xref: /openbmc/linux/fs/ubifs/debug.c (revision a6ca5ac746d104019e76c29e69c2a1fc6dd2b29f)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29 
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include <linux/ctype.h>
36 #include "ubifs.h"
37 
38 static DEFINE_SPINLOCK(dbg_lock);
39 
40 static const char *get_key_fmt(int fmt)
41 {
42 	switch (fmt) {
43 	case UBIFS_SIMPLE_KEY_FMT:
44 		return "simple";
45 	default:
46 		return "unknown/invalid format";
47 	}
48 }
49 
50 static const char *get_key_hash(int hash)
51 {
52 	switch (hash) {
53 	case UBIFS_KEY_HASH_R5:
54 		return "R5";
55 	case UBIFS_KEY_HASH_TEST:
56 		return "test";
57 	default:
58 		return "unknown/invalid name hash";
59 	}
60 }
61 
62 static const char *get_key_type(int type)
63 {
64 	switch (type) {
65 	case UBIFS_INO_KEY:
66 		return "inode";
67 	case UBIFS_DENT_KEY:
68 		return "direntry";
69 	case UBIFS_XENT_KEY:
70 		return "xentry";
71 	case UBIFS_DATA_KEY:
72 		return "data";
73 	case UBIFS_TRUN_KEY:
74 		return "truncate";
75 	default:
76 		return "unknown/invalid key";
77 	}
78 }
79 
80 static const char *get_dent_type(int type)
81 {
82 	switch (type) {
83 	case UBIFS_ITYPE_REG:
84 		return "file";
85 	case UBIFS_ITYPE_DIR:
86 		return "dir";
87 	case UBIFS_ITYPE_LNK:
88 		return "symlink";
89 	case UBIFS_ITYPE_BLK:
90 		return "blkdev";
91 	case UBIFS_ITYPE_CHR:
92 		return "char dev";
93 	case UBIFS_ITYPE_FIFO:
94 		return "fifo";
95 	case UBIFS_ITYPE_SOCK:
96 		return "socket";
97 	default:
98 		return "unknown/invalid type";
99 	}
100 }
101 
102 const char *dbg_snprintf_key(const struct ubifs_info *c,
103 			     const union ubifs_key *key, char *buffer, int len)
104 {
105 	char *p = buffer;
106 	int type = key_type(c, key);
107 
108 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
109 		switch (type) {
110 		case UBIFS_INO_KEY:
111 			len -= snprintf(p, len, "(%lu, %s)",
112 					(unsigned long)key_inum(c, key),
113 					get_key_type(type));
114 			break;
115 		case UBIFS_DENT_KEY:
116 		case UBIFS_XENT_KEY:
117 			len -= snprintf(p, len, "(%lu, %s, %#08x)",
118 					(unsigned long)key_inum(c, key),
119 					get_key_type(type), key_hash(c, key));
120 			break;
121 		case UBIFS_DATA_KEY:
122 			len -= snprintf(p, len, "(%lu, %s, %u)",
123 					(unsigned long)key_inum(c, key),
124 					get_key_type(type), key_block(c, key));
125 			break;
126 		case UBIFS_TRUN_KEY:
127 			len -= snprintf(p, len, "(%lu, %s)",
128 					(unsigned long)key_inum(c, key),
129 					get_key_type(type));
130 			break;
131 		default:
132 			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
133 					key->u32[0], key->u32[1]);
134 		}
135 	} else
136 		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
137 	ubifs_assert(len > 0);
138 	return p;
139 }
140 
141 const char *dbg_ntype(int type)
142 {
143 	switch (type) {
144 	case UBIFS_PAD_NODE:
145 		return "padding node";
146 	case UBIFS_SB_NODE:
147 		return "superblock node";
148 	case UBIFS_MST_NODE:
149 		return "master node";
150 	case UBIFS_REF_NODE:
151 		return "reference node";
152 	case UBIFS_INO_NODE:
153 		return "inode node";
154 	case UBIFS_DENT_NODE:
155 		return "direntry node";
156 	case UBIFS_XENT_NODE:
157 		return "xentry node";
158 	case UBIFS_DATA_NODE:
159 		return "data node";
160 	case UBIFS_TRUN_NODE:
161 		return "truncate node";
162 	case UBIFS_IDX_NODE:
163 		return "indexing node";
164 	case UBIFS_CS_NODE:
165 		return "commit start node";
166 	case UBIFS_ORPH_NODE:
167 		return "orphan node";
168 	default:
169 		return "unknown node";
170 	}
171 }
172 
173 static const char *dbg_gtype(int type)
174 {
175 	switch (type) {
176 	case UBIFS_NO_NODE_GROUP:
177 		return "no node group";
178 	case UBIFS_IN_NODE_GROUP:
179 		return "in node group";
180 	case UBIFS_LAST_OF_NODE_GROUP:
181 		return "last of node group";
182 	default:
183 		return "unknown";
184 	}
185 }
186 
187 const char *dbg_cstate(int cmt_state)
188 {
189 	switch (cmt_state) {
190 	case COMMIT_RESTING:
191 		return "commit resting";
192 	case COMMIT_BACKGROUND:
193 		return "background commit requested";
194 	case COMMIT_REQUIRED:
195 		return "commit required";
196 	case COMMIT_RUNNING_BACKGROUND:
197 		return "BACKGROUND commit running";
198 	case COMMIT_RUNNING_REQUIRED:
199 		return "commit running and required";
200 	case COMMIT_BROKEN:
201 		return "broken commit";
202 	default:
203 		return "unknown commit state";
204 	}
205 }
206 
207 const char *dbg_jhead(int jhead)
208 {
209 	switch (jhead) {
210 	case GCHD:
211 		return "0 (GC)";
212 	case BASEHD:
213 		return "1 (base)";
214 	case DATAHD:
215 		return "2 (data)";
216 	default:
217 		return "unknown journal head";
218 	}
219 }
220 
221 static void dump_ch(const struct ubifs_ch *ch)
222 {
223 	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
224 	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
225 	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
226 	       dbg_ntype(ch->node_type));
227 	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
228 	       dbg_gtype(ch->group_type));
229 	pr_err("\tsqnum          %llu\n",
230 	       (unsigned long long)le64_to_cpu(ch->sqnum));
231 	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
232 }
233 
234 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
235 {
236 	const struct ubifs_inode *ui = ubifs_inode(inode);
237 	struct fscrypt_name nm = {0};
238 	union ubifs_key key;
239 	struct ubifs_dent_node *dent, *pdent = NULL;
240 	int count = 2;
241 
242 	pr_err("Dump in-memory inode:");
243 	pr_err("\tinode          %lu\n", inode->i_ino);
244 	pr_err("\tsize           %llu\n",
245 	       (unsigned long long)i_size_read(inode));
246 	pr_err("\tnlink          %u\n", inode->i_nlink);
247 	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
248 	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
249 	pr_err("\tatime          %u.%u\n",
250 	       (unsigned int)inode->i_atime.tv_sec,
251 	       (unsigned int)inode->i_atime.tv_nsec);
252 	pr_err("\tmtime          %u.%u\n",
253 	       (unsigned int)inode->i_mtime.tv_sec,
254 	       (unsigned int)inode->i_mtime.tv_nsec);
255 	pr_err("\tctime          %u.%u\n",
256 	       (unsigned int)inode->i_ctime.tv_sec,
257 	       (unsigned int)inode->i_ctime.tv_nsec);
258 	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
259 	pr_err("\txattr_size     %u\n", ui->xattr_size);
260 	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
261 	pr_err("\txattr_names    %u\n", ui->xattr_names);
262 	pr_err("\tdirty          %u\n", ui->dirty);
263 	pr_err("\txattr          %u\n", ui->xattr);
264 	pr_err("\tbulk_read      %u\n", ui->bulk_read);
265 	pr_err("\tsynced_i_size  %llu\n",
266 	       (unsigned long long)ui->synced_i_size);
267 	pr_err("\tui_size        %llu\n",
268 	       (unsigned long long)ui->ui_size);
269 	pr_err("\tflags          %d\n", ui->flags);
270 	pr_err("\tcompr_type     %d\n", ui->compr_type);
271 	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
272 	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
273 	pr_err("\tdata_len       %d\n", ui->data_len);
274 
275 	if (!S_ISDIR(inode->i_mode))
276 		return;
277 
278 	pr_err("List of directory entries:\n");
279 	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
280 
281 	lowest_dent_key(c, &key, inode->i_ino);
282 	while (1) {
283 		dent = ubifs_tnc_next_ent(c, &key, &nm);
284 		if (IS_ERR(dent)) {
285 			if (PTR_ERR(dent) != -ENOENT)
286 				pr_err("error %ld\n", PTR_ERR(dent));
287 			break;
288 		}
289 
290 		pr_err("\t%d: inode %llu, type %s, len %d\n",
291 		       count++, (unsigned long long) le64_to_cpu(dent->inum),
292 		       get_dent_type(dent->type),
293 		       le16_to_cpu(dent->nlen));
294 
295 		fname_name(&nm) = dent->name;
296 		fname_len(&nm) = le16_to_cpu(dent->nlen);
297 		kfree(pdent);
298 		pdent = dent;
299 		key_read(c, &dent->key, &key);
300 	}
301 	kfree(pdent);
302 }
303 
304 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
305 {
306 	int i, n;
307 	union ubifs_key key;
308 	const struct ubifs_ch *ch = node;
309 	char key_buf[DBG_KEY_BUF_LEN];
310 
311 	/* If the magic is incorrect, just hexdump the first bytes */
312 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
313 		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
314 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
315 			       (void *)node, UBIFS_CH_SZ, 1);
316 		return;
317 	}
318 
319 	spin_lock(&dbg_lock);
320 	dump_ch(node);
321 
322 	switch (ch->node_type) {
323 	case UBIFS_PAD_NODE:
324 	{
325 		const struct ubifs_pad_node *pad = node;
326 
327 		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
328 		break;
329 	}
330 	case UBIFS_SB_NODE:
331 	{
332 		const struct ubifs_sb_node *sup = node;
333 		unsigned int sup_flags = le32_to_cpu(sup->flags);
334 
335 		pr_err("\tkey_hash       %d (%s)\n",
336 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
337 		pr_err("\tkey_fmt        %d (%s)\n",
338 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
339 		pr_err("\tflags          %#x\n", sup_flags);
340 		pr_err("\tbig_lpt        %u\n",
341 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
342 		pr_err("\tspace_fixup    %u\n",
343 		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
344 		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
345 		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
346 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
347 		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
348 		pr_err("\tmax_bud_bytes  %llu\n",
349 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
350 		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
351 		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
352 		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
353 		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
354 		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
355 		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
356 		pr_err("\tdefault_compr  %u\n",
357 		       (int)le16_to_cpu(sup->default_compr));
358 		pr_err("\trp_size        %llu\n",
359 		       (unsigned long long)le64_to_cpu(sup->rp_size));
360 		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
361 		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
362 		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
363 		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
364 		pr_err("\tUUID           %pUB\n", sup->uuid);
365 		break;
366 	}
367 	case UBIFS_MST_NODE:
368 	{
369 		const struct ubifs_mst_node *mst = node;
370 
371 		pr_err("\thighest_inum   %llu\n",
372 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
373 		pr_err("\tcommit number  %llu\n",
374 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
375 		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
376 		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
377 		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
378 		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
379 		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
380 		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
381 		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
382 		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
383 		pr_err("\tindex_size     %llu\n",
384 		       (unsigned long long)le64_to_cpu(mst->index_size));
385 		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
386 		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
387 		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
388 		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
389 		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
390 		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
391 		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
392 		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
393 		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
394 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
395 		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
396 		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
397 		pr_err("\ttotal_free     %llu\n",
398 		       (unsigned long long)le64_to_cpu(mst->total_free));
399 		pr_err("\ttotal_dirty    %llu\n",
400 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
401 		pr_err("\ttotal_used     %llu\n",
402 		       (unsigned long long)le64_to_cpu(mst->total_used));
403 		pr_err("\ttotal_dead     %llu\n",
404 		       (unsigned long long)le64_to_cpu(mst->total_dead));
405 		pr_err("\ttotal_dark     %llu\n",
406 		       (unsigned long long)le64_to_cpu(mst->total_dark));
407 		break;
408 	}
409 	case UBIFS_REF_NODE:
410 	{
411 		const struct ubifs_ref_node *ref = node;
412 
413 		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
414 		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
415 		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
416 		break;
417 	}
418 	case UBIFS_INO_NODE:
419 	{
420 		const struct ubifs_ino_node *ino = node;
421 
422 		key_read(c, &ino->key, &key);
423 		pr_err("\tkey            %s\n",
424 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
425 		pr_err("\tcreat_sqnum    %llu\n",
426 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
427 		pr_err("\tsize           %llu\n",
428 		       (unsigned long long)le64_to_cpu(ino->size));
429 		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
430 		pr_err("\tatime          %lld.%u\n",
431 		       (long long)le64_to_cpu(ino->atime_sec),
432 		       le32_to_cpu(ino->atime_nsec));
433 		pr_err("\tmtime          %lld.%u\n",
434 		       (long long)le64_to_cpu(ino->mtime_sec),
435 		       le32_to_cpu(ino->mtime_nsec));
436 		pr_err("\tctime          %lld.%u\n",
437 		       (long long)le64_to_cpu(ino->ctime_sec),
438 		       le32_to_cpu(ino->ctime_nsec));
439 		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
440 		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
441 		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
442 		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
443 		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
444 		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
445 		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
446 		pr_err("\tcompr_type     %#x\n",
447 		       (int)le16_to_cpu(ino->compr_type));
448 		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
449 		break;
450 	}
451 	case UBIFS_DENT_NODE:
452 	case UBIFS_XENT_NODE:
453 	{
454 		const struct ubifs_dent_node *dent = node;
455 		int nlen = le16_to_cpu(dent->nlen);
456 
457 		key_read(c, &dent->key, &key);
458 		pr_err("\tkey            %s\n",
459 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
460 		pr_err("\tinum           %llu\n",
461 		       (unsigned long long)le64_to_cpu(dent->inum));
462 		pr_err("\ttype           %d\n", (int)dent->type);
463 		pr_err("\tnlen           %d\n", nlen);
464 		pr_err("\tname           ");
465 
466 		if (nlen > UBIFS_MAX_NLEN)
467 			pr_err("(bad name length, not printing, bad or corrupted node)");
468 		else {
469 			for (i = 0; i < nlen && dent->name[i]; i++)
470 				pr_cont("%c", isprint(dent->name[i]) ?
