1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements most of the debugging stuff which is compiled in only 25 * when it is enabled. But some debugging check functions are implemented in 26 * corresponding subsystem, just because they are closely related and utilize 27 * various local functions of those subsystems. 28 */ 29 30 #include <linux/module.h> 31 #include <linux/debugfs.h> 32 #include <linux/math64.h> 33 #include <linux/uaccess.h> 34 #include <linux/random.h> 35 #include "ubifs.h" 36 37 static DEFINE_SPINLOCK(dbg_lock); 38 39 static const char *get_key_fmt(int fmt) 40 { 41 switch (fmt) { 42 case UBIFS_SIMPLE_KEY_FMT: 43 return "simple"; 44 default: 45 return "unknown/invalid format"; 46 } 47 } 48 49 static const char *get_key_hash(int hash) 50 { 51 switch (hash) { 52 case UBIFS_KEY_HASH_R5: 53 return "R5"; 54 case UBIFS_KEY_HASH_TEST: 55 return "test"; 56 default: 57 return "unknown/invalid name hash"; 58 } 59 } 60 61 static const char *get_key_type(int type) 62 { 63 switch (type) { 64 case UBIFS_INO_KEY: 65 return "inode"; 66 case UBIFS_DENT_KEY: 67 return "direntry"; 68 case UBIFS_XENT_KEY: 69 return "xentry"; 70 case UBIFS_DATA_KEY: 71 return "data"; 72 case UBIFS_TRUN_KEY: 73 return "truncate"; 74 default: 75 return "unknown/invalid key"; 76 } 77 } 78 79 static const char *get_dent_type(int type) 80 { 81 switch (type) { 82 case UBIFS_ITYPE_REG: 83 return "file"; 84 case UBIFS_ITYPE_DIR: 85 return "dir"; 86 case UBIFS_ITYPE_LNK: 87 return "symlink"; 88 case UBIFS_ITYPE_BLK: 89 return "blkdev"; 90 case UBIFS_ITYPE_CHR: 91 return "char dev"; 92 case UBIFS_ITYPE_FIFO: 93 return "fifo"; 94 case UBIFS_ITYPE_SOCK: 95 return "socket"; 96 default: 97 return "unknown/invalid type"; 98 } 99 } 100 101 const char *dbg_snprintf_key(const struct ubifs_info *c, 102 const union ubifs_key *key, char *buffer, int len) 103 { 104 char *p = buffer; 105 int type = key_type(c, key); 106 107 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 108 switch (type) { 109 case UBIFS_INO_KEY: 110 len -= snprintf(p, len, "(%lu, %s)", 111 (unsigned long)key_inum(c, key), 112 get_key_type(type)); 113 break; 114 case UBIFS_DENT_KEY: 115 case UBIFS_XENT_KEY: 116 len -= snprintf(p, len, "(%lu, %s, %#08x)", 117 (unsigned long)key_inum(c, key), 118 get_key_type(type), key_hash(c, key)); 119 break; 120 case UBIFS_DATA_KEY: 121 len -= snprintf(p, len, "(%lu, %s, %u)", 122 (unsigned long)key_inum(c, key), 123 get_key_type(type), key_block(c, key)); 124 break; 125 case UBIFS_TRUN_KEY: 126 len -= snprintf(p, len, "(%lu, %s)", 127 (unsigned long)key_inum(c, key), 128 get_key_type(type)); 129 break; 130 default: 131 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)", 132 key->u32[0], key->u32[1]); 133 } 134 } else 135 len -= snprintf(p, len, "bad key format %d", c->key_fmt); 136 ubifs_assert(len > 0); 137 return p; 138 } 139 140 const char *dbg_ntype(int type) 141 { 142 switch (type) { 143 case UBIFS_PAD_NODE: 144 return "padding node"; 145 case UBIFS_SB_NODE: 146 return "superblock node"; 147 case UBIFS_MST_NODE: 148 return "master node"; 149 case UBIFS_REF_NODE: 150 return "reference node"; 151 case UBIFS_INO_NODE: 152 return "inode node"; 153 case UBIFS_DENT_NODE: 154 return "direntry node"; 155 case UBIFS_XENT_NODE: 156 return "xentry node"; 157 case UBIFS_DATA_NODE: 158 return "data node"; 159 case UBIFS_TRUN_NODE: 160 return "truncate node"; 161 case UBIFS_IDX_NODE: 162 return "indexing node"; 163 case UBIFS_CS_NODE: 164 return "commit start node"; 165 case UBIFS_ORPH_NODE: 166 return "orphan node"; 167 default: 168 return "unknown node"; 169 } 170 } 171 172 static const char *dbg_gtype(int type) 173 { 174 switch (type) { 175 case UBIFS_NO_NODE_GROUP: 176 return "no node group"; 177 case UBIFS_IN_NODE_GROUP: 178 return "in node group"; 179 case UBIFS_LAST_OF_NODE_GROUP: 180 return "last of node group"; 181 default: 182 return "unknown"; 183 } 184 } 185 186 const char *dbg_cstate(int cmt_state) 187 { 188 switch (cmt_state) { 189 case COMMIT_RESTING: 190 return "commit resting"; 191 case COMMIT_BACKGROUND: 192 return "background commit requested"; 193 case COMMIT_REQUIRED: 194 return "commit required"; 195 case COMMIT_RUNNING_BACKGROUND: 196 return "BACKGROUND commit running"; 197 case COMMIT_RUNNING_REQUIRED: 198 return "commit running and required"; 199 case COMMIT_BROKEN: 200 return "broken commit"; 201 default: 202 return "unknown commit state"; 203 } 204 } 205 206 const char *dbg_jhead(int jhead) 207 { 208 switch (jhead) { 209 case GCHD: 210 return "0 (GC)"; 211 case BASEHD: 212 return "1 (base)"; 213 case DATAHD: 214 return "2 (data)"; 215 default: 216 return "unknown journal head"; 217 } 218 } 219 220 static void dump_ch(const struct ubifs_ch *ch) 221 { 222 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic)); 223 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc)); 224 pr_err("\tnode_type %d (%s)\n", ch->node_type, 225 dbg_ntype(ch->node_type)); 226 pr_err("\tgroup_type %d (%s)\n", ch->group_type, 227 dbg_gtype(ch->group_type)); 228 pr_err("\tsqnum %llu\n", 229 (unsigned long long)le64_to_cpu(ch->sqnum)); 230 pr_err("\tlen %u\n", le32_to_cpu(ch->len)); 231 } 232 233 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode) 234 { 235 const struct ubifs_inode *ui = ubifs_inode(inode); 236 struct qstr nm = { .name = NULL }; 237 union ubifs_key key; 238 struct ubifs_dent_node *dent, *pdent = NULL; 239 int count = 2; 240 241 pr_err("Dump in-memory inode:"); 242 pr_err("\tinode %lu\n", inode->i_ino); 243 pr_err("\tsize %llu\n", 244 (unsigned long long)i_size_read(inode)); 245 pr_err("\tnlink %u\n", inode->i_nlink); 246 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode)); 247 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode)); 248 pr_err("\tatime %u.%u\n", 249 (unsigned int)inode->i_atime.tv_sec, 250 (unsigned int)inode->i_atime.tv_nsec); 251 pr_err("\tmtime %u.%u\n", 252 (unsigned int)inode->i_mtime.tv_sec, 253 (unsigned int)inode->i_mtime.tv_nsec); 254 pr_err("\tctime %u.%u\n", 255 (unsigned int)inode->i_ctime.tv_sec, 256 (unsigned int)inode->i_ctime.tv_nsec); 257 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum); 258 pr_err("\txattr_size %u\n", ui->xattr_size); 259 pr_err("\txattr_cnt %u\n", ui->xattr_cnt); 260 pr_err("\txattr_names %u\n", ui->xattr_names); 261 pr_err("\tdirty %u\n", ui->dirty); 262 pr_err("\txattr %u\n", ui->xattr); 263 pr_err("\tbulk_read %u\n", ui->xattr); 264 pr_err("\tsynced_i_size %llu\n", 265 (unsigned long long)ui->synced_i_size); 266 pr_err("\tui_size %llu\n", 267 (unsigned long long)ui->ui_size); 268 pr_err("\tflags %d\n", ui->flags); 269 pr_err("\tcompr_type %d\n", ui->compr_type); 270 pr_err("\tlast_page_read %lu\n", ui->last_page_read); 271 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row); 272 pr_err("\tdata_len %d\n", ui->data_len); 273 274 if (!S_ISDIR(inode->i_mode)) 275 return; 276 277 pr_err("List of directory entries:\n"); 278 ubifs_assert(!mutex_is_locked(&c->tnc_mutex)); 279 280 lowest_dent_key(c, &key, inode->i_ino); 281 while (1) { 282 dent = ubifs_tnc_next_ent(c, &key, &nm); 283 if (IS_ERR(dent)) { 284 if (PTR_ERR(dent) != -ENOENT) 285 pr_err("error %ld\n", PTR_ERR(dent)); 286 break; 287 } 288 289 pr_err("\t%d: %s (%s)\n", 290 count++, dent->name, get_dent_type(dent->type)); 291 292 nm.name = dent->name; 293 nm.len = le16_to_cpu(dent->nlen); 294 kfree(pdent); 295 pdent = dent; 296 key_read(c, &dent->key, &key); 297 } 298 kfree(pdent); 299 } 300 301 void ubifs_dump_node(const struct ubifs_info *c, const void *node) 302 { 303 int i, n; 304 union ubifs_key key; 305 const struct ubifs_ch *ch = node; 306 char key_buf[DBG_KEY_BUF_LEN]; 307 308 /* If the magic is incorrect, just hexdump the first bytes */ 309 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 310 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ); 311 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, 312 (void *)node, UBIFS_CH_SZ, 1); 313 return; 314 } 315 316 spin_lock(&dbg_lock); 317 dump_ch(node); 318 319 switch (ch->node_type) { 320 case UBIFS_PAD_NODE: 321 { 322 const struct ubifs_pad_node *pad = node; 323 324 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len)); 325 break; 326 } 327 case UBIFS_SB_NODE: 328 { 329 const struct ubifs_sb_node *sup = node; 330 unsigned int sup_flags = le32_to_cpu(sup->flags); 331 332 pr_err("\tkey_hash %d (%s)\n", 333 (int)sup->key_hash, get_key_hash(sup->key_hash)); 334 pr_err("\tkey_fmt %d (%s)\n", 335 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 336 pr_err("\tflags %#x\n", sup_flags); 337 pr_err("\t big_lpt %u\n", 338 !!(sup_flags & UBIFS_FLG_BIGLPT)); 339 pr_err("\t space_fixup %u\n", 340 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); 341 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size)); 342 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size)); 343 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt)); 344 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt)); 345 pr_err("\tmax_bud_bytes %llu\n", 346 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 347 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs)); 348 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs)); 349 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs)); 350 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt)); 351 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout)); 352 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt)); 353 pr_err("\tdefault_compr %u\n", 354 (int)le16_to_cpu(sup->default_compr)); 355 pr_err("\trp_size %llu\n", 356 (unsigned long long)le64_to_cpu(sup->rp_size)); 357 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid)); 358 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid)); 359 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version)); 360 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran)); 361 pr_err("\tUUID %pUB\n", sup->uuid); 362 break; 363 } 364 case UBIFS_MST_NODE: 365 { 366 const struct ubifs_mst_node *mst = node; 367 368 pr_err("\thighest_inum %llu\n", 369 (unsigned long long)le64_to_cpu(mst->highest_inum)); 370 pr_err("\tcommit number %llu\n", 371 (unsigned long long)le64_to_cpu(mst->cmt_no)); 372 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags)); 373 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum)); 374 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum)); 375 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs)); 376 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len)); 377 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum)); 378 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum)); 379 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs)); 380 pr_err("\tindex_size %llu\n", 381 (unsigned long long)le64_to_cpu(mst->index_size)); 382 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum)); 383 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs)); 384 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum)); 385 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs)); 386 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum)); 387 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs)); 388 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum)); 389 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs)); 390 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum)); 391 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt)); 392 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs)); 393 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs)); 394 pr_err("\ttotal_free %llu\n", 395 (unsigned long long)le64_to_cpu(mst->total_free)); 396 pr_err("\ttotal_dirty %llu\n", 397 (unsigned long long)le64_to_cpu(mst->total_dirty)); 398 pr_err("\ttotal_used %llu\n", 399 (unsigned long long)le64_to_cpu(mst->total_used)); 400 pr_err("\ttotal_dead %llu\n", 401 (unsigned long long)le64_to_cpu(mst->total_dead)); 402 pr_err("\ttotal_dark %llu\n", 403 (unsigned long long)le64_to_cpu(mst->total_dark)); 404 break; 405 } 406 case UBIFS_REF_NODE: 407 { 408 const struct ubifs_ref_node *ref = node; 409 410 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum)); 411 pr_err("\toffs %u\n", le32_to_cpu(ref->offs)); 412 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead)); 413 break; 414 } 415 case UBIFS_INO_NODE: 416 { 417 const struct ubifs_ino_node *ino = node; 418 419 key_read(c, &ino->key, &key); 420 pr_err("\tkey %s\n", 421 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 422 pr_err("\tcreat_sqnum %llu\n", 423 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 424 pr_err("\tsize %llu\n", 425 (unsigned long long)le64_to_cpu(ino->size)); 426 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink)); 427 pr_err("\tatime %lld.