 goto out_dump; 2191 } 2192 if (fscki->calc_cnt != fscki->nlink) { 2193 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d", 2194 (unsigned long)fscki->inum, 2195 fscki->nlink, fscki->calc_cnt); 2196 goto out_dump; 2197 } 2198 } else { 2199 if (fscki->references != fscki->nlink) { 2200 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d", 2201 (unsigned long)fscki->inum, 2202 fscki->nlink, fscki->references); 2203 goto out_dump; 2204 } 2205 } 2206 if (fscki->xattr_sz != fscki->calc_xsz) { 2207 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld", 2208 (unsigned long)fscki->inum, fscki->xattr_sz, 2209 fscki->calc_xsz); 2210 goto out_dump; 2211 } 2212 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2213 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld", 2214 (unsigned long)fscki->inum, 2215 fscki->xattr_cnt, fscki->calc_xcnt); 2216 goto out_dump; 2217 } 2218 if (fscki->xattr_nms != fscki->calc_xnms) { 2219 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld", 2220 (unsigned long)fscki->inum, fscki->xattr_nms, 2221 fscki->calc_xnms); 2222 goto out_dump; 2223 } 2224 } 2225 2226 return 0; 2227 2228 out_dump: 2229 /* Read the bad inode and dump it */ 2230 ino_key_init(c, &key, fscki->inum); 2231 err = ubifs_lookup_level0(c, &key, &znode, &n); 2232 if (!err) { 2233 ubifs_err(c, "inode %lu not found in index", 2234 (unsigned long)fscki->inum); 2235 return -ENOENT; 2236 } else if (err < 0) { 2237 ubifs_err(c, "error %d while looking up inode %lu", 2238 err, (unsigned long)fscki->inum); 2239 return err; 2240 } 2241 2242 zbr = &znode->zbranch[n]; 2243 ino = kmalloc(zbr->len, GFP_NOFS); 2244 if (!ino) 2245 return -ENOMEM; 2246 2247 err = ubifs_tnc_read_node(c, zbr, ino); 2248 if (err) { 2249 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 2250 zbr->lnum, zbr->offs, err); 2251 kfree(ino); 2252 return err; 2253 } 2254 2255 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d", 2256 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2257 ubifs_dump_node(c, ino); 2258 kfree(ino); 2259 return -EINVAL; 2260 } 2261 2262 /** 2263 * dbg_check_filesystem - check the file-system. 2264 * @c: UBIFS file-system description object 2265 * 2266 * This function checks the file system, namely: 2267 * o makes sure that all leaf nodes exist and their CRCs are correct; 2268 * o makes sure inode nlink, size, xattr size/count are correct (for all 2269 * inodes). 2270 * 2271 * The function reads whole indexing tree and all nodes, so it is pretty 2272 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2273 * not, and a negative error code in case of failure. 2274 */ 2275 int dbg_check_filesystem(struct ubifs_info *c) 2276 { 2277 int err; 2278 struct fsck_data fsckd; 2279 2280 if (!dbg_is_chk_fs(c)) 2281 return 0; 2282 2283 fsckd.inodes = RB_ROOT; 2284 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2285 if (err) 2286 goto out_free; 2287 2288 err = check_inodes(c, &fsckd); 2289 if (err) 2290 goto out_free; 2291 2292 free_inodes(&fsckd); 2293 return 0; 2294 2295 out_free: 2296 ubifs_err(c, "file-system check failed with error %d", err); 2297 dump_stack(); 2298 free_inodes(&fsckd); 2299 return err; 2300 } 2301 2302 /** 2303 * dbg_check_data_nodes_order - check that list of data nodes is sorted. 