471 					dent->name[i] : '?');
472 		}
473 		pr_cont("\n");
474 
475 		break;
476 	}
477 	case UBIFS_DATA_NODE:
478 	{
479 		const struct ubifs_data_node *dn = node;
480 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
481 
482 		key_read(c, &dn->key, &key);
483 		pr_err("\tkey            %s\n",
484 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
485 		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
486 		pr_err("\tcompr_typ      %d\n",
487 		       (int)le16_to_cpu(dn->compr_type));
488 		pr_err("\tdata size      %d\n", dlen);
489 		pr_err("\tdata:\n");
490 		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
491 			       (void *)&dn->data, dlen, 0);
492 		break;
493 	}
494 	case UBIFS_TRUN_NODE:
495 	{
496 		const struct ubifs_trun_node *trun = node;
497 
498 		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
499 		pr_err("\told_size       %llu\n",
500 		       (unsigned long long)le64_to_cpu(trun->old_size));
501 		pr_err("\tnew_size       %llu\n",
502 		       (unsigned long long)le64_to_cpu(trun->new_size));
503 		break;
504 	}
505 	case UBIFS_IDX_NODE:
506 	{
507 		const struct ubifs_idx_node *idx = node;
508 
509 		n = le16_to_cpu(idx->child_cnt);
510 		pr_err("\tchild_cnt      %d\n", n);
511 		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
512 		pr_err("\tBranches:\n");
513 
514 		for (i = 0; i < n && i < c->fanout - 1; i++) {
515 			const struct ubifs_branch *br;
516 
517 			br = ubifs_idx_branch(c, idx, i);
518 			key_read(c, &br->key, &key);
519 			pr_err("\t%d: LEB %d:%d len %d key %s\n",
520 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
521 			       le32_to_cpu(br->len),
522 			       dbg_snprintf_key(c, &key, key_buf,
523 						DBG_KEY_BUF_LEN));
524 		}
525 		break;
526 	}
527 	case UBIFS_CS_NODE:
528 		break;
529 	case UBIFS_ORPH_NODE:
530 	{
531 		const struct ubifs_orph_node *orph = node;
532 
533 		pr_err("\tcommit number  %llu\n",
534 		       (unsigned long long)
535 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
536 		pr_err("\tlast node flag %llu\n",
537 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
538 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
539 		pr_err("\t%d orphan inode numbers:\n", n);
540 		for (i = 0; i < n; i++)
541 			pr_err("\t  ino %llu\n",
542 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
543 		break;
544 	}
545 	default:
546 		pr_err("node type %d was not recognized\n",
547 		       (int)ch->node_type);
548 	}
549 	spin_unlock(&dbg_lock);
550 }
551 
552 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
553 {
554 	spin_lock(&dbg_lock);
555 	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
556 	       req->new_ino, req->dirtied_ino);
557 	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
558 	       req->new_ino_d, req->dirtied_ino_d);
559 	pr_err("\tnew_page    %d, dirtied_page %d\n",
560 	       req->new_page, req->dirtied_page);
561 	pr_err("\tnew_dent    %d, mod_dent     %d\n",
562 	       req->new_dent, req->mod_dent);
563 	pr_err("\tidx_growth  %d\n", req->idx_growth);
564 	pr_err("\tdata_growth %d dd_growth     %d\n",
565 	       req->data_growth, req->dd_growth);
566 	spin_unlock(&dbg_lock);
567 }
568 
569 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
570 {
571 	spin_lock(&dbg_lock);
572 	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
573 	       current->pid, lst->empty_lebs, lst->idx_lebs);
574 	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
575 	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
576 	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
577 	       lst->total_used, lst->total_dark, lst->total_dead);
578 	spin_unlock(&dbg_lock);
579 }
580 
581 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
582 {
583 	int i;
584 	struct rb_node *rb;
585 	struct ubifs_bud *bud;
586 	struct ubifs_gced_idx_leb *idx_gc;
587 	long long available, outstanding, free;
588 
589 	spin_lock(&c->space_lock);
590 	spin_lock(&dbg_lock);
591 	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
592 	       current->pid, bi->data_growth + bi->dd_growth,
593 	       bi->data_growth + bi->dd_growth + bi->idx_growth);
594 	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
595 	       bi->data_growth, bi->dd_growth, bi->idx_growth);
596 	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
597 	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
598 	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
599 	       bi->page_budget, bi->inode_budget, bi->dent_budget);
600 	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
601 	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
602 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
603 
604 	if (bi != &c->bi)
605 		/*
606 		 * If we are dumping saved budgeting data, do not print
607 		 * additional information which is about the current state, not
608 		 * the old one which corresponded to the saved budgeting data.
609 		 */
610 		goto out_unlock;
611 
612 	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
613 	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
614 	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
615 	       atomic_long_read(&c->dirty_pg_cnt),
616 	       atomic_long_read(&c->dirty_zn_cnt),
617 	       atomic_long_read(&c->clean_zn_cnt));
618 	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
619 
620 	/* If we are in R/O mode, journal heads do not exist */
621 	if (c->jheads)
622 		for (i = 0; i < c->jhead_cnt; i++)
623 			pr_err("\tjhead %s\t LEB %d\n",
624 			       dbg_jhead(c->jheads[i].wbuf.jhead),
625 			       c->jheads[i].wbuf.lnum);
626 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
627 		bud = rb_entry(rb, struct ubifs_bud, rb);
628 		pr_err("\tbud LEB %d\n", bud->lnum);
629 	}
630 	list_for_each_entry(bud, &c->old_buds, list)
631 		pr_err("\told bud LEB %d\n", bud->lnum);
632 	list_for_each_entry(idx_gc, &c->idx_gc, list)
633 		pr_err("\tGC'ed idx LEB %d unmap %d\n",
634 		       idx_gc->lnum, idx_gc->unmap);
635 	pr_err("\tcommit state %d\n", c->cmt_state);
636 
637 	/* Print budgeting predictions */
638 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
639 	outstanding = c->bi.data_growth + c->bi.dd_growth;
640 	free = ubifs_get_free_space_nolock(c);
641 	pr_err("Budgeting predictions:\n");
642 	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
643 	       available, outstanding, free);
644 out_unlock:
645 	spin_unlock(&dbg_lock);
646 	spin_unlock(&c->space_lock);
647 }
648 
649 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
650 {
651 	int i, spc, dark = 0, dead = 0;
652 	struct rb_node *rb;
653 	struct ubifs_bud *bud;
654 
655 	spc = lp->free + lp->dirty;
656 	if (spc < c->dead_wm)
657 		dead = spc;
658 	else
659 		dark = ubifs_calc_dark(c, spc);
660 
661 	if (lp->flags & LPROPS_INDEX)
662 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
663 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
664 		       lp->flags);
665 	else
666 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
667 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
668 		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
669 
670 	if (lp->flags & LPROPS_TAKEN) {
671 		if (lp->flags & LPROPS_INDEX)
672 			pr_cont("index, taken");
673 		else
674 			pr_cont("taken");
675 	} else {
676 		const char *s;
677 
678 		if (lp->flags & LPROPS_INDEX) {
679 			switch (lp->flags & LPROPS_CAT_MASK) {
680 			case LPROPS_DIRTY_IDX:
681 				s = "dirty index";
682 				break;
683 			case LPROPS_FRDI_IDX:
684 				s = "freeable index";
685 				break;
686 			default:
687 				s = "index";
688 			}
689 		} else {
690 			switch (lp->flags & LPROPS_CAT_MASK) {
691 			case LPROPS_UNCAT:
692 				s = "not categorized";
693 				break;
694 			case LPROPS_DIRTY:
695 				s = "dirty";
696 				break;
697 			case LPROPS_FREE:
698 				s = "free";
699 				break;
700 			case LPROPS_EMPTY:
701 				s = "empty";
702 				break;
703 			case LPROPS_FREEABLE:
704 				s = "freeable";
705 				break;
706 			default:
707 				s = NULL;
708 				break;
709 			}
710 		}
711 		pr_cont("%s", s);
712 	}
713 
714 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
715 		bud = rb_entry(rb, struct ubifs_bud, rb);
716 		if (bud->lnum == lp->lnum) {
717 			int head = 0;
718 			for (i = 0; i < c->jhead_cnt; i++) {
719 				/*
720 				 * Note, if we are in R/O mode or in the middle
721 				 * of mounting/re-mounting, the write-buffers do
722 				 * not exist.
