1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements most of the debugging stuff which is compiled in only 25 * when it is enabled. But some debugging check functions are implemented in 26 * corresponding subsystem, just because they are closely related and utilize 27 * various local functions of those subsystems. 28 */ 29 30 #define UBIFS_DBG_PRESERVE_UBI 31 32 #include "ubifs.h" 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/debugfs.h> 36 #include <linux/math64.h> 37 38 #ifdef CONFIG_UBIFS_FS_DEBUG 39 40 DEFINE_SPINLOCK(dbg_lock); 41 42 static char dbg_key_buf0[128]; 43 static char dbg_key_buf1[128]; 44 45 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT; 46 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT; 47 unsigned int ubifs_tst_flags; 48 49 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR); 50 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR); 51 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR); 52 53 MODULE_PARM_DESC(debug_msgs, "Debug message type flags"); 54 MODULE_PARM_DESC(debug_chks, "Debug check flags"); 55 MODULE_PARM_DESC(debug_tsts, "Debug special test flags"); 56 57 static const char *get_key_fmt(int fmt) 58 { 59 switch (fmt) { 60 case UBIFS_SIMPLE_KEY_FMT: 61 return "simple"; 62 default: 63 return "unknown/invalid format"; 64 } 65 } 66 67 static const char *get_key_hash(int hash) 68 { 69 switch (hash) { 70 case UBIFS_KEY_HASH_R5: 71 return "R5"; 72 case UBIFS_KEY_HASH_TEST: 73 return "test"; 74 default: 75 return "unknown/invalid name hash"; 76 } 77 } 78 79 static const char *get_key_type(int type) 80 { 81 switch (type) { 82 case UBIFS_INO_KEY: 83 return "inode"; 84 case UBIFS_DENT_KEY: 85 return "direntry"; 86 case UBIFS_XENT_KEY: 87 return "xentry"; 88 case UBIFS_DATA_KEY: 89 return "data"; 90 case UBIFS_TRUN_KEY: 91 return "truncate"; 92 default: 93 return "unknown/invalid key"; 94 } 95 } 96 97 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key, 98 char *buffer) 99 { 100 char *p = buffer; 101 int type = key_type(c, key); 102 103 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 104 switch (type) { 105 case UBIFS_INO_KEY: 106 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key), 107 get_key_type(type)); 108 break; 109 case UBIFS_DENT_KEY: 110 case UBIFS_XENT_KEY: 111 sprintf(p, "(%lu, %s, %#08x)", 112 (unsigned long)key_inum(c, key), 113 get_key_type(type), key_hash(c, key)); 114 break; 115 case UBIFS_DATA_KEY: 116 sprintf(p, "(%lu, %s, %u)", 117 (unsigned long)key_inum(c, key), 118 get_key_type(type), key_block(c, key)); 119 break; 120 case UBIFS_TRUN_KEY: 121 sprintf(p, "(%lu, %s)", 122 (unsigned long)key_inum(c, key), 123 get_key_type(type)); 124 break; 125 default: 126 sprintf(p, "(bad key type: %#08x, %#08x)", 127 key->u32[0], key->u32[1]); 128 } 129 } else 130 sprintf(p, "bad key format %d", c->key_fmt); 131 } 132 133 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key) 134 { 135 /* dbg_lock must be held */ 136 sprintf_key(c, key, dbg_key_buf0); 137 return dbg_key_buf0; 138 } 139 140 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key) 141 { 142 /* dbg_lock must be held */ 143 sprintf_key(c, key, dbg_key_buf1); 144 return dbg_key_buf1; 145 } 146 147 const char *dbg_ntype(int type) 148 { 149 switch (type) { 150 case UBIFS_PAD_NODE: 151 return "padding node"; 152 case UBIFS_SB_NODE: 153 return "superblock node"; 154 case UBIFS_MST_NODE: 155 return "master node"; 156 case UBIFS_REF_NODE: 157 return "reference node"; 158 case UBIFS_INO_NODE: 159 return "inode node"; 160 case UBIFS_DENT_NODE: 161 return "direntry node"; 162 case UBIFS_XENT_NODE: 163 return "xentry node"; 164 case UBIFS_DATA_NODE: 165 return "data node"; 166 case UBIFS_TRUN_NODE: 167 return "truncate node"; 168 case UBIFS_IDX_NODE: 169 return "indexing node"; 170 case UBIFS_CS_NODE: 171 return "commit start node"; 172 case UBIFS_ORPH_NODE: 173 return "orphan node"; 174 default: 175 return "unknown node"; 176 } 177 } 178 179 static const char *dbg_gtype(int type) 180 { 181 switch (type) { 182 case UBIFS_NO_NODE_GROUP: 183 return "no node group"; 184 case UBIFS_IN_NODE_GROUP: 185 return "in node group"; 186 case UBIFS_LAST_OF_NODE_GROUP: 187 return "last of node group"; 188 default: 189 return "unknown"; 190 } 191 } 192 193 const char *dbg_cstate(int cmt_state) 194 { 195 switch (cmt_state) { 196 case COMMIT_RESTING: 197 return "commit resting"; 198 case COMMIT_BACKGROUND: 199 return "background commit requested"; 200 case COMMIT_REQUIRED: 201 return "commit required"; 202 case COMMIT_RUNNING_BACKGROUND: 203 return "BACKGROUND commit running"; 204 case COMMIT_RUNNING_REQUIRED: 205 return "commit running and required"; 206 case COMMIT_BROKEN: 207 return "broken commit"; 208 default: 209 return "unknown commit state"; 210 } 211 } 212 213 static void dump_ch(const struct ubifs_ch *ch) 214 { 215 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic)); 216 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc)); 217 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type, 218 dbg_ntype(ch->node_type)); 219 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type, 220 dbg_gtype(ch->group_type)); 221 printk(KERN_DEBUG "\tsqnum %llu\n", 222 (unsigned long long)le64_to_cpu(ch->sqnum)); 223 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len)); 224 } 225 226 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode) 227 { 228 const struct ubifs_inode *ui = ubifs_inode(inode); 229 230 printk(KERN_DEBUG "Dump in-memory inode:"); 231 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino); 232 printk(KERN_DEBUG "\tsize %llu\n", 233 (unsigned long long)i_size_read(inode)); 234 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink); 235 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid); 236 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid); 237 printk(KERN_DEBUG "\tatime %u.%u\n", 238 (unsigned int)inode->i_atime.tv_sec, 239 (unsigned int)inode->i_atime.tv_nsec); 240 printk(KERN_DEBUG "\tmtime %u.%u\n", 241 (unsigned int)inode->i_mtime.tv_sec, 242 (unsigned int)inode->i_mtime.tv_nsec); 243 printk(KERN_DEBUG "\tctime %u.%u\n", 244 (unsigned int)inode->i_ctime.tv_sec, 245 (unsigned int)inode->i_ctime.tv_nsec); 246 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum); 247 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size); 248 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt); 249 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names); 250 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty); 251 printk(KERN_DEBUG "\txattr %u\n", ui->xattr); 252 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr); 253 printk(KERN_DEBUG "\tsynced_i_size %llu\n", 254 (unsigned long long)ui->synced_i_size); 255 printk(KERN_DEBUG "\tui_size %llu\n", 256 (unsigned long long)ui->ui_size); 257 printk(KERN_DEBUG "\tflags %d\n", ui->flags); 258 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type); 259 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read); 260 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row); 261 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len); 262 } 263 264 void dbg_dump_node(const struct ubifs_info *c, const void *node) 265 { 266 int i, n; 267 union ubifs_key key; 268 const struct ubifs_ch *ch = node; 269 270 if (dbg_failure_mode) 271 return; 272 273 /* If the magic is incorrect, just hexdump the first bytes */ 274 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 275 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ); 276 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 277 (void *)node, UBIFS_CH_SZ, 1); 278 return; 279 } 280 281 spin_lock(&dbg_lock); 282 dump_ch(node); 283 284 switch (ch->node_type) { 285 case UBIFS_PAD_NODE: 286 { 287 const struct ubifs_pad_node *pad = node; 288 289 printk(KERN_DEBUG "\tpad_len %u\n", 290 le32_to_cpu(pad->pad_len)); 291 break; 292 } 293 case UBIFS_SB_NODE: 294 { 295 const struct ubifs_sb_node *sup = node; 296 unsigned int sup_flags = le32_to_cpu(sup->flags); 297 298 printk(KERN_DEBUG "\tkey_hash %d (%s)\n", 299 (int)sup->key_hash, get_key_hash(sup->key_hash)); 300 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n", 301 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 302 printk(KERN_DEBUG "\tflags %#x\n", sup_flags); 303 printk(KERN_DEBUG "\t big_lpt %u\n", 304 !!