2304 * @c: UBIFS file-system description object 2305 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2306 * 2307 * This function returns zero if the list of data nodes is sorted correctly, 2308 * and %-EINVAL if not. 2309 */ 2310 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) 2311 { 2312 struct list_head *cur; 2313 struct ubifs_scan_node *sa, *sb; 2314 2315 if (!dbg_is_chk_gen(c)) 2316 return 0; 2317 2318 for (cur = head->next; cur->next != head; cur = cur->next) { 2319 ino_t inuma, inumb; 2320 uint32_t blka, blkb; 2321 2322 cond_resched(); 2323 sa = container_of(cur, struct ubifs_scan_node, list); 2324 sb = container_of(cur->next, struct ubifs_scan_node, list); 2325 2326 if (sa->type != UBIFS_DATA_NODE) { 2327 ubifs_err(c, "bad node type %d", sa->type); 2328 ubifs_dump_node(c, sa->node); 2329 return -EINVAL; 2330 } 2331 if (sb->type != UBIFS_DATA_NODE) { 2332 ubifs_err(c, "bad node type %d", sb->type); 2333 ubifs_dump_node(c, sb->node); 2334 return -EINVAL; 2335 } 2336 2337 inuma = key_inum(c, &sa->key); 2338 inumb = key_inum(c, &sb->key); 2339 2340 if (inuma < inumb) 2341 continue; 2342 if (inuma > inumb) { 2343 ubifs_err(c, "larger inum %lu goes before inum %lu", 2344 (unsigned long)inuma, (unsigned long)inumb); 2345 goto error_dump; 2346 } 2347 2348 blka = key_block(c, &sa->key); 2349 blkb = key_block(c, &sb->key); 2350 2351 if (blka > blkb) { 2352 ubifs_err(c, "larger block %u goes before %u", blka, blkb); 2353 goto error_dump; 2354 } 2355 if (blka == blkb) { 2356 ubifs_err(c, "two data nodes for the same block"); 2357 goto error_dump; 2358 } 2359 } 2360 2361 return 0; 2362 2363 error_dump: 2364 ubifs_dump_node(c, sa->node); 2365 ubifs_dump_node(c, sb->node); 2366 return -EINVAL; 2367 } 2368 2369 /** 2370 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. 2371 * @c: UBIFS file-system description object 2372 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2373 * 2374 * This function returns zero if the list of non-data nodes is sorted correctly, 2375 * and %-EINVAL if not. 2376 */ 2377 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) 2378 { 2379 struct list_head *cur; 2380 struct ubifs_scan_node *sa, *sb; 2381 2382 if (!dbg_is_chk_gen(c)) 2383 return 0; 2384 2385 for (cur = head->next; cur->next != head; cur = cur->next) { 2386 ino_t inuma, inumb; 2387 uint32_t hasha, hashb; 2388 2389 cond_resched(); 2390 sa = container_of(cur, struct ubifs_scan_node, list); 2391 sb = container_of(cur->next, struct ubifs_scan_node, list); 2392 2393 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2394 sa->type != UBIFS_XENT_NODE) { 2395 ubifs_err(c, "bad node type %d", sa->type); 2396 ubifs_dump_node(c, sa->node); 2397 return -EINVAL; 2398 } 2399 if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE && 2400 sb->type != UBIFS_XENT_NODE) { 2401 ubifs_err(c, "bad node type %d", sb->type); 2402 ubifs_dump_node(c, sb->node); 2403 return -EINVAL; 2404 } 2405 2406 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2407 ubifs_err(c, "non-inode node goes before inode node"); 2408 goto error_dump; 2409 } 2410 2411 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) 2412 continue; 2413 2414 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2415 /* Inode nodes are sorted in descending size order */ 2416 if (sa->len < sb->len) { 2417 ubifs_err(c, "smaller inode node goes first"); 2418 goto error_dump; 2419 } 2420 continue; 2421 } 2422 2423 /* 2424 * This is either a dentry or xentry, which should be sorted in 2425 * ascending (parent ino, hash) order. 