723 				 */
724 				if (c->jheads &&
725 				    lp->lnum == c->jheads[i].wbuf.lnum) {
726 					pr_cont(", jhead %s", dbg_jhead(i));
727 					head = 1;
728 				}
729 			}
730 			if (!head)
731 				pr_cont(", bud of jhead %s",
732 				       dbg_jhead(bud->jhead));
733 		}
734 	}
735 	if (lp->lnum == c->gc_lnum)
736 		pr_cont(", GC LEB");
737 	pr_cont(")\n");
738 }
739 
740 void ubifs_dump_lprops(struct ubifs_info *c)
741 {
742 	int lnum, err;
743 	struct ubifs_lprops lp;
744 	struct ubifs_lp_stats lst;
745 
746 	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
747 	ubifs_get_lp_stats(c, &lst);
748 	ubifs_dump_lstats(&lst);
749 
750 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
751 		err = ubifs_read_one_lp(c, lnum, &lp);
752 		if (err) {
753 			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
754 			continue;
755 		}
756 
757 		ubifs_dump_lprop(c, &lp);
758 	}
759 	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
760 }
761 
762 void ubifs_dump_lpt_info(struct ubifs_info *c)
763 {
764 	int i;
765 
766 	spin_lock(&dbg_lock);
767 	pr_err("(pid %d) dumping LPT information\n", current->pid);
768 	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
769 	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
770 	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
771 	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
772 	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
773 	pr_err("\tbig_lpt:       %d\n", c->big_lpt);
774 	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
775 	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
776 	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
777 	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
778 	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
779 	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
780 	pr_err("\tspace_bits:    %d\n", c->space_bits);
781 	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
782 	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
783 	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
784 	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
785 	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
786 	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
787 	pr_err("\tLPT head is at %d:%d\n",
788 	       c->nhead_lnum, c->nhead_offs);
789 	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
790 	if (c->big_lpt)
791 		pr_err("\tLPT lsave is at %d:%d\n",
792 		       c->lsave_lnum, c->lsave_offs);
793 	for (i = 0; i < c->lpt_lebs; i++)
794 		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
795 		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
796 		       c->ltab[i].tgc, c->ltab[i].cmt);
797 	spin_unlock(&dbg_lock);
798 }
799 
800 void ubifs_dump_sleb(const struct ubifs_info *c,
801 		     const struct ubifs_scan_leb *sleb, int offs)
802 {
803 	struct ubifs_scan_node *snod;
804 
805 	pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
806 	       current->pid, sleb->lnum, offs);
807 
808 	list_for_each_entry(snod, &sleb->nodes, list) {
809 		cond_resched();
810 		pr_err("Dumping node at LEB %d:%d len %d\n",
811 		       sleb->lnum, snod->offs, snod->len);
812 		ubifs_dump_node(c, snod->node);
813 	}
814 }
815 
816 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
817 {
818 	struct ubifs_scan_leb *sleb;
819 	struct ubifs_scan_node *snod;
820 	void *buf;
821 
822 	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
823 
824 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
825 	if (!buf) {
826 		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
827 		return;
828 	}
829 
830 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
831 	if (IS_ERR(sleb)) {
832 		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
833 		goto out;
834 	}
835 
836 	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
837 	       sleb->nodes_cnt, sleb->endpt);
838 
839 	list_for_each_entry(snod, &sleb->nodes, list) {
840 		cond_resched();
841 		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
842 		       snod->offs, snod->len);
843 		ubifs_dump_node(c, snod->node);
844 	}
845 
846 	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
847 	ubifs_scan_destroy(sleb);
848 
849 out:
850 	vfree(buf);
851 	return;
852 }
853 
854 void ubifs_dump_znode(const struct ubifs_info *c,
855 		      const struct ubifs_znode *znode)
856 {
857 	int n;
858 	const struct ubifs_zbranch *zbr;
859 	char key_buf[DBG_KEY_BUF_LEN];
860 
861 	spin_lock(&dbg_lock);
862 	if (znode->parent)
863 		zbr = &znode->parent->zbranch[znode->iip];
864 	else
865 		zbr = &c->zroot;
866 
867 	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
868 	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
869 	       znode->level, znode->child_cnt, znode->flags);
870 
871 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
872 		spin_unlock(&dbg_lock);
873 		return;
874 	}
875 
876 	pr_err("zbranches:\n");
877 	for (n = 0; n < znode->child_cnt; n++) {
878 		zbr = &znode->zbranch[n];
879 		if (znode->level > 0)
880 			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
881 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
882 			       dbg_snprintf_key(c, &zbr->key, key_buf,
883 						DBG_KEY_BUF_LEN));
884 		else
885 			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
886 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
887 			       dbg_snprintf_key(c, &zbr->key, key_buf,
888 						DBG_KEY_BUF_LEN));
889 	}
890 	spin_unlock(&dbg_lock);
891 }
892 
893 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
894 {
895 	int i;
896 
897 	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
898 	       current->pid, cat, heap->cnt);
899 	for (i = 0; i < heap->cnt; i++) {
900 		struct ubifs_lprops *lprops = heap->arr[i];
901 
902 		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
903 		       i, lprops->lnum, lprops->hpos, lprops->free,
904 		       lprops->dirty, lprops->flags);
905 	}
906 	pr_err("(pid %d) finish dumping heap\n", current->pid);
907 }
908 
909 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
910 		      struct ubifs_nnode *parent, int iip)
911 {
912 	int i;
913 
914 	pr_err("(pid %d) dumping pnode:\n", current->pid);
915 	pr_err("\taddress %zx parent %zx cnext %zx\n",
916 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
917 	pr_err("\tflags %lu iip %d level %d num %d\n",
918 	       pnode->flags, iip, pnode->level, pnode->num);
919 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
920 		struct ubifs_lprops *lp = &pnode->lprops[i];
921 
922 		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
923 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
924 	}
925 }
926 
927 void ubifs_dump_tnc(struct ubifs_info *c)
928 {
929 	struct ubifs_znode *znode;
930 	int level;
931 
932 	pr_err("\n");
933 	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
934 	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
935 	level = znode->level;
936 	pr_err("== Level %d ==\n", level);
937 	while (znode) {
938 		if (level != znode->level) {
939 			level = znode->level;
940 			pr_err("== Level %d ==\n", level);
941 		}
942 		ubifs_dump_znode(c, znode);
943 		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
944 	}
945 	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
946 }
947 
948 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
949 		      void *priv)
950 {
951 	ubifs_dump_znode(c, znode);
952 	return 0;
953 }
954 
955 /**
956  * ubifs_dump_index - dump the on-flash index.
957  * @c: UBIFS file-system description object
958  *
959  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
960  * which dumps only in-memory znodes and does not read znodes which from flash.
961  */
962 void ubifs_dump_index(struct ubifs_info *c)
963 {
964 	dbg_walk_index(c, NULL, dump_znode, NULL);
965 }
966 
967 /**
968  * dbg_save_space_info - save information about flash space.
969  * @c: UBIFS file-system description object
970  *
971  * This function saves information about UBIFS free space, dirty space, etc, in
972  * order to check it later.
973  */
974 void dbg_save_space_info(struct ubifs_info *c)
975 {
976 	struct ubifs_debug_info *d = c->dbg;
977 	int freeable_cnt;
978 
979 	spin_lock(&c->space_lock);
980 	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
981 	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
982 	d->saved_idx_gc_cnt = c->idx_gc_cnt;
983 
984 	/*
985 	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
986 	 * affects the free space calculations, and UBIFS might not know about
987 	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
988 	 * only when we read their lprops, and we do this only lazily, upon the
989 	 * need. So at any given point of time @c->freeable_cnt might be not
990 	 * exactly accurate.
991 	 *
992 	 * Just one example about the issue we hit when we did not zero
993 	 * @c->freeable_cnt.
994 	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
995 	 *    amount of free space in @d->saved_free
996 	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
997 	 *    information from flash, where we cache LEBs from various
998 	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
999 	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1000 	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1001 	 *    -> 'ubifs_add_to_cat()').
1002 	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1003 	 *    becomes %1.
1004 	 * 4. We calculate the amount of free space when the re-mount is
1005 	 *    finished in 'dbg_check_space_info()' and it does not match
1006 	 *    @d->saved_free.
1007 	 */
1008 	freeable_cnt = c->freeable_cnt;
1009 	c->freeable_cnt = 0;
1010 	d->saved_free = ubifs_get_free_space_nolock(c);
1011 	c->freeable_cnt = freeable_cnt;
1012 	spin_unlock(&c->space_lock);
1013 }
1014 
1015 /**
1016  * dbg_check_space_info - check flash space information.
1017  * @c: UBIFS file-system description object
1018  *
1019  * This function compares current flash space information with the information
1020  * which was saved when the 'dbg_save_space_info()' function was called.
1021  * Returns zero if the information has not changed, and %-EINVAL it it has
1022  * changed.
1023  */
1024 int dbg_check_space_info(struct ubifs_info *c)
1025 {
1026 	struct ubifs_debug_info *d = c->dbg;
1027 	struct ubifs_lp_stats lst;
1028 	long long free;
1029 	int freeable_cnt;
1030 
1031 	spin_lock(&c->space_lock);
1032 	freeable_cnt = c->freeable_cnt;
1033 	c->freeable_cnt = 0;
1034 	free = ubifs_get_free_space_nolock(c);
1035 	c->freeable_cnt = freeable_cnt;
1036 	spin_unlock(&c->space_lock);
1037 
1038 	if (free != d->saved_free) {
1039 		ubifs_err(c, "free space changed from %lld to %lld",
1040 			  d->saved_free, free);
1041 		goto out;
1042 	}
1043 
1044 	return 0;
1045 
1046 out:
1047 	ubifs_msg(c, "saved lprops statistics dump");
1048 	ubifs_dump_lstats(&d->saved_lst);
1049 	ubifs_msg(c, "saved budgeting info dump");
1050 	ubifs_dump_budg(c, &d->saved_bi);
1051 	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1052 	ubifs_msg(c, "current lprops statistics dump");
1053 	ubifs_get_lp_stats(c, &lst);
1054 	ubifs_dump_lstats(&lst);
1055 	ubifs_msg(c, "current budgeting info dump");
1056 	ubifs_dump_budg(c, &c->bi);
1057 	dump_stack();
1058 	return -EINVAL;
1059 }
1060 
1061 /**
1062  * dbg_check_synced_i_size - check synchronized inode size.
1063  * @c: UBIFS file-system description object
1064  * @inode: inode to check
1065  *
1066  * If inode is clean, synchronized inode size has to be equivalent to current
1067  * inode size. This function has to be called only for locked inodes (@i_mutex
1068  * has to be locked). Returns %0 if synchronized inode size if correct, and
1069  * %-EINVAL if not.
1070  */
1071 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1072 {
1073 	int err = 0;
1074 	struct ubifs_inode *ui = ubifs_inode(inode);
1075 
1076 	if (!dbg_is_chk_gen(c))
1077 		return 0;
1078 	if (!S_ISREG(inode->i_mode))
1079 		return 0;
1080 
1081 	mutex_lock(&ui->ui_mutex);
1082 	spin_lock(&ui->ui_lock);
1083 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1084 		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1085 			  ui->ui_size, ui->synced_i_size);
1086 		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1087 			  inode->i_mode, i_size_read(inode));
1088 		dump_stack();
1089 		err = -EINVAL;
1090 	}
1091 	spin_unlock(&ui->ui_lock);
1092 	mutex_unlock(&ui->ui_mutex);
1093 	return err;
1094 }
1095 
1096 /*
1097  * dbg_check_dir - check directory inode size and link count.
1098  * @c: UBIFS file-system description object
1099  * @dir: the directory to calculate size for
1100  * @size: the result is returned here
1101  *
1102  * This function makes sure that directory size and link count are correct.
1103  * Returns zero in case of success and a negative error code in case of
1104  * failure.
1105  *
1106  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1107  * calling this function.
1108  */
1109 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1110 {
1111 	unsigned int nlink = 2;
1112 	union ubifs_key key;
1113 	struct ubifs_dent_node *dent, *pdent = NULL;
1114 	struct fscrypt_name nm = {0};
1115 	loff_t size = UBIFS_INO_NODE_SZ;
1116 
1117 	if (!dbg_is_chk_gen(c))
1118 		return 0;
1119 
1120 	if (!S_ISDIR(dir->i_mode))
1121 		return 0;
1122 
1123 	lowest_dent_key(c, &key, dir->i_ino);
1124 	while (1) {
1125 		int err;
1126 
1127 		dent = ubifs_tnc_next_ent(c, &key, &nm);
1128 		if (IS_ERR(dent)) {
1129 			err = PTR_ERR(dent);
1130 			if (err == -ENOENT)
1131 				break;
1132 			return err;
1133 		}
1134 
1135 		fname_name(&nm) = dent->name;
1136 		fname_len(&nm) = le16_to_cpu(dent->nlen);
1137 		size += CALC_DENT_SIZE(fname_len(&nm));
1138 		if (dent->type == UBIFS_ITYPE_DIR)
1139 			nlink += 1;
1140 		kfree(pdent);
1141 		pdent = dent;
1142 		key_read(c, &dent->key, &key);
1143 	}
1144 	kfree(pdent);
1145 
1146 	if (i_size_read(dir) != size) {
1147 		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1148 			  dir->i_ino, (unsigned long long)i_size_read(dir),
1149 			  (unsigned long long)size);
1150 		ubifs_dump_inode(c, dir);
1151 		dump_stack();
1152 		return -EINVAL;
1153 	}
1154 	if (dir->i_nlink != nlink) {
1155 		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1156 			  dir->i_ino, dir->i_nlink, nlink);
1157 		ubifs_dump_inode(c, dir);
1158 		dump_stack();
1159 		return -EINVAL;
1160 	}
1161 
1162 	return 0;
1163 }
1164 
1165 /**
1166  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1167  * @c: UBIFS file-system description object
1168  * @zbr1: first zbranch
1169  * @zbr2: following zbranch
1170  *
1171  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1172  * names of the direntries/xentries which are referred by the keys. This
1173  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1174  * sure the name of direntry/xentry referred by @zbr1 is less than
1175  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1176  * and a negative error code in case of failure.