%u\n", 428 (long long)le64_to_cpu(ino->atime_sec), 429 le32_to_cpu(ino->atime_nsec)); 430 pr_err("\tmtime %lld.%u\n", 431 (long long)le64_to_cpu(ino->mtime_sec), 432 le32_to_cpu(ino->mtime_nsec)); 433 pr_err("\tctime %lld.%u\n", 434 (long long)le64_to_cpu(ino->ctime_sec), 435 le32_to_cpu(ino->ctime_nsec)); 436 pr_err("\tuid %u\n", le32_to_cpu(ino->uid)); 437 pr_err("\tgid %u\n", le32_to_cpu(ino->gid)); 438 pr_err("\tmode %u\n", le32_to_cpu(ino->mode)); 439 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags)); 440 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt)); 441 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size)); 442 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names)); 443 pr_err("\tcompr_type %#x\n", 444 (int)le16_to_cpu(ino->compr_type)); 445 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len)); 446 break; 447 } 448 case UBIFS_DENT_NODE: 449 case UBIFS_XENT_NODE: 450 { 451 const struct ubifs_dent_node *dent = node; 452 int nlen = le16_to_cpu(dent->nlen); 453 454 key_read(c, &dent->key, &key); 455 pr_err("\tkey %s\n", 456 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 457 pr_err("\tinum %llu\n", 458 (unsigned long long)le64_to_cpu(dent->inum)); 459 pr_err("\ttype %d\n", (int)dent->type); 460 pr_err("\tnlen %d\n", nlen); 461 pr_err("\tname "); 462 463 if (nlen > UBIFS_MAX_NLEN) 464 pr_err("(bad name length, not printing, bad or corrupted node)"); 465 else { 466 for (i = 0; i < nlen && dent->name[i]; i++) 467 pr_cont("%c", dent->name[i]); 468 } 469 pr_cont("\n"); 470 471 break; 472 } 473 case UBIFS_DATA_NODE: 474 { 475 const struct ubifs_data_node *dn = node; 476 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 477 478 key_read(c, &dn->key, &key); 479 pr_err("\tkey %s\n", 480 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 481 pr_err("\tsize %u\n", le32_to_cpu(dn->size)); 482 pr_err("\tcompr_typ %d\n", 483 (int)le16_to_cpu(dn->compr_type)); 484 pr_err("\tdata size %d\n", dlen); 485 pr_err("\tdata:\n"); 486 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1, 487 (void *)&dn->data, dlen, 0); 488 break; 489 } 490 case UBIFS_TRUN_NODE: 491 { 492 const struct ubifs_trun_node *trun = node; 493 494 pr_err("\tinum %u\n", le32_to_cpu(trun->inum)); 495 pr_err("\told_size %llu\n", 496 (unsigned long long)le64_to_cpu(trun->old_size)); 497 pr_err("\tnew_size %llu\n", 498 (unsigned long long)le64_to_cpu(trun->new_size)); 499 break; 500 } 501 case UBIFS_IDX_NODE: 502 { 503 const struct ubifs_idx_node *idx = node; 504 505 n = le16_to_cpu(idx->child_cnt); 506 pr_err("\tchild_cnt %d\n", n); 507 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level)); 508 pr_err("\tBranches:\n"); 509 510 for (i = 0; i < n && i < c->fanout - 1; i++) { 511 const struct ubifs_branch *br; 512 513 br = ubifs_idx_branch(c, idx, i); 514 key_read(c, &br->key, &key); 515 pr_err("\t%d: LEB %d:%d len %d key %s\n", 516 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 517 le32_to_cpu(br->len), 518 dbg_snprintf_key(c, &key, key_buf, 519 DBG_KEY_BUF_LEN)); 520 } 521 break; 522 } 523 case UBIFS_CS_NODE: 524 break; 525 case UBIFS_ORPH_NODE: 526 { 527 const struct ubifs_orph_node *orph = node; 528 529 pr_err("\tcommit number %llu\n", 530 (unsigned long long) 531 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 532 pr_err("\tlast node flag %llu\n", 533 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 534 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 535 pr_err("\t%d orphan inode numbers:\n", n); 536 for (i = 0; i < n; i++) 537 pr_err("\t ino %llu\n", 538 (unsigned long long)le64_to_cpu(orph->inos[i])); 539 break; 540 } 541 default: 542 pr_err("node type %d was not recognized\n", 543 (int)ch->node_type); 544 } 545 spin_unlock(&dbg_lock); 546 } 547 548 void ubifs_dump_budget_req(const struct ubifs_budget_req *req) 549 { 550 spin_lock(&dbg_lock); 551 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n", 552 req->new_ino, req->dirtied_ino); 553 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n", 554 req->new_ino_d, req->dirtied_ino_d); 555 pr_err("\tnew_page %d, dirtied_page %d\n", 556 req->new_page, req->dirtied_page); 557 pr_err("\tnew_dent %d, mod_dent %d\n", 558 req->new_dent, req->mod_dent); 559 pr_err("\tidx_growth %d\n", req->idx_growth); 560 pr_err("\tdata_growth %d dd_growth %d\n", 561 req->data_growth, req->dd_growth); 562 spin_unlock(&dbg_lock); 563 } 564 565 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst) 566 { 567 spin_lock(&dbg_lock); 568 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n", 569 current->pid, lst->empty_lebs, lst->idx_lebs); 570 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n", 571 lst->taken_empty_lebs, lst->total_free, lst->total_dirty); 572 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n", 573 lst->total_used, lst->total_dark, lst->total_dead); 574 spin_unlock(&dbg_lock); 575 } 576 577 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 578 { 579 int i; 580 struct rb_node *rb; 581 struct ubifs_bud *bud; 582 struct ubifs_gced_idx_leb *idx_gc; 583 long long available, outstanding, free; 584 585 spin_lock(&c->space_lock); 586 spin_lock(&dbg_lock); 587 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n", 588 current->pid, bi->data_growth + bi->dd_growth, 589 bi->data_growth + bi->dd_growth + bi->idx_growth); 590 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n", 591 bi->data_growth, bi->dd_growth, bi->idx_growth); 592 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n", 593 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx); 594 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n", 595 bi->page_budget, bi->inode_budget, bi->dent_budget); 596 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp); 597 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 598 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 599 600 if (bi != &c->bi) 601 /* 602 * If we are dumping saved budgeting data, do not print 603 * additional information which is about the current state, not 604 * the old one which corresponded to the saved budgeting data. 605 */ 606 goto out_unlock; 607 608 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", 609 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); 610 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n", 611 atomic_long_read(&c->dirty_pg_cnt), 612 atomic_long_read(&c->dirty_zn_cnt), 613 atomic_long_read(&c->clean_zn_cnt)); 614 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum); 615 616 /* If we are in R/O mode, journal heads do not exist */ 617 if (c->jheads) 618 for (i = 0; i < c->jhead_cnt; i++) 619 pr_err("\tjhead %s\t LEB %d\n", 620 dbg_jhead(c->jheads[i].wbuf.jhead), 621 c->jheads[i].wbuf.lnum); 622 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 623 bud = rb_entry(rb, struct ubifs_bud, rb); 624 pr_err("\tbud LEB %d\n", bud->lnum); 625 } 626 list_for_each_entry(bud, &c->old_buds, list) 627 pr_err("\told bud LEB %d\n", bud->lnum); 628 list_for_each_entry(idx_gc, &c->idx_gc, list) 629 pr_err("\tGC'ed idx LEB %d unmap %d\n", 630 idx_gc->lnum, idx_gc->unmap); 631 pr_err("\tcommit state %d\n", c->cmt_state); 632 633 /* Print budgeting predictions */ 634 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 635 outstanding = c->bi.data_growth + c->bi.dd_growth; 636 free = ubifs_get_free_space_nolock(c); 637 pr_err("Budgeting predictions:\n"); 638 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n", 639 available, outstanding, free); 640 out_unlock: 641 spin_unlock(&dbg_lock); 642 spin_unlock(&c->space_lock); 643 } 644 645 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 646 { 647 int i, spc, dark = 0, dead = 0; 648 struct rb_node *rb; 649 struct ubifs_bud *bud; 650 651 spc = lp->free + lp->dirty; 652 if (spc < c->dead_wm) 653 dead = spc; 654 else 655 dark = ubifs_calc_dark(c, spc); 656 657 if (lp->flags & LPROPS_INDEX) 658 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (", 659 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 660 lp->flags); 661 else 662 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (", 663 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 664 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 665 666 if (lp->flags & LPROPS_TAKEN) { 667 if (lp->flags & LPROPS_INDEX) 668 pr_cont("index, taken"); 669 else 670 pr_cont("taken"); 671 } else { 672 const char *s; 673 674 if (lp->flags & LPROPS_INDEX) { 675 switch (lp->flags & LPROPS_CAT_MASK) { 676 case LPROPS_DIRTY_IDX: 677 s = "dirty index"; 678 break; 679 case LPROPS_FRDI_IDX: 680 s = "freeable index"; 681 break; 682 default: 683 s = "index"; 684 } 685 } else { 686 switch (lp->flags & LPROPS_CAT_MASK) { 687 case LPROPS_UNCAT: 688 s = "not categorized"; 689 break; 690 case LPROPS_DIRTY: 691 s = "dirty"; 692 break; 693 case LPROPS_FREE: 694 s = "free"; 695 break; 696 case LPROPS_EMPTY: 697 s = "empty"; 698 break; 699 case LPROPS_FREEABLE: 700 s = "freeable"; 701 break; 702 default: 703 s = NULL; 704 break; 705 } 706 } 707 pr_cont("%s", s); 708 } 709 710 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 711 bud = rb_entry(rb, struct ubifs_bud, rb); 712 if (bud->lnum == lp->lnum) { 713 int head = 0; 714 for (i = 0; i < c->jhead_cnt; i++) { 715 /* 716 * Note, if we are in R/O mode or in the middle 717 * of mounting/re-mounting, the write-buffers do 718 * not exist. 