2426 */ 2427 inuma = key_inum(c, &sa->key); 2428 inumb = key_inum(c, &sb->key); 2429 2430 if (inuma < inumb) 2431 continue; 2432 if (inuma > inumb) { 2433 ubifs_err(c, "larger inum %lu goes before inum %lu", 2434 (unsigned long)inuma, (unsigned long)inumb); 2435 goto error_dump; 2436 } 2437 2438 hasha = key_block(c, &sa->key); 2439 hashb = key_block(c, &sb->key); 2440 2441 if (hasha > hashb) { 2442 ubifs_err(c, "larger hash %u goes before %u", 2443 hasha, hashb); 2444 goto error_dump; 2445 } 2446 } 2447 2448 return 0; 2449 2450 error_dump: 2451 ubifs_msg(c, "dumping first node"); 2452 ubifs_dump_node(c, sa->node); 2453 ubifs_msg(c, "dumping second node"); 2454 ubifs_dump_node(c, sb->node); 2455 return -EINVAL; 2456 return 0; 2457 } 2458 2459 static inline int chance(unsigned int n, unsigned int out_of) 2460 { 2461 return !!((prandom_u32() % out_of) + 1 <= n); 2462 2463 } 2464 2465 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) 2466 { 2467 struct ubifs_debug_info *d = c->dbg; 2468 2469 ubifs_assert(c, dbg_is_tst_rcvry(c)); 2470 2471 if (!d->pc_cnt) { 2472 /* First call - decide delay to the power cut */ 2473 if (chance(1, 2)) { 2474 unsigned long delay; 2475 2476 if (chance(1, 2)) { 2477 d->pc_delay = 1; 2478 /* Fail within 1 minute */ 2479 delay = prandom_u32() % 60000; 2480 d->pc_timeout = jiffies; 2481 d->pc_timeout += msecs_to_jiffies(delay); 2482 ubifs_warn(c, "failing after %lums", delay); 2483 } else { 2484 d->pc_delay = 2; 2485 delay = prandom_u32() % 10000; 2486 /* Fail within 10000 operations */ 2487 d->pc_cnt_max = delay; 2488 ubifs_warn(c, "failing after %lu calls", delay); 2489 } 2490 } 2491 2492 d->pc_cnt += 1; 2493 } 2494 2495 /* Determine if failure delay has expired */ 2496 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) 2497 return 0; 2498 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) 2499 return 0; 2500 2501 if (lnum == UBIFS_SB_LNUM) { 2502 if (write && chance(1, 2)) 2503 return 0; 2504 if (chance(19, 20)) 2505 return 0; 2506 ubifs_warn(c, "failing in super block LEB %d", lnum); 2507 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2508 if (chance(19, 20)) 2509 return 0; 2510 ubifs_warn(c, "failing in master LEB %d", lnum); 2511 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2512 if (write && chance(99, 100)) 2513 return 0; 2514 if (chance(399, 400)) 2515 return 0; 2516 ubifs_warn(c, "failing in log LEB %d", lnum); 2517 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2518 if (write && chance(7, 8)) 2519 return 0; 2520 if (chance(19, 20)) 2521 return 0; 2522 ubifs_warn(c, "failing in LPT LEB %d", lnum); 2523 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2524 if (write && chance(1, 2)) 2525 return 0; 2526 if (chance(9, 10)) 2527 return 0; 2528 ubifs_warn(c, "failing in orphan LEB %d", lnum); 2529 } else if (lnum == c->ihead_lnum) { 2530 if (chance(99, 100)) 2531 return 0; 2532 ubifs_warn(c, "failing in index head LEB %d", lnum); 2533 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2534 if (chance(9, 10)) 2535 return 0; 2536 ubifs_warn(c, "failing in GC head LEB %d", lnum); 2537 