1177  */
1178 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1179 			       struct ubifs_zbranch *zbr2)
1180 {
1181 	int err, nlen1, nlen2, cmp;
1182 	struct ubifs_dent_node *dent1, *dent2;
1183 	union ubifs_key key;
1184 	char key_buf[DBG_KEY_BUF_LEN];
1185 
1186 	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1187 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1188 	if (!dent1)
1189 		return -ENOMEM;
1190 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1191 	if (!dent2) {
1192 		err = -ENOMEM;
1193 		goto out_free;
1194 	}
1195 
1196 	err = ubifs_tnc_read_node(c, zbr1, dent1);
1197 	if (err)
1198 		goto out_free;
1199 	err = ubifs_validate_entry(c, dent1);
1200 	if (err)
1201 		goto out_free;
1202 
1203 	err = ubifs_tnc_read_node(c, zbr2, dent2);
1204 	if (err)
1205 		goto out_free;
1206 	err = ubifs_validate_entry(c, dent2);
1207 	if (err)
1208 		goto out_free;
1209 
1210 	/* Make sure node keys are the same as in zbranch */
1211 	err = 1;
1212 	key_read(c, &dent1->key, &key);
1213 	if (keys_cmp(c, &zbr1->key, &key)) {
1214 		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1215 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1216 						       DBG_KEY_BUF_LEN));
1217 		ubifs_err(c, "but it should have key %s according to tnc",
1218 			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1219 					   DBG_KEY_BUF_LEN));
1220 		ubifs_dump_node(c, dent1);
1221 		goto out_free;
1222 	}
1223 
1224 	key_read(c, &dent2->key, &key);
1225 	if (keys_cmp(c, &zbr2->key, &key)) {
1226 		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1227 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1228 						       DBG_KEY_BUF_LEN));
1229 		ubifs_err(c, "but it should have key %s according to tnc",
1230 			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1231 					   DBG_KEY_BUF_LEN));
1232 		ubifs_dump_node(c, dent2);
1233 		goto out_free;
1234 	}
1235 
1236 	nlen1 = le16_to_cpu(dent1->nlen);
1237 	nlen2 = le16_to_cpu(dent2->nlen);
1238 
1239 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1240 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1241 		err = 0;
1242 		goto out_free;
1243 	}
1244 	if (cmp == 0 && nlen1 == nlen2)
1245 		ubifs_err(c, "2 xent/dent nodes with the same name");
1246 	else
1247 		ubifs_err(c, "bad order of colliding key %s",
1248 			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1249 
1250 	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1251 	ubifs_dump_node(c, dent1);
1252 	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1253 	ubifs_dump_node(c, dent2);
1254 
1255 out_free:
1256 	kfree(dent2);
1257 	kfree(dent1);
1258 	return err;
1259 }
1260 
1261 /**
1262  * dbg_check_znode - check if znode is all right.
1263  * @c: UBIFS file-system description object
1264  * @zbr: zbranch which points to this znode
1265  *
1266  * This function makes sure that znode referred to by @zbr is all right.
1267  * Returns zero if it is, and %-EINVAL if it is not.
1268  */
1269 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1270 {
1271 	struct ubifs_znode *znode = zbr->znode;
1272 	struct ubifs_znode *zp = znode->parent;
1273 	int n, err, cmp;
1274 
1275 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1276 		err = 1;
1277 		goto out;
1278 	}
1279 	if (znode->level < 0) {
1280 		err = 2;
1281 		goto out;
1282 	}
1283 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1284 		err = 3;
1285 		goto out;
1286 	}
1287 
1288 	if (zbr->len == 0)
1289 		/* Only dirty zbranch may have no on-flash nodes */
1290 		if (!ubifs_zn_dirty(znode)) {
1291 			err = 4;
1292 			goto out;
1293 		}
1294 
1295 	if (ubifs_zn_dirty(znode)) {
1296 		/*
1297 		 * If znode is dirty, its parent has to be dirty as well. The
1298 		 * order of the operation is important, so we have to have
1299 		 * memory barriers.
1300 		 */
1301 		smp_mb();
1302 		if (zp && !ubifs_zn_dirty(zp)) {
1303 			/*
1304 			 * The dirty flag is atomic and is cleared outside the
1305 			 * TNC mutex, so znode's dirty flag may now have
1306 			 * been cleared. The child is always cleared before the
1307 			 * parent, so we just need to check again.
1308 			 */
1309 			smp_mb();
1310 			if (ubifs_zn_dirty(znode)) {
1311 				err = 5;
1312 				goto out;
1313 			}
1314 		}
1315 	}
1316 
1317 	if (zp) {
1318 		const union ubifs_key *min, *max;
1319 
1320 		if (znode->level != zp->level - 1) {
1321 			err = 6;
1322 			goto out;
1323 		}
1324 
1325 		/* Make sure the 'parent' pointer in our znode is correct */
1326 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1327 		if (!err) {
1328 			/* This zbranch does not exist in the parent */
1329 			err = 7;
1330 			goto out;
1331 		}
1332 
1333 		if (znode->iip >= zp->child_cnt) {
1334 			err = 8;
1335 			goto out;
1336 		}
1337 
1338 		if (znode->iip != n) {
1339 			/* This may happen only in case of collisions */
1340 			if (keys_cmp(c, &zp->zbranch[n].key,
1341 				     &zp->zbranch[znode->iip].key)) {
1342 				err = 9;
1343 				goto out;
1344 			}
1345 			n = znode->iip;
1346 		}
1347 
1348 		/*
1349 		 * Make sure that the first key in our znode is greater than or
1350 		 * equal to the key in the pointing zbranch.
1351 		 */
1352 		min = &zbr->key;
1353 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1354 		if (cmp == 1) {
1355 			err = 10;
1356 			goto out;
1357 		}
1358 
1359 		if (n + 1 < zp->child_cnt) {
1360 			max = &zp->zbranch[n + 1].key;
1361 
1362 			/*
1363 			 * Make sure the last key in our znode is less or
1364 			 * equivalent than the key in the zbranch which goes
1365 			 * after our pointing zbranch.
1366 			 */
1367 			cmp = keys_cmp(c, max,
1368 				&znode->zbranch[znode->child_cnt - 1].key);
1369 			if (cmp == -1) {
1370 				err = 11;
1371 				goto out;
1372 			}
1373 		}
1374 	} else {
1375 		/* This may only be root znode */
1376 		if (zbr != &c->zroot) {
1377 			err = 12;
1378 			goto out;
1379 		}
1380 	}
1381 
1382 	/*
1383 	 * Make sure that next key is greater or equivalent then the previous
1384 	 * one.
1385 	 */
1386 	for (n = 1; n < znode->child_cnt; n++) {
1387 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1388 			       &znode->zbranch[n].key);
1389 		if (cmp > 0) {
1390 			err = 13;
1391 			goto out;
1392 		}
1393 		if (cmp == 0) {
1394 			/* This can only be keys with colliding hash */
1395 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1396 				err = 14;
1397 				goto out;
1398 			}
1399 
1400 			if (znode->level != 0 || c->replaying)
1401 				continue;
1402 
1403 			/*
1404 			 * Colliding keys should follow binary order of
1405 			 * corresponding xentry/dentry names.
1406 			 */
1407 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1408 						  &znode->zbranch[n]);
1409 			if (err < 0)
1410 				return err;
1411 			if (err) {
1412 				err = 15;
1413 				goto out;
1414 			}
1415 		}
1416 	}
1417 
1418 	for (n = 0; n < znode->child_cnt; n++) {
1419 		if (!znode->zbranch[n].znode &&
1420 		    (znode->zbranch[n].lnum == 0 ||
1421 		     znode->zbranch[n].len == 0)) {
1422 			err = 16;
1423 			goto out;
1424 		}
1425 
1426 		if (znode->zbranch[n].lnum != 0 &&
1427 		    znode->zbranch[n].len == 0) {
1428 			err = 17;
1429 			goto out;
1430 		}
1431 
1432 		if (znode->zbranch[n].lnum == 0 &&
1433 		    znode->zbranch[n].len != 0) {
1434 			err = 18;
1435 			goto out;
1436 		}
1437 
1438 		if (znode->zbranch[n].lnum == 0 &&
1439 		    znode->zbranch[n].offs != 0) {
1440 			err = 19;
1441 			goto out;
1442 		}
1443 
1444 		if (znode->level != 0 && znode->zbranch[n].znode)
1445 			if (znode->zbranch[n].znode->parent != znode) {
1446 				err = 20;
1447 				goto out;
1448 			}
1449 	}
1450 
1451 	return 0;
1452 
1453 out:
1454 	ubifs_err(c, "failed, error %d", err);
1455 	ubifs_msg(c, "dump of the znode");
1456 	ubifs_dump_znode(c, znode);
1457 	if (zp) {
1458 		ubifs_msg(c, "dump of the parent znode");
1459 		ubifs_dump_znode(c, zp);
1460 	}
1461 	dump_stack();
1462 	return -EINVAL;
1463 }
1464 
1465 /**
1466  * dbg_check_tnc - check TNC tree.
1467  * @c: UBIFS file-system description object
1468  * @extra: do extra checks that are possible at start commit
1469  *
1470  * This function traverses whole TNC tree and checks every znode. Returns zero
1471  * if everything is all right and %-EINVAL if something is wrong with TNC.
1472  */
1473 int dbg_check_tnc(struct ubifs_info *c, int extra)
1474 {
1475 	struct ubifs_znode *znode;
1476 	long clean_cnt = 0, dirty_cnt = 0;
1477 	int err, last;
1478 
1479 	if (!dbg_is_chk_index(c))
1480 		return 0;
1481 
1482 	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1483 	if (!c->zroot.znode)
1484 		return 0;
1485 
1486 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1487 	while (1) {
1488 		struct ubifs_znode *prev;
1489 		struct ubifs_zbranch *zbr;
1490 
1491 		if (!znode->parent)
1492 			zbr = &c->zroot;
1493 		else
1494 			zbr = &znode->parent->zbranch[znode->iip];
1495 
1496 		err = dbg_check_znode(c, zbr);
1497 		if (err)
1498 			return err;
1499 
1500 		if (extra) {
1501 			if (ubifs_zn_dirty(znode))
1502 				dirty_cnt += 1;
1503 			else
1504 				clean_cnt += 1;
1505 		}
1506 
1507 		prev = znode;
1508 		znode = ubifs_tnc_postorder_next(znode);
1509 		if (!znode)
1510 			break;
1511 
1512 		/*
1513 		 * If the last key of this znode is equivalent to the first key
1514 		 * of the next znode (collision), then check order of the keys.
1515 		 */
1516 		last = prev->child_cnt - 1;
1517 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1518 		    !keys_cmp(c, &prev->zbranch[last].key,
1519 			      &znode->zbranch[0].key)) {
1520 			err = dbg_check_key_order(c, &prev->zbranch[last],
1521 						  &znode->zbranch[0]);
1522 			if (err < 0)
1523 				return err;
1524 			if (err) {
1525 				ubifs_msg(c, "first znode");
1526 				ubifs_dump_znode(c, prev);
1527 				ubifs_msg(c, "second znode");
1528 				ubifs_dump_znode(c, znode);
1529 				return -EINVAL;
1530 			}
1531 		}
1532 	}
1533 
1534 	if (extra) {
1535 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1536 			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1537 				  atomic_long_read(&c->clean_zn_cnt),
1538 				  clean_cnt);
1539 			return -EINVAL;
1540 		}
1541 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1542 			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1543 				  atomic_long_read(&c->dirty_zn_cnt),
1544 				  dirty_cnt);
1545 			return -EINVAL;
1546 		}
1547 	}
1548 
1549 	return 0;
1550 }
1551 
1552 /**
1553  * dbg_walk_index - walk the on-flash index.
1554  * @c: UBIFS file-system description object
1555  * @leaf_cb: called for each leaf node
1556  * @znode_cb: called for each indexing node
1557  * @priv: private data which is passed to callbacks
1558  *
1559  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1560  * node and @znode_cb for each indexing node. Returns zero in case of success
1561  * and a negative error code in case of failure.
1562  *
1563  * It would be better if this function removed every znode it pulled to into
1564  * the TNC, so that the behavior more closely matched the non-debugging
1565  * behavior.
1566  */
1567 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1568 		   dbg_znode_callback znode_cb, void *priv)
1569 {
1570 	int err;
1571 	struct ubifs_zbranch *zbr;
1572 	struct ubifs_znode *znode, *child;
1573 
1574 	mutex_lock(&c->tnc_mutex);
1575 	/* If the root indexing node is not in TNC - pull it */
1576 	if (!c->zroot.znode) {
1577 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1578 		if (IS_ERR(c->zroot.znode)) {
1579 			err = PTR_ERR(c->zroot.znode);
1580 			c->zroot.znode = NULL;
1581 			goto out_unlock;
1582 		}
1583 	}
1584 
1585 	/*
1586 	 * We are going to traverse the indexing tree in the postorder manner.