(sup_flags & UBIFS_FLG_BIGLPT)); 305 printk(KERN_DEBUG "\tmin_io_size %u\n", 306 le32_to_cpu(sup->min_io_size)); 307 printk(KERN_DEBUG "\tleb_size %u\n", 308 le32_to_cpu(sup->leb_size)); 309 printk(KERN_DEBUG "\tleb_cnt %u\n", 310 le32_to_cpu(sup->leb_cnt)); 311 printk(KERN_DEBUG "\tmax_leb_cnt %u\n", 312 le32_to_cpu(sup->max_leb_cnt)); 313 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n", 314 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 315 printk(KERN_DEBUG "\tlog_lebs %u\n", 316 le32_to_cpu(sup->log_lebs)); 317 printk(KERN_DEBUG "\tlpt_lebs %u\n", 318 le32_to_cpu(sup->lpt_lebs)); 319 printk(KERN_DEBUG "\torph_lebs %u\n", 320 le32_to_cpu(sup->orph_lebs)); 321 printk(KERN_DEBUG "\tjhead_cnt %u\n", 322 le32_to_cpu(sup->jhead_cnt)); 323 printk(KERN_DEBUG "\tfanout %u\n", 324 le32_to_cpu(sup->fanout)); 325 printk(KERN_DEBUG "\tlsave_cnt %u\n", 326 le32_to_cpu(sup->lsave_cnt)); 327 printk(KERN_DEBUG "\tdefault_compr %u\n", 328 (int)le16_to_cpu(sup->default_compr)); 329 printk(KERN_DEBUG "\trp_size %llu\n", 330 (unsigned long long)le64_to_cpu(sup->rp_size)); 331 printk(KERN_DEBUG "\trp_uid %u\n", 332 le32_to_cpu(sup->rp_uid)); 333 printk(KERN_DEBUG "\trp_gid %u\n", 334 le32_to_cpu(sup->rp_gid)); 335 printk(KERN_DEBUG "\tfmt_version %u\n", 336 le32_to_cpu(sup->fmt_version)); 337 printk(KERN_DEBUG "\ttime_gran %u\n", 338 le32_to_cpu(sup->time_gran)); 339 printk(KERN_DEBUG "\tUUID %02X%02X%02X%02X-%02X%02X" 340 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n", 341 sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3], 342 sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7], 343 sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11], 344 sup->uuid[12], sup->uuid[13], sup->uuid[14], 345 sup->uuid[15]); 346 break; 347 } 348 case UBIFS_MST_NODE: 349 { 350 const struct ubifs_mst_node *mst = node; 351 352 printk(KERN_DEBUG "\thighest_inum %llu\n", 353 (unsigned long long)le64_to_cpu(mst->highest_inum)); 354 printk(KERN_DEBUG "\tcommit number %llu\n", 355 (unsigned long long)le64_to_cpu(mst->cmt_no)); 356 printk(KERN_DEBUG "\tflags %#x\n", 357 le32_to_cpu(mst->flags)); 358 printk(KERN_DEBUG "\tlog_lnum %u\n", 359 le32_to_cpu(mst->log_lnum)); 360 printk(KERN_DEBUG "\troot_lnum %u\n", 361 le32_to_cpu(mst->root_lnum)); 362 printk(KERN_DEBUG "\troot_offs %u\n", 363 le32_to_cpu(mst->root_offs)); 364 printk(KERN_DEBUG "\troot_len %u\n", 365 le32_to_cpu(mst->root_len)); 366 printk(KERN_DEBUG "\tgc_lnum %u\n", 367 le32_to_cpu(mst->gc_lnum)); 368 printk(KERN_DEBUG "\tihead_lnum %u\n", 369 le32_to_cpu(mst->ihead_lnum)); 370 printk(KERN_DEBUG "\tihead_offs %u\n", 371 le32_to_cpu(mst->ihead_offs)); 372 printk(KERN_DEBUG "\tindex_size %llu\n", 373 (unsigned long long)le64_to_cpu(mst->index_size)); 374 printk(KERN_DEBUG "\tlpt_lnum %u\n", 375 le32_to_cpu(mst->lpt_lnum)); 376 printk(KERN_DEBUG "\tlpt_offs %u\n", 377 le32_to_cpu(mst->lpt_offs)); 378 printk(KERN_DEBUG "\tnhead_lnum %u\n", 379 le32_to_cpu(mst->nhead_lnum)); 380 printk(KERN_DEBUG "\tnhead_offs %u\n", 381 le32_to_cpu(mst->nhead_offs)); 382 printk(KERN_DEBUG "\tltab_lnum %u\n", 383 le32_to_cpu(mst->ltab_lnum)); 384 printk(KERN_DEBUG "\tltab_offs %u\n", 385 le32_to_cpu(mst->ltab_offs)); 386 printk(KERN_DEBUG "\tlsave_lnum %u\n", 387 le32_to_cpu(mst->lsave_lnum)); 388 printk(KERN_DEBUG "\tlsave_offs %u\n", 389 le32_to_cpu(mst->lsave_offs)); 390 printk(KERN_DEBUG "\tlscan_lnum %u\n", 391 le32_to_cpu(mst->lscan_lnum)); 392 printk(KERN_DEBUG "\tleb_cnt %u\n", 393 le32_to_cpu(mst->leb_cnt)); 394 printk(KERN_DEBUG "\tempty_lebs %u\n", 395 le32_to_cpu(mst->empty_lebs)); 396 printk(KERN_DEBUG "\tidx_lebs %u\n", 397 le32_to_cpu(mst->idx_lebs)); 398 printk(KERN_DEBUG "\ttotal_free %llu\n", 399 (unsigned long long)le64_to_cpu(mst->total_free)); 400 printk(KERN_DEBUG "\ttotal_dirty %llu\n", 401 (unsigned long long)le64_to_cpu(mst->total_dirty)); 402 printk(KERN_DEBUG "\ttotal_used %llu\n", 403 (unsigned long long)le64_to_cpu(mst->total_used)); 404 printk(KERN_DEBUG "\ttotal_dead %llu\n", 405 (unsigned long long)le64_to_cpu(mst->total_dead)); 406 printk(KERN_DEBUG "\ttotal_dark %llu\n", 407 (unsigned long long)le64_to_cpu(mst->total_dark)); 408 break; 409 } 410 case UBIFS_REF_NODE: 411 { 412 const struct ubifs_ref_node *ref = node; 413 414 printk(KERN_DEBUG "\tlnum %u\n", 415 le32_to_cpu(ref->lnum)); 416 printk(KERN_DEBUG "\toffs %u\n", 417 le32_to_cpu(ref->offs)); 418 printk(KERN_DEBUG "\tjhead %u\n", 419 le32_to_cpu(ref->jhead)); 420 break; 421 } 422 case UBIFS_INO_NODE: 423 { 424 const struct ubifs_ino_node *ino = node; 425 426 key_read(c, &ino->key, &key); 427 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 428 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", 429 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 430 printk(KERN_DEBUG "\tsize %llu\n", 431 (unsigned long long)le64_to_cpu(ino->size)); 432 printk(KERN_DEBUG "\tnlink %u\n", 433 le32_to_cpu(ino->nlink)); 434 printk(KERN_DEBUG "\tatime %lld.%u\n", 435 (long long)le64_to_cpu(ino->atime_sec), 436 le32_to_cpu(ino->atime_nsec)); 437 printk(KERN_DEBUG "\tmtime %lld.%u\n", 438 (long long)le64_to_cpu(ino->mtime_sec), 439 le32_to_cpu(ino->mtime_nsec)); 440 printk(KERN_DEBUG "\tctime %lld.%u\n", 441 (long long)le64_to_cpu(ino->ctime_sec), 442 le32_to_cpu(ino->ctime_nsec)); 443 printk(KERN_DEBUG "\tuid %u\n", 444 le32_to_cpu(ino->uid)); 445 printk(KERN_DEBUG "\tgid %u\n", 446 le32_to_cpu(ino->gid)); 447 printk(KERN_DEBUG "\tmode %u\n", 448 le32_to_cpu(ino->mode)); 449 printk(KERN_DEBUG "\tflags %#x\n", 450 le32_to_cpu(ino->flags)); 451 printk(KERN_DEBUG "\txattr_cnt %u\n", 452 le32_to_cpu(ino->xattr_cnt)); 453 printk(KERN_DEBUG "\txattr_size %u\n", 454 le32_to_cpu(ino->xattr_size)); 455 printk(KERN_DEBUG "\txattr_names %u\n", 456 le32_to_cpu(ino->xattr_names)); 457 printk(KERN_DEBUG "\tcompr_type %#x\n", 458 (int)le16_to_cpu(ino->compr_type)); 459 printk(KERN_DEBUG "\tdata len %u\n", 460 le32_to_cpu(ino->data_len)); 461 break; 462 } 463 case UBIFS_DENT_NODE: 464 case UBIFS_XENT_NODE: 465 { 466 const struct ubifs_dent_node *dent = node; 467 int nlen = le16_to_cpu(dent->nlen); 468 469 key_read(c, &dent->key, &key); 470 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 471 printk(KERN_DEBUG "\tinum %llu\n", 472 (unsigned long long)le64_to_cpu(dent->inum)); 473 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type); 474 printk(KERN_DEBUG "\tnlen %d\n", nlen); 475 printk(KERN_DEBUG "\tname "); 476 477 if (nlen > UBIFS_MAX_NLEN) 478 printk(KERN_DEBUG "(bad name length, not printing, " 479 "bad or corrupted node)"); 480 else { 481 for (i = 0; i < nlen && dent->name[i]; i++) 482 printk(KERN_CONT "%c", dent->name[i]); 483 } 484 printk(KERN_CONT "\n"); 485 486 break; 487 } 488 case UBIFS_DATA_NODE: 489 { 490 const struct ubifs_data_node *dn = node; 491 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 492 493 key_read(c, &dn->key, &key); 494 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 495 printk(KERN_DEBUG "\tsize %u\n", 496 le32_to_cpu(dn->size)); 497 printk(KERN_DEBUG "\tcompr_typ %d\n", 498 (int)le16_to_cpu(dn->compr_type)); 499 printk(KERN_DEBUG "\tdata size %d\n", 500 dlen); 501 printk(KERN_DEBUG "\tdata:\n"); 502 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1, 503 (void *)&dn->data, dlen, 0); 504 break; 505 } 506 case UBIFS_TRUN_NODE: 507 { 508 const struct ubifs_trun_node *trun = node; 509 510 printk(KERN_DEBUG "\tinum %u\n", 511 le32_to_cpu(trun->inum)); 512 printk(KERN_DEBUG "\told_size %llu\n", 513 (unsigned long long)le64_to_cpu(trun->old_size)); 514 printk(KERN_DEBUG "\tnew_size %llu\n", 515 (unsigned long long)le64_to_cpu(trun->new_size)); 516 break; 517 } 518 case UBIFS_IDX_NODE: 519 { 520 const struct ubifs_idx_node *idx = node; 521 522 n = le16_to_cpu(idx->child_cnt); 523 printk(KERN_DEBUG "\tchild_cnt %d\n", n); 524 printk(KERN_DEBUG "\tlevel %d\n", 525 (int)le16_to_cpu(idx->level)); 526 printk(KERN_DEBUG "\tBranches:\n"); 527 528 for (i = 0; i < n && i < c->fanout - 1; i++) { 529 const struct ubifs_branch *br; 530 531 br = ubifs_idx_branch(c, idx, i); 532 key_read(c, &br->key, &key); 533 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n", 534 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 535 le32_to_cpu(br->len), DBGKEY(&key)); 536 } 537 break; 538 } 539 case UBIFS_CS_NODE: 540 break; 541 case UBIFS_ORPH_NODE: 542 { 543 const struct ubifs_orph_node *orph = node; 544 545 printk(KERN_DEBUG "\tcommit number %llu\n", 546 (unsigned long long) 547 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 548 printk(KERN_DEBUG "\tlast node flag %llu\n", 549 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 550 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 551 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n); 552 for (i = 0; i < n; i++) 553 printk(KERN_DEBUG "\t ino %llu\n", 554 (unsigned long long)le64_to_cpu(orph->inos[i])); 555 break; 556 } 557 default: 558 printk(KERN_DEBUG "node type %d was not recognized\n", 559 (int)ch->node_type); 560 } 561 spin_unlock(&dbg_lock); 562 } 563 564 void dbg_dump_budget_req(const struct ubifs_budget_req *req) 565 { 566 spin_lock(&dbg_lock); 567 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n", 568 req->new_ino, req->dirtied_ino); 569 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n", 570 req->new_ino_d, req->dirtied_ino_d); 571 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n", 572 req->new_page, req->dirtied_page); 573 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n", 574 req->new_dent, req->mod_dent); 575 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth); 576 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n", 577 req->data_growth, req->dd_growth); 578 spin_unlock(&dbg_lock); 579 } 580 581 void dbg_dump_lstats(const struct ubifs_lp_stats *lst) 582 { 583 spin_lock(&dbg_lock); 584 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, " 585 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs); 586 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, " 587 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free, 588 lst->total_dirty); 589 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, " 590 "total_dead %lld\n", lst->total_used, lst->total_dark, 591 lst->total_dead); 592 spin_unlock(&dbg_lock); 593 } 594 595 void dbg_dump_budg(struct ubifs_info *c) 596 { 597 int i; 598 struct rb_node *rb; 599 struct ubifs_bud *bud; 600 struct ubifs_gced_idx_leb *idx_gc; 601 long long available, outstanding, free; 602 603 ubifs_assert(spin_is_locked(&c->space_lock)); 604 spin_lock(&dbg_lock); 605 printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, " 606 "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid, 607 c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth); 608 printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, " 609 "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth, 610 c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth, 611 c->freeable_cnt); 612 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, " 613 "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs, 614 c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt); 615 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, " 616 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt), 617 atomic_long_read(&c->dirty_zn_cnt), 618 atomic_long_read(&c->clean_zn_cnt)); 619 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 620 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 621 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n", 622 c->gc_lnum, c->ihead_lnum); 623 /* If we are in R/O mode, journal heads do not exist */ 624 if (c->jheads) 625 for (i = 0; i < c->jhead_cnt; i++) 626 printk(KERN_DEBUG "\tjhead %d\t LEB %d\n", 627 c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum); 628 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 629 bud = rb_entry(rb, struct ubifs_bud, rb); 630 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum); 631 } 632 list_for_each_entry(bud, &c->old_buds, list) 633 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum); 634 list_for_each_entry(idx_gc, &c->idx_gc, list) 635 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n", 636 idx_gc->lnum, idx_gc->unmap); 637 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state); 638 639 /* Print budgeting predictions */ 640 available = ubifs_calc_available(c, c->min_idx_lebs); 641 outstanding = c->budg_data_growth + c->budg_dd_growth; 642 free = ubifs_get_free_space_nolock(c); 643 printk(KERN_DEBUG "Budgeting predictions:\n"); 644 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n", 645 available, outstanding, free); 646 spin_unlock(&dbg_lock); 647 } 648 649 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 650 { 651 printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), " 652 "flags %#x\n", lp->lnum, lp->free, lp->dirty, 653 c->leb_size - lp->free - lp->dirty, lp->flags); 654 } 655 656 void dbg_dump_lprops(struct ubifs_info *c) 657 { 658 int lnum, err; 659 struct ubifs_lprops lp; 660 struct ubifs_lp_stats lst; 661 662 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n", 663 current->pid); 664 ubifs_get_lp_stats(c, &lst); 665 dbg_dump_lstats(&lst); 666 667 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 668 err = ubifs_read_one_lp(c, lnum, &lp); 669 if (err) 670 ubifs_err("cannot read lprops for LEB %d", lnum); 671 672 dbg_dump_lprop(c, &lp); 673 } 674 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n", 675 current->pid); 676 } 677 678 void dbg_dump_lpt_info(struct ubifs_info *c) 679 { 680 int i; 681 682 spin_lock(&dbg_lock); 683 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid); 684 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz); 685 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz); 686 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz); 687 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz); 688 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz); 689 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt); 690 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght); 691 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt); 692 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt); 693 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 694 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 695 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt); 696 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits); 697 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 698 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 699 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 700 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits); 701 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits); 702 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 703 printk(KERN_DEBUG "\tLPT head is at %d:%d\n", 704 c->nhead_lnum, c->nhead_offs); 705 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", 706 c->ltab_lnum, c->ltab_offs); 707 if (c->big_lpt) 708 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n", 709 c->lsave_lnum, c->lsave_offs); 710 for (i = 0; i < c->lpt_lebs; i++) 711 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d " 712 "cmt %d\n", i + c->lpt_first, c->ltab[i].free, 713 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt); 714 spin_unlock(&dbg_lock); 715 } 716 717 void dbg_dump_leb(const struct ubifs_info *c, int lnum) 718 { 719 struct ubifs_scan_leb *sleb; 720 struct ubifs_scan_node *snod; 721 722 if (dbg_failure_mode) 723 return; 724 725 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n", 726 current->pid, lnum); 727 sleb = ubifs_scan(c, lnum, 0, c->dbg->buf); 728 if (IS_ERR(sleb)) { 729 ubifs_err("scan error %d", (int)PTR_ERR(sleb)); 730 return; 731 } 732 733 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum, 734 sleb->nodes_cnt, sleb->endpt); 735 736 list_for_each_entry(snod, &sleb->nodes, list) { 737 cond_resched(); 738 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum, 739 snod->offs, snod->len); 740 dbg_dump_node(c, snod->node); 741 } 742 743 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n", 744 current->pid, lnum); 745 ubifs_scan_destroy(sleb); 746 return; 747 } 748 749 void dbg_dump_znode(const struct ubifs_info *c, 750 const struct ubifs_znode *znode) 751 { 752 int n; 753 const struct ubifs_zbranch *zbr; 754 755 spin_lock(&dbg_lock); 756 if (znode->parent) 757 zbr = &znode->parent->zbranch[znode->iip]; 758 else 759 zbr = &c->zroot; 760 761 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d" 762 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs, 763 zbr->len, znode->parent, znode->iip, znode->level, 764 znode->child_cnt, znode->flags); 765 766 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 767 spin_unlock(&dbg_lock); 768 return; 769 } 770 771 printk(KERN_DEBUG "zbranches:\n"); 772 for (n = 0; n < znode->child_cnt; n++) { 773 zbr = &znode->zbranch[n]; 774 if (znode->level > 0) 775 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key " 776 "%s\n", n, zbr->znode, zbr->lnum, 777 zbr->offs, zbr->len, 778 DBGKEY(&zbr->key)); 779 else 780 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key " 781 "%s\n", n, zbr->znode, zbr->lnum, 782 zbr->offs, zbr->len, 783 DBGKEY(&zbr->key)); 784 } 785 spin_unlock(&dbg_lock); 786 } 787 788 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 789 { 790 int i; 791 792 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n", 793 current->pid, cat, heap->cnt); 794 for (i = 0; i < heap->cnt; i++) { 795 struct ubifs_lprops *lprops = heap->arr[i]; 796 797 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d " 798 "flags %d\n", i, lprops->lnum, lprops->hpos, 799 lprops->free, lprops->dirty, lprops->flags); 800 } 801 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid); 802 } 803 804 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 805 struct ubifs_nnode *parent, int iip) 806 { 807 int i; 808 809 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid); 810 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n", 811 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 812 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n", 813 pnode->flags, iip, pnode->level, pnode->num); 814 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 815 struct ubifs_lprops *lp = &pnode->lprops[i]; 816 817 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n", 818 i, lp->free, lp->dirty, lp->flags, lp->lnum); 819 } 820 } 821 822 void dbg_dump_tnc(struct ubifs_info *c) 823 { 824 struct ubifs_znode *znode; 825 int level; 826 827 printk(KERN_DEBUG "\n"); 828 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid); 829 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 830 level = znode->level; 831 printk(KERN_DEBUG "== Level %d ==\n", level); 832 while (znode) { 833 if (level != znode->level) { 834 level = znode->level; 835 printk(KERN_DEBUG "== Level %d ==\n", level); 836 } 837 dbg_dump_znode(c, znode); 838 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 839 } 840 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid); 841 } 842 843 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 844 void *priv) 845 { 846 dbg_dump_znode(c, znode); 847 return 0; 848 } 849 850 /** 851 * dbg_dump_index - dump the on-flash index. 852 * @c: UBIFS file-system description object 853 * 854 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()' 855 * which dumps only in-memory znodes and does not read znodes which from flash. 856 */ 857 void dbg_dump_index(struct ubifs_info *c) 858 { 859 dbg_walk_index(c, NULL, dump_znode, NULL); 860 } 861 862 /** 863 * dbg_save_space_info - save information about flash space. 864 * @c: UBIFS file-system description object 865 * 866 * This function saves information about UBIFS free space, dirty space, etc, in 867 * order to check it later. 868 */ 869 void dbg_save_space_info(struct ubifs_info *c) 870 { 871 struct ubifs_debug_info *d = c->dbg; 872 873 ubifs_get_lp_stats(c, &d->saved_lst); 874 875 spin_lock(&c->space_lock); 876 d->saved_free = ubifs_get_free_space_nolock(c); 877 spin_unlock(&c->space_lock); 878 } 879 880 /** 881 * dbg_check_space_info - check flash space information. 882 * @c: UBIFS file-system description object 883 * 884 * This function compares current flash space information with the information 885 * which was saved when the 'dbg_save_space_info()' function was called. 