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2538 !ubifs_search_bud(c, lnum)) { 2539 if (chance(19, 20)) 2540 return 0; 2541 ubifs_warn(c, "failing in non-bud LEB %d", lnum); 2542 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2543 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2544 if (chance(999, 1000)) 2545 return 0; 2546 ubifs_warn(c, "failing in bud LEB %d commit running", lnum); 2547 } else { 2548 if (chance(9999, 10000)) 2549 return 0; 2550 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum); 2551 } 2552 2553 d->pc_happened = 1; 2554 ubifs_warn(c, "========== Power cut emulated =========="); 2555 dump_stack(); 2556 return 1; 2557 } 2558 2559 static int corrupt_data(const struct ubifs_info *c, const void *buf, 2560 unsigned int len) 2561 { 2562 unsigned int from, to, ffs = chance(1, 2); 2563 unsigned char *p = (void *)buf; 2564 2565 from = prandom_u32() % len; 2566 /* Corruption span max to end of write unit */ 2567 to = min(len, ALIGN(from + 1, c->max_write_size)); 2568 2569 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1, 2570 ffs ? "0xFFs" : "random data"); 2571 2572 if (ffs) 2573 memset(p + from, 0xFF, to - from); 2574 else 2575 prandom_bytes(p + from, to - from); 2576 2577 return to; 2578 } 2579 2580 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, 2581 int offs, int len) 2582 { 2583 int err, failing; 2584 2585 if (dbg_is_power_cut(c)) 2586 return -EROFS; 2587 2588 failing = power_cut_emulated(c, lnum, 1); 2589 if (failing) { 2590 len = corrupt_data(c, buf, len); 2591 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)", 2592 len, lnum, offs); 2593 } 2594 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 2595 if (err) 2596 return err; 2597 if (failing) 2598 return -EROFS; 2599 return 0; 2600 } 2601 2602 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, 2603 int len) 2604 { 2605 int err; 2606 2607 if (dbg_is_power_cut(c)) 2608 return -EROFS; 2609 if (power_cut_emulated(c, lnum, 1)) 2610 return -EROFS; 2611 err = ubi_leb_change(c->ubi, lnum, buf, len); 2612 if (err) 2613 return err; 2614 if (power_cut_emulated(c, lnum, 1)) 2615 return -EROFS; 2616 return 0; 2617 } 2618 2619 int dbg_leb_unmap(struct ubifs_info *c, int lnum) 2620 { 2621 int err; 2622 2623 if (dbg_is_power_cut(c)) 2624 return -EROFS; 2625 if (power_cut_emulated(c, lnum, 0)) 2626 return -EROFS; 2627 err = ubi_leb_unmap(c->ubi, lnum); 2628 if (err) 2629 return err; 2630 if (power_cut_emulated(c, lnum, 0)) 2631 return -EROFS; 2632 return 0; 2633 } 2634 2635 int dbg_leb_map(struct ubifs_info *c, int lnum) 2636 { 2637 int err; 2638 2639 if (dbg_is_power_cut(c)) 2640 return -EROFS; 2641 if (power_cut_emulated(c, lnum, 0)) 2642 return -EROFS; 2643 err = ubi_leb_map(c->ubi, lnum); 2644 if (err) 2645 return err; 2646 if (power_cut_emulated(c, lnum, 0)) 2647 return -EROFS; 2648 return 0; 2649 } 2650 2651 /* 2652 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2653 * contain the stuff specific to particular file-system mounts. 