1587 	 * Go down and find the leftmost indexing node where we are going to
1588 	 * start from.
1589 	 */
1590 	znode = c->zroot.znode;
1591 	while (znode->level > 0) {
1592 		zbr = &znode->zbranch[0];
1593 		child = zbr->znode;
1594 		if (!child) {
1595 			child = ubifs_load_znode(c, zbr, znode, 0);
1596 			if (IS_ERR(child)) {
1597 				err = PTR_ERR(child);
1598 				goto out_unlock;
1599 			}
1600 			zbr->znode = child;
1601 		}
1602 
1603 		znode = child;
1604 	}
1605 
1606 	/* Iterate over all indexing nodes */
1607 	while (1) {
1608 		int idx;
1609 
1610 		cond_resched();
1611 
1612 		if (znode_cb) {
1613 			err = znode_cb(c, znode, priv);
1614 			if (err) {
1615 				ubifs_err(c, "znode checking function returned error %d",
1616 					  err);
1617 				ubifs_dump_znode(c, znode);
1618 				goto out_dump;
1619 			}
1620 		}
1621 		if (leaf_cb && znode->level == 0) {
1622 			for (idx = 0; idx < znode->child_cnt; idx++) {
1623 				zbr = &znode->zbranch[idx];
1624 				err = leaf_cb(c, zbr, priv);
1625 				if (err) {
1626 					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1627 						  err, zbr->lnum, zbr->offs);
1628 					goto out_dump;
1629 				}
1630 			}
1631 		}
1632 
1633 		if (!znode->parent)
1634 			break;
1635 
1636 		idx = znode->iip + 1;
1637 		znode = znode->parent;
1638 		if (idx < znode->child_cnt) {
1639 			/* Switch to the next index in the parent */
1640 			zbr = &znode->zbranch[idx];
1641 			child = zbr->znode;
1642 			if (!child) {
1643 				child = ubifs_load_znode(c, zbr, znode, idx);
1644 				if (IS_ERR(child)) {
1645 					err = PTR_ERR(child);
1646 					goto out_unlock;
1647 				}
1648 				zbr->znode = child;
1649 			}
1650 			znode = child;
1651 		} else
1652 			/*
1653 			 * This is the last child, switch to the parent and
1654 			 * continue.
1655 			 */
1656 			continue;
1657 
1658 		/* Go to the lowest leftmost znode in the new sub-tree */
1659 		while (znode->level > 0) {
1660 			zbr = &znode->zbranch[0];
1661 			child = zbr->znode;
1662 			if (!child) {
1663 				child = ubifs_load_znode(c, zbr, znode, 0);
1664 				if (IS_ERR(child)) {
1665 					err = PTR_ERR(child);
1666 					goto out_unlock;
1667 				}
1668 				zbr->znode = child;
1669 			}
1670 			znode = child;
1671 		}
1672 	}
1673 
1674 	mutex_unlock(&c->tnc_mutex);
1675 	return 0;
1676 
1677 out_dump:
1678 	if (znode->parent)
1679 		zbr = &znode->parent->zbranch[znode->iip];
1680 	else
1681 		zbr = &c->zroot;
1682 	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1683 	ubifs_dump_znode(c, znode);
1684 out_unlock:
1685 	mutex_unlock(&c->tnc_mutex);
1686 	return err;
1687 }
1688 
1689 /**
1690  * add_size - add znode size to partially calculated index size.
1691  * @c: UBIFS file-system description object
1692  * @znode: znode to add size for
1693  * @priv: partially calculated index size
1694  *
1695  * This is a helper function for 'dbg_check_idx_size()' which is called for
1696  * every indexing node and adds its size to the 'long long' variable pointed to
1697  * by @priv.
1698  */
1699 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1700 {
1701 	long long *idx_size = priv;
1702 	int add;
1703 
1704 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1705 	add = ALIGN(add, 8);
1706 	*idx_size += add;
1707 	return 0;
1708 }
1709 
1710 /**
1711  * dbg_check_idx_size - check index size.
1712  * @c: UBIFS file-system description object
1713  * @idx_size: size to check
1714  *
1715  * This function walks the UBIFS index, calculates its size and checks that the
1716  * size is equivalent to @idx_size. Returns zero in case of success and a
1717  * negative error code in case of failure.
1718  */
1719 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1720 {
1721 	int err;
1722 	long long calc = 0;
1723 
1724 	if (!dbg_is_chk_index(c))
1725 		return 0;
1726 
1727 	err = dbg_walk_index(c, NULL, add_size, &calc);
1728 	if (err) {
1729 		ubifs_err(c, "error %d while walking the index", err);
1730 		return err;
1731 	}
1732 
1733 	if (calc != idx_size) {
1734 		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1735 			  calc, idx_size);
1736 		dump_stack();
1737 		return -EINVAL;
1738 	}
1739 
1740 	return 0;
1741 }
1742 
1743 /**
1744  * struct fsck_inode - information about an inode used when checking the file-system.
1745  * @rb: link in the RB-tree of inodes
1746  * @inum: inode number
1747  * @mode: inode type, permissions, etc
1748  * @nlink: inode link count
1749  * @xattr_cnt: count of extended attributes
1750  * @references: how many directory/xattr entries refer this inode (calculated
1751  *              while walking the index)
1752  * @calc_cnt: for directory inode count of child directories
1753  * @size: inode size (read from on-flash inode)
1754  * @xattr_sz: summary size of all extended attributes (read from on-flash
1755  *            inode)
1756  * @calc_sz: for directories calculated directory size
1757  * @calc_xcnt: count of extended attributes
1758  * @calc_xsz: calculated summary size of all extended attributes
1759  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1760  *             inode (read from on-flash inode)
1761  * @calc_xnms: calculated sum of lengths of all extended attribute names
1762  */
1763 struct fsck_inode {
1764 	struct rb_node rb;
1765 	ino_t inum;
1766 	umode_t mode;
1767 	unsigned int nlink;
1768 	unsigned int xattr_cnt;
1769 	int references;
1770 	int calc_cnt;
1771 	long long size;
1772 	unsigned int xattr_sz;
1773 	long long calc_sz;
1774 	long long calc_xcnt;
1775 	long long calc_xsz;
1776 	unsigned int xattr_nms;
1777 	long long calc_xnms;
1778 };
1779 
1780 /**
1781  * struct fsck_data - private FS checking information.
1782  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1783  */
1784 struct fsck_data {
1785 	struct rb_root inodes;
1786 };
1787 
1788 /**
1789  * add_inode - add inode information to RB-tree of inodes.
1790  * @c: UBIFS file-system description object
1791  * @fsckd: FS checking information
1792  * @ino: raw UBIFS inode to add
1793  *
1794  * This is a helper function for 'check_leaf()' which adds information about
1795  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1796  * case of success and a negative error code in case of failure.
1797  */
1798 static struct fsck_inode *add_inode(struct ubifs_info *c,
1799 				    struct fsck_data *fsckd,
1800 				    struct ubifs_ino_node *ino)
1801 {
1802 	struct rb_node **p, *parent = NULL;
1803 	struct fsck_inode *fscki;
1804 	ino_t inum = key_inum_flash(c, &ino->key);
1805 	struct inode *inode;
1806 	struct ubifs_inode *ui;
1807 
1808 	p = &fsckd->inodes.rb_node;
1809 	while (*p) {
1810 		parent = *p;
1811 		fscki = rb_entry(parent, struct fsck_inode, rb);
1812 		if (inum < fscki->inum)
1813 			p = &(*p)->rb_left;
1814 		else if (inum > fscki->inum)
1815 			p = &(*p)->rb_right;
1816 		else
1817 			return fscki;
1818 	}
1819 
1820 	if (inum > c->highest_inum) {
1821 		ubifs_err(c, "too high inode number, max. is %lu",
1822 			  (unsigned long)c->highest_inum);
1823 		return ERR_PTR(-EINVAL);
1824 	}
1825 
1826 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1827 	if (!fscki)
1828 		return ERR_PTR(-ENOMEM);
1829 
1830 	inode = ilookup(c->vfs_sb, inum);
1831 
1832 	fscki->inum = inum;
1833 	/*
1834 	 * If the inode is present in the VFS inode cache, use it instead of
1835 	 * the on-flash inode which might be out-of-date. E.g., the size might
1836 	 * be out-of-date. If we do not do this, the following may happen, for
1837 	 * example:
1838 	 *   1. A power cut happens
1839 	 *   2. We mount the file-system R/O, the replay process fixes up the
1840 	 *      inode size in the VFS cache, but on on-flash.
1841 	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1842 	 *      size.
1843 	 */
1844 	if (!inode) {
1845 		fscki->nlink = le32_to_cpu(ino->nlink);
1846 		fscki->size = le64_to_cpu(ino->size);
1847 		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1848 		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1849 		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1850 		fscki->mode = le32_to_cpu(ino->mode);
1851 	} else {
1852 		ui = ubifs_inode(inode);
1853 		fscki->nlink = inode->i_nlink;
1854 		fscki->size = inode->i_size;
1855 		fscki->xattr_cnt = ui->xattr_cnt;
1856 		fscki->xattr_sz = ui->xattr_size;
1857 		fscki->xattr_nms = ui->xattr_names;
1858 		fscki->mode = inode->i_mode;
1859 		iput(inode);
1860 	}
1861 
1862 	if (S_ISDIR(fscki->mode)) {
1863 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1864 		fscki->calc_cnt = 2;
1865 	}
1866 
1867 	rb_link_node(&fscki->rb, parent, p);
1868 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1869 
1870 	return fscki;
1871 }
1872 
1873 /**
1874  * search_inode - search inode in the RB-tree of inodes.
1875  * @fsckd: FS checking information
1876  * @inum: inode number to search
1877  *
1878  * This is a helper function for 'check_leaf()' which searches inode @inum in
1879  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1880  * the inode was not found.
1881  */
1882 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1883 {
1884 	struct rb_node *p;
1885 	struct fsck_inode *fscki;
1886 
1887 	p = fsckd->inodes.rb_node;
1888 	while (p) {
1889 		fscki = rb_entry(p, struct fsck_inode, rb);
1890 		if (inum < fscki->inum)
1891 			p = p->rb_left;
1892 		else if (inum > fscki->inum)
1893 			p = p->rb_right;
1894 		else
1895 			return fscki;
1896 	}
1897 	return NULL;
1898 }
1899 
1900 /**
1901  * read_add_inode - read inode node and add it to RB-tree of inodes.
1902  * @c: UBIFS file-system description object
1903  * @fsckd: FS checking information
1904  * @inum: inode number to read
1905  *
1906  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1907  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1908  * information pointer in case of success and a negative error code in case of
1909  * failure.
1910  */
1911 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1912 					 struct fsck_data *fsckd, ino_t inum)
1913 {
1914 	int n, err;
1915 	union ubifs_key key;
1916 	struct ubifs_znode *znode;
1917 	struct ubifs_zbranch *zbr;
1918 	struct ubifs_ino_node *ino;
1919 	struct fsck_inode *fscki;
1920 
1921 	fscki = search_inode(fsckd, inum);
1922 	if (fscki)
1923 		return fscki;
1924 
1925 	ino_key_init(c, &key, inum);
1926 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1927 	if (!err) {
1928 		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1929 		return ERR_PTR(-ENOENT);
1930 	} else if (err < 0) {
1931 		ubifs_err(c, "error %d while looking up inode %lu",
1932 			  err, (unsigned long)inum);
1933 		return ERR_PTR(err);
1934 	}
1935 
1936 	zbr = &znode->zbranch[n];
1937 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1938 		ubifs_err(c, "bad node %lu node length %d",
1939 			  (unsigned long)inum, zbr->len);
1940 		return ERR_PTR(-EINVAL);
1941 	}
1942 
1943 	ino = kmalloc(zbr->len, GFP_NOFS);
1944 	if (!ino)
1945 		return ERR_PTR(-ENOMEM);
1946 
1947 	err = ubifs_tnc_read_node(c, zbr, ino);
1948 	if (err) {
1949 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1950 			  zbr->lnum, zbr->offs, err);
1951 		kfree(ino);
1952 		return ERR_PTR(err);
1953 	}
1954 
1955 	fscki = add_inode(c, fsckd, ino);
1956 	kfree(ino);
1957 	if (IS_ERR(fscki)) {
1958 		ubifs_err(c, "error %ld while adding inode %lu node",
1959 			  PTR_ERR(fscki), (unsigned long)inum);
1960 		return fscki;
1961 	}
1962 
1963 	return fscki;
1964 }
1965 
1966 /**
1967  * check_leaf - check leaf node.