719 */ 720 if (c->jheads && 721 lp->lnum == c->jheads[i].wbuf.lnum) { 722 pr_cont(", jhead %s", dbg_jhead(i)); 723 head = 1; 724 } 725 } 726 if (!head) 727 pr_cont(", bud of jhead %s", 728 dbg_jhead(bud->jhead)); 729 } 730 } 731 if (lp->lnum == c->gc_lnum) 732 pr_cont(", GC LEB"); 733 pr_cont(")\n"); 734 } 735 736 void ubifs_dump_lprops(struct ubifs_info *c) 737 { 738 int lnum, err; 739 struct ubifs_lprops lp; 740 struct ubifs_lp_stats lst; 741 742 pr_err("(pid %d) start dumping LEB properties\n", current->pid); 743 ubifs_get_lp_stats(c, &lst); 744 ubifs_dump_lstats(&lst); 745 746 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 747 err = ubifs_read_one_lp(c, lnum, &lp); 748 if (err) 749 ubifs_err("cannot read lprops for LEB %d", lnum); 750 751 ubifs_dump_lprop(c, &lp); 752 } 753 pr_err("(pid %d) finish dumping LEB properties\n", current->pid); 754 } 755 756 void ubifs_dump_lpt_info(struct ubifs_info *c) 757 { 758 int i; 759 760 spin_lock(&dbg_lock); 761 pr_err("(pid %d) dumping LPT information\n", current->pid); 762 pr_err("\tlpt_sz: %lld\n", c->lpt_sz); 763 pr_err("\tpnode_sz: %d\n", c->pnode_sz); 764 pr_err("\tnnode_sz: %d\n", c->nnode_sz); 765 pr_err("\tltab_sz: %d\n", c->ltab_sz); 766 pr_err("\tlsave_sz: %d\n", c->lsave_sz); 767 pr_err("\tbig_lpt: %d\n", c->big_lpt); 768 pr_err("\tlpt_hght: %d\n", c->lpt_hght); 769 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt); 770 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt); 771 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 772 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 773 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt); 774 pr_err("\tspace_bits: %d\n", c->space_bits); 775 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 776 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 777 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 778 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits); 779 pr_err("\tlnum_bits: %d\n", c->lnum_bits); 780 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 781 pr_err("\tLPT head is at %d:%d\n", 782 c->nhead_lnum, c->nhead_offs); 783 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs); 784 if (c->big_lpt) 785 pr_err("\tLPT lsave is at %d:%d\n", 786 c->lsave_lnum, c->lsave_offs); 787 for (i = 0; i < c->lpt_lebs; i++) 788 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n", 789 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty, 790 c->ltab[i].tgc, c->ltab[i].cmt); 791 spin_unlock(&dbg_lock); 792 } 793 794 void ubifs_dump_sleb(const struct ubifs_info *c, 795 const struct ubifs_scan_leb *sleb, int offs) 796 { 797 struct ubifs_scan_node *snod; 798 799 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n", 800 current->pid, sleb->lnum, offs); 801 802 list_for_each_entry(snod, &sleb->nodes, list) { 803 cond_resched(); 804 pr_err("Dumping node at LEB %d:%d len %d\n", 805 sleb->lnum, snod->offs, snod->len); 806 ubifs_dump_node(c, snod->node); 807 } 808 } 809 810 void ubifs_dump_leb(const struct ubifs_info *c, int lnum) 811 { 812 struct ubifs_scan_leb *sleb; 813 struct ubifs_scan_node *snod; 814 void *buf; 815 816 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); 817 818 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 819 if (!buf) { 820 ubifs_err("cannot allocate memory for dumping LEB %d", lnum); 821 return; 822 } 823 824 sleb = ubifs_scan(c, lnum, 0, buf, 0); 825 if (IS_ERR(sleb)) { 826 ubifs_err("scan error %d", (int)PTR_ERR(sleb)); 827 goto out; 828 } 829 830 pr_err("LEB %d has %d nodes ending at %d\n", lnum, 831 sleb->nodes_cnt, sleb->endpt); 832 833 list_for_each_entry(snod, &sleb->nodes, list) { 834 cond_resched(); 835 pr_err("Dumping node at LEB %d:%d len %d\n", lnum, 836 snod->offs, snod->len); 837 ubifs_dump_node(c, snod->node); 838 } 839 840 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); 841 ubifs_scan_destroy(sleb); 842 843 out: 844 vfree(buf); 845 return; 846 } 847 848 void ubifs_dump_znode(const struct ubifs_info *c, 849 const struct ubifs_znode *znode) 850 { 851 int n; 852 const struct ubifs_zbranch *zbr; 853 char key_buf[DBG_KEY_BUF_LEN]; 854 855 spin_lock(&dbg_lock); 856 if (znode->parent) 857 zbr = &znode->parent->zbranch[znode->iip]; 858 else 859 zbr = &c->zroot; 860 861 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n", 862 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip, 863 znode->level, znode->child_cnt, znode->flags); 864 865 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 866 spin_unlock(&dbg_lock); 867 return; 868 } 869 870 pr_err("zbranches:\n"); 871 for (n = 0; n < znode->child_cnt; n++) { 872 zbr = &znode->zbranch[n]; 873 if (znode->level > 0) 874 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n", 875 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 876 dbg_snprintf_key(c, &zbr->key, key_buf, 877 DBG_KEY_BUF_LEN)); 878 else 879 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n", 880 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 881 dbg_snprintf_key(c, &zbr->key, key_buf, 882 DBG_KEY_BUF_LEN)); 883 } 884 spin_unlock(&dbg_lock); 885 } 886 887 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 888 { 889 int i; 890 891 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n", 892 current->pid, cat, heap->cnt); 893 for (i = 0; i < heap->cnt; i++) { 894 struct ubifs_lprops *lprops = heap->arr[i]; 895 896 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n", 897 i, lprops->lnum, lprops->hpos, lprops->free, 898 lprops->dirty, lprops->flags); 899 } 900 pr_err("(pid %d) finish dumping heap\n", current->pid); 901 } 902 903 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 904 struct ubifs_nnode *parent, int iip) 905 { 906 int i; 907 908 pr_err("(pid %d) dumping pnode:\n", current->pid); 909 pr_err("\taddress %zx parent %zx cnext %zx\n", 910 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 911 pr_err("\tflags %lu iip %d level %d num %d\n", 912 pnode->flags, iip, pnode->level, pnode->num); 913 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 914 struct ubifs_lprops *lp = &pnode->lprops[i]; 915 916 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n", 917 i, lp->free, lp->dirty, lp->flags, lp->lnum); 918 } 919 } 920 921 void ubifs_dump_tnc(struct ubifs_info *c) 922 { 923 struct ubifs_znode *znode; 924 int level; 925 926 pr_err("\n"); 927 pr_err("(pid %d) start dumping TNC tree\n", current->pid); 928 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 929 level = znode->level; 930 pr_err("== Level %d ==\n", level); 931 while (znode) { 932 if (level != znode->level) { 933 level = znode->level; 934 pr_err("== Level %d ==\n", level); 935 } 936 ubifs_dump_znode(c, znode); 937 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 938 } 939 pr_err("(pid %d) finish dumping TNC tree\n", current->pid); 940 } 941 942 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 943 void *priv) 944 { 945 ubifs_dump_znode(c, znode); 946 return 0; 947 } 948 949 /** 950 * ubifs_dump_index - dump the on-flash index. 951 * @c: UBIFS file-system description object 952 * 953 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()' 954 * which dumps only in-memory znodes and does not read znodes which from flash. 955 */ 956 void ubifs_dump_index(struct ubifs_info *c) 957 { 958 dbg_walk_index(c, NULL, dump_znode, NULL); 959 } 960 961 /** 962 * dbg_save_space_info - save information about flash space. 963 * @c: UBIFS file-system description object 964 * 965 * This function saves information about UBIFS free space, dirty space, etc, in 966 * order to check it later. 967 */ 968 void dbg_save_space_info(struct ubifs_info *c) 969 { 970 struct ubifs_debug_info *d = c->dbg; 971 int freeable_cnt; 972 973 spin_lock(&c->space_lock); 974 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); 975 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); 976 d->saved_idx_gc_cnt = c->idx_gc_cnt; 977 978 /* 979 * We use a dirty hack here and zero out @c->freeable_cnt, because it 980 * affects the free space calculations, and UBIFS might not know about 981 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks 982 * only when we read their lprops, and we do this only lazily, upon the 983 * need. So at any given point of time @c->freeable_cnt might be not 984 * exactly accurate. 985 * 986 * Just one example about the issue we hit when we did not zero 987 * @c->freeable_cnt. 988 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the 989 * amount of free space in @d->saved_free 990 * 2. We re-mount R/W, which makes UBIFS to read the "lsave" 991 * information from flash, where we cache LEBs from various 992 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' 993 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' 994 * -> 'ubifs_get_pnode()' -> 'update_cats()' 995 * -> 'ubifs_add_to_cat()'). 996 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt 997 * becomes %1. 998 * 4. We calculate the amount of free space when the re-mount is 999 * finished in 'dbg_check_space_info()' and it does not match 1000 * @d->saved_free. 1001 */ 1002 freeable_cnt = c->freeable_cnt; 1003 c->freeable_cnt = 0; 1004 d->saved_free = ubifs_get_free_space_nolock(c); 1005 c->freeable_cnt = freeable_cnt; 1006 spin_unlock(&c->space_lock); 1007 } 1008 1009 /** 1010 * dbg_check_space_info - check flash space information. 1011 * @c: UBIFS file-system description object 1012 * 1013 * This function compares current flash space information with the information 1014 * which was saved when the 'dbg_save_space_info()' function was called. 1015 * Returns zero if the information has not changed, and %-EINVAL it it has 1016 * changed. 1017 */ 1018 int dbg_check_space_info(struct ubifs_info *c) 1019 { 1020 struct ubifs_debug_info *d = c->dbg; 1021 struct ubifs_lp_stats lst; 1022 long long free; 1023 int freeable_cnt; 1024 1025 spin_lock(&c->space_lock); 1026 freeable_cnt = c->freeable_cnt; 1027 c->freeable_cnt = 0; 1028 free = ubifs_get_free_space_nolock(c); 1029 c->freeable_cnt = freeable_cnt; 1030 spin_unlock(&c->space_lock); 1031 1032 if (free != d->saved_free) { 1033 ubifs_err("free space changed from %lld to %lld", 1034 d->saved_free, free); 1035 goto out; 1036 } 1037 1038 return 0; 1039 1040 out: 1041 ubifs_msg("saved lprops statistics dump"); 1042 ubifs_dump_lstats(&d->saved_lst); 1043 ubifs_msg("saved budgeting info dump"); 1044 ubifs_dump_budg(c, &d->saved_bi); 1045 ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt); 1046 ubifs_msg("current lprops statistics dump"); 1047 ubifs_get_lp_stats(c, &lst); 1048 ubifs_dump_lstats(&lst); 1049 ubifs_msg("current budgeting info dump"); 1050 ubifs_dump_budg(c, &c->bi); 1051 dump_stack(); 1052 return -EINVAL; 1053 } 1054 1055 /** 1056 * dbg_check_synced_i_size - check synchronized inode size. 1057 * @c: UBIFS file-system description object 1058 * @inode: inode to check 1059 * 1060 * If inode is clean, synchronized inode size has to be equivalent to current 1061 * inode size. This function has to be called only for locked inodes (@i_mutex 1062 * has to be locked). Returns %0 if synchronized inode size if correct, and 1063 * %-EINVAL if not. 1064 */ 1065 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode) 1066 { 1067 int err = 0; 1068 struct ubifs_inode *ui = ubifs_inode(inode); 1069 1070 if (!dbg_is_chk_gen(c)) 1071 return 0; 1072 if (!S_ISREG(inode->i_mode)) 1073 return 0; 1074 1075 mutex_lock(&ui->ui_mutex); 1076 spin_lock(&ui->ui_lock); 1077 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1078 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode is clean", 1079 ui->ui_size, ui->synced_i_size); 1080 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1081 inode->i_mode, i_size_read(inode)); 1082 dump_stack(); 1083 err = -EINVAL; 1084 } 1085 spin_unlock(&ui->ui_lock); 1086 mutex_unlock(&ui->ui_mutex); 1087 return err; 1088 } 1089 1090 /* 1091 * dbg_check_dir - check directory inode size and link count. 1092 * @c: UBIFS file-system description object 1093 * @dir: the directory to calculate size for 1094 * @size: the result is returned here 1095 * 1096 * This function makes sure that directory size and link count are correct. 