886 * Returns zero if the information has not changed, and %-EINVAL it it has 887 * changed. 888 */ 889 int dbg_check_space_info(struct ubifs_info *c) 890 { 891 struct ubifs_debug_info *d = c->dbg; 892 struct ubifs_lp_stats lst; 893 long long avail, free; 894 895 spin_lock(&c->space_lock); 896 avail = ubifs_calc_available(c, c->min_idx_lebs); 897 spin_unlock(&c->space_lock); 898 free = ubifs_get_free_space(c); 899 900 if (free != d->saved_free) { 901 ubifs_err("free space changed from %lld to %lld", 902 d->saved_free, free); 903 goto out; 904 } 905 906 return 0; 907 908 out: 909 ubifs_msg("saved lprops statistics dump"); 910 dbg_dump_lstats(&d->saved_lst); 911 ubifs_get_lp_stats(c, &lst); 912 ubifs_msg("current lprops statistics dump"); 913 dbg_dump_lstats(&d->saved_lst); 914 spin_lock(&c->space_lock); 915 dbg_dump_budg(c); 916 spin_unlock(&c->space_lock); 917 dump_stack(); 918 return -EINVAL; 919 } 920 921 /** 922 * dbg_check_synced_i_size - check synchronized inode size. 923 * @inode: inode to check 924 * 925 * If inode is clean, synchronized inode size has to be equivalent to current 926 * inode size. This function has to be called only for locked inodes (@i_mutex 927 * has to be locked). Returns %0 if synchronized inode size if correct, and 928 * %-EINVAL if not. 929 */ 930 int dbg_check_synced_i_size(struct inode *inode) 931 { 932 int err = 0; 933 struct ubifs_inode *ui = ubifs_inode(inode); 934 935 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 936 return 0; 937 if (!S_ISREG(inode->i_mode)) 938 return 0; 939 940 mutex_lock(&ui->ui_mutex); 941 spin_lock(&ui->ui_lock); 942 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 943 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode " 944 "is clean", ui->ui_size, ui->synced_i_size); 945 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 946 inode->i_mode, i_size_read(inode)); 947 dbg_dump_stack(); 948 err = -EINVAL; 949 } 950 spin_unlock(&ui->ui_lock); 951 mutex_unlock(&ui->ui_mutex); 952 return err; 953 } 954 955 /* 956 * dbg_check_dir - check directory inode size and link count. 957 * @c: UBIFS file-system description object 958 * @dir: the directory to calculate size for 959 * @size: the result is returned here 960 * 961 * This function makes sure that directory size and link count are correct. 962 * Returns zero in case of success and a negative error code in case of 963 * failure. 964 * 965 * Note, it is good idea to make sure the @dir->i_mutex is locked before 966 * calling this function. 967 */ 968 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir) 969 { 970 unsigned int nlink = 2; 971 union ubifs_key key; 972 struct ubifs_dent_node *dent, *pdent = NULL; 973 struct qstr nm = { .name = NULL }; 974 loff_t size = UBIFS_INO_NODE_SZ; 975 976 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 977 return 0; 978 979 if (!S_ISDIR(dir->i_mode)) 980 return 0; 981 982 lowest_dent_key(c, &key, dir->i_ino); 983 while (1) { 984 int err; 985 986 dent = ubifs_tnc_next_ent(c, &key, &nm); 987 if (IS_ERR(dent)) { 988 err = PTR_ERR(dent); 989 if (err == -ENOENT) 990 break; 991 return err; 992 } 993 994 nm.name = dent->name; 995 nm.len = le16_to_cpu(dent->nlen); 996 size += CALC_DENT_SIZE(nm.len); 997 if (dent->type == UBIFS_ITYPE_DIR) 998 nlink += 1; 999 kfree(pdent); 1000 pdent = dent; 1001 key_read(c, &dent->key, &key); 1002 } 1003 kfree(pdent); 1004 1005 if (i_size_read(dir) != size) { 1006 ubifs_err("directory inode %lu has size %llu, " 1007 "but calculated size is %llu", dir->i_ino, 1008 (unsigned long long)i_size_read(dir), 1009 (unsigned long long)size); 1010 dump_stack(); 1011 return -EINVAL; 1012 } 1013 if (dir->i_nlink != nlink) { 1014 ubifs_err("directory inode %lu has nlink %u, but calculated " 1015 "nlink is %u", dir->i_ino, dir->i_nlink, nlink); 1016 dump_stack(); 1017 return -EINVAL; 1018 } 1019 1020 return 0; 1021 } 1022 1023 /** 1024 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1025 * @c: UBIFS file-system description object 1026 * @zbr1: first zbranch 1027 * @zbr2: following zbranch 1028 * 1029 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1030 * names of the direntries/xentries which are referred by the keys. This 1031 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1032 * sure the name of direntry/xentry referred by @zbr1 is less than 1033 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1034 * and a negative error code in case of failure. 1035 */ 1036 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1037 struct ubifs_zbranch *zbr2) 1038 { 1039 int err, nlen1, nlen2, cmp; 1040 struct ubifs_dent_node *dent1, *dent2; 1041 union ubifs_key key; 1042 1043 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 1044 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1045 if (!dent1) 1046 return -ENOMEM; 1047 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1048 if (!dent2) { 1049 err = -ENOMEM; 1050 goto out_free; 1051 } 1052 1053 err = ubifs_tnc_read_node(c, zbr1, dent1); 1054 if (err) 1055 goto out_free; 1056 err = ubifs_validate_entry(c, dent1); 1057 if (err) 1058 goto out_free; 1059 1060 err = ubifs_tnc_read_node(c, zbr2, dent2); 1061 if (err) 1062 goto out_free; 1063 err = ubifs_validate_entry(c, dent2); 1064 if (err) 1065 goto out_free; 1066 1067 /* Make sure node keys are the same as in zbranch */ 1068 err = 1; 1069 key_read(c, &dent1->key, &key); 1070 if (keys_cmp(c, &zbr1->key, &key)) { 1071 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum, 1072 zbr1->offs, DBGKEY(&key)); 1073 dbg_err("but it should have key %s according to tnc", 1074 DBGKEY(&zbr1->key)); 1075 dbg_dump_node(c, dent1); 1076 goto out_free; 1077 } 1078 1079 key_read(c, &dent2->key, &key); 1080 if (keys_cmp(c, &zbr2->key, &key)) { 1081 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum, 1082 zbr1->offs, DBGKEY(&key)); 1083 dbg_err("but it should have key %s according to tnc", 1084 DBGKEY(&zbr2->key)); 1085 dbg_dump_node(c, dent2); 1086 goto out_free; 1087 } 1088 1089 nlen1 = le16_to_cpu(dent1->nlen); 1090 nlen2 = le16_to_cpu(dent2->nlen); 1091 1092 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1093 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1094 err = 0; 1095 goto out_free; 1096 } 1097 if (cmp == 0 && nlen1 == nlen2) 1098 dbg_err("2 xent/dent nodes with the same name"); 1099 else 1100 dbg_err("bad order of colliding key %s", 1101 DBGKEY(&key)); 1102 1103 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1104 dbg_dump_node(c, dent1); 1105 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1106 dbg_dump_node(c, dent2); 1107 1108 out_free: 1109 kfree(dent2); 1110 kfree(dent1); 1111 return err; 1112 } 1113 1114 /** 1115 * dbg_check_znode - check if znode is all right. 1116 * @c: UBIFS file-system description object 1117 * @zbr: zbranch which points to this znode 1118 * 1119 * This function makes sure that znode referred to by @zbr is all right. 1120 * Returns zero if it is, and %-EINVAL if it is not. 1121 */ 1122 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1123 { 1124 struct ubifs_znode *znode = zbr->znode; 1125 struct ubifs_znode *zp = znode->parent; 1126 int n, err, cmp; 1127 1128 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1129 err = 1; 1130 goto out; 1131 } 1132 if (znode->level < 0) { 1133 err = 2; 1134 goto out; 1135 } 1136 if (znode->iip < 0 || znode->iip >= c->fanout) { 1137 err = 3; 1138 goto out; 1139 } 1140 1141 if (zbr->len == 0) 1142 /* Only dirty zbranch may have no on-flash nodes */ 1143 if (!ubifs_zn_dirty(znode)) { 1144 err = 4; 1145 goto out; 1146 } 1147 1148 if (ubifs_zn_dirty(znode)) { 1149 /* 1150 * If znode is dirty, its parent has to be dirty as well. The 1151 * order of the operation is important, so we have to have 1152 * memory barriers. 1153 */ 1154 smp_mb(); 1155 if (zp && !ubifs_zn_dirty(zp)) { 1156 /* 1157 * The dirty flag is atomic and is cleared outside the 1158 * TNC mutex, so znode's dirty flag may now have 1159 * been cleared. The child is always cleared before the 1160 * parent, so we just need to check again. 1161 */ 1162 smp_mb(); 1163 if (ubifs_zn_dirty(znode)) { 1164 err = 5; 1165 goto out; 1166 } 1167 } 1168 } 1169 1170 if (zp) { 1171 const union ubifs_key *min, *max; 1172 1173 if (znode->level != zp->level - 1) { 1174 err = 6; 1175 goto out; 1176 } 1177 1178 /* Make sure the 'parent' pointer in our znode is correct */ 1179 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1180 if (!err) { 1181 /* This zbranch does not exist in the parent */ 1182 err = 7; 1183 goto out; 1184 } 1185 1186 if (znode->iip >= zp->child_cnt) { 1187 err = 8; 1188 goto out; 1189 } 1190 1191 if (znode->iip != n) { 1192 /* This may happen only in case of collisions */ 1193 if (keys_cmp(c, &zp->zbranch[n].key, 1194 &zp->zbranch[znode->iip].key)) { 1195 err = 9; 1196 goto out; 1197 } 1198 n = znode->iip; 1199 } 1200 1201 /* 1202 * Make sure that the first key in our znode is greater than or 1203 * equal to the key in the pointing zbranch. 1204 */ 1205 min = &zbr->key; 1206 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1207 if (cmp == 1) { 1208 err = 10; 1209 goto out; 1210 } 1211 1212 if (n + 1 < zp->child_cnt) { 1213 max = &zp->zbranch[n + 1].key; 1214 1215 /* 1216 * Make sure the last key in our znode is less or 1217 * equivalent than the key in the zbranch which goes 1218 * after our pointing zbranch. 