1968  * @c: UBIFS file-system description object
1969  * @zbr: zbranch of the leaf node to check
1970  * @priv: FS checking information
1971  *
1972  * This is a helper function for 'dbg_check_filesystem()' which is called for
1973  * every single leaf node while walking the indexing tree. It checks that the
1974  * leaf node referred from the indexing tree exists, has correct CRC, and does
1975  * some other basic validation. This function is also responsible for building
1976  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1977  * calculates reference count, size, etc for each inode in order to later
1978  * compare them to the information stored inside the inodes and detect possible
1979  * inconsistencies. Returns zero in case of success and a negative error code
1980  * in case of failure.
1981  */
1982 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1983 		      void *priv)
1984 {
1985 	ino_t inum;
1986 	void *node;
1987 	struct ubifs_ch *ch;
1988 	int err, type = key_type(c, &zbr->key);
1989 	struct fsck_inode *fscki;
1990 
1991 	if (zbr->len < UBIFS_CH_SZ) {
1992 		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1993 			  zbr->len, zbr->lnum, zbr->offs);
1994 		return -EINVAL;
1995 	}
1996 
1997 	node = kmalloc(zbr->len, GFP_NOFS);
1998 	if (!node)
1999 		return -ENOMEM;
2000 
2001 	err = ubifs_tnc_read_node(c, zbr, node);
2002 	if (err) {
2003 		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2004 			  zbr->lnum, zbr->offs, err);
2005 		goto out_free;
2006 	}
2007 
2008 	/* If this is an inode node, add it to RB-tree of inodes */
2009 	if (type == UBIFS_INO_KEY) {
2010 		fscki = add_inode(c, priv, node);
2011 		if (IS_ERR(fscki)) {
2012 			err = PTR_ERR(fscki);
2013 			ubifs_err(c, "error %d while adding inode node", err);
2014 			goto out_dump;
2015 		}
2016 		goto out;
2017 	}
2018 
2019 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2020 	    type != UBIFS_DATA_KEY) {
2021 		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2022 			  type, zbr->lnum, zbr->offs);
2023 		err = -EINVAL;
2024 		goto out_free;
2025 	}
2026 
2027 	ch = node;
2028 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2029 		ubifs_err(c, "too high sequence number, max. is %llu",
2030 			  c->max_sqnum);
2031 		err = -EINVAL;
2032 		goto out_dump;
2033 	}
2034 
2035 	if (type == UBIFS_DATA_KEY) {
2036 		long long blk_offs;
2037 		struct ubifs_data_node *dn = node;
2038 
2039 		ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2040 
2041 		/*
2042 		 * Search the inode node this data node belongs to and insert
2043 		 * it to the RB-tree of inodes.
2044 		 */
2045 		inum = key_inum_flash(c, &dn->key);
2046 		fscki = read_add_inode(c, priv, inum);
2047 		if (IS_ERR(fscki)) {
2048 			err = PTR_ERR(fscki);
2049 			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2050 				  err, (unsigned long)inum);
2051 			goto out_dump;
2052 		}
2053 
2054 		/* Make sure the data node is within inode size */
2055 		blk_offs = key_block_flash(c, &dn->key);
2056 		blk_offs <<= UBIFS_BLOCK_SHIFT;
2057 		blk_offs += le32_to_cpu(dn->size);
2058 		if (blk_offs > fscki->size) {
2059 			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2060 				  zbr->lnum, zbr->offs, fscki->size);
2061 			err = -EINVAL;
2062 			goto out_dump;
2063 		}
2064 	} else {
2065 		int nlen;
2066 		struct ubifs_dent_node *dent = node;
2067 		struct fsck_inode *fscki1;
2068 
2069 		ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2070 
2071 		err = ubifs_validate_entry(c, dent);
2072 		if (err)
2073 			goto out_dump;
2074 
2075 		/*
2076 		 * Search the inode node this entry refers to and the parent
2077 		 * inode node and insert them to the RB-tree of inodes.
2078 		 */
2079 		inum = le64_to_cpu(dent->inum);
2080 		fscki = read_add_inode(c, priv, inum);
2081 		if (IS_ERR(fscki)) {
2082 			err = PTR_ERR(fscki);
2083 			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2084 				  err, (unsigned long)inum);
2085 			goto out_dump;
2086 		}
2087 
2088 		/* Count how many direntries or xentries refers this inode */
2089 		fscki->references += 1;
2090 
2091 		inum = key_inum_flash(c, &dent->key);
2092 		fscki1 = read_add_inode(c, priv, inum);
2093 		if (IS_ERR(fscki1)) {
2094 			err = PTR_ERR(fscki1);
2095 			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2096 				  err, (unsigned long)inum);
2097 			goto out_dump;
2098 		}
2099 
2100 		nlen = le16_to_cpu(dent->nlen);
2101 		if (type == UBIFS_XENT_KEY) {
2102 			fscki1->calc_xcnt += 1;
2103 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2104 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2105 			fscki1->calc_xnms += nlen;
2106 		} else {
2107 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2108 			if (dent->type == UBIFS_ITYPE_DIR)
2109 				fscki1->calc_cnt += 1;
2110 		}
2111 	}
2112 
2113 out:
2114 	kfree(node);
2115 	return 0;
2116 
2117 out_dump:
2118 	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2119 	ubifs_dump_node(c, node);
2120 out_free:
2121 	kfree(node);
2122 	return err;
2123 }
2124 
2125 /**
2126  * free_inodes - free RB-tree of inodes.
2127  * @fsckd: FS checking information
2128  */
2129 static void free_inodes(struct fsck_data *fsckd)
2130 {
2131 	struct fsck_inode *fscki, *n;
2132 
2133 	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2134 		kfree(fscki);
2135 }
2136 
2137 /**
2138  * check_inodes - checks all inodes.
2139  * @c: UBIFS file-system description object
2140  * @fsckd: FS checking information
2141  *
2142  * This is a helper function for 'dbg_check_filesystem()' which walks the
2143  * RB-tree of inodes after the index scan has been finished, and checks that
2144  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2145  * %-EINVAL if not, and a negative error code in case of failure.
2146  */
2147 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2148 {
2149 	int n, err;
2150 	union ubifs_key key;
2151 	struct ubifs_znode *znode;
2152 	struct ubifs_zbranch *zbr;
2153 	struct ubifs_ino_node *ino;
2154 	struct fsck_inode *fscki;
2155 	struct rb_node *this = rb_first(&fsckd->inodes);
2156 
2157 	while (this) {
2158 		fscki = rb_entry(this, struct fsck_inode, rb);
2159 		this = rb_next(this);
2160 
2161 		if (S_ISDIR(fscki->mode)) {
2162 			/*
2163 			 * Directories have to have exactly one reference (they
2164 			 * cannot have hardlinks), although root inode is an
2165 			 * exception.
2166 			 */
2167 			if (fscki->inum != UBIFS_ROOT_INO &&
2168 			    fscki->references != 1) {
2169 				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2170 					  (unsigned long)fscki->inum,
2171 					  fscki->references);
2172 				goto out_dump;
2173 			}
2174 			if (fscki->inum == UBIFS_ROOT_INO &&
2175 			    fscki->references != 0) {
2176 				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2177 					  (unsigned long)fscki->inum,
2178 					  fscki->references);
2179 				goto out_dump;
2180 			}
2181 			if (fscki->calc_sz != fscki->size) {
2182 				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2183 					  (unsigned long)fscki->inum,
2184 					  fscki->size, fscki->calc_sz);
2185 				goto out_dump;
2186 			}
2187 			if (fscki->calc_cnt != fscki->nlink) {
2188 				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2189 					  (unsigned long)fscki->inum,
2190 					  fscki->nlink, fscki->calc_cnt);
2191 				goto out_dump;
2192 			}
2193 		} else {
2194 			if (fscki->references != fscki->nlink) {
2195 				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2196 					  (unsigned long)fscki->inum,
2197 					  fscki->nlink, fscki->references);
2198 				goto out_dump;
2199 			}
2200 		}
2201 		if (fscki->xattr_sz != fscki->calc_xsz) {
2202 			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2203 				  (unsigned long)fscki->inum, fscki->xattr_sz,
2204 				  fscki->calc_xsz);
2205 			goto out_dump;
2206 		}
2207 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2208 			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2209 				  (unsigned long)fscki->inum,
2210 				  fscki->xattr_cnt, fscki->calc_xcnt);
2211 			goto out_dump;
2212 		}
2213 		if (fscki->xattr_nms != fscki->calc_xnms) {
2214 			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2215 				  (unsigned long)fscki->inum, fscki->xattr_nms,
2216 				  fscki->calc_xnms);
2217 			goto out_dump;
2218 		}
2219 	}
2220 
2221 	return 0;
2222 
2223 out_dump:
2224 	/* Read the bad inode and dump it */
2225 	ino_key_init(c, &key, fscki->inum);
2226 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2227 	if (!err) {
2228 		ubifs_err(c, "inode %lu not found in index",
2229 			  (unsigned long)fscki->inum);
2230 		return -ENOENT;
2231 	} else if (err < 0) {
2232 		ubifs_err(c, "error %d while looking up inode %lu",
2233 			  err, (unsigned long)fscki->inum);
2234 		return err;
2235 	}
2236 
2237 	zbr = &znode->zbranch[n];
2238 	ino = kmalloc(zbr->len, GFP_NOFS);
2239 	if (!ino)
2240 		return -ENOMEM;
2241 
2242 	err = ubifs_tnc_read_node(c, zbr, ino);
2243 	if (err) {
2244 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2245 			  zbr->lnum, zbr->offs, err);
2246 		kfree(ino);
2247 		return err;
2248 	}
2249 
2250 	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2251 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2252 	ubifs_dump_node(c, ino);
2253 	kfree(ino);
2254 	return -EINVAL;
2255 }
2256 
2257 /**
2258  * dbg_check_filesystem - check the file-system.
2259  * @c: UBIFS file-system description object
2260  *
2261  * This function checks the file system, namely:
2262  * o makes sure that all leaf nodes exist and their CRCs are correct;
2263  * o makes sure inode nlink, size, xattr size/count are correct (for all
2264  *   inodes).
2265  *
2266  * The function reads whole indexing tree and all nodes, so it is pretty
2267  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2268  * not, and a negative error code in case of failure.
2269  */
2270 int dbg_check_filesystem(struct ubifs_info *c)
2271 {
2272 	int err;
2273 	struct fsck_data fsckd;
2274 
2275 	if (!dbg_is_chk_fs(c))
2276 		return 0;
2277 
2278 	fsckd.inodes = RB_ROOT;
2279 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2280 	if (err)
2281 		goto out_free;
2282 
2283 	err = check_inodes(c, &fsckd);
2284 	if (err)
2285 		goto out_free;
2286 
2287 	free_inodes(&fsckd);
2288 	return 0;
2289 
2290 out_free:
2291 	ubifs_err(c, "file-system check failed with error %d", err);
2292 	dump_stack();
2293 	free_inodes(&fsckd);
2294 	return err;
2295 }
2296 
2297 /**
2298  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2299  * @c: UBIFS file-system description object
2300  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2301  *
2302  * This function returns zero if the list of data nodes is sorted correctly,
2303  * and %-EINVAL if not.
2304  */
2305 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2306 {
2307 	struct list_head *cur;
2308 	struct ubifs_scan_node *sa, *sb;
2309 
2310 	if (!dbg_is_chk_gen(c))
2311 		return 0;
2312 
2313 	for (cur = head->next; cur->next != head; cur = cur->next) {
2314 		ino_t inuma, inumb;
2315 		uint32_t blka, blkb;
2316 
2317 		cond_resched();
2318 		sa = container_of(cur, struct ubifs_scan_node, list);
2319 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2320 
2321 		if (sa->type != UBIFS_DATA_NODE) {
2322 			ubifs_err(c, "bad node type %d", sa->type);
2323 			ubifs_dump_node(c, sa->node);
2324 			return -EINVAL;
2325 		}
2326 		if (sb->type != UBIFS_DATA_NODE) {
2327 			ubifs_err(c, "bad node type %d", sb->type);
2328 			ubifs_dump_node(c, sb->node);
2329 			return -EINVAL;
2330 		}
2331 
2332 		inuma = key_inum(c, &sa->key);
2333 		inumb = key_inum(c, &sb->key);
2334 
2335 		if (inuma < inumb)
2336 			continue;
2337 		if (inuma > inumb) {
2338 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2339 				  (unsigned long)inuma, (unsigned long)inumb);
2340 			goto error_dump;
2341 		}
2342 
2343 		blka = key_block(c, &sa->key);
2344 		blkb = key_block(c, &sb->key);
2345 
2346 		if (blka > blkb) {
2347 			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2348 			goto error_dump;
2349 		}
2350 		if (blka == blkb) {
2351 			ubifs_err(c, "two data nodes for the same block");
2352 			goto error_dump;
2353 		}
2354 	}
2355 
2356 	return 0;
2357 
2358 error_dump:
2359 	ubifs_dump_node(c, sa->node);
2360 	ubifs_dump_node(c, sb->node);
2361 	return -EINVAL;
2362 }
2363 
2364 /**
2365  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2366  * @c: UBIFS file-system description object
2367  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2368  *
2369  * This function returns zero if the list of non-data nodes is sorted correctly,
2370  * and %-EINVAL if not.