1097 * Returns zero in case of success and a negative error code in case of 1098 * failure. 1099 * 1100 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1101 * calling this function. 1102 */ 1103 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1104 { 1105 unsigned int nlink = 2; 1106 union ubifs_key key; 1107 struct ubifs_dent_node *dent, *pdent = NULL; 1108 struct qstr nm = { .name = NULL }; 1109 loff_t size = UBIFS_INO_NODE_SZ; 1110 1111 if (!dbg_is_chk_gen(c)) 1112 return 0; 1113 1114 if (!S_ISDIR(dir->i_mode)) 1115 return 0; 1116 1117 lowest_dent_key(c, &key, dir->i_ino); 1118 while (1) { 1119 int err; 1120 1121 dent = ubifs_tnc_next_ent(c, &key, &nm); 1122 if (IS_ERR(dent)) { 1123 err = PTR_ERR(dent); 1124 if (err == -ENOENT) 1125 break; 1126 return err; 1127 } 1128 1129 nm.name = dent->name; 1130 nm.len = le16_to_cpu(dent->nlen); 1131 size += CALC_DENT_SIZE(nm.len); 1132 if (dent->type == UBIFS_ITYPE_DIR) 1133 nlink += 1; 1134 kfree(pdent); 1135 pdent = dent; 1136 key_read(c, &dent->key, &key); 1137 } 1138 kfree(pdent); 1139 1140 if (i_size_read(dir) != size) { 1141 ubifs_err("directory inode %lu has size %llu, but calculated size is %llu", 1142 dir->i_ino, (unsigned long long)i_size_read(dir), 1143 (unsigned long long)size); 1144 ubifs_dump_inode(c, dir); 1145 dump_stack(); 1146 return -EINVAL; 1147 } 1148 if (dir->i_nlink != nlink) { 1149 ubifs_err("directory inode %lu has nlink %u, but calculated nlink is %u", 1150 dir->i_ino, dir->i_nlink, nlink); 1151 ubifs_dump_inode(c, dir); 1152 dump_stack(); 1153 return -EINVAL; 1154 } 1155 1156 return 0; 1157 } 1158 1159 /** 1160 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1161 * @c: UBIFS file-system description object 1162 * @zbr1: first zbranch 1163 * @zbr2: following zbranch 1164 * 1165 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1166 * names of the direntries/xentries which are referred by the keys. This 1167 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1168 * sure the name of direntry/xentry referred by @zbr1 is less than 1169 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1170 * and a negative error code in case of failure. 1171 */ 1172 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1173 struct ubifs_zbranch *zbr2) 1174 { 1175 int err, nlen1, nlen2, cmp; 1176 struct ubifs_dent_node *dent1, *dent2; 1177 union ubifs_key key; 1178 char key_buf[DBG_KEY_BUF_LEN]; 1179 1180 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 1181 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1182 if (!dent1) 1183 return -ENOMEM; 1184 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1185 if (!dent2) { 1186 err = -ENOMEM; 1187 goto out_free; 1188 } 1189 1190 err = ubifs_tnc_read_node(c, zbr1, dent1); 1191 if (err) 1192 goto out_free; 1193 err = ubifs_validate_entry(c, dent1); 1194 if (err) 1195 goto out_free; 1196 1197 err = ubifs_tnc_read_node(c, zbr2, dent2); 1198 if (err) 1199 goto out_free; 1200 err = ubifs_validate_entry(c, dent2); 1201 if (err) 1202 goto out_free; 1203 1204 /* Make sure node keys are the same as in zbranch */ 1205 err = 1; 1206 key_read(c, &dent1->key, &key); 1207 if (keys_cmp(c, &zbr1->key, &key)) { 1208 ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum, 1209 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1210 DBG_KEY_BUF_LEN)); 1211 ubifs_err("but it should have key %s according to tnc", 1212 dbg_snprintf_key(c, &zbr1->key, key_buf, 1213 DBG_KEY_BUF_LEN)); 1214 ubifs_dump_node(c, dent1); 1215 goto out_free; 1216 } 1217 1218 key_read(c, &dent2->key, &key); 1219 if (keys_cmp(c, &zbr2->key, &key)) { 1220 ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum, 1221 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1222 DBG_KEY_BUF_LEN)); 1223 ubifs_err("but it should have key %s according to tnc", 1224 dbg_snprintf_key(c, &zbr2->key, key_buf, 1225 DBG_KEY_BUF_LEN)); 1226 ubifs_dump_node(c, dent2); 1227 goto out_free; 1228 } 1229 1230 nlen1 = le16_to_cpu(dent1->nlen); 1231 nlen2 = le16_to_cpu(dent2->nlen); 1232 1233 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1234 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1235 err = 0; 1236 goto out_free; 1237 } 1238 if (cmp == 0 && nlen1 == nlen2) 1239 ubifs_err("2 xent/dent nodes with the same name"); 1240 else 1241 ubifs_err("bad order of colliding key %s", 1242 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 1243 1244 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1245 ubifs_dump_node(c, dent1); 1246 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1247 ubifs_dump_node(c, dent2); 1248 1249 out_free: 1250 kfree(dent2); 1251 kfree(dent1); 1252 return err; 1253 } 1254 1255 /** 1256 * dbg_check_znode - check if znode is all right. 1257 * @c: UBIFS file-system description object 1258 * @zbr: zbranch which points to this znode 1259 * 1260 * This function makes sure that znode referred to by @zbr is all right. 1261 * Returns zero if it is, and %-EINVAL if it is not. 1262 */ 1263 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1264 { 1265 struct ubifs_znode *znode = zbr->znode; 1266 struct ubifs_znode *zp = znode->parent; 1267 int n, err, cmp; 1268 1269 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1270 err = 1; 1271 goto out; 1272 } 1273 if (znode->level < 0) { 1274 err = 2; 1275 goto out; 1276 } 1277 if (znode->iip < 0 || znode->iip >= c->fanout) { 1278 err = 3; 1279 goto out; 1280 } 1281 1282 if (zbr->len == 0) 1283 /* Only dirty zbranch may have no on-flash nodes */ 1284 if (!ubifs_zn_dirty(znode)) { 1285 err = 4; 1286 goto out; 1287 } 1288 1289 if (ubifs_zn_dirty(znode)) { 1290 /* 1291 * If znode is dirty, its parent has to be dirty as well. The 1292 * order of the operation is important, so we have to have 1293 * memory barriers. 1294 */ 1295 smp_mb(); 1296 if (zp && !ubifs_zn_dirty(zp)) { 1297 /* 1298 * The dirty flag is atomic and is cleared outside the 1299 * TNC mutex, so znode's dirty flag may now have 1300 * been cleared. The child is always cleared before the 1301 * parent, so we just need to check again. 1302 */ 1303 smp_mb(); 1304 if (ubifs_zn_dirty(znode)) { 1305 err = 5; 1306 goto out; 1307 } 1308 } 1309 } 1310 1311 if (zp) { 1312 const union ubifs_key *min, *max; 1313 1314 if (znode->level != zp->level - 1) { 1315 err = 6; 1316 goto out; 1317 } 1318 1319 /* Make sure the 'parent' pointer in our znode is correct */ 1320 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1321 if (!err) { 1322 /* This zbranch does not exist in the parent */ 1323 err = 7; 1324 goto out; 1325 } 1326 1327 if (znode->iip >= zp->child_cnt) { 1328 err = 8; 1329 goto out; 1330 } 1331 1332 if (znode->iip != n) { 1333 /* This may happen only in case of collisions */ 1334 if (keys_cmp(c, &zp->zbranch[n].key, 1335 &zp->zbranch[znode->iip].key)) { 1336 err = 9; 1337 goto out; 1338 } 1339 n = znode->iip; 1340 } 1341 1342 /* 1343 * Make sure that the first key in our znode is greater than or 1344 * equal to the key in the pointing zbranch. 1345 */ 1346 min = &zbr->key; 1347 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1348 if (cmp == 1) { 1349 err = 10; 1350 goto out; 1351 } 1352 1353 if (n + 1 < zp->child_cnt) { 1354 max = &zp->zbranch[n + 1].key; 1355 1356 /* 1357 * Make sure the last key in our znode is less or 1358 * equivalent than the key in the zbranch which goes 1359 * after our pointing zbranch. 1360 */ 1361 cmp = keys_cmp(c, max, 1362 &znode->zbranch[znode->child_cnt - 1].key); 1363 if (cmp == -1) { 1364 err = 11; 1365 goto out; 1366 } 1367 } 1368 } else { 1369 /* This may only be root znode */ 1370 if (zbr != &c->zroot) { 1371 err = 12; 1372 goto out; 1373 } 1374 } 1375 1376 /* 1377 * Make sure that next key is greater or equivalent then the previous 1378 * one. 1379 */ 1380 for (n = 1; n < znode->child_cnt; n++) { 1381 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1382 &znode->zbranch[n].key); 1383 if (cmp > 0) { 1384 err = 13; 1385 goto out; 1386 } 1387 if (cmp == 0) { 1388 /* This can only be keys with colliding hash */ 1389 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1390 err = 14; 1391 goto out; 1392 } 1393 1394 if (znode->level != 0 || c->replaying) 1395 continue; 1396 1397 /* 1398 * Colliding keys should follow binary order of 1399 * corresponding xentry/dentry names. 1400 */ 1401 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1402 &znode->zbranch[n]); 1403 if (err < 0) 1404 return err; 1405 if (err) { 1406 err = 15; 1407 goto out; 1408 } 1409 } 1410 } 1411 1412 for (n = 0; n < znode->child_cnt; n++) { 1413 if (!znode->zbranch[n].znode && 1414 (znode->zbranch[n].lnum == 0 || 1415 znode->zbranch[n].len == 0)) { 1416 err = 16; 1417 goto out; 1418 } 1419 1420 if (znode->zbranch[n].lnum != 0 && 1421 znode->zbranch[n].len == 0) { 1422 err = 17; 1423 goto out; 1424 } 1425 1426 if (znode->zbranch[n].lnum == 0 && 1427 znode->zbranch[n].len != 0) { 1428 err = 18; 1429 goto out; 1430 } 1431 1432 if (znode->zbranch[n].lnum == 0 && 1433 znode->zbranch[n].offs != 0) { 1434 err = 19; 1435 goto out; 1436 } 1437 1438 if (znode->level != 0 && znode->zbranch[n].znode) 1439 if (znode->zbranch[n].znode->parent != znode) { 1440 err = 20; 1441 goto out; 1442 } 1443 } 1444 1445 return 0; 1446 1447 out: 1448 ubifs_err("failed, error %d", err); 1449 ubifs_msg("dump of the znode"); 1450 ubifs_dump_znode(c, znode); 1451 if (zp) { 1452 ubifs_msg("dump of the parent znode"); 1453 ubifs_dump_znode(c, zp); 1454 } 1455 dump_stack(); 1456 return -EINVAL; 1457 } 1458 1459 /** 1460 * dbg_check_tnc - check TNC tree. 1461 * @c: UBIFS file-system description object 1462 * @extra: do extra checks that are possible at start commit 1463 * 1464 * This function traverses whole TNC tree and checks every znode. Returns zero 1465 * if everything is all right and %-EINVAL if something is wrong with TNC. 1466 */ 1467 int dbg_check_tnc(struct ubifs_info *c, int extra) 1468 { 1469 struct ubifs_znode *znode; 1470 long clean_cnt = 0, dirty_cnt = 0; 1471 int err, last; 1472 1473 if (!dbg_is_chk_index(c)) 1474 return 0; 1475 1476 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1477 if (!c->zroot.znode) 1478 return 0; 1479 1480 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1481 while (1) { 1482 struct ubifs_znode *prev; 1483 struct ubifs_zbranch *zbr; 1484 1485 if (!znode->parent) 1486 zbr = &c->zroot; 1487 else 1488 zbr = &znode->parent->zbranch[znode->iip]; 1489 1490 err = dbg_check_znode(c, zbr); 1491 if (err) 1492 return err; 1493 1494 if (extra) { 1495 if (ubifs_zn_dirty(znode)) 1496 dirty_cnt += 1; 1497 else 1498 clean_cnt += 1; 1499 } 1500 1501 prev = znode; 1502 znode = ubifs_tnc_postorder_next(znode); 1503 if (!znode) 1504 break; 1505 1506 /* 1507 * If the last key of this znode is equivalent to the first key 1508 * of the next znode (collision), then check order of the keys. 1509 */ 1510 last = prev->child_cnt - 1; 1511 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1512 !keys_cmp(c, &prev->zbranch[last].key, 1513 &znode->zbranch[0].key)) { 1514 err = dbg_check_key_order(c, &prev->zbranch[last], 1515 &znode->zbranch[0]); 1516 if (err < 0) 1517 return err; 1518 if (err) { 1519 ubifs_msg("first znode"); 1520 ubifs_dump_znode(c, prev); 1521 ubifs_msg("second znode"); 1522 ubifs_dump_znode(c, znode); 1523 return -EINVAL; 1524 } 1525 } 1526 } 1527 1528 if (extra) { 1529 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1530 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", 1531 atomic_long_read(&c->clean_zn_cnt), 1532 clean_cnt); 1533 return -EINVAL; 1534 } 1535 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1536 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", 1537 atomic_long_read(&c->dirty_zn_cnt), 1538 dirty_cnt); 1539 return -EINVAL; 1540 } 1541 } 1542 1543 return 0; 1544 } 1545 1546 /** 1547 * dbg_walk_index - walk the on-flash index. 