1219 */ 1220 cmp = keys_cmp(c, max, 1221 &znode->zbranch[znode->child_cnt - 1].key); 1222 if (cmp == -1) { 1223 err = 11; 1224 goto out; 1225 } 1226 } 1227 } else { 1228 /* This may only be root znode */ 1229 if (zbr != &c->zroot) { 1230 err = 12; 1231 goto out; 1232 } 1233 } 1234 1235 /* 1236 * Make sure that next key is greater or equivalent then the previous 1237 * one. 1238 */ 1239 for (n = 1; n < znode->child_cnt; n++) { 1240 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1241 &znode->zbranch[n].key); 1242 if (cmp > 0) { 1243 err = 13; 1244 goto out; 1245 } 1246 if (cmp == 0) { 1247 /* This can only be keys with colliding hash */ 1248 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1249 err = 14; 1250 goto out; 1251 } 1252 1253 if (znode->level != 0 || c->replaying) 1254 continue; 1255 1256 /* 1257 * Colliding keys should follow binary order of 1258 * corresponding xentry/dentry names. 1259 */ 1260 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1261 &znode->zbranch[n]); 1262 if (err < 0) 1263 return err; 1264 if (err) { 1265 err = 15; 1266 goto out; 1267 } 1268 } 1269 } 1270 1271 for (n = 0; n < znode->child_cnt; n++) { 1272 if (!znode->zbranch[n].znode && 1273 (znode->zbranch[n].lnum == 0 || 1274 znode->zbranch[n].len == 0)) { 1275 err = 16; 1276 goto out; 1277 } 1278 1279 if (znode->zbranch[n].lnum != 0 && 1280 znode->zbranch[n].len == 0) { 1281 err = 17; 1282 goto out; 1283 } 1284 1285 if (znode->zbranch[n].lnum == 0 && 1286 znode->zbranch[n].len != 0) { 1287 err = 18; 1288 goto out; 1289 } 1290 1291 if (znode->zbranch[n].lnum == 0 && 1292 znode->zbranch[n].offs != 0) { 1293 err = 19; 1294 goto out; 1295 } 1296 1297 if (znode->level != 0 && znode->zbranch[n].znode) 1298 if (znode->zbranch[n].znode->parent != znode) { 1299 err = 20; 1300 goto out; 1301 } 1302 } 1303 1304 return 0; 1305 1306 out: 1307 ubifs_err("failed, error %d", err); 1308 ubifs_msg("dump of the znode"); 1309 dbg_dump_znode(c, znode); 1310 if (zp) { 1311 ubifs_msg("dump of the parent znode"); 1312 dbg_dump_znode(c, zp); 1313 } 1314 dump_stack(); 1315 return -EINVAL; 1316 } 1317 1318 /** 1319 * dbg_check_tnc - check TNC tree. 1320 * @c: UBIFS file-system description object 1321 * @extra: do extra checks that are possible at start commit 1322 * 1323 * This function traverses whole TNC tree and checks every znode. Returns zero 1324 * if everything is all right and %-EINVAL if something is wrong with TNC. 1325 */ 1326 int dbg_check_tnc(struct ubifs_info *c, int extra) 1327 { 1328 struct ubifs_znode *znode; 1329 long clean_cnt = 0, dirty_cnt = 0; 1330 int err, last; 1331 1332 if (!(ubifs_chk_flags & UBIFS_CHK_TNC)) 1333 return 0; 1334 1335 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1336 if (!c->zroot.znode) 1337 return 0; 1338 1339 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1340 while (1) { 1341 struct ubifs_znode *prev; 1342 struct ubifs_zbranch *zbr; 1343 1344 if (!znode->parent) 1345 zbr = &c->zroot; 1346 else 1347 zbr = &znode->parent->zbranch[znode->iip]; 1348 1349 err = dbg_check_znode(c, zbr); 1350 if (err) 1351 return err; 1352 1353 if (extra) { 1354 if (ubifs_zn_dirty(znode)) 1355 dirty_cnt += 1; 1356 else 1357 clean_cnt += 1; 1358 } 1359 1360 prev = znode; 1361 znode = ubifs_tnc_postorder_next(znode); 1362 if (!znode) 1363 break; 1364 1365 /* 1366 * If the last key of this znode is equivalent to the first key 1367 * of the next znode (collision), then check order of the keys. 1368 */ 1369 last = prev->child_cnt - 1; 1370 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1371 !keys_cmp(c, &prev->zbranch[last].key, 1372 &znode->zbranch[0].key)) { 1373 err = dbg_check_key_order(c, &prev->zbranch[last], 1374 &znode->zbranch[0]); 1375 if (err < 0) 1376 return err; 1377 if (err) { 1378 ubifs_msg("first znode"); 1379 dbg_dump_znode(c, prev); 1380 ubifs_msg("second znode"); 1381 dbg_dump_znode(c, znode); 1382 return -EINVAL; 1383 } 1384 } 1385 } 1386 1387 if (extra) { 1388 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1389 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", 1390 atomic_long_read(&c->clean_zn_cnt), 1391 clean_cnt); 1392 return -EINVAL; 1393 } 1394 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1395 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", 1396 atomic_long_read(&c->dirty_zn_cnt), 1397 dirty_cnt); 1398 return -EINVAL; 1399 } 1400 } 1401 1402 return 0; 1403 } 1404 1405 /** 1406 * dbg_walk_index - walk the on-flash index. 1407 * @c: UBIFS file-system description object 1408 * @leaf_cb: called for each leaf node 1409 * @znode_cb: called for each indexing node 1410 * @priv: private data which is passed to callbacks 1411 * 1412 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1413 * node and @znode_cb for each indexing node. Returns zero in case of success 1414 * and a negative error code in case of failure. 1415 * 1416 * It would be better if this function removed every znode it pulled to into 1417 * the TNC, so that the behavior more closely matched the non-debugging 1418 * behavior. 1419 */ 1420 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1421 dbg_znode_callback znode_cb, void *priv) 1422 { 1423 int err; 1424 struct ubifs_zbranch *zbr; 1425 struct ubifs_znode *znode, *child; 1426 1427 mutex_lock(&c->tnc_mutex); 1428 /* If the root indexing node is not in TNC - pull it */ 1429 if (!c->zroot.znode) { 1430 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1431 if (IS_ERR(c->zroot.znode)) { 1432 err = PTR_ERR(c->zroot.znode); 1433 c->zroot.znode = NULL; 1434 goto out_unlock; 1435 } 1436 } 1437 1438 /* 1439 * We are going to traverse the indexing tree in the postorder manner. 1440 * Go down and find the leftmost indexing node where we are going to 1441 * start from. 1442 */ 1443 znode = c->zroot.znode; 1444 while (znode->level > 0) { 1445 zbr = &znode->zbranch[0]; 1446 child = zbr->znode; 1447 if (!child) { 1448 child = ubifs_load_znode(c, zbr, znode, 0); 1449 if (IS_ERR(child)) { 1450 err = PTR_ERR(child); 1451 goto out_unlock; 1452 } 1453 zbr->znode = child; 1454 } 1455 1456 znode = child; 1457 } 1458 1459 /* Iterate over all indexing nodes */ 1460 while (1) { 1461 int idx; 1462 1463 cond_resched(); 1464 1465 if (znode_cb) { 1466 err = znode_cb(c, znode, priv); 1467 if (err) { 1468 ubifs_err("znode checking function returned " 1469 "error %d", err); 1470 dbg_dump_znode(c, znode); 1471 goto out_dump; 1472 } 1473 } 1474 if (leaf_cb && znode->level == 0) { 1475 for (idx = 0; idx < znode->child_cnt; idx++) { 1476 zbr = &znode->zbranch[idx]; 1477 err = leaf_cb(c, zbr, priv); 1478 if (err) { 1479 ubifs_err("leaf checking function " 1480 "returned error %d, for leaf " 1481 "at LEB %d:%d", 1482 err, zbr->lnum, zbr->offs); 1483 goto out_dump; 1484 } 1485 } 1486 } 1487 1488 if (!znode->parent) 1489 break; 1490 1491 idx = znode->iip + 1; 1492 znode = znode->parent; 1493 if (idx < znode->child_cnt) { 1494 /* Switch to the next index in the parent */ 1495 zbr = &znode->zbranch[idx]; 1496 child = zbr->znode; 1497 if (!child) { 1498 child = ubifs_load_znode(c, zbr, znode, idx); 1499 if (IS_ERR(child)) { 1500 err = PTR_ERR(child); 1501 goto out_unlock; 1502 } 1503 zbr->znode = child; 1504 } 1505 znode = child; 1506 } else 1507 /* 1508 * This is the last child, switch to the parent and 1509 * continue. 1510 */ 1511 continue; 1512 1513 /* Go to the lowest leftmost znode in the new sub-tree */ 1514 while (znode->level > 0) { 1515 zbr = &znode->zbranch[0]; 1516 child = zbr->znode; 1517 if (!child) { 1518 child = ubifs_load_znode(c, zbr, znode, 0); 1519 if (IS_ERR(child)) { 1520 err = PTR_ERR(child); 1521 goto out_unlock; 1522 } 1523 zbr->znode = child; 1524 } 1525 znode = child; 1526 } 1527 } 1528 1529 mutex_unlock(&c->tnc_mutex); 1530 return 0; 1531 1532 out_dump: 1533 if (znode->parent) 1534 zbr = &znode->parent->zbranch[znode->iip]; 1535 else 1536 zbr = &c->zroot; 1537 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1538 dbg_dump_znode(c, znode); 1539 out_unlock: 1540 mutex_unlock(&c->tnc_mutex); 1541 return err; 1542 } 1543 1544 /** 1545 * add_size - add znode size to partially calculated index size. 1546 * @c: UBIFS file-system description object 1547 * @znode: znode to add size for 1548 * @priv: partially calculated index size 1549 * 1550 * This is a helper function for 'dbg_check_idx_size()' which is called for 1551 * every indexing node and adds its size to the 'long long' variable pointed to 1552 * by @priv. 1553 */ 1554 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1555 { 1556 long long *idx_size = priv; 1557 int add; 1558 1559 add = ubifs_idx_node_sz(c, znode->child_cnt); 1560 add = ALIGN(add, 8); 1561 *idx_size += add; 1562 return 0; 1563 } 1564 1565 /** 1566 * dbg_check_idx_size - check index size. 1567 * @c: UBIFS file-system description object 1568 * @idx_size: size to check 1569 * 1570 * This function walks the UBIFS index, calculates its size and checks that the 1571 * size is equivalent to @idx_size. Returns zero in case of success and a 1572 * negative error code in case of failure. 1573 */ 1574 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1575 { 1576 int err; 1577 long long calc = 0; 1578 1579 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ)) 1580 return 0; 1581 1582 err = dbg_walk_index(c, NULL, add_size, &calc); 1583 if (err) { 1584 ubifs_err("error %d while walking the index", err); 1585 return err; 1586 } 1587 1588 if (calc != idx_size) { 1589 ubifs_err("index size check failed: calculated size is %lld, " 1590 "should be %lld", calc, idx_size); 1591 dump_stack(); 1592 return -EINVAL; 1593 } 1594 1595 return 0; 1596 } 1597 1598 /** 1599 * struct fsck_inode - information about an inode used when checking the file-system. 