2371  */
2372 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2373 {
2374 	struct list_head *cur;
2375 	struct ubifs_scan_node *sa, *sb;
2376 
2377 	if (!dbg_is_chk_gen(c))
2378 		return 0;
2379 
2380 	for (cur = head->next; cur->next != head; cur = cur->next) {
2381 		ino_t inuma, inumb;
2382 		uint32_t hasha, hashb;
2383 
2384 		cond_resched();
2385 		sa = container_of(cur, struct ubifs_scan_node, list);
2386 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2387 
2388 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2389 		    sa->type != UBIFS_XENT_NODE) {
2390 			ubifs_err(c, "bad node type %d", sa->type);
2391 			ubifs_dump_node(c, sa->node);
2392 			return -EINVAL;
2393 		}
2394 		if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2395 		    sb->type != UBIFS_XENT_NODE) {
2396 			ubifs_err(c, "bad node type %d", sb->type);
2397 			ubifs_dump_node(c, sb->node);
2398 			return -EINVAL;
2399 		}
2400 
2401 		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2402 			ubifs_err(c, "non-inode node goes before inode node");
2403 			goto error_dump;
2404 		}
2405 
2406 		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2407 			continue;
2408 
2409 		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2410 			/* Inode nodes are sorted in descending size order */
2411 			if (sa->len < sb->len) {
2412 				ubifs_err(c, "smaller inode node goes first");
2413 				goto error_dump;
2414 			}
2415 			continue;
2416 		}
2417 
2418 		/*
2419 		 * This is either a dentry or xentry, which should be sorted in
2420 		 * ascending (parent ino, hash) order.
2421 		 */
2422 		inuma = key_inum(c, &sa->key);
2423 		inumb = key_inum(c, &sb->key);
2424 
2425 		if (inuma < inumb)
2426 			continue;
2427 		if (inuma > inumb) {
2428 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2429 				  (unsigned long)inuma, (unsigned long)inumb);
2430 			goto error_dump;
2431 		}
2432 
2433 		hasha = key_block(c, &sa->key);
2434 		hashb = key_block(c, &sb->key);
2435 
2436 		if (hasha > hashb) {
2437 			ubifs_err(c, "larger hash %u goes before %u",
2438 				  hasha, hashb);
2439 			goto error_dump;
2440 		}
2441 	}
2442 
2443 	return 0;
2444 
2445 error_dump:
2446 	ubifs_msg(c, "dumping first node");
2447 	ubifs_dump_node(c, sa->node);
2448 	ubifs_msg(c, "dumping second node");
2449 	ubifs_dump_node(c, sb->node);
2450 	return -EINVAL;
2451 	return 0;
2452 }
2453 
2454 static inline int chance(unsigned int n, unsigned int out_of)
2455 {
2456 	return !!((prandom_u32() % out_of) + 1 <= n);
2457 
2458 }
2459 
2460 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2461 {
2462 	struct ubifs_debug_info *d = c->dbg;
2463 
2464 	ubifs_assert(dbg_is_tst_rcvry(c));
2465 
2466 	if (!d->pc_cnt) {
2467 		/* First call - decide delay to the power cut */
2468 		if (chance(1, 2)) {
2469 			unsigned long delay;
2470 
2471 			if (chance(1, 2)) {
2472 				d->pc_delay = 1;
2473 				/* Fail within 1 minute */
2474 				delay = prandom_u32() % 60000;
2475 				d->pc_timeout = jiffies;
2476 				d->pc_timeout += msecs_to_jiffies(delay);
2477 				ubifs_warn(c, "failing after %lums", delay);
2478 			} else {
2479 				d->pc_delay = 2;
2480 				delay = prandom_u32() % 10000;
2481 				/* Fail within 10000 operations */
2482 				d->pc_cnt_max = delay;
2483 				ubifs_warn(c, "failing after %lu calls", delay);
2484 			}
2485 		}
2486 
2487 		d->pc_cnt += 1;
2488 	}
2489 
2490 	/* Determine if failure delay has expired */
2491 	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2492 			return 0;
2493 	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2494 			return 0;
2495 
2496 	if (lnum == UBIFS_SB_LNUM) {
2497 		if (write && chance(1, 2))
2498 			return 0;
2499 		if (chance(19, 20))
2500 			return 0;
2501 		ubifs_warn(c, "failing in super block LEB %d", lnum);
2502 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2503 		if (chance(19, 20))
2504 			return 0;
2505 		ubifs_warn(c, "failing in master LEB %d", lnum);
2506 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2507 		if (write && chance(99, 100))
2508 			return 0;
2509 		if (chance(399, 400))
2510 			return 0;
2511 		ubifs_warn(c, "failing in log LEB %d", lnum);
2512 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2513 		if (write && chance(7, 8))
2514 			return 0;
2515 		if (chance(19, 20))
2516 			return 0;
2517 		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2518 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2519 		if (write && chance(1, 2))
2520 			return 0;
2521 		if (chance(9, 10))
2522 			return 0;
2523 		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2524 	} else if (lnum == c->ihead_lnum) {
2525 		if (chance(99, 100))
2526 			return 0;
2527 		ubifs_warn(c, "failing in index head LEB %d", lnum);
2528 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2529 		if (chance(9, 10))
2530 			return 0;
2531 		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2532 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2533 		   !ubifs_search_bud(c, lnum)) {
2534 		if (chance(19, 20))
2535 			return 0;
2536 		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2537 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2538 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2539 		if (chance(999, 1000))
2540 			return 0;
2541 		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2542 	} else {
2543 		if (chance(9999, 10000))
2544 			return 0;
2545 		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2546 	}
2547 
2548 	d->pc_happened = 1;
2549 	ubifs_warn(c, "========== Power cut emulated ==========");
2550 	dump_stack();
2551 	return 1;
2552 }
2553 
2554 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2555 			unsigned int len)
2556 {
2557 	unsigned int from, to, ffs = chance(1, 2);
2558 	unsigned char *p = (void *)buf;
2559 
2560 	from = prandom_u32() % len;
2561 	/* Corruption span max to end of write unit */
2562 	to = min(len, ALIGN(from + 1, c->max_write_size));
2563 
2564 	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2565 		   ffs ? "0xFFs" : "random data");
2566 
2567 	if (ffs)
2568 		memset(p + from, 0xFF, to - from);
2569 	else
2570 		prandom_bytes(p + from, to - from);
2571 
2572 	return to;
2573 }
2574 
2575 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2576 		  int offs, int len)
2577 {
2578 	int err, failing;
2579 
2580 	if (dbg_is_power_cut(c))
2581 		return -EROFS;
2582 
2583 	failing = power_cut_emulated(c, lnum, 1);
2584 	if (failing) {
2585 		len = corrupt_data(c, buf, len);
2586 		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2587 			   len, lnum, offs);
2588 	}
2589 	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2590 	if (err)
2591 		return err;
2592 	if (failing)
2593 		return -EROFS;
2594 	return 0;
2595 }
2596 
2597 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2598 		   int len)
2599 {
2600 	int err;
2601 
2602 	if (dbg_is_power_cut(c))
2603 		return -EROFS;
2604 	if (power_cut_emulated(c, lnum, 1))
2605 		return -EROFS;
2606 	err = ubi_leb_change(c->ubi, lnum, buf, len);
2607 	if (err)
2608 		return err;
2609 	if (power_cut_emulated(c, lnum, 1))
2610 		return -EROFS;
2611 	return 0;
2612 }
2613 
2614 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2615 {
2616 	int err;
2617 
2618 	if (dbg_is_power_cut(c))
2619 		return -EROFS;
2620 	if (power_cut_emulated(c, lnum, 0))
2621 		return -EROFS;
2622 	err = ubi_leb_unmap(c->ubi, lnum);
2623 	if (err)
2624 		return err;
2625 	if (power_cut_emulated(c, lnum, 0))
2626 		return -EROFS;
2627 	return 0;
2628 }
2629 
2630 int dbg_leb_map(struct ubifs_info *c, int lnum)
2631 {
2632 	int err;
2633 
2634 	if (dbg_is_power_cut(c))
2635 		return -EROFS;
2636 	if (power_cut_emulated(c, lnum, 0))
2637 		return -EROFS;
2638 	err = ubi_leb_map(c->ubi, lnum);
2639 	if (err)
2640 		return err;
2641 	if (power_cut_emulated(c, lnum, 0))
2642 		return -EROFS;
2643 	return 0;
2644 }
2645 
2646 /*
2647  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2648  * contain the stuff specific to particular file-system mounts.
2649  */
2650 static struct dentry *dfs_rootdir;
2651 
2652 static int dfs_file_open(struct inode *inode, struct file *file)
2653 {
2654 	file->private_data = inode->i_private;
2655 	return nonseekable_open(inode, file);
2656 }
2657 
2658 /**
2659  * provide_user_output - provide output to the user reading a debugfs file.
2660  * @val: boolean value for the answer
2661  * @u: the buffer to store the answer at
2662  * @count: size of the buffer
2663  * @ppos: position in the @u output buffer
2664  *
2665  * This is a simple helper function which stores @val boolean value in the user
2666  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2667  * bytes written to @u in case of success and a negative error code in case of
2668  * failure.
2669  */
2670 static int provide_user_output(int val, char __user *u, size_t count,
2671 			       loff_t *ppos)
2672 {
2673 	char buf[3];
2674 
2675 	if (val)
2676 		buf[0] = '1';
2677 	else
2678 		buf[0] = '0';
2679 	buf[1] = '\n';
2680 	buf[2] = 0x00;
2681 
2682 	return simple_read_from_buffer(u, count, ppos, buf, 2);
2683 }
2684 
2685 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2686 			     loff_t *ppos)
2687 {
2688 	struct dentry *dent = file->f_path.dentry;
2689 	struct ubifs_info *c = file->private_data;
2690 	struct ubifs_debug_info *d = c->dbg;
2691 	int val;
2692 
2693 	if (dent == d->dfs_chk_gen)
2694 		val = d->chk_gen;
2695 	else if (dent == d->dfs_chk_index)
2696 		val = d->chk_index;
2697 	else if (dent == d->dfs_chk_orph)
2698 		val = d->chk_orph;
2699 	else if (dent == d->dfs_chk_lprops)
2700 		val = d->chk_lprops;
2701 	else if (dent == d->dfs_chk_fs)
2702 		val = d->chk_fs;
2703 	else if (dent == d->dfs_tst_rcvry)
2704 		val = d->tst_rcvry;
2705 	else if (dent == d->dfs_ro_error)
2706 		val = c->ro_error;
2707 	else
2708 		return -EINVAL;
2709 
2710 	return provide_user_output(val, u, count, ppos);
2711 }
2712 
2713 /**
2714  * interpret_user_input - interpret user debugfs file input.
2715  * @u: user-provided buffer with the input
2716  * @count: buffer size
2717  *
2718  * This is a helper function which interpret user input to a boolean UBIFS
2719  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2720  * in case of failure.
2721  */
2722 static int interpret_user_input(const char __user *u, size_t count)
2723 {
2724 	size_t buf_size;
2725 	char buf[8];
2726 
2727 	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2728 	if (copy_from_user(buf, u, buf_size))
2729 		return -EFAULT;
2730 
2731 	if (buf[0] == '1')
2732 		return 1;
2733 	else if (buf[0] == '0')
2734 		return 0;
2735 
2736 	return -EINVAL;
2737 }
2738 
2739 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2740 			      size_t count, loff_t *ppos)
2741 {
2742 	struct ubifs_info *c = file->private_data;
2743 	struct ubifs_debug_info *d = c->dbg;
2744 	struct dentry *dent = file->f_path.dentry;
2745 	int val;
2746 
2747 	/*
2748 	 * TODO: this is racy - the file-system might have already been
2749 	 * unmounted and we'd oops in this case. The plan is to fix it with
2750 	 * help of 'iterate_supers_type()' which we should have in v3.0: when
2751 	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2752 	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2753 	 * superblocks and fine the one with the same UUID, and take the
2754 	 * locking right.