1548 * @c: UBIFS file-system description object 1549 * @leaf_cb: called for each leaf node 1550 * @znode_cb: called for each indexing node 1551 * @priv: private data which is passed to callbacks 1552 * 1553 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1554 * node and @znode_cb for each indexing node. Returns zero in case of success 1555 * and a negative error code in case of failure. 1556 * 1557 * It would be better if this function removed every znode it pulled to into 1558 * the TNC, so that the behavior more closely matched the non-debugging 1559 * behavior. 1560 */ 1561 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1562 dbg_znode_callback znode_cb, void *priv) 1563 { 1564 int err; 1565 struct ubifs_zbranch *zbr; 1566 struct ubifs_znode *znode, *child; 1567 1568 mutex_lock(&c->tnc_mutex); 1569 /* If the root indexing node is not in TNC - pull it */ 1570 if (!c->zroot.znode) { 1571 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1572 if (IS_ERR(c->zroot.znode)) { 1573 err = PTR_ERR(c->zroot.znode); 1574 c->zroot.znode = NULL; 1575 goto out_unlock; 1576 } 1577 } 1578 1579 /* 1580 * We are going to traverse the indexing tree in the postorder manner. 1581 * Go down and find the leftmost indexing node where we are going to 1582 * start from. 1583 */ 1584 znode = c->zroot.znode; 1585 while (znode->level > 0) { 1586 zbr = &znode->zbranch[0]; 1587 child = zbr->znode; 1588 if (!child) { 1589 child = ubifs_load_znode(c, zbr, znode, 0); 1590 if (IS_ERR(child)) { 1591 err = PTR_ERR(child); 1592 goto out_unlock; 1593 } 1594 zbr->znode = child; 1595 } 1596 1597 znode = child; 1598 } 1599 1600 /* Iterate over all indexing nodes */ 1601 while (1) { 1602 int idx; 1603 1604 cond_resched(); 1605 1606 if (znode_cb) { 1607 err = znode_cb(c, znode, priv); 1608 if (err) { 1609 ubifs_err("znode checking function returned error %d", 1610 err); 1611 ubifs_dump_znode(c, znode); 1612 goto out_dump; 1613 } 1614 } 1615 if (leaf_cb && znode->level == 0) { 1616 for (idx = 0; idx < znode->child_cnt; idx++) { 1617 zbr = &znode->zbranch[idx]; 1618 err = leaf_cb(c, zbr, priv); 1619 if (err) { 1620 ubifs_err("leaf checking function returned error %d, for leaf at LEB %d:%d", 1621 err, zbr->lnum, zbr->offs); 1622 goto out_dump; 1623 } 1624 } 1625 } 1626 1627 if (!znode->parent) 1628 break; 1629 1630 idx = znode->iip + 1; 1631 znode = znode->parent; 1632 if (idx < znode->child_cnt) { 1633 /* Switch to the next index in the parent */ 1634 zbr = &znode->zbranch[idx]; 1635 child = zbr->znode; 1636 if (!child) { 1637 child = ubifs_load_znode(c, zbr, znode, idx); 1638 if (IS_ERR(child)) { 1639 err = PTR_ERR(child); 1640 goto out_unlock; 1641 } 1642 zbr->znode = child; 1643 } 1644 znode = child; 1645 } else 1646 /* 1647 * This is the last child, switch to the parent and 1648 * continue. 1649 */ 1650 continue; 1651 1652 /* Go to the lowest leftmost znode in the new sub-tree */ 1653 while (znode->level > 0) { 1654 zbr = &znode->zbranch[0]; 1655 child = zbr->znode; 1656 if (!child) { 1657 child = ubifs_load_znode(c, zbr, znode, 0); 1658 if (IS_ERR(child)) { 1659 err = PTR_ERR(child); 1660 goto out_unlock; 1661 } 1662 zbr->znode = child; 1663 } 1664 znode = child; 1665 } 1666 } 1667 1668 mutex_unlock(&c->tnc_mutex); 1669 return 0; 1670 1671 out_dump: 1672 if (znode->parent) 1673 zbr = &znode->parent->zbranch[znode->iip]; 1674 else 1675 zbr = &c->zroot; 1676 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1677 ubifs_dump_znode(c, znode); 1678 out_unlock: 1679 mutex_unlock(&c->tnc_mutex); 1680 return err; 1681 } 1682 1683 /** 1684 * add_size - add znode size to partially calculated index size. 1685 * @c: UBIFS file-system description object 1686 * @znode: znode to add size for 1687 * @priv: partially calculated index size 1688 * 1689 * This is a helper function for 'dbg_check_idx_size()' which is called for 1690 * every indexing node and adds its size to the 'long long' variable pointed to 1691 * by @priv. 1692 */ 1693 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1694 { 1695 long long *idx_size = priv; 1696 int add; 1697 1698 add = ubifs_idx_node_sz(c, znode->child_cnt); 1699 add = ALIGN(add, 8); 1700 *idx_size += add; 1701 return 0; 1702 } 1703 1704 /** 1705 * dbg_check_idx_size - check index size. 1706 * @c: UBIFS file-system description object 1707 * @idx_size: size to check 1708 * 1709 * This function walks the UBIFS index, calculates its size and checks that the 1710 * size is equivalent to @idx_size. Returns zero in case of success and a 1711 * negative error code in case of failure. 1712 */ 1713 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1714 { 1715 int err; 1716 long long calc = 0; 1717 1718 if (!dbg_is_chk_index(c)) 1719 return 0; 1720 1721 err = dbg_walk_index(c, NULL, add_size, &calc); 1722 if (err) { 1723 ubifs_err("error %d while walking the index", err); 1724 return err; 1725 } 1726 1727 if (calc != idx_size) { 1728 ubifs_err("index size check failed: calculated size is %lld, should be %lld", 1729 calc, idx_size); 1730 dump_stack(); 1731 return -EINVAL; 1732 } 1733 1734 return 0; 1735 } 1736 1737 /** 1738 * struct fsck_inode - information about an inode used when checking the file-system. 1739 * @rb: link in the RB-tree of inodes 1740 * @inum: inode number 1741 * @mode: inode type, permissions, etc 1742 * @nlink: inode link count 1743 * @xattr_cnt: count of extended attributes 1744 * @references: how many directory/xattr entries refer this inode (calculated 1745 * while walking the index) 1746 * @calc_cnt: for directory inode count of child directories 1747 * @size: inode size (read from on-flash inode) 1748 * @xattr_sz: summary size of all extended attributes (read from on-flash 1749 * inode) 1750 * @calc_sz: for directories calculated directory size 1751 * @calc_xcnt: count of extended attributes 1752 * @calc_xsz: calculated summary size of all extended attributes 1753 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1754 * inode (read from on-flash inode) 1755 * @calc_xnms: calculated sum of lengths of all extended attribute names 1756 */ 1757 struct fsck_inode { 1758 struct rb_node rb; 1759 ino_t inum; 1760 umode_t mode; 1761 unsigned int nlink; 1762 unsigned int xattr_cnt; 1763 int references; 1764 int calc_cnt; 1765 long long size; 1766 unsigned int xattr_sz; 1767 long long calc_sz; 1768 long long calc_xcnt; 1769 long long calc_xsz; 1770 unsigned int xattr_nms; 1771 long long calc_xnms; 1772 }; 1773 1774 /** 1775 * struct fsck_data - private FS checking information. 1776 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1777 */ 1778 struct fsck_data { 1779 struct rb_root inodes; 1780 }; 1781 1782 /** 1783 * add_inode - add inode information to RB-tree of inodes. 1784 * @c: UBIFS file-system description object 1785 * @fsckd: FS checking information 1786 * @ino: raw UBIFS inode to add 1787 * 1788 * This is a helper function for 'check_leaf()' which adds information about 1789 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1790 * case of success and a negative error code in case of failure. 1791 */ 1792 static struct fsck_inode *add_inode(struct ubifs_info *c, 1793 struct fsck_data *fsckd, 1794 struct ubifs_ino_node *ino) 1795 { 1796 struct rb_node **p, *parent = NULL; 1797 struct fsck_inode *fscki; 1798 ino_t inum = key_inum_flash(c, &ino->key); 1799 struct inode *inode; 1800 struct ubifs_inode *ui; 1801 1802 p = &fsckd->inodes.rb_node; 1803 while (*p) { 1804 parent = *p; 1805 fscki = rb_entry(parent, struct fsck_inode, rb); 1806 if (inum < fscki->inum) 1807 p = &(*p)->rb_left; 1808 else if (inum > fscki->inum) 1809 p = &(*p)->rb_right; 1810 else 1811 return fscki; 1812 } 1813 1814 if (inum > c->highest_inum) { 1815 ubifs_err("too high inode number, max. is %lu", 1816 (unsigned long)c->highest_inum); 1817 return ERR_PTR(-EINVAL); 1818 } 1819 1820 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1821 if (!fscki) 1822 return ERR_PTR(-ENOMEM); 1823 1824 inode = ilookup(c->vfs_sb, inum); 1825 1826 fscki->inum = inum; 1827 /* 1828 * If the inode is present in the VFS inode cache, use it instead of 1829 * the on-flash inode which might be out-of-date. E.g., the size might 1830 * be out-of-date. If we do not do this, the following may happen, for 1831 * example: 1832 * 1. A power cut happens 1833 * 2. We mount the file-system R/O, the replay process fixes up the 1834 * inode size in the VFS cache, but on on-flash. 1835 * 3. 'check_leaf()' fails because it hits a data node beyond inode 1836 * size. 1837 */ 1838 if (!inode) { 1839 fscki->nlink = le32_to_cpu(ino->nlink); 1840 fscki->size = le64_to_cpu(ino->size); 1841 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1842 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1843 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1844 fscki->mode = le32_to_cpu(ino->mode); 1845 } else { 1846 ui = ubifs_inode(inode); 1847 fscki->nlink = inode->i_nlink; 1848 fscki->size = inode->i_size; 1849 fscki->xattr_cnt = ui->xattr_cnt; 1850 fscki->xattr_sz = ui->xattr_size; 1851 fscki->xattr_nms = ui->xattr_names; 1852 fscki->mode = inode->i_mode; 1853 iput(inode); 1854 } 1855 1856 if (S_ISDIR(fscki->mode)) { 1857 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1858 fscki->calc_cnt = 2; 1859 } 1860 1861 rb_link_node(&fscki->rb, parent, p); 1862 rb_insert_color(&fscki->rb, &fsckd->inodes); 1863 1864 return fscki; 1865 } 1866 1867 /** 1868 * search_inode - search inode in the RB-tree of inodes. 1869 * @fsckd: FS checking information 1870 * @inum: inode number to search 1871 * 1872 * This is a helper function for 'check_leaf()' which searches inode @inum in 1873 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1874 * the inode was not found. 1875 */ 1876 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1877 { 1878 struct rb_node *p; 1879 struct fsck_inode *fscki; 1880 1881 p = fsckd->inodes.rb_node; 1882 while (p) { 1883 fscki = rb_entry(p, struct fsck_inode, rb); 1884 if (inum < fscki->inum) 1885 p = p->rb_left; 1886 else if (inum > fscki->inum) 1887 p = p->rb_right; 1888 else 1889 return fscki; 1890 } 1891 return NULL; 1892 } 1893 1894 /** 1895 * read_add_inode - read inode node and add it to RB-tree of inodes. 1896 * @c: UBIFS file-system description object 1897 * @fsckd: FS checking information 1898 * @inum: inode number to read 1899 * 1900 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1901 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1902 * information pointer in case of success and a negative error code in case of 1903 * failure. 