2654 */ 2655 static struct dentry *dfs_rootdir; 2656 2657 static int dfs_file_open(struct inode *inode, struct file *file) 2658 { 2659 file->private_data = inode->i_private; 2660 return nonseekable_open(inode, file); 2661 } 2662 2663 /** 2664 * provide_user_output - provide output to the user reading a debugfs file. 2665 * @val: boolean value for the answer 2666 * @u: the buffer to store the answer at 2667 * @count: size of the buffer 2668 * @ppos: position in the @u output buffer 2669 * 2670 * This is a simple helper function which stores @val boolean value in the user 2671 * buffer when the user reads one of UBIFS debugfs files. Returns amount of 2672 * bytes written to @u in case of success and a negative error code in case of 2673 * failure. 2674 */ 2675 static int provide_user_output(int val, char __user *u, size_t count, 2676 loff_t *ppos) 2677 { 2678 char buf[3]; 2679 2680 if (val) 2681 buf[0] = '1'; 2682 else 2683 buf[0] = '0'; 2684 buf[1] = '\n'; 2685 buf[2] = 0x00; 2686 2687 return simple_read_from_buffer(u, count, ppos, buf, 2); 2688 } 2689 2690 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count, 2691 loff_t *ppos) 2692 { 2693 struct dentry *dent = file->f_path.dentry; 2694 struct ubifs_info *c = file->private_data; 2695 struct ubifs_debug_info *d = c->dbg; 2696 int val; 2697 2698 if (dent == d->dfs_chk_gen) 2699 val = d->chk_gen; 2700 else if (dent == d->dfs_chk_index) 2701 val = d->chk_index; 2702 else if (dent == d->dfs_chk_orph) 2703 val = d->chk_orph; 2704 else if (dent == d->dfs_chk_lprops) 2705 val = d->chk_lprops; 2706 else if (dent == d->dfs_chk_fs) 2707 val = d->chk_fs; 2708 else if (dent == d->dfs_tst_rcvry) 2709 val = d->tst_rcvry; 2710 else if (dent == d->dfs_ro_error) 2711 val = c->ro_error; 2712 else 2713 return -EINVAL; 2714 2715 return provide_user_output(val, u, count, ppos); 2716 } 2717 2718 /** 2719 * interpret_user_input - interpret user debugfs file input. 2720 * @u: user-provided buffer with the input 2721 * @count: buffer size 2722 * 2723 * This is a helper function which interpret user input to a boolean UBIFS 2724 * debugfs file. Returns %0 or %1 in case of success and a negative error code 2725 * in case of failure. 2726 */ 2727 static int interpret_user_input(const char __user *u, size_t count) 2728 { 2729 size_t buf_size; 2730 char buf[8]; 2731 2732 buf_size = min_t(size_t, count, (sizeof(buf) - 1)); 2733 if (copy_from_user(buf, u, buf_size)) 2734 return -EFAULT; 2735 2736 if (buf[0] == '1') 2737 return 1; 2738 else if (buf[0] == '0') 2739 return 0; 2740 2741 return -EINVAL; 2742 } 2743 2744 static ssize_t dfs_file_write(struct file *file, const char __user *u, 2745 size_t count, loff_t *ppos) 2746 { 2747 struct ubifs_info *c = file->private_data; 2748 struct ubifs_debug_info *d = c->dbg; 2749 struct dentry *dent = file->f_path.dentry; 2750 int val; 2751 2752 /* 2753 * TODO: this is racy - the file-system might have already been 2754 * unmounted and we'd oops in this case. The plan is to fix it with 2755 * help of 'iterate_supers_type()' which we should have in v3.0: when 2756 * a debugfs opened, we rember FS's UUID in file->private_data. Then 2757 * whenever we access the FS via a debugfs file, we iterate all UBIFS 2758 * superblocks and fine the one with the same UUID, and take the 2759 * locking right. 2760 * 2761 * The other way to go suggested by Al Viro is to create a separate 2762 * 'ubifs-debug' file-system instead. 