1600 * @rb: link in the RB-tree of inodes 1601 * @inum: inode number 1602 * @mode: inode type, permissions, etc 1603 * @nlink: inode link count 1604 * @xattr_cnt: count of extended attributes 1605 * @references: how many directory/xattr entries refer this inode (calculated 1606 * while walking the index) 1607 * @calc_cnt: for directory inode count of child directories 1608 * @size: inode size (read from on-flash inode) 1609 * @xattr_sz: summary size of all extended attributes (read from on-flash 1610 * inode) 1611 * @calc_sz: for directories calculated directory size 1612 * @calc_xcnt: count of extended attributes 1613 * @calc_xsz: calculated summary size of all extended attributes 1614 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1615 * inode (read from on-flash inode) 1616 * @calc_xnms: calculated sum of lengths of all extended attribute names 1617 */ 1618 struct fsck_inode { 1619 struct rb_node rb; 1620 ino_t inum; 1621 umode_t mode; 1622 unsigned int nlink; 1623 unsigned int xattr_cnt; 1624 int references; 1625 int calc_cnt; 1626 long long size; 1627 unsigned int xattr_sz; 1628 long long calc_sz; 1629 long long calc_xcnt; 1630 long long calc_xsz; 1631 unsigned int xattr_nms; 1632 long long calc_xnms; 1633 }; 1634 1635 /** 1636 * struct fsck_data - private FS checking information. 1637 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1638 */ 1639 struct fsck_data { 1640 struct rb_root inodes; 1641 }; 1642 1643 /** 1644 * add_inode - add inode information to RB-tree of inodes. 1645 * @c: UBIFS file-system description object 1646 * @fsckd: FS checking information 1647 * @ino: raw UBIFS inode to add 1648 * 1649 * This is a helper function for 'check_leaf()' which adds information about 1650 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1651 * case of success and a negative error code in case of failure. 1652 */ 1653 static struct fsck_inode *add_inode(struct ubifs_info *c, 1654 struct fsck_data *fsckd, 1655 struct ubifs_ino_node *ino) 1656 { 1657 struct rb_node **p, *parent = NULL; 1658 struct fsck_inode *fscki; 1659 ino_t inum = key_inum_flash(c, &ino->key); 1660 1661 p = &fsckd->inodes.rb_node; 1662 while (*p) { 1663 parent = *p; 1664 fscki = rb_entry(parent, struct fsck_inode, rb); 1665 if (inum < fscki->inum) 1666 p = &(*p)->rb_left; 1667 else if (inum > fscki->inum) 1668 p = &(*p)->rb_right; 1669 else 1670 return fscki; 1671 } 1672 1673 if (inum > c->highest_inum) { 1674 ubifs_err("too high inode number, max. is %lu", 1675 (unsigned long)c->highest_inum); 1676 return ERR_PTR(-EINVAL); 1677 } 1678 1679 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1680 if (!fscki) 1681 return ERR_PTR(-ENOMEM); 1682 1683 fscki->inum = inum; 1684 fscki->nlink = le32_to_cpu(ino->nlink); 1685 fscki->size = le64_to_cpu(ino->size); 1686 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1687 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1688 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1689 fscki->mode = le32_to_cpu(ino->mode); 1690 if (S_ISDIR(fscki->mode)) { 1691 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1692 fscki->calc_cnt = 2; 1693 } 1694 rb_link_node(&fscki->rb, parent, p); 1695 rb_insert_color(&fscki->rb, &fsckd->inodes); 1696 return fscki; 1697 } 1698 1699 /** 1700 * search_inode - search inode in the RB-tree of inodes. 1701 * @fsckd: FS checking information 1702 * @inum: inode number to search 1703 * 1704 * This is a helper function for 'check_leaf()' which searches inode @inum in 1705 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1706 * the inode was not found. 1707 */ 1708 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1709 { 1710 struct rb_node *p; 1711 struct fsck_inode *fscki; 1712 1713 p = fsckd->inodes.rb_node; 1714 while (p) { 1715 fscki = rb_entry(p, struct fsck_inode, rb); 1716 if (inum < fscki->inum) 1717 p = p->rb_left; 1718 else if (inum > fscki->inum) 1719 p = p->rb_right; 1720 else 1721 return fscki; 1722 } 1723 return NULL; 1724 } 1725 1726 /** 1727 * read_add_inode - read inode node and add it to RB-tree of inodes. 1728 * @c: UBIFS file-system description object 1729 * @fsckd: FS checking information 1730 * @inum: inode number to read 1731 * 1732 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1733 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1734 * information pointer in case of success and a negative error code in case of 1735 * failure. 1736 */ 1737 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1738 struct fsck_data *fsckd, ino_t inum) 1739 { 1740 int n, err; 1741 union ubifs_key key; 1742 struct ubifs_znode *znode; 1743 struct ubifs_zbranch *zbr; 1744 struct ubifs_ino_node *ino; 1745 struct fsck_inode *fscki; 1746 1747 fscki = search_inode(fsckd, inum); 1748 if (fscki) 1749 return fscki; 1750 1751 ino_key_init(c, &key, inum); 1752 err = ubifs_lookup_level0(c, &key, &znode, &n); 1753 if (!err) { 1754 ubifs_err("inode %lu not found in index", (unsigned long)inum); 1755 return ERR_PTR(-ENOENT); 1756 } else if (err < 0) { 1757 ubifs_err("error %d while looking up inode %lu", 1758 err, (unsigned long)inum); 1759 return ERR_PTR(err); 1760 } 1761 1762 zbr = &znode->zbranch[n]; 1763 if (zbr->len < UBIFS_INO_NODE_SZ) { 1764 ubifs_err("bad node %lu node length %d", 1765 (unsigned long)inum, zbr->len); 1766 return ERR_PTR(-EINVAL); 1767 } 1768 1769 ino = kmalloc(zbr->len, GFP_NOFS); 1770 if (!ino) 1771 return ERR_PTR(-ENOMEM); 1772 1773 err = ubifs_tnc_read_node(c, zbr, ino); 1774 if (err) { 1775 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 1776 zbr->lnum, zbr->offs, err); 1777 kfree(ino); 1778 return ERR_PTR(err); 1779 } 1780 1781 fscki = add_inode(c, fsckd, ino); 1782 kfree(ino); 1783 if (IS_ERR(fscki)) { 1784 ubifs_err("error %ld while adding inode %lu node", 1785 PTR_ERR(fscki), (unsigned long)inum); 1786 return fscki; 1787 } 1788 1789 return fscki; 1790 } 1791 1792 /** 1793 * check_leaf - check leaf node. 1794 * @c: UBIFS file-system description object 1795 * @zbr: zbranch of the leaf node to check 1796 * @priv: FS checking information 1797 * 1798 * This is a helper function for 'dbg_check_filesystem()' which is called for 1799 * every single leaf node while walking the indexing tree. It checks that the 1800 * leaf node referred from the indexing tree exists, has correct CRC, and does 1801 * some other basic validation. This function is also responsible for building 1802 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 1803 * calculates reference count, size, etc for each inode in order to later 1804 * compare them to the information stored inside the inodes and detect possible 1805 * inconsistencies. Returns zero in case of success and a negative error code 1806 * in case of failure. 1807 */ 1808 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 1809 void *priv) 1810 { 1811 ino_t inum; 1812 void *node; 1813 struct ubifs_ch *ch; 1814 int err, type = key_type(c, &zbr->key); 1815 struct fsck_inode *fscki; 1816 1817 if (zbr->len < UBIFS_CH_SZ) { 1818 ubifs_err("bad leaf length %d (LEB %d:%d)", 1819 zbr->len, zbr->lnum, zbr->offs); 1820 return -EINVAL; 1821 } 1822 1823 node = kmalloc(zbr->len, GFP_NOFS); 1824 if (!node) 1825 return -ENOMEM; 1826 1827 err = ubifs_tnc_read_node(c, zbr, node); 1828 if (err) { 1829 ubifs_err("cannot read leaf node at LEB %d:%d, error %d", 1830 zbr->lnum, zbr->offs, err); 1831 goto out_free; 1832 } 1833 1834 /* If this is an inode node, add it to RB-tree of inodes */ 1835 if (type == UBIFS_INO_KEY) { 1836 fscki = add_inode(c, priv, node); 1837 if (IS_ERR(fscki)) { 1838 err = PTR_ERR(fscki); 1839 ubifs_err("error %d while adding inode node", err); 1840 goto out_dump; 1841 } 1842 goto out; 1843 } 1844 1845 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 1846 type != UBIFS_DATA_KEY) { 1847 ubifs_err("unexpected node type %d at LEB %d:%d", 1848 type, zbr->lnum, zbr->offs); 1849 err = -EINVAL; 1850 goto out_free; 1851 } 1852 1853 ch = node; 1854 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 1855 ubifs_err("too high sequence number, max. is %llu", 1856 c->max_sqnum); 1857 err = -EINVAL; 1858 goto out_dump; 1859 } 1860 1861 if (type == UBIFS_DATA_KEY) { 1862 long long blk_offs; 1863 struct ubifs_data_node *dn = node; 1864 1865 /* 1866 * Search the inode node this data node belongs to and insert 1867 * it to the RB-tree of inodes. 1868 */ 1869 inum = key_inum_flash(c, &dn->key); 1870 fscki = read_add_inode(c, priv, inum); 1871 if (IS_ERR(fscki)) { 1872 err = PTR_ERR(fscki); 1873 ubifs_err("error %d while processing data node and " 1874 "trying to find inode node %lu", 1875 err, (unsigned long)inum); 1876 goto out_dump; 1877 } 1878 1879 /* Make sure the data node is within inode size */ 1880 blk_offs = key_block_flash(c, &dn->key); 1881 blk_offs <<= UBIFS_BLOCK_SHIFT; 1882 blk_offs += le32_to_cpu(dn->size); 1883 if (blk_offs > fscki->size) { 1884 ubifs_err("data node at LEB %d:%d is not within inode " 1885 "size %lld", zbr->lnum, zbr->offs, 1886 fscki->size); 1887 err = -EINVAL; 1888 goto out_dump; 1889 } 1890 } else { 1891 int nlen; 1892 struct ubifs_dent_node *dent = node; 1893 struct fsck_inode *fscki1; 1894 1895 err = ubifs_validate_entry(c, dent); 1896 if (err) 1897 goto out_dump; 1898 1899 /* 1900 * Search the inode node this entry refers to and the parent 1901 * inode node and insert them to the RB-tree of inodes. 