1904 */ 1905 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1906 struct fsck_data *fsckd, ino_t inum) 1907 { 1908 int n, err; 1909 union ubifs_key key; 1910 struct ubifs_znode *znode; 1911 struct ubifs_zbranch *zbr; 1912 struct ubifs_ino_node *ino; 1913 struct fsck_inode *fscki; 1914 1915 fscki = search_inode(fsckd, inum); 1916 if (fscki) 1917 return fscki; 1918 1919 ino_key_init(c, &key, inum); 1920 err = ubifs_lookup_level0(c, &key, &znode, &n); 1921 if (!err) { 1922 ubifs_err("inode %lu not found in index", (unsigned long)inum); 1923 return ERR_PTR(-ENOENT); 1924 } else if (err < 0) { 1925 ubifs_err("error %d while looking up inode %lu", 1926 err, (unsigned long)inum); 1927 return ERR_PTR(err); 1928 } 1929 1930 zbr = &znode->zbranch[n]; 1931 if (zbr->len < UBIFS_INO_NODE_SZ) { 1932 ubifs_err("bad node %lu node length %d", 1933 (unsigned long)inum, zbr->len); 1934 return ERR_PTR(-EINVAL); 1935 } 1936 1937 ino = kmalloc(zbr->len, GFP_NOFS); 1938 if (!ino) 1939 return ERR_PTR(-ENOMEM); 1940 1941 err = ubifs_tnc_read_node(c, zbr, ino); 1942 if (err) { 1943 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 1944 zbr->lnum, zbr->offs, err); 1945 kfree(ino); 1946 return ERR_PTR(err); 1947 } 1948 1949 fscki = add_inode(c, fsckd, ino); 1950 kfree(ino); 1951 if (IS_ERR(fscki)) { 1952 ubifs_err("error %ld while adding inode %lu node", 1953 PTR_ERR(fscki), (unsigned long)inum); 1954 return fscki; 1955 } 1956 1957 return fscki; 1958 } 1959 1960 /** 1961 * check_leaf - check leaf node. 1962 * @c: UBIFS file-system description object 1963 * @zbr: zbranch of the leaf node to check 1964 * @priv: FS checking information 1965 * 1966 * This is a helper function for 'dbg_check_filesystem()' which is called for 1967 * every single leaf node while walking the indexing tree. It checks that the 1968 * leaf node referred from the indexing tree exists, has correct CRC, and does 1969 * some other basic validation. This function is also responsible for building 1970 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 1971 * calculates reference count, size, etc for each inode in order to later 1972 * compare them to the information stored inside the inodes and detect possible 1973 * inconsistencies. Returns zero in case of success and a negative error code 1974 * in case of failure. 1975 */ 1976 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 1977 void *priv) 1978 { 1979 ino_t inum; 1980 void *node; 1981 struct ubifs_ch *ch; 1982 int err, type = key_type(c, &zbr->key); 1983 struct fsck_inode *fscki; 1984 1985 if (zbr->len < UBIFS_CH_SZ) { 1986 ubifs_err("bad leaf length %d (LEB %d:%d)", 1987 zbr->len, zbr->lnum, zbr->offs); 1988 return -EINVAL; 1989 } 1990 1991 node = kmalloc(zbr->len, GFP_NOFS); 1992 if (!node) 1993 return -ENOMEM; 1994 1995 err = ubifs_tnc_read_node(c, zbr, node); 1996 if (err) { 1997 ubifs_err("cannot read leaf node at LEB %d:%d, error %d", 1998 zbr->lnum, zbr->offs, err); 1999 goto out_free; 2000 } 2001 2002 /* If this is an inode node, add it to RB-tree of inodes */ 2003 if (type == UBIFS_INO_KEY) { 2004 fscki = add_inode(c, priv, node); 2005 if (IS_ERR(fscki)) { 2006 err = PTR_ERR(fscki); 2007 ubifs_err("error %d while adding inode node", err); 2008 goto out_dump; 2009 } 2010 goto out; 2011 } 2012 2013 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 2014 type != UBIFS_DATA_KEY) { 2015 ubifs_err("unexpected node type %d at LEB %d:%d", 2016 type, zbr->lnum, zbr->offs); 2017 err = -EINVAL; 2018 goto out_free; 2019 } 2020 2021 ch = node; 2022 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 2023 ubifs_err("too high sequence number, max. is %llu", 2024 c->max_sqnum); 2025 err = -EINVAL; 2026 goto out_dump; 2027 } 2028 2029 if (type == UBIFS_DATA_KEY) { 2030 long long blk_offs; 2031 struct ubifs_data_node *dn = node; 2032 2033 /* 2034 * Search the inode node this data node belongs to and insert 2035 * it to the RB-tree of inodes. 2036 */ 2037 inum = key_inum_flash(c, &dn->key); 2038 fscki = read_add_inode(c, priv, inum); 2039 if (IS_ERR(fscki)) { 2040 err = PTR_ERR(fscki); 2041 ubifs_err("error %d while processing data node and trying to find inode node %lu", 2042 err, (unsigned long)inum); 2043 goto out_dump; 2044 } 2045 2046 /* Make sure the data node is within inode size */ 2047 blk_offs = key_block_flash(c, &dn->key); 2048 blk_offs <<= UBIFS_BLOCK_SHIFT; 2049 blk_offs += le32_to_cpu(dn->size); 2050 if (blk_offs > fscki->size) { 2051 ubifs_err("data node at LEB %d:%d is not within inode size %lld", 2052 zbr->lnum, zbr->offs, fscki->size); 2053 err = -EINVAL; 2054 goto out_dump; 2055 } 2056 } else { 2057 int nlen; 2058 struct ubifs_dent_node *dent = node; 2059 struct fsck_inode *fscki1; 2060 2061 err = ubifs_validate_entry(c, dent); 2062 if (err) 2063 goto out_dump; 2064 2065 /* 2066 * Search the inode node this entry refers to and the parent 2067 * inode node and insert them to the RB-tree of inodes. 2068 */ 2069 inum = le64_to_cpu(dent->inum); 2070 fscki = read_add_inode(c, priv, inum); 2071 if (IS_ERR(fscki)) { 2072 err = PTR_ERR(fscki); 2073 ubifs_err("error %d while processing entry node and trying to find inode node %lu", 2074 err, (unsigned long)inum); 2075 goto out_dump; 2076 } 2077 2078 /* Count how many direntries or xentries refers this inode */ 2079 fscki->references += 1; 2080 2081 inum = key_inum_flash(c, &dent->key); 2082 fscki1 = read_add_inode(c, priv, inum); 2083 if (IS_ERR(fscki1)) { 2084 err = PTR_ERR(fscki1); 2085 ubifs_err("error %d while processing entry node and trying to find parent inode node %lu", 2086 err, (unsigned long)inum); 2087 goto out_dump; 2088 } 2089 2090 nlen = le16_to_cpu(dent->nlen); 2091 if (type == UBIFS_XENT_KEY) { 2092 fscki1->calc_xcnt += 1; 2093 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2094 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2095 fscki1->calc_xnms += nlen; 2096 } else { 2097 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2098 if (dent->type == UBIFS_ITYPE_DIR) 2099 fscki1->calc_cnt += 1; 2100 } 2101 } 2102 2103 out: 2104 kfree(node); 2105 return 0; 2106 2107 out_dump: 2108 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2109 ubifs_dump_node(c, node); 2110 out_free: 2111 kfree(node); 2112 return err; 2113 } 2114 2115 /** 2116 * free_inodes - free RB-tree of inodes. 2117 * @fsckd: FS checking information 2118 */ 2119 static void free_inodes(struct fsck_data *fsckd) 2120 { 2121 struct rb_node *this = fsckd->inodes.rb_node; 2122 struct fsck_inode *fscki; 2123 2124 while (this) { 2125 if (this->rb_left) 2126 this = this->rb_left; 2127 else if (this->rb_right) 2128 this = this->rb_right; 2129 else { 2130 fscki = rb_entry(this, struct fsck_inode, rb); 2131 this = rb_parent(this); 2132 if (this) { 2133 if (this->rb_left == &fscki->rb) 2134 this->rb_left = NULL; 2135 else 2136 this->rb_right = NULL; 2137 } 2138 kfree(fscki); 2139 } 2140 } 2141 } 2142 2143 /** 2144 * check_inodes - checks all inodes. 2145 * @c: UBIFS file-system description object 2146 * @fsckd: FS checking information 2147 * 2148 * This is a helper function for 'dbg_check_filesystem()' which walks the 2149 * RB-tree of inodes after the index scan has been finished, and checks that 2150 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2151 * %-EINVAL if not, and a negative error code in case of failure. 2152 */ 2153 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2154 { 2155 int n, err; 2156 union ubifs_key key; 2157 struct ubifs_znode *znode; 2158 struct ubifs_zbranch *zbr; 2159 struct ubifs_ino_node *ino; 2160 struct fsck_inode *fscki; 2161 struct rb_node *this = rb_first(&fsckd->inodes); 2162 2163 while (this) { 2164 fscki = rb_entry(this, struct fsck_inode, rb); 2165 this = rb_next(this); 2166 2167 if (S_ISDIR(fscki->mode)) { 2168 /* 2169 * Directories have to have exactly one reference (they 2170 * cannot have hardlinks), although root inode is an 2171 * exception. 2172 */ 2173 if (fscki->inum != UBIFS_ROOT_INO && 2174 fscki->references != 1) { 2175 ubifs_err("directory inode %lu has %d direntries which refer it, but should be 1", 2176 (unsigned long)fscki->inum, 2177 fscki->references); 2178 goto out_dump; 2179 } 2180 if (fscki->inum == UBIFS_ROOT_INO && 2181 fscki->references != 0) { 2182 ubifs_err("root inode %lu has non-zero (%d) direntries which refer it", 2183 (unsigned long)fscki->inum, 2184 fscki->references); 2185 goto out_dump; 2186 } 2187 if (fscki->calc_sz != fscki->size) { 2188 ubifs_err("directory inode %lu size is %lld, but calculated size is %lld", 2189 (unsigned long)fscki->inum, 2190 fscki->size, fscki->calc_sz); 2191 goto out_dump; 2192 } 2193 if (fscki->calc_cnt != fscki->nlink) { 2194 ubifs_err("directory inode %lu nlink is %d, but calculated nlink is %d", 2195 (unsigned long)fscki->inum, 2196 fscki->nlink, fscki->calc_cnt); 2197 goto out_dump; 2198 } 2199 } else { 2200 if (fscki->references != fscki->nlink) { 2201 ubifs_err("inode %lu nlink is %d, but calculated nlink is %d", 2202 (unsigned long)fscki->inum, 2203 fscki->nlink, fscki->references); 2204 goto out_dump; 2205 } 2206 } 2207 if (fscki->xattr_sz != fscki->calc_xsz) { 2208 ubifs_err("inode %lu has xattr size %u, but calculated size is %lld", 2209 (unsigned long)fscki->inum, fscki->xattr_sz, 2210 fscki->calc_xsz); 2211 goto out_dump; 2212 } 2213 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2214 ubifs_err("inode %lu has %u xattrs, but calculated count is %lld", 2215 (unsigned long)fscki->inum, 2216 fscki->xattr_cnt, fscki->calc_xcnt); 2217 goto out_dump; 2218 } 2219 if (fscki->xattr_nms != fscki->calc_xnms) { 2220 ubifs_err("inode %lu has xattr names' size %u, but calculated names' size is %lld", 2221 (unsigned long)fscki->inum, fscki->xattr_nms, 2222 fscki->calc_xnms); 2223 goto out_dump; 2224 } 2225 } 2226 2227 return 0; 2228 2229 out_dump: 2230 /* Read the bad inode and dump it */ 2231 ino_key_init(c, &key, fscki->inum); 2232 err = ubifs_lookup_level0(c, &key, &znode, &n); 2233 if (!err) { 2234 ubifs_err("inode %lu not found in index", 2235 (unsigned long)fscki->inum); 2236 return -ENOENT; 2237 } else if (err < 0) { 2238 ubifs_err("error %d while looking up inode %lu", 2239 err, (unsigned long)fscki->inum); 2240 return err; 2241 } 2242 2243 zbr = &znode->zbranch[n]; 2244 ino = kmalloc(zbr->len, GFP_NOFS); 2245 if (!ino) 2246 return -ENOMEM; 2247 2248 err = ubifs_tnc_read_node(c, zbr, ino); 2249 if (err) { 2250 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 2251 zbr->lnum, zbr->offs, err); 2252 kfree(ino); 2253 return err; 2254 } 2255 2256 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", 2257 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2258 ubifs_dump_node(c, ino); 2259 kfree(ino); 2260 return -EINVAL; 2261 } 2262 2263 /** 2264 * dbg_check_filesystem - check the file-system. 2265 * @c: UBIFS file-system description object 2266 * 2267 * This function checks the file system, namely: 2268 * o makes sure that all leaf nodes exist and their CRCs are correct; 2269 * o makes sure inode nlink, size, xattr size/count are correct (for all 2270 * inodes). 2271 * 2272 * The function reads whole indexing tree and all nodes, so it is pretty 2273 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2274 * not, and a negative error code in case of failure. 2275 */ 2276 int dbg_check_filesystem(struct ubifs_info *c) 2277 { 2278 int err; 2279 struct fsck_data fsckd; 2280 2281 if (!dbg_is_chk_fs(c)) 2282 return 0; 2283 2284 fsckd.inodes = RB_ROOT; 2285 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2286 if (err) 2287 goto out_free; 2288 2289 err = check_inodes(c, &fsckd); 2290 if (err) 2291 goto out_free; 2292 2293 free_inodes(&fsckd); 2294 return 0; 2295 2296 out_free: 2297 ubifs_err("file-system check failed with error %d", err); 2298 dump_stack(); 2299 free_inodes(&fsckd); 2300 return err; 2301 } 2302 2303 /** 2304 * dbg_check_data_nodes_order - check that list of data nodes is sorted. 