2763 */ 2764 if (file->f_path.dentry == d->dfs_dump_lprops) { 2765 ubifs_dump_lprops(c); 2766 return count; 2767 } 2768 if (file->f_path.dentry == d->dfs_dump_budg) { 2769 ubifs_dump_budg(c, &c->bi); 2770 return count; 2771 } 2772 if (file->f_path.dentry == d->dfs_dump_tnc) { 2773 mutex_lock(&c->tnc_mutex); 2774 ubifs_dump_tnc(c); 2775 mutex_unlock(&c->tnc_mutex); 2776 return count; 2777 } 2778 2779 val = interpret_user_input(u, count); 2780 if (val < 0) 2781 return val; 2782 2783 if (dent == d->dfs_chk_gen) 2784 d->chk_gen = val; 2785 else if (dent == d->dfs_chk_index) 2786 d->chk_index = val; 2787 else if (dent == d->dfs_chk_orph) 2788 d->chk_orph = val; 2789 else if (dent == d->dfs_chk_lprops) 2790 d->chk_lprops = val; 2791 else if (dent == d->dfs_chk_fs) 2792 d->chk_fs = val; 2793 else if (dent == d->dfs_tst_rcvry) 2794 d->tst_rcvry = val; 2795 else if (dent == d->dfs_ro_error) 2796 c->ro_error = !!val; 2797 else 2798 return -EINVAL; 2799 2800 return count; 2801 } 2802 2803 static const struct file_operations dfs_fops = { 2804 .open = dfs_file_open, 2805 .read = dfs_file_read, 2806 .write = dfs_file_write, 2807 .owner = THIS_MODULE, 2808 .llseek = no_llseek, 2809 }; 2810 2811 /** 2812 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2813 * @c: UBIFS file-system description object 2814 * 2815 * This function creates all debugfs files for this instance of UBIFS. Returns 2816 * zero in case of success and a negative error code in case of failure. 2817 * 2818 * Note, the only reason we have not merged this function with the 2819 * 'ubifs_debugging_init()' function is because it is better to initialize 2820 * debugfs interfaces at the very end of the mount process, and remove them at 2821 * the very beginning of the mount process. 2822 */ 2823 int dbg_debugfs_init_fs(struct ubifs_info *c) 2824 { 2825 int err, n; 2826 const char *fname; 2827 struct dentry *dent; 2828 struct ubifs_debug_info *d = c->dbg; 2829 2830 if (!IS_ENABLED(CONFIG_DEBUG_FS)) 2831 return 0; 2832 2833 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME, 2834 c->vi.ubi_num, c->vi.vol_id); 2835 if (n == UBIFS_DFS_DIR_LEN) { 2836 /* The array size is too small */ 2837 fname = UBIFS_DFS_DIR_NAME; 2838 dent = ERR_PTR(-EINVAL); 2839 goto out; 2840 } 2841 2842 fname = d->dfs_dir_name; 2843 dent = debugfs_create_dir(fname, dfs_rootdir); 2844 if (IS_ERR_OR_NULL(dent)) 2845 goto out; 2846 d->dfs_dir = dent; 2847 2848 fname = "dump_lprops"; 2849 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2850 if (IS_ERR_OR_NULL(dent)) 2851 goto out_remove; 2852 d->dfs_dump_lprops = dent; 2853 2854 fname = "dump_budg"; 2855 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2856 if (IS_ERR_OR_NULL(dent)) 2857 goto out_remove; 2858 d->dfs_dump_budg = dent; 2859 2860 fname = "dump_tnc"; 2861 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2862 if (IS_ERR_OR_NULL(dent)) 2863 goto out_remove; 2864 d->dfs_dump_tnc = dent; 2865 2866 fname = "chk_general"; 2867 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2868 &dfs_fops); 2869 if (IS_ERR_OR_NULL(dent)) 2870 goto out_remove; 2871 d->dfs_chk_gen = dent; 2872 2873 fname = "chk_index"; 2874 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2875 &dfs_fops); 2876 if (IS_ERR_OR_NULL(dent)) 2877 goto out_remove; 2878 d->dfs_chk_index = dent; 2879 2880 fname = "chk_orphans"; 2881 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2882 &dfs_fops); 2883 if (IS_ERR_OR_NULL(dent)) 2884 goto out_remove; 2885 d->dfs_chk_orph = dent; 2886 2887 fname = "chk_lprops"; 2888 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2889 &dfs_fops); 2890 if (IS_ERR_OR_NULL(dent)) 2891 goto out_remove; 2892 d->dfs_chk_lprops = dent; 2893 2894 fname = "chk_fs"; 2895 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2896 &dfs_fops); 2897 if (IS_ERR_OR_NULL(dent)) 2898 goto out_remove; 2899 d->dfs_chk_fs = dent; 2900 2901 fname = "tst_recovery"; 2902 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2903 &dfs_fops); 2904 if (IS_ERR_OR_NULL(dent)) 2905 goto out_remove; 2906 d->dfs_tst_rcvry = dent; 2907 2908 fname = "ro_error"; 2909 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2910 &dfs_fops); 2911 if (IS_ERR_OR_NULL(dent)) 2912 goto out_remove; 2913 d->dfs_ro_error = dent; 2914 2915 return 0; 2916 2917 out_remove: 2918 debugfs_remove_recursive(d->dfs_dir); 2919 out: 2920 err = dent ? PTR_ERR(dent) : -ENODEV; 2921 ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n", 2922 fname, err); 2923 return err; 2924 } 2925 2926 /** 2927 * dbg_debugfs_exit_fs - remove all debugfs files. 2928 * @c: UBIFS file-system description object 2929 */ 2930 void dbg_debugfs_exit_fs(struct ubifs_info *c) 2931 { 2932 if (IS_ENABLED(CONFIG_DEBUG_FS)) 2933 debugfs_remove_recursive(c->dbg->dfs_dir); 2934 } 2935 2936 struct ubifs_global_debug_info ubifs_dbg; 2937 2938 static struct dentry *dfs_chk_gen; 2939 static struct dentry *dfs_chk_index; 2940 static struct dentry *dfs_chk_orph; 2941 static struct dentry *dfs_chk_lprops; 2942 static struct dentry *dfs_chk_fs; 2943 static struct dentry *dfs_tst_rcvry; 2944 2945 static ssize_t dfs_global_file_read(struct file *file, char __user *u, 2946 size_t count, loff_t *ppos) 2947 { 2948 struct dentry *dent = file->f_path.dentry; 2949 int val; 2950 2951 if (dent == dfs_chk_gen) 2952 val = ubifs_dbg.chk_gen; 2953 else if (dent == dfs_chk_index) 2954 val = ubifs_dbg.chk_index; 2955 else if (dent == dfs_chk_orph) 2956 val = ubifs_dbg.chk_orph; 2957 else if (dent == dfs_chk_lprops) 2958 val = ubifs_dbg.chk_lprops; 2959 else if (dent == dfs_chk_fs) 2960 val = ubifs_dbg.chk_fs; 2961 else if (dent == dfs_tst_rcvry) 2962 val = ubifs_dbg.tst_rcvry; 2963 else 2964 return -EINVAL; 2965 2966 return provide_user_output(val, u, count, ppos); 2967 } 2968 2969 static ssize_t dfs_global_file_write(struct file *file, const char __user *u, 2970 size_t count, loff_t *ppos) 2971 { 2972 struct dentry *dent = file->f_path.dentry; 2973 int val; 2974 2975 val = interpret_user_input(u, count); 2976 if (val < 0) 2977 return val; 2978 2979 if (dent == dfs_chk_gen) 2980 ubifs_dbg.chk_gen = val; 2981 else if (dent == dfs_chk_index) 2982 ubifs_dbg.chk_index = val; 2983 else if (dent == dfs_chk_orph) 2984 ubifs_dbg.chk_orph = val; 2985 else if (dent == dfs_chk_lprops) 2986 ubifs_dbg.chk_lprops = val; 2987 else if (dent == dfs_chk_fs) 2988 ubifs_dbg.chk_fs = val; 2989 else if (dent == dfs_tst_rcvry) 2990 ubifs_dbg.tst_rcvry = val; 2991 else 2992 return -EINVAL; 2993 2994 return count; 2995 } 2996 2997 static const struct file_operations dfs_global_fops = { 2998 .read = dfs_global_file_read, 2999 .write = dfs_global_file_write, 3000 .owner = THIS_MODULE, 3001 .llseek = no_llseek, 3002 }; 3003 3004 /** 3005 * dbg_debugfs_init - initialize debugfs file-system. 