1902 */ 1903 inum = le64_to_cpu(dent->inum); 1904 fscki = read_add_inode(c, priv, inum); 1905 if (IS_ERR(fscki)) { 1906 err = PTR_ERR(fscki); 1907 ubifs_err("error %d while processing entry node and " 1908 "trying to find inode node %lu", 1909 err, (unsigned long)inum); 1910 goto out_dump; 1911 } 1912 1913 /* Count how many direntries or xentries refers this inode */ 1914 fscki->references += 1; 1915 1916 inum = key_inum_flash(c, &dent->key); 1917 fscki1 = read_add_inode(c, priv, inum); 1918 if (IS_ERR(fscki1)) { 1919 err = PTR_ERR(fscki); 1920 ubifs_err("error %d while processing entry node and " 1921 "trying to find parent inode node %lu", 1922 err, (unsigned long)inum); 1923 goto out_dump; 1924 } 1925 1926 nlen = le16_to_cpu(dent->nlen); 1927 if (type == UBIFS_XENT_KEY) { 1928 fscki1->calc_xcnt += 1; 1929 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 1930 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 1931 fscki1->calc_xnms += nlen; 1932 } else { 1933 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 1934 if (dent->type == UBIFS_ITYPE_DIR) 1935 fscki1->calc_cnt += 1; 1936 } 1937 } 1938 1939 out: 1940 kfree(node); 1941 return 0; 1942 1943 out_dump: 1944 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 1945 dbg_dump_node(c, node); 1946 out_free: 1947 kfree(node); 1948 return err; 1949 } 1950 1951 /** 1952 * free_inodes - free RB-tree of inodes. 1953 * @fsckd: FS checking information 1954 */ 1955 static void free_inodes(struct fsck_data *fsckd) 1956 { 1957 struct rb_node *this = fsckd->inodes.rb_node; 1958 struct fsck_inode *fscki; 1959 1960 while (this) { 1961 if (this->rb_left) 1962 this = this->rb_left; 1963 else if (this->rb_right) 1964 this = this->rb_right; 1965 else { 1966 fscki = rb_entry(this, struct fsck_inode, rb); 1967 this = rb_parent(this); 1968 if (this) { 1969 if (this->rb_left == &fscki->rb) 1970 this->rb_left = NULL; 1971 else 1972 this->rb_right = NULL; 1973 } 1974 kfree(fscki); 1975 } 1976 } 1977 } 1978 1979 /** 1980 * check_inodes - checks all inodes. 1981 * @c: UBIFS file-system description object 1982 * @fsckd: FS checking information 1983 * 1984 * This is a helper function for 'dbg_check_filesystem()' which walks the 1985 * RB-tree of inodes after the index scan has been finished, and checks that 1986 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 1987 * %-EINVAL if not, and a negative error code in case of failure. 1988 */ 1989 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 1990 { 1991 int n, err; 1992 union ubifs_key key; 1993 struct ubifs_znode *znode; 1994 struct ubifs_zbranch *zbr; 1995 struct ubifs_ino_node *ino; 1996 struct fsck_inode *fscki; 1997 struct rb_node *this = rb_first(&fsckd->inodes); 1998 1999 while (this) { 2000 fscki = rb_entry(this, struct fsck_inode, rb); 2001 this = rb_next(this); 2002 2003 if (S_ISDIR(fscki->mode)) { 2004 /* 2005 * Directories have to have exactly one reference (they 2006 * cannot have hardlinks), although root inode is an 2007 * exception. 2008 */ 2009 if (fscki->inum != UBIFS_ROOT_INO && 2010 fscki->references != 1) { 2011 ubifs_err("directory inode %lu has %d " 2012 "direntries which refer it, but " 2013 "should be 1", 2014 (unsigned long)fscki->inum, 2015 fscki->references); 2016 goto out_dump; 2017 } 2018 if (fscki->inum == UBIFS_ROOT_INO && 2019 fscki->references != 0) { 2020 ubifs_err("root inode %lu has non-zero (%d) " 2021 "direntries which refer it", 2022 (unsigned long)fscki->inum, 2023 fscki->references); 2024 goto out_dump; 2025 } 2026 if (fscki->calc_sz != fscki->size) { 2027 ubifs_err("directory inode %lu size is %lld, " 2028 "but calculated size is %lld", 2029 (unsigned long)fscki->inum, 2030 fscki->size, fscki->calc_sz); 2031 goto out_dump; 2032 } 2033 if (fscki->calc_cnt != fscki->nlink) { 2034 ubifs_err("directory inode %lu nlink is %d, " 2035 "but calculated nlink is %d", 2036 (unsigned long)fscki->inum, 2037 fscki->nlink, fscki->calc_cnt); 2038 goto out_dump; 2039 } 2040 } else { 2041 if (fscki->references != fscki->nlink) { 2042 ubifs_err("inode %lu nlink is %d, but " 2043 "calculated nlink is %d", 2044 (unsigned long)fscki->inum, 2045 fscki->nlink, fscki->references); 2046 goto out_dump; 2047 } 2048 } 2049 if (fscki->xattr_sz != fscki->calc_xsz) { 2050 ubifs_err("inode %lu has xattr size %u, but " 2051 "calculated size is %lld", 2052 (unsigned long)fscki->inum, fscki->xattr_sz, 2053 fscki->calc_xsz); 2054 goto out_dump; 2055 } 2056 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2057 ubifs_err("inode %lu has %u xattrs, but " 2058 "calculated count is %lld", 2059 (unsigned long)fscki->inum, 2060 fscki->xattr_cnt, fscki->calc_xcnt); 2061 goto out_dump; 2062 } 2063 if (fscki->xattr_nms != fscki->calc_xnms) { 2064 ubifs_err("inode %lu has xattr names' size %u, but " 2065 "calculated names' size is %lld", 2066 (unsigned long)fscki->inum, fscki->xattr_nms, 2067 fscki->calc_xnms); 2068 goto out_dump; 2069 } 2070 } 2071 2072 return 0; 2073 2074 out_dump: 2075 /* Read the bad inode and dump it */ 2076 ino_key_init(c, &key, fscki->inum); 2077 err = ubifs_lookup_level0(c, &key, &znode, &n); 2078 if (!err) { 2079 ubifs_err("inode %lu not found in index", 2080 (unsigned long)fscki->inum); 2081 return -ENOENT; 2082 } else if (err < 0) { 2083 ubifs_err("error %d while looking up inode %lu", 2084 err, (unsigned long)fscki->inum); 2085 return err; 2086 } 2087 2088 zbr = &znode->zbranch[n]; 2089 ino = kmalloc(zbr->len, GFP_NOFS); 2090 if (!ino) 2091 return -ENOMEM; 2092 2093 err = ubifs_tnc_read_node(c, zbr, ino); 2094 if (err) { 2095 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 2096 zbr->lnum, zbr->offs, err); 2097 kfree(ino); 2098 return err; 2099 } 2100 2101 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", 2102 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2103 dbg_dump_node(c, ino); 2104 kfree(ino); 2105 return -EINVAL; 2106 } 2107 2108 /** 2109 * dbg_check_filesystem - check the file-system. 2110 * @c: UBIFS file-system description object 2111 * 2112 * This function checks the file system, namely: 2113 * o makes sure that all leaf nodes exist and their CRCs are correct; 2114 * o makes sure inode nlink, size, xattr size/count are correct (for all 2115 * inodes). 2116 * 2117 * The function reads whole indexing tree and all nodes, so it is pretty 2118 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2119 * not, and a negative error code in case of failure. 2120 */ 2121 int dbg_check_filesystem(struct ubifs_info *c) 2122 { 2123 int err; 2124 struct fsck_data fsckd; 2125 2126 if (!(ubifs_chk_flags & UBIFS_CHK_FS)) 2127 return 0; 2128 2129 fsckd.inodes = RB_ROOT; 2130 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2131 if (err) 2132 goto out_free; 2133 2134 err = check_inodes(c, &fsckd); 2135 if (err) 2136 goto out_free; 2137 2138 free_inodes(&fsckd); 2139 return 0; 2140 2141 out_free: 2142 ubifs_err("file-system check failed with error %d", err); 2143 dump_stack(); 2144 free_inodes(&fsckd); 2145 return err; 2146 } 2147 2148 static int invocation_cnt; 2149 2150 int dbg_force_in_the_gaps(void) 2151 { 2152 if (!dbg_force_in_the_gaps_enabled) 2153 return 0; 2154 /* Force in-the-gaps every 8th commit */ 2155 return !((invocation_cnt++) & 0x7); 2156 } 2157 2158 /* Failure mode for recovery testing */ 2159 2160 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d)) 2161 2162 struct failure_mode_info { 2163 struct list_head list; 2164 struct ubifs_info *c; 2165 }; 2166 2167 static LIST_HEAD(fmi_list); 2168 static DEFINE_SPINLOCK(fmi_lock); 2169 2170 static unsigned int next; 2171 2172 static int simple_rand(void) 2173 { 2174 if (next == 0) 2175 next = current->pid; 2176 next = next * 1103515245 + 12345; 2177 return (next >> 16) & 32767; 2178 } 2179 2180 static void failure_mode_init(struct ubifs_info *c) 2181 { 2182 struct failure_mode_info *fmi; 2183 2184 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS); 2185 if (!fmi) { 2186 ubifs_err("Failed to register failure mode - no memory"); 2187 return; 2188 } 2189 fmi->c = c; 2190 spin_lock(&fmi_lock); 2191 list_add_tail(&fmi->list, &fmi_list); 2192 spin_unlock(&fmi_lock); 2193 } 2194 2195 static void failure_mode_exit(struct ubifs_info *c) 2196 { 2197 struct failure_mode_info *fmi, *tmp; 2198 2199 spin_lock(&fmi_lock); 2200 list_for_each_entry_safe(fmi, tmp, &fmi_list, list) 2201 if (fmi->c == c) { 2202 list_del(&fmi->list); 2203 kfree(fmi); 2204 } 2205 spin_unlock(&fmi_lock); 2206 } 2207 2208 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc) 2209 { 2210 struct failure_mode_info *fmi; 2211 2212 spin_lock(&fmi_lock); 2213 list_for_each_entry(fmi, &fmi_list, list) 2214 if (fmi->c->ubi == desc) { 2215 struct ubifs_info *c = fmi->c; 2216 2217 spin_unlock(&fmi_lock); 2218 return c; 2219 } 2220 spin_unlock(&fmi_lock); 2221 return NULL; 2222 } 2223 2224 static int in_failure_mode(struct ubi_volume_desc *desc) 2225 { 2226 struct ubifs_info *c = dbg_find_info(desc); 2227 2228 if (c && dbg_failure_mode) 2229 return c->dbg->failure_mode; 2230 return 0; 2231 } 2232 2233 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write) 2234 { 2235 struct ubifs_info *c = dbg_find_info(desc); 2236 struct ubifs_debug_info *d; 2237 2238 if (!c || !dbg_failure_mode) 2239 return 0; 2240 d = c->dbg; 2241 if (d->failure_mode) 2242 return 1; 2243 if (!d->fail_cnt) { 2244 /* First call - decide delay to failure */ 2245 if (chance(1, 2)) { 2246 unsigned int delay = 1 << (simple_rand() >> 11); 2247 2248 if (chance(1, 2)) { 2249 d->fail_delay = 1; 2250 d->fail_timeout = jiffies + 2251 msecs_to_jiffies(delay); 2252 dbg_rcvry("failing after %ums", delay); 2253 } else { 2254 d->fail_delay = 2; 2255 d->fail_cnt_max = delay; 2256 dbg_rcvry("failing after %u calls", delay); 2257 } 2258 } 2259 d->fail_cnt += 1; 2260 } 2261 /* Determine if failure delay has expired */ 2262 if (d->fail_delay == 1) { 2263 if (time_before(jiffies, d->fail_timeout)) 2264 return 0; 2265 } else if (d->fail_delay == 2) 2266 if (d->fail_cnt++ < d->fail_cnt_max) 2267 return 0; 2268 if (lnum == UBIFS_SB_LNUM) { 2269 if (write) { 2270 if (chance(1, 2)) 2271 return 0; 2272 } else if (chance(19, 20)) 2273 return 0; 2274 dbg_rcvry("failing in super block LEB %d", lnum); 2275 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2276 if (chance(19, 20)) 2277 return 0; 2278 dbg_rcvry("failing in master LEB %d", lnum); 2279 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2280 if (write) { 2281 if (chance(99, 100)) 2282 return 0; 2283 } else if (chance(399, 400)) 2284 return 0; 2285 dbg_rcvry("failing in log LEB %d", lnum); 2286 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2287 if (write) { 2288 if (chance(7, 8)) 2289 return 0; 2290 } else if (chance(19, 20)) 2291 return 0; 2292 dbg_rcvry("failing in LPT LEB %d", lnum); 2293 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2294 if (write) { 2295 if (chance(1, 2)) 2296 return 0; 2297 } else if (chance(9, 10)) 2298 return 0; 2299 dbg_rcvry("failing in orphan LEB %d", lnum); 2300 } else if (lnum == c->ihead_lnum) { 2301 if (chance(99, 100)) 2302 return 0; 2303 dbg_rcvry("failing in index head LEB %d", lnum); 2304 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2305 if (chance(9, 10)) 2306 return 0; 2307 dbg_rcvry("failing in GC head LEB %d", lnum); 2308 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2309 !ubifs_search_bud(c, lnum)) { 2310 if (chance(19, 20)) 2311 return 0; 2312 dbg_rcvry("failing in non-bud LEB %d", lnum); 2313 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2314 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2315 if (chance(999, 1000)) 2316 return 0; 2317 dbg_rcvry("failing in bud LEB %d commit running", lnum); 2318 } else { 2319 if (chance(9999, 10000)) 2320 return 0; 2321 dbg_rcvry("failing in bud LEB %d commit not running", lnum); 2322 } 2323 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum); 2324 d->failure_mode = 1; 2325 dump_stack(); 2326 return 1; 2327 } 2328 2329 static void cut_data(const void *buf, int len) 2330 { 2331 int flen, i; 2332 unsigned char *p = (void *)buf; 2333 2334 flen = (len * (long long)simple_rand()) >> 15; 2335 for (i = flen; i < len; i++) 2336 p[i] = 0xff; 2337 } 2338 2339 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset, 2340 int len, int check) 2341 { 2342 if (in_failure_mode(desc)) 2343 return -EIO; 2344 return ubi_leb_read(desc, lnum, buf, offset, len, check); 2345 } 2346 2347 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf, 2348 int offset, int len, int dtype) 2349 { 2350 int err, failing; 2351 2352 if (in_failure_mode(desc)) 2353 return -EIO; 2354 failing = do_fail(desc, lnum, 1); 2355 if (failing) 2356 cut_data(buf, len); 2357 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype); 2358 if (err) 2359 return err; 2360 if (failing) 2361 return -EIO; 2362 return 0; 2363 } 2364 2365 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf, 2366 int len, int dtype) 2367 { 2368 int err; 2369 2370 if (do_fail(desc, lnum, 1)) 2371 return -EIO; 2372 err = ubi_leb_change(desc, lnum, buf, len, dtype); 2373 if (err) 2374 return err; 2375 if (do_fail(desc, lnum, 1)) 2376 return -EIO; 2377 return 0; 2378 } 2379 2380 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum) 2381 { 2382 int err; 2383 2384 if (do_fail(desc, lnum, 0)) 2385 return -EIO; 2386 err = ubi_leb_erase(desc, lnum); 2387 if (err) 2388 return err; 2389 if (do_fail(desc, lnum, 0)) 2390 return -EIO; 2391 return 0; 2392 } 2393 2394 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum) 2395 { 2396 int err; 2397 2398 if (do_fail(desc, lnum, 0)) 2399 return -EIO; 2400 err = ubi_leb_unmap(desc, lnum); 2401 if (err) 2402 return err; 2403 if (do_fail(desc, lnum, 0)) 2404 return -EIO; 2405 return 0; 2406 } 2407 2408 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum) 2409 { 2410 if (in_failure_mode(desc)) 2411 return -EIO; 2412 return ubi_is_mapped(desc, lnum); 2413 } 2414 2415 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype) 2416 { 2417 int err; 2418 2419 if (do_fail(desc, lnum, 0)) 2420 return -EIO; 2421 err = ubi_leb_map(desc, lnum, dtype); 2422 if (err) 2423 return err; 2424 if (do_fail(desc, lnum, 0)) 2425 return -EIO; 2426 return 0; 2427 } 2428 2429 /** 2430 * ubifs_debugging_init - initialize UBIFS debugging. 2431 * @c: UBIFS file-system description object 2432 * 2433 * This function initializes debugging-related data for the file system. 2434 * Returns zero in case of success and a negative error code in case of 2435 * failure. 2436 */ 2437 int ubifs_debugging_init(struct ubifs_info *c) 2438 { 2439 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 2440 if (!c->dbg) 2441 return -ENOMEM; 2442 2443 c->dbg->buf = vmalloc(c->leb_size); 2444 if (!c->dbg->buf) 2445 goto out; 2446 2447 failure_mode_init(c); 2448 return 0; 2449 2450 out: 2451 kfree(c->dbg); 2452 return -ENOMEM; 2453 } 2454 2455 /** 2456 * ubifs_debugging_exit - free debugging data. 2457 * @c: UBIFS file-system description object 2458 */ 2459 void ubifs_debugging_exit(struct ubifs_info *c) 2460 { 2461 failure_mode_exit(c); 2462 vfree(c->dbg->buf); 2463 kfree(c->dbg); 2464 } 2465 2466 /* 2467 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2468 * contain the stuff specific to particular file-system mounts. 2469 */ 2470 static struct dentry *dfs_rootdir; 2471 2472 /** 2473 * dbg_debugfs_init - initialize debugfs file-system. 2474 * 2475 * UBIFS uses debugfs file-system to expose various debugging knobs to 2476 * user-space. This function creates "ubifs" directory in the debugfs 2477 * file-system. Returns zero in case of success and a negative error code in 2478 * case of failure. 2479 */ 2480 int dbg_debugfs_init(void) 2481 { 2482 dfs_rootdir = debugfs_create_dir("ubifs", NULL); 2483 if (IS_ERR(dfs_rootdir)) { 2484 int err = PTR_ERR(dfs_rootdir); 2485 ubifs_err("cannot create \"ubifs\" debugfs directory, " 2486 "error %d\n", err); 2487 return err; 2488 } 2489 2490 return 0; 2491 } 2492 2493 /** 2494 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 2495 */ 2496 void dbg_debugfs_exit(void) 2497 { 2498 debugfs_remove(dfs_rootdir); 2499 } 2500 2501 static int open_debugfs_file(struct inode *inode, struct file *file) 2502 { 2503 file->private_data = inode->i_private; 2504 return 0; 2505 } 2506 2507 static ssize_t write_debugfs_file(struct file *file, const char __user *buf, 2508 size_t count, loff_t *ppos) 2509 { 2510 struct ubifs_info *c = file->private_data; 2511 struct ubifs_debug_info *d = c->dbg; 2512 2513 if (file->f_path.dentry == d->dfs_dump_lprops) 2514 dbg_dump_lprops(c); 2515 else if (file->f_path.dentry == d->dfs_dump_budg) { 2516 spin_lock(&c->space_lock); 2517 dbg_dump_budg(c); 2518 spin_unlock(&c->space_lock); 2519 } else if (file->f_path.dentry == d->dfs_dump_tnc) { 2520 mutex_lock(&c->tnc_mutex); 2521 dbg_dump_tnc(c); 2522 mutex_unlock(&c->tnc_mutex); 2523 } else 2524 return -EINVAL; 2525 2526 *ppos += count; 2527 return count; 2528 } 2529 2530 static const struct file_operations dfs_fops = { 2531 .open = open_debugfs_file, 2532 .write = write_debugfs_file, 2533 .owner = THIS_MODULE, 2534 }; 2535 2536 /** 2537 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2538 * @c: UBIFS file-system description object 2539 * 2540 * This function creates all debugfs files for this instance of UBIFS. Returns 2541 * zero in case of success and a negative error code in case of failure. 2542 * 2543 * Note, the only reason we have not merged this function with the 2544 * 'ubifs_debugging_init()' function is because it is better to initialize 2545 * debugfs interfaces at the very end of the mount process, and remove them at 2546 * the very beginning of the mount process. 2547 */ 2548 int dbg_debugfs_init_fs(struct ubifs_info *c) 2549 { 2550 int err; 2551 const char *fname; 2552 struct dentry *dent; 2553 struct ubifs_debug_info *d = c->dbg; 2554 2555 sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2556 d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir); 2557 if (IS_ERR(d->dfs_dir)) { 2558 err = PTR_ERR(d->dfs_dir); 2559 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n", 2560 d->dfs_dir_name, err); 2561 goto out; 2562 } 2563 2564 fname = "dump_lprops"; 2565 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops); 2566 if (IS_ERR(dent)) 2567 goto out_remove; 2568 d->dfs_dump_lprops = dent; 2569 2570 fname = "dump_budg"; 2571 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops); 2572 if (IS_ERR(dent)) 2573 goto out_remove; 2574 d->dfs_dump_budg = dent; 2575 2576 fname = "dump_tnc"; 2577 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops); 2578 if (IS_ERR(dent)) 2579 goto out_remove; 2580 d->dfs_dump_tnc = dent; 2581 2582 return 0; 2583 2584 out_remove: 2585 err = PTR_ERR(dent); 2586 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n", 2587 fname, err); 2588 debugfs_remove_recursive(d->dfs_dir); 2589 out: 2590 return err; 2591 } 2592 2593 /** 2594 * dbg_debugfs_exit_fs - remove all debugfs files. 2595 * @c: UBIFS file-system description object 2596 */ 2597 void dbg_debugfs_exit_fs(struct ubifs_info *c) 2598 { 2599 debugfs_remove_recursive(c->dbg->dfs_dir); 2600 } 2601 2602 #endif /* CONFIG_UBIFS_FS_DEBUG */ 2603