2305 * @c: UBIFS file-system description object 2306 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2307 * 2308 * This function returns zero if the list of data nodes is sorted correctly, 2309 * and %-EINVAL if not. 2310 */ 2311 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) 2312 { 2313 struct list_head *cur; 2314 struct ubifs_scan_node *sa, *sb; 2315 2316 if (!dbg_is_chk_gen(c)) 2317 return 0; 2318 2319 for (cur = head->next; cur->next != head; cur = cur->next) { 2320 ino_t inuma, inumb; 2321 uint32_t blka, blkb; 2322 2323 cond_resched(); 2324 sa = container_of(cur, struct ubifs_scan_node, list); 2325 sb = container_of(cur->next, struct ubifs_scan_node, list); 2326 2327 if (sa->type != UBIFS_DATA_NODE) { 2328 ubifs_err("bad node type %d", sa->type); 2329 ubifs_dump_node(c, sa->node); 2330 return -EINVAL; 2331 } 2332 if (sb->type != UBIFS_DATA_NODE) { 2333 ubifs_err("bad node type %d", sb->type); 2334 ubifs_dump_node(c, sb->node); 2335 return -EINVAL; 2336 } 2337 2338 inuma = key_inum(c, &sa->key); 2339 inumb = key_inum(c, &sb->key); 2340 2341 if (inuma < inumb) 2342 continue; 2343 if (inuma > inumb) { 2344 ubifs_err("larger inum %lu goes before inum %lu", 2345 (unsigned long)inuma, (unsigned long)inumb); 2346 goto error_dump; 2347 } 2348 2349 blka = key_block(c, &sa->key); 2350 blkb = key_block(c, &sb->key); 2351 2352 if (blka > blkb) { 2353 ubifs_err("larger block %u goes before %u", blka, blkb); 2354 goto error_dump; 2355 } 2356 if (blka == blkb) { 2357 ubifs_err("two data nodes for the same block"); 2358 goto error_dump; 2359 } 2360 } 2361 2362 return 0; 2363 2364 error_dump: 2365 ubifs_dump_node(c, sa->node); 2366 ubifs_dump_node(c, sb->node); 2367 return -EINVAL; 2368 } 2369 2370 /** 2371 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. 2372 * @c: UBIFS file-system description object 2373 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2374 * 2375 * This function returns zero if the list of non-data nodes is sorted correctly, 2376 * and %-EINVAL if not. 2377 */ 2378 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) 2379 { 2380 struct list_head *cur; 2381 struct ubifs_scan_node *sa, *sb; 2382 2383 if (!dbg_is_chk_gen(c)) 2384 return 0; 2385 2386 for (cur = head->next; cur->next != head; cur = cur->next) { 2387 ino_t inuma, inumb; 2388 uint32_t hasha, hashb; 2389 2390 cond_resched(); 2391 sa = container_of(cur, struct ubifs_scan_node, list); 2392 sb = container_of(cur->next, struct ubifs_scan_node, list); 2393 2394 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2395 sa->type != UBIFS_XENT_NODE) { 2396 ubifs_err("bad node type %d", sa->type); 2397 ubifs_dump_node(c, sa->node); 2398 return -EINVAL; 2399 } 2400 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2401 sa->type != UBIFS_XENT_NODE) { 2402 ubifs_err("bad node type %d", sb->type); 2403 ubifs_dump_node(c, sb->node); 2404 return -EINVAL; 2405 } 2406 2407 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2408 ubifs_err("non-inode node goes before inode node"); 2409 goto error_dump; 2410 } 2411 2412 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) 2413 continue; 2414 2415 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2416 /* Inode nodes are sorted in descending size order */ 2417 if (sa->len < sb->len) { 2418 ubifs_err("smaller inode node goes first"); 2419 goto error_dump; 2420 } 2421 continue; 2422 } 2423 2424 /* 2425 * This is either a dentry or xentry, which should be sorted in 2426 * ascending (parent ino, hash) order. 2427 */ 2428 inuma = key_inum(c, &sa->key); 2429 inumb = key_inum(c, &sb->key); 2430 2431 if (inuma < inumb) 2432 continue; 2433 if (inuma > inumb) { 2434 ubifs_err("larger inum %lu goes before inum %lu", 2435 (unsigned long)inuma, (unsigned long)inumb); 2436 goto error_dump; 2437 } 2438 2439 hasha = key_block(c, &sa->key); 2440 hashb = key_block(c, &sb->key); 2441 2442 if (hasha > hashb) { 2443 ubifs_err("larger hash %u goes before %u", 2444 hasha, hashb); 2445 goto error_dump; 2446 } 2447 } 2448 2449 return 0; 2450 2451 error_dump: 2452 ubifs_msg("dumping first node"); 2453 ubifs_dump_node(c, sa->node); 2454 ubifs_msg("dumping second node"); 2455 ubifs_dump_node(c, sb->node); 2456 return -EINVAL; 2457 return 0; 2458 } 2459 2460 static inline int chance(unsigned int n, unsigned int out_of) 2461 { 2462 return !!((prandom_u32() % out_of) + 1 <= n); 2463 2464 } 2465 2466 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) 2467 { 2468 struct ubifs_debug_info *d = c->dbg; 2469 2470 ubifs_assert(dbg_is_tst_rcvry(c)); 2471 2472 if (!d->pc_cnt) { 2473 /* First call - decide delay to the power cut */ 2474 if (chance(1, 2)) { 2475 unsigned long delay; 2476 2477 if (chance(1, 2)) { 2478 d->pc_delay = 1; 2479 /* Fail withing 1 minute */ 2480 delay = prandom_u32() % 60000; 2481 d->pc_timeout = jiffies; 2482 d->pc_timeout += msecs_to_jiffies(delay); 2483 ubifs_warn("failing after %lums", delay); 2484 } else { 2485 d->pc_delay = 2; 2486 delay = prandom_u32() % 10000; 2487 /* Fail within 10000 operations */ 2488 d->pc_cnt_max = delay; 2489 ubifs_warn("failing after %lu calls", delay); 2490 } 2491 } 2492 2493 d->pc_cnt += 1; 2494 } 2495 2496 /* Determine if failure delay has expired */ 2497 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) 2498 return 0; 2499 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) 2500 return 0; 2501 2502 if (lnum == UBIFS_SB_LNUM) { 2503 if (write && chance(1, 2)) 2504 return 0; 2505 if (chance(19, 20)) 2506 return 0; 2507 ubifs_warn("failing in super block LEB %d", lnum); 2508 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2509 if (chance(19, 20)) 2510 return 0; 2511 ubifs_warn("failing in master LEB %d", lnum); 2512 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2513 if (write && chance(99, 100)) 2514 return 0; 2515 if (chance(399, 400)) 2516 return 0; 2517 ubifs_warn("failing in log LEB %d", lnum); 2518 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2519 if (write && chance(7, 8)) 2520 return 0; 2521 if (chance(19, 20)) 2522 return 0; 2523 ubifs_warn("failing in LPT LEB %d", lnum); 2524 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2525 if (write && chance(1, 2)) 2526 return 0; 2527 if (chance(9, 10)) 2528 return 0; 2529 ubifs_warn("failing in orphan LEB %d", lnum); 2530 } else if (lnum == c->ihead_lnum) { 2531 if (chance(99, 100)) 2532 return 0; 2533 ubifs_warn("failing in index head LEB %d", lnum); 2534 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2535 if (chance(9, 10)) 2536 return 0; 2537 ubifs_warn("failing in GC head LEB %d", lnum); 2538 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2539 !ubifs_search_bud(c, lnum)) { 2540 if (chance(19, 20)) 2541 return 0; 2542 ubifs_warn("failing in non-bud LEB %d", lnum); 2543 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2544 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2545 if (chance(999, 1000)) 2546 return 0; 2547 ubifs_warn("failing in bud LEB %d commit running", lnum); 2548 } else { 2549 if (chance(9999, 10000)) 2550 return 0; 2551 ubifs_warn("failing in bud LEB %d commit not running", lnum); 2552 } 2553 2554 d->pc_happened = 1; 2555 ubifs_warn("========== Power cut emulated =========="); 2556 dump_stack(); 2557 return 1; 2558 } 2559 2560 static int corrupt_data(const struct ubifs_info *c, const void *buf, 2561 unsigned int len) 2562 { 2563 unsigned int from, to, ffs = chance(1, 2); 2564 unsigned char *p = (void *)buf; 2565 2566 from = prandom_u32() % len; 2567 /* Corruption span max to end of write unit */ 2568 to = min(len, ALIGN(from + 1, c->max_write_size)); 2569 2570 ubifs_warn("filled bytes %u-%u with %s", from, to - 1, 2571 ffs ? "0xFFs" : "random data"); 2572 2573 if (ffs) 2574 memset(p + from, 0xFF, to - from); 2575 else 2576 prandom_bytes(p + from, to - from); 2577 2578 return to; 2579 } 2580 2581 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, 2582 int offs, int len) 2583 { 2584 int err, failing; 2585 2586 if (c->dbg->pc_happened) 2587 return -EROFS; 2588 2589 failing = power_cut_emulated(c, lnum, 1); 2590 if (failing) { 2591 len = corrupt_data(c, buf, len); 2592 ubifs_warn("actually write %d bytes to LEB %d:%d (the buffer was corrupted)", 2593 len, lnum, offs); 2594 } 2595 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 2596 if (err) 2597 return err; 2598 if (failing) 2599 return -EROFS; 2600 return 0; 2601 } 2602 2603 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, 2604 int len) 2605 { 2606 int err; 2607 2608 if (c->dbg->pc_happened) 2609 return -EROFS; 2610 if (power_cut_emulated(c, lnum, 1)) 2611 return -EROFS; 2612 err = ubi_leb_change(c->ubi, lnum, buf, len); 2613 if (err) 2614 return err; 2615 if (power_cut_emulated(c, lnum, 1)) 2616 return -EROFS; 2617 return 0; 2618 } 2619 2620 int dbg_leb_unmap(struct ubifs_info *c, int lnum) 2621 { 2622 int err; 2623 2624 if (c->dbg->pc_happened) 2625 return -EROFS; 2626 if (power_cut_emulated(c, lnum, 0)) 2627 return -EROFS; 2628 err = ubi_leb_unmap(c->ubi, lnum); 2629 if (err) 2630 return err; 2631 if (power_cut_emulated(c, lnum, 0)) 2632 return -EROFS; 2633 return 0; 2634 } 2635 2636 int dbg_leb_map(struct ubifs_info *c, int lnum) 2637 { 2638 int err; 2639 2640 if (c->dbg->pc_happened) 2641 return -EROFS; 2642 if (power_cut_emulated(c, lnum, 0)) 2643 return -EROFS; 2644 err = ubi_leb_map(c->ubi, lnum); 2645 if (err) 2646 return err; 2647 if (power_cut_emulated(c, lnum, 0)) 2648 return -EROFS; 2649 return 0; 2650 } 2651 2652 /* 2653 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2654 * contain the stuff specific to particular file-system mounts. 2655 */ 2656 static struct dentry *dfs_rootdir; 2657 2658 static int dfs_file_open(struct inode *inode, struct file *file) 2659 { 2660 file->private_data = inode->i_private; 2661 return nonseekable_open(inode, file); 2662 } 2663 2664 /** 2665 * provide_user_output - provide output to the user reading a debugfs file. 2666 * @val: boolean value for the answer 2667 * @u: the buffer to store the answer at 2668 * @count: size of the buffer 2669 * @ppos: position in the @u output buffer 2670 * 2671 * This is a simple helper function which stores @val boolean value in the user 2672 * buffer when the user reads one of UBIFS debugfs files. Returns amount of 2673 * bytes written to @u in case of success and a negative error code in case of 2674 * failure. 2675 */ 2676 static int provide_user_output(int val, char __user *u, size_t count, 2677 loff_t *ppos) 2678 { 2679 char buf[3]; 2680 2681 if (val) 2682 buf[0] = '1'; 2683 else 2684 buf[0] = '0'; 2685 buf[1] = '\n'; 2686 buf[2] = 0x00; 2687 2688 return simple_read_from_buffer(u, count, ppos, buf, 2); 2689 } 2690 2691 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count, 2692 loff_t *ppos) 2693 { 2694 struct dentry *dent = file->f_path.dentry; 2695 struct ubifs_info *c = file->private_data; 2696 struct ubifs_debug_info *d = c->dbg; 2697 int val; 2698 2699 if (dent == d->dfs_chk_gen) 2700 val = d->chk_gen; 2701 else if (dent == d->dfs_chk_index) 2702 val = d->chk_index; 2703 else if (dent == d->dfs_chk_orph) 2704 val = d->chk_orph; 2705 else if (dent == d->dfs_chk_lprops) 2706 val = d->chk_lprops; 2707 else if (dent == d->dfs_chk_fs) 2708 val = d->chk_fs; 2709 else if (dent == d->dfs_tst_rcvry) 2710 val = d->tst_rcvry; 2711 else if (dent == d->dfs_ro_error) 2712 val = c->ro_error; 2713 else 2714 return -EINVAL; 2715 2716 return provide_user_output(val, u, count, ppos); 2717 } 2718 2719 /** 2720 * interpret_user_input - interpret user debugfs file input. 