3006 * 3007 * UBIFS uses debugfs file-system to expose various debugging knobs to 3008 * user-space. This function creates "ubifs" directory in the debugfs 3009 * file-system. Returns zero in case of success and a negative error code in 3010 * case of failure. 3011 */ 3012 int dbg_debugfs_init(void) 3013 { 3014 int err; 3015 const char *fname; 3016 struct dentry *dent; 3017 3018 if (!IS_ENABLED(CONFIG_DEBUG_FS)) 3019 return 0; 3020 3021 fname = "ubifs"; 3022 dent = debugfs_create_dir(fname, NULL); 3023 if (IS_ERR_OR_NULL(dent)) 3024 goto out; 3025 dfs_rootdir = dent; 3026 3027 fname = "chk_general"; 3028 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3029 &dfs_global_fops); 3030 if (IS_ERR_OR_NULL(dent)) 3031 goto out_remove; 3032 dfs_chk_gen = dent; 3033 3034 fname = "chk_index"; 3035 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3036 &dfs_global_fops); 3037 if (IS_ERR_OR_NULL(dent)) 3038 goto out_remove; 3039 dfs_chk_index = dent; 3040 3041 fname = "chk_orphans"; 3042 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3043 &dfs_global_fops); 3044 if (IS_ERR_OR_NULL(dent)) 3045 goto out_remove; 3046 dfs_chk_orph = dent; 3047 3048 fname = "chk_lprops"; 3049 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3050 &dfs_global_fops); 3051 if (IS_ERR_OR_NULL(dent)) 3052 goto out_remove; 3053 dfs_chk_lprops = dent; 3054 3055 fname = "chk_fs"; 3056 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3057 &dfs_global_fops); 3058 if (IS_ERR_OR_NULL(dent)) 3059 goto out_remove; 3060 dfs_chk_fs = dent; 3061 3062 fname = "tst_recovery"; 3063 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3064 &dfs_global_fops); 3065 if (IS_ERR_OR_NULL(dent)) 3066 goto out_remove; 3067 dfs_tst_rcvry = dent; 3068 3069 return 0; 3070 3071 out_remove: 3072 debugfs_remove_recursive(dfs_rootdir); 3073 out: 3074 err = dent ? PTR_ERR(dent) : -ENODEV; 3075 pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n", 3076 current->pid, fname, err); 3077 return err; 3078 } 3079 3080 /** 3081 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 3082 */ 3083 void dbg_debugfs_exit(void) 3084 { 3085 if (IS_ENABLED(CONFIG_DEBUG_FS)) 3086 debugfs_remove_recursive(dfs_rootdir); 3087 } 3088 3089 void ubifs_assert_failed(struct ubifs_info *c, const char *expr, 3090 const char *file, int line) 3091 { 3092 ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line); 3093 3094 switch (c->assert_action) { 3095 case ASSACT_PANIC: 3096 BUG(); 3097 break; 3098 3099 case ASSACT_RO: 3100 ubifs_ro_mode(c, -EINVAL); 3101 break; 3102 3103 case ASSACT_REPORT: 3104 default: 3105 dump_stack(); 3106 break; 3107 3108 } 3109 } 3110 3111 /** 3112 * ubifs_debugging_init - initialize UBIFS debugging. 3113 * @c: UBIFS file-system description object 3114 * 3115 * This function initializes debugging-related data for the file system. 3116 * Returns zero in case of success and a negative error code in case of 3117 * failure. 3118 */ 3119 int ubifs_debugging_init(struct ubifs_info *c) 3120 { 3121 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 3122 if (!c->dbg) 3123 return -ENOMEM; 3124 3125 return 0; 3126 } 3127 3128 /** 3129 * ubifs_debugging_exit - free debugging data. 3130 * @c: UBIFS file-system description object 3131 */ 3132 void ubifs_debugging_exit(struct ubifs_info *c) 3133 { 3134 kfree(c->dbg); 3135 } 3136