2755 	 *
2756 	 * The other way to go suggested by Al Viro is to create a separate
2757 	 * 'ubifs-debug' file-system instead.
2758 	 */
2759 	if (file->f_path.dentry == d->dfs_dump_lprops) {
2760 		ubifs_dump_lprops(c);
2761 		return count;
2762 	}
2763 	if (file->f_path.dentry == d->dfs_dump_budg) {
2764 		ubifs_dump_budg(c, &c->bi);
2765 		return count;
2766 	}
2767 	if (file->f_path.dentry == d->dfs_dump_tnc) {
2768 		mutex_lock(&c->tnc_mutex);
2769 		ubifs_dump_tnc(c);
2770 		mutex_unlock(&c->tnc_mutex);
2771 		return count;
2772 	}
2773 
2774 	val = interpret_user_input(u, count);
2775 	if (val < 0)
2776 		return val;
2777 
2778 	if (dent == d->dfs_chk_gen)
2779 		d->chk_gen = val;
2780 	else if (dent == d->dfs_chk_index)
2781 		d->chk_index = val;
2782 	else if (dent == d->dfs_chk_orph)
2783 		d->chk_orph = val;
2784 	else if (dent == d->dfs_chk_lprops)
2785 		d->chk_lprops = val;
2786 	else if (dent == d->dfs_chk_fs)
2787 		d->chk_fs = val;
2788 	else if (dent == d->dfs_tst_rcvry)
2789 		d->tst_rcvry = val;
2790 	else if (dent == d->dfs_ro_error)
2791 		c->ro_error = !!val;
2792 	else
2793 		return -EINVAL;
2794 
2795 	return count;
2796 }
2797 
2798 static const struct file_operations dfs_fops = {
2799 	.open = dfs_file_open,
2800 	.read = dfs_file_read,
2801 	.write = dfs_file_write,
2802 	.owner = THIS_MODULE,
2803 	.llseek = no_llseek,
2804 };
2805 
2806 /**
2807  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2808  * @c: UBIFS file-system description object
2809  *
2810  * This function creates all debugfs files for this instance of UBIFS. Returns
2811  * zero in case of success and a negative error code in case of failure.
2812  *
2813  * Note, the only reason we have not merged this function with the
2814  * 'ubifs_debugging_init()' function is because it is better to initialize
2815  * debugfs interfaces at the very end of the mount process, and remove them at
2816  * the very beginning of the mount process.
2817  */
2818 int dbg_debugfs_init_fs(struct ubifs_info *c)
2819 {
2820 	int err, n;
2821 	const char *fname;
2822 	struct dentry *dent;
2823 	struct ubifs_debug_info *d = c->dbg;
2824 
2825 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
2826 		return 0;
2827 
2828 	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2829 		     c->vi.ubi_num, c->vi.vol_id);
2830 	if (n == UBIFS_DFS_DIR_LEN) {
2831 		/* The array size is too small */
2832 		fname = UBIFS_DFS_DIR_NAME;
2833 		dent = ERR_PTR(-EINVAL);
2834 		goto out;
2835 	}
2836 
2837 	fname = d->dfs_dir_name;
2838 	dent = debugfs_create_dir(fname, dfs_rootdir);
2839 	if (IS_ERR_OR_NULL(dent))
2840 		goto out;
2841 	d->dfs_dir = dent;
2842 
2843 	fname = "dump_lprops";
2844 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2845 	if (IS_ERR_OR_NULL(dent))
2846 		goto out_remove;
2847 	d->dfs_dump_lprops = dent;
2848 
2849 	fname = "dump_budg";
2850 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2851 	if (IS_ERR_OR_NULL(dent))
2852 		goto out_remove;
2853 	d->dfs_dump_budg = dent;
2854 
2855 	fname = "dump_tnc";
2856 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2857 	if (IS_ERR_OR_NULL(dent))
2858 		goto out_remove;
2859 	d->dfs_dump_tnc = dent;
2860 
2861 	fname = "chk_general";
2862 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2863 				   &dfs_fops);
2864 	if (IS_ERR_OR_NULL(dent))
2865 		goto out_remove;
2866 	d->dfs_chk_gen = dent;
2867 
2868 	fname = "chk_index";
2869 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2870 				   &dfs_fops);
2871 	if (IS_ERR_OR_NULL(dent))
2872 		goto out_remove;
2873 	d->dfs_chk_index = dent;
2874 
2875 	fname = "chk_orphans";
2876 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2877 				   &dfs_fops);
2878 	if (IS_ERR_OR_NULL(dent))
2879 		goto out_remove;
2880 	d->dfs_chk_orph = dent;
2881 
2882 	fname = "chk_lprops";
2883 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2884 				   &dfs_fops);
2885 	if (IS_ERR_OR_NULL(dent))
2886 		goto out_remove;
2887 	d->dfs_chk_lprops = dent;
2888 
2889 	fname = "chk_fs";
2890 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2891 				   &dfs_fops);
2892 	if (IS_ERR_OR_NULL(dent))
2893 		goto out_remove;
2894 	d->dfs_chk_fs = dent;
2895 
2896 	fname = "tst_recovery";
2897 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2898 				   &dfs_fops);
2899 	if (IS_ERR_OR_NULL(dent))
2900 		goto out_remove;
2901 	d->dfs_tst_rcvry = dent;
2902 
2903 	fname = "ro_error";
2904 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2905 				   &dfs_fops);
2906 	if (IS_ERR_OR_NULL(dent))
2907 		goto out_remove;
2908 	d->dfs_ro_error = dent;
2909 
2910 	return 0;
2911 
2912 out_remove:
2913 	debugfs_remove_recursive(d->dfs_dir);
2914 out:
2915 	err = dent ? PTR_ERR(dent) : -ENODEV;
2916 	ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2917 		  fname, err);
2918 	return err;
2919 }
2920 
2921 /**
2922  * dbg_debugfs_exit_fs - remove all debugfs files.
2923  * @c: UBIFS file-system description object
2924  */
2925 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2926 {
2927 	if (IS_ENABLED(CONFIG_DEBUG_FS))
2928 		debugfs_remove_recursive(c->dbg->dfs_dir);
2929 }
2930 
2931 struct ubifs_global_debug_info ubifs_dbg;
2932 
2933 static struct dentry *dfs_chk_gen;
2934 static struct dentry *dfs_chk_index;
2935 static struct dentry *dfs_chk_orph;
2936 static struct dentry *dfs_chk_lprops;
2937 static struct dentry *dfs_chk_fs;
2938 static struct dentry *dfs_tst_rcvry;
2939 
2940 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2941 				    size_t count, loff_t *ppos)
2942 {
2943 	struct dentry *dent = file->f_path.dentry;
2944 	int val;
2945 
2946 	if (dent == dfs_chk_gen)
2947 		val = ubifs_dbg.chk_gen;
2948 	else if (dent == dfs_chk_index)
2949 		val = ubifs_dbg.chk_index;
2950 	else if (dent == dfs_chk_orph)
2951 		val = ubifs_dbg.chk_orph;
2952 	else if (dent == dfs_chk_lprops)
2953 		val = ubifs_dbg.chk_lprops;
2954 	else if (dent == dfs_chk_fs)
2955 		val = ubifs_dbg.chk_fs;
2956 	else if (dent == dfs_tst_rcvry)
2957 		val = ubifs_dbg.tst_rcvry;
2958 	else
2959 		return -EINVAL;
2960 
2961 	return provide_user_output(val, u, count, ppos);
2962 }
2963 
2964 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2965 				     size_t count, loff_t *ppos)
2966 {
2967 	struct dentry *dent = file->f_path.dentry;
2968 	int val;
2969 
2970 	val = interpret_user_input(u, count);
2971 	if (val < 0)
2972 		return val;
2973 
2974 	if (dent == dfs_chk_gen)
2975 		ubifs_dbg.chk_gen = val;
2976 	else if (dent == dfs_chk_index)
2977 		ubifs_dbg.chk_index = val;
2978 	else if (dent == dfs_chk_orph)
2979 		ubifs_dbg.chk_orph = val;
2980 	else if (dent == dfs_chk_lprops)
2981 		ubifs_dbg.chk_lprops = val;
2982 	else if (dent == dfs_chk_fs)
2983 		ubifs_dbg.chk_fs = val;
2984 	else if (dent == dfs_tst_rcvry)
2985 		ubifs_dbg.tst_rcvry = val;
2986 	else
2987 		return -EINVAL;
2988 
2989 	return count;
2990 }
2991 
2992 static const struct file_operations dfs_global_fops = {
2993 	.read = dfs_global_file_read,
2994 	.write = dfs_global_file_write,
2995 	.owner = THIS_MODULE,
2996 	.llseek = no_llseek,
2997 };
2998 
2999 /**
3000  * dbg_debugfs_init - initialize debugfs file-system.
3001  *
3002  * UBIFS uses debugfs file-system to expose various debugging knobs to
3003  * user-space. This function creates "ubifs" directory in the debugfs
3004  * file-system. Returns zero in case of success and a negative error code in
3005  * case of failure.
3006  */
3007 int dbg_debugfs_init(void)
3008 {
3009 	int err;
3010 	const char *fname;
3011 	struct dentry *dent;
3012 
3013 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
3014 		return 0;
3015 
3016 	fname = "ubifs";
3017 	dent = debugfs_create_dir(fname, NULL);
3018 	if (IS_ERR_OR_NULL(dent))
3019 		goto out;
3020 	dfs_rootdir = dent;
3021 
3022 	fname = "chk_general";
3023 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3024 				   &dfs_global_fops);
3025 	if (IS_ERR_OR_NULL(dent))
3026 		goto out_remove;
3027 	dfs_chk_gen = dent;
3028 
3029 	fname = "chk_index";
3030 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3031 				   &dfs_global_fops);
3032 	if (IS_ERR_OR_NULL(dent))
3033 		goto out_remove;
3034 	dfs_chk_index = dent;
3035 
3036 	fname = "chk_orphans";
3037 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3038 				   &dfs_global_fops);
3039 	if (IS_ERR_OR_NULL(dent))
3040 		goto out_remove;
3041 	dfs_chk_orph = dent;
3042 
3043 	fname = "chk_lprops";
3044 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3045 				   &dfs_global_fops);
3046 	if (IS_ERR_OR_NULL(dent))
3047 		goto out_remove;
3048 	dfs_chk_lprops = dent;
3049 
3050 	fname = "chk_fs";
3051 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3052 				   &dfs_global_fops);
3053 	if (IS_ERR_OR_NULL(dent))
3054 		goto out_remove;
3055 	dfs_chk_fs = dent;
3056 
3057 	fname = "tst_recovery";
3058 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3059 				   &dfs_global_fops);
3060 	if (IS_ERR_OR_NULL(dent))
3061 		goto out_remove;
3062 	dfs_tst_rcvry = dent;
3063 
3064 	return 0;
3065 
3066 out_remove:
3067 	debugfs_remove_recursive(dfs_rootdir);
3068 out:
3069 	err = dent ? PTR_ERR(dent) : -ENODEV;
3070 	pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3071 	       current->pid, fname, err);
3072 	return err;
3073 }
3074 
3075 /**
3076  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3077  */
3078 void dbg_debugfs_exit(void)
3079 {
3080 	if (IS_ENABLED(CONFIG_DEBUG_FS))
3081 		debugfs_remove_recursive(dfs_rootdir);
3082 }
3083 
3084 /**
3085  * ubifs_debugging_init - initialize UBIFS debugging.
3086  * @c: UBIFS file-system description object
3087  *
3088  * This function initializes debugging-related data for the file system.
3089  * Returns zero in case of success and a negative error code in case of
3090  * failure.
3091  */
3092 int ubifs_debugging_init(struct ubifs_info *c)
3093 {
3094 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3095 	if (!c->dbg)
3096 		return -ENOMEM;
3097 
3098 	return 0;
3099 }
3100 
3101 /**
3102  * ubifs_debugging_exit - free debugging data.
3103  * @c: UBIFS file-system description object
3104  */
3105 void ubifs_debugging_exit(struct ubifs_info *c)
3106 {
3107 	kfree(c->dbg);
3108 }
3109