2721 * @u: user-provided buffer with the input 2722 * @count: buffer size 2723 * 2724 * This is a helper function which interpret user input to a boolean UBIFS 2725 * debugfs file. Returns %0 or %1 in case of success and a negative error code 2726 * in case of failure. 2727 */ 2728 static int interpret_user_input(const char __user *u, size_t count) 2729 { 2730 size_t buf_size; 2731 char buf[8]; 2732 2733 buf_size = min_t(size_t, count, (sizeof(buf) - 1)); 2734 if (copy_from_user(buf, u, buf_size)) 2735 return -EFAULT; 2736 2737 if (buf[0] == '1') 2738 return 1; 2739 else if (buf[0] == '0') 2740 return 0; 2741 2742 return -EINVAL; 2743 } 2744 2745 static ssize_t dfs_file_write(struct file *file, const char __user *u, 2746 size_t count, loff_t *ppos) 2747 { 2748 struct ubifs_info *c = file->private_data; 2749 struct ubifs_debug_info *d = c->dbg; 2750 struct dentry *dent = file->f_path.dentry; 2751 int val; 2752 2753 /* 2754 * TODO: this is racy - the file-system might have already been 2755 * unmounted and we'd oops in this case. The plan is to fix it with 2756 * help of 'iterate_supers_type()' which we should have in v3.0: when 2757 * a debugfs opened, we rember FS's UUID in file->private_data. Then 2758 * whenever we access the FS via a debugfs file, we iterate all UBIFS 2759 * superblocks and fine the one with the same UUID, and take the 2760 * locking right. 2761 * 2762 * The other way to go suggested by Al Viro is to create a separate 2763 * 'ubifs-debug' file-system instead. 2764 */ 2765 if (file->f_path.dentry == d->dfs_dump_lprops) { 2766 ubifs_dump_lprops(c); 2767 return count; 2768 } 2769 if (file->f_path.dentry == d->dfs_dump_budg) { 2770 ubifs_dump_budg(c, &c->bi); 2771 return count; 2772 } 2773 if (file->f_path.dentry == d->dfs_dump_tnc) { 2774 mutex_lock(&c->tnc_mutex); 2775 ubifs_dump_tnc(c); 2776 mutex_unlock(&c->tnc_mutex); 2777 return count; 2778 } 2779 2780 val = interpret_user_input(u, count); 2781 if (val < 0) 2782 return val; 2783 2784 if (dent == d->dfs_chk_gen) 2785 d->chk_gen = val; 2786 else if (dent == d->dfs_chk_index) 2787 d->chk_index = val; 2788 else if (dent == d->dfs_chk_orph) 2789 d->chk_orph = val; 2790 else if (dent == d->dfs_chk_lprops) 2791 d->chk_lprops = val; 2792 else if (dent == d->dfs_chk_fs) 2793 d->chk_fs = val; 2794 else if (dent == d->dfs_tst_rcvry) 2795 d->tst_rcvry = val; 2796 else if (dent == d->dfs_ro_error) 2797 c->ro_error = !!val; 2798 else 2799 return -EINVAL; 2800 2801 return count; 2802 } 2803 2804 static const struct file_operations dfs_fops = { 2805 .open = dfs_file_open, 2806 .read = dfs_file_read, 2807 .write = dfs_file_write, 2808 .owner = THIS_MODULE, 2809 .llseek = no_llseek, 2810 }; 2811 2812 /** 2813 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2814 * @c: UBIFS file-system description object 2815 * 2816 * This function creates all debugfs files for this instance of UBIFS. Returns 2817 * zero in case of success and a negative error code in case of failure. 2818 * 2819 * Note, the only reason we have not merged this function with the 2820 * 'ubifs_debugging_init()' function is because it is better to initialize 2821 * debugfs interfaces at the very end of the mount process, and remove them at 2822 * the very beginning of the mount process. 2823 */ 2824 int dbg_debugfs_init_fs(struct ubifs_info *c) 2825 { 2826 int err, n; 2827 const char *fname; 2828 struct dentry *dent; 2829 struct ubifs_debug_info *d = c->dbg; 2830 2831 if (!IS_ENABLED(CONFIG_DEBUG_FS)) 2832 return 0; 2833 2834 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME, 2835 c->vi.ubi_num, c->vi.vol_id); 2836 if (n == UBIFS_DFS_DIR_LEN) { 2837 /* The array size is too small */ 2838 fname = UBIFS_DFS_DIR_NAME; 2839 dent = ERR_PTR(-EINVAL); 2840 goto out; 2841 } 2842 2843 fname = d->dfs_dir_name; 2844 dent = debugfs_create_dir(fname, dfs_rootdir); 2845 if (IS_ERR_OR_NULL(dent)) 2846 goto out; 2847 d->dfs_dir = dent; 2848 2849 fname = "dump_lprops"; 2850 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2851 if (IS_ERR_OR_NULL(dent)) 2852 goto out_remove; 2853 d->dfs_dump_lprops = dent; 2854 2855 fname = "dump_budg"; 2856 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2857 if (IS_ERR_OR_NULL(dent)) 2858 goto out_remove; 2859 d->dfs_dump_budg = dent; 2860 2861 fname = "dump_tnc"; 2862 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2863 if (IS_ERR_OR_NULL(dent)) 2864 goto out_remove; 2865 d->dfs_dump_tnc = dent; 2866 2867 fname = "chk_general"; 2868 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2869 &dfs_fops); 2870 if (IS_ERR_OR_NULL(dent)) 2871 goto out_remove; 2872 d->dfs_chk_gen = dent; 2873 2874 fname = "chk_index"; 2875 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2876 &dfs_fops); 2877 if (IS_ERR_OR_NULL(dent)) 2878 goto out_remove; 2879 d->dfs_chk_index = dent; 2880 2881 fname = "chk_orphans"; 2882 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2883 &dfs_fops); 2884 if (IS_ERR_OR_NULL(dent)) 2885 goto out_remove; 2886 d->dfs_chk_orph = dent; 2887 2888 fname = "chk_lprops"; 2889 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2890 &dfs_fops); 2891 if (IS_ERR_OR_NULL(dent)) 2892 goto out_remove; 2893 d->dfs_chk_lprops = dent; 2894 2895 fname = "chk_fs"; 2896 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2897 &dfs_fops); 2898 if (IS_ERR_OR_NULL(dent)) 2899 goto out_remove; 2900 d->dfs_chk_fs = dent; 2901 2902 fname = "tst_recovery"; 2903 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2904 &dfs_fops); 2905 if (IS_ERR_OR_NULL(dent)) 2906 goto out_remove; 2907 d->dfs_tst_rcvry = dent; 2908 2909 fname = "ro_error"; 2910 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2911 &dfs_fops); 2912 if (IS_ERR_OR_NULL(dent)) 2913 goto out_remove; 2914 d->dfs_ro_error = dent; 2915 2916 return 0; 2917 2918 out_remove: 2919 debugfs_remove_recursive(d->dfs_dir); 2920 out: 2921 err = dent ? PTR_ERR(dent) : -ENODEV; 2922 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n", 2923 fname, err); 2924 return err; 2925 } 2926 2927 /** 2928 * dbg_debugfs_exit_fs - remove all debugfs files. 2929 * @c: UBIFS file-system description object 2930 */ 2931 void dbg_debugfs_exit_fs(struct ubifs_info *c) 2932 { 2933 if (IS_ENABLED(CONFIG_DEBUG_FS)) 2934 debugfs_remove_recursive(c->dbg->dfs_dir); 2935 } 2936 2937 struct ubifs_global_debug_info ubifs_dbg; 2938 2939 static struct dentry *dfs_chk_gen; 2940 static struct dentry *dfs_chk_index; 2941 static struct dentry *dfs_chk_orph; 2942 static struct dentry *dfs_chk_lprops; 2943 static struct dentry *dfs_chk_fs; 2944 static struct dentry *dfs_tst_rcvry; 2945 2946 static ssize_t dfs_global_file_read(struct file *file, char __user *u, 2947 size_t count, loff_t *ppos) 2948 { 2949 struct dentry *dent = file->f_path.dentry; 2950 int val; 2951 2952 if (dent == dfs_chk_gen) 2953 val = ubifs_dbg.chk_gen; 2954 else if (dent == dfs_chk_index) 2955 val = ubifs_dbg.chk_index; 2956 else if (dent == dfs_chk_orph) 2957 val = ubifs_dbg.chk_orph; 2958 else if (dent == dfs_chk_lprops) 2959 val = ubifs_dbg.chk_lprops; 2960 else if (dent == dfs_chk_fs) 2961 val = ubifs_dbg.chk_fs; 2962 else if (dent == dfs_tst_rcvry) 2963 val = ubifs_dbg.tst_rcvry; 2964 else 2965 return -EINVAL; 2966 2967 return provide_user_output(val, u, count, ppos); 2968 } 2969 2970 static ssize_t dfs_global_file_write(struct file *file, const char __user *u, 2971 size_t count, loff_t *ppos) 2972 { 2973 struct dentry *dent = file->f_path.dentry; 2974 int val; 2975 2976 val = interpret_user_input(u, count); 2977 if (val < 0) 2978 return val; 2979 2980 if (dent == dfs_chk_gen) 2981 ubifs_dbg.chk_gen = val; 2982 else if (dent == dfs_chk_index) 2983 ubifs_dbg.chk_index = val; 2984 else if (dent == dfs_chk_orph) 2985 ubifs_dbg.chk_orph = val; 2986 else if (dent == dfs_chk_lprops) 2987 ubifs_dbg.chk_lprops = val; 2988 else if (dent == dfs_chk_fs) 2989 ubifs_dbg.chk_fs = val; 2990 else if (dent == dfs_tst_rcvry) 2991 ubifs_dbg.tst_rcvry = val; 2992 else 2993 return -EINVAL; 2994 2995 return count; 2996 } 2997 2998 static const struct file_operations dfs_global_fops = { 2999 .read = dfs_global_file_read, 3000 .write = dfs_global_file_write, 3001 .owner = THIS_MODULE, 3002 .llseek = no_llseek, 3003 }; 3004 3005 /** 3006 * dbg_debugfs_init - initialize debugfs file-system. 3007 * 3008 * UBIFS uses debugfs file-system to expose various debugging knobs to 3009 * user-space. This function creates "ubifs" directory in the debugfs 3010 * file-system. Returns zero in case of success and a negative error code in 3011 * case of failure. 3012 */ 3013 int dbg_debugfs_init(void) 3014 { 3015 int err; 3016 const char *fname; 3017 struct dentry *dent; 3018 3019 if (!IS_ENABLED(CONFIG_DEBUG_FS)) 3020 return 0; 3021 3022 fname = "ubifs"; 3023 dent = debugfs_create_dir(fname, NULL); 3024 if (IS_ERR_OR_NULL(dent)) 3025 goto out; 3026 dfs_rootdir = dent; 3027 3028 fname = "chk_general"; 3029 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3030 &dfs_global_fops); 3031 if (IS_ERR_OR_NULL(dent)) 3032 goto out_remove; 3033 dfs_chk_gen = dent; 3034 3035 fname = "chk_index"; 3036 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3037 &dfs_global_fops); 3038 if (IS_ERR_OR_NULL(dent)) 3039 goto out_remove; 3040 dfs_chk_index = dent; 3041 3042 fname = "chk_orphans"; 3043 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3044 &dfs_global_fops); 3045 if (IS_ERR_OR_NULL(dent)) 3046 goto out_remove; 3047 dfs_chk_orph = dent; 3048 3049 fname = "chk_lprops"; 3050 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3051 &dfs_global_fops); 3052 if (IS_ERR_OR_NULL(dent)) 3053 goto out_remove; 3054 dfs_chk_lprops = dent; 3055 3056 fname = "chk_fs"; 3057 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3058 &dfs_global_fops); 3059 if (IS_ERR_OR_NULL(dent)) 3060 goto out_remove; 3061 dfs_chk_fs = dent; 3062 3063 fname = "tst_recovery"; 3064 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3065 &dfs_global_fops); 3066 if (IS_ERR_OR_NULL(dent)) 3067 goto out_remove; 3068 dfs_tst_rcvry = dent; 3069 3070 return 0; 3071 3072 out_remove: 3073 debugfs_remove_recursive(dfs_rootdir); 3074 out: 3075 err = dent ? PTR_ERR(dent) : -ENODEV; 3076 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n", 3077 fname, err); 3078 return err; 3079 } 3080 3081 /** 3082 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 3083 */ 3084 void dbg_debugfs_exit(void) 3085 { 3086 if (IS_ENABLED(CONFIG_DEBUG_FS)) 3087 debugfs_remove_recursive(dfs_rootdir); 3088 } 3089 3090 /** 3091 * ubifs_debugging_init - initialize UBIFS debugging. 3092 * @c: UBIFS file-system description object 3093 * 3094 * This function initializes debugging-related data for the file system. 3095 * Returns zero in case of success and a negative error code in case of 3096 * failure. 3097 */ 3098 int ubifs_debugging_init(struct ubifs_info *c) 3099 { 3100 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 3101 if (!c->dbg) 3102 return -ENOMEM; 3103 3104 return 0; 3105 } 3106 3107 /** 3108 * ubifs_debugging_exit - free debugging data. 3109 * @c: UBIFS file-system description object 3110 */ 3111 void ubifs_debugging_exit(struct ubifs_info *c) 3112 { 3113 kfree(c->dbg); 3114 } 3115