xref: /openbmc/linux/fs/ubifs/debug.c (revision a09d2831)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29 
30 #define UBIFS_DBG_PRESERVE_UBI
31 
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
37 
38 #ifdef CONFIG_UBIFS_FS_DEBUG
39 
40 DEFINE_SPINLOCK(dbg_lock);
41 
42 static char dbg_key_buf0[128];
43 static char dbg_key_buf1[128];
44 
45 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
46 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
47 unsigned int ubifs_tst_flags;
48 
49 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
50 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
51 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
52 
53 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
54 MODULE_PARM_DESC(debug_chks, "Debug check flags");
55 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
56 
57 static const char *get_key_fmt(int fmt)
58 {
59 	switch (fmt) {
60 	case UBIFS_SIMPLE_KEY_FMT:
61 		return "simple";
62 	default:
63 		return "unknown/invalid format";
64 	}
65 }
66 
67 static const char *get_key_hash(int hash)
68 {
69 	switch (hash) {
70 	case UBIFS_KEY_HASH_R5:
71 		return "R5";
72 	case UBIFS_KEY_HASH_TEST:
73 		return "test";
74 	default:
75 		return "unknown/invalid name hash";
76 	}
77 }
78 
79 static const char *get_key_type(int type)
80 {
81 	switch (type) {
82 	case UBIFS_INO_KEY:
83 		return "inode";
84 	case UBIFS_DENT_KEY:
85 		return "direntry";
86 	case UBIFS_XENT_KEY:
87 		return "xentry";
88 	case UBIFS_DATA_KEY:
89 		return "data";
90 	case UBIFS_TRUN_KEY:
91 		return "truncate";
92 	default:
93 		return "unknown/invalid key";
94 	}
95 }
96 
97 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
98 			char *buffer)
99 {
100 	char *p = buffer;
101 	int type = key_type(c, key);
102 
103 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
104 		switch (type) {
105 		case UBIFS_INO_KEY:
106 			sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
107 			       get_key_type(type));
108 			break;
109 		case UBIFS_DENT_KEY:
110 		case UBIFS_XENT_KEY:
111 			sprintf(p, "(%lu, %s, %#08x)",
112 				(unsigned long)key_inum(c, key),
113 				get_key_type(type), key_hash(c, key));
114 			break;
115 		case UBIFS_DATA_KEY:
116 			sprintf(p, "(%lu, %s, %u)",
117 				(unsigned long)key_inum(c, key),
118 				get_key_type(type), key_block(c, key));
119 			break;
120 		case UBIFS_TRUN_KEY:
121 			sprintf(p, "(%lu, %s)",
122 				(unsigned long)key_inum(c, key),
123 				get_key_type(type));
124 			break;
125 		default:
126 			sprintf(p, "(bad key type: %#08x, %#08x)",
127 				key->u32[0], key->u32[1]);
128 		}
129 	} else
130 		sprintf(p, "bad key format %d", c->key_fmt);
131 }
132 
133 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
134 {
135 	/* dbg_lock must be held */
136 	sprintf_key(c, key, dbg_key_buf0);
137 	return dbg_key_buf0;
138 }
139 
140 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
141 {
142 	/* dbg_lock must be held */
143 	sprintf_key(c, key, dbg_key_buf1);
144 	return dbg_key_buf1;
145 }
146 
147 const char *dbg_ntype(int type)
148 {
149 	switch (type) {
150 	case UBIFS_PAD_NODE:
151 		return "padding node";
152 	case UBIFS_SB_NODE:
153 		return "superblock node";
154 	case UBIFS_MST_NODE:
155 		return "master node";
156 	case UBIFS_REF_NODE:
157 		return "reference node";
158 	case UBIFS_INO_NODE:
159 		return "inode node";
160 	case UBIFS_DENT_NODE:
161 		return "direntry node";
162 	case UBIFS_XENT_NODE:
163 		return "xentry node";
164 	case UBIFS_DATA_NODE:
165 		return "data node";
166 	case UBIFS_TRUN_NODE:
167 		return "truncate node";
168 	case UBIFS_IDX_NODE:
169 		return "indexing node";
170 	case UBIFS_CS_NODE:
171 		return "commit start node";
172 	case UBIFS_ORPH_NODE:
173 		return "orphan node";
174 	default:
175 		return "unknown node";
176 	}
177 }
178 
179 static const char *dbg_gtype(int type)
180 {
181 	switch (type) {
182 	case UBIFS_NO_NODE_GROUP:
183 		return "no node group";
184 	case UBIFS_IN_NODE_GROUP:
185 		return "in node group";
186 	case UBIFS_LAST_OF_NODE_GROUP:
187 		return "last of node group";
188 	default:
189 		return "unknown";
190 	}
191 }
192 
193 const char *dbg_cstate(int cmt_state)
194 {
195 	switch (cmt_state) {
196 	case COMMIT_RESTING:
197 		return "commit resting";
198 	case COMMIT_BACKGROUND:
199 		return "background commit requested";
200 	case COMMIT_REQUIRED:
201 		return "commit required";
202 	case COMMIT_RUNNING_BACKGROUND:
203 		return "BACKGROUND commit running";
204 	case COMMIT_RUNNING_REQUIRED:
205 		return "commit running and required";
206 	case COMMIT_BROKEN:
207 		return "broken commit";
208 	default:
209 		return "unknown commit state";
210 	}
211 }
212 
213 const char *dbg_jhead(int jhead)
214 {
215 	switch (jhead) {
216 	case GCHD:
217 		return "0 (GC)";
218 	case BASEHD:
219 		return "1 (base)";
220 	case DATAHD:
221 		return "2 (data)";
222 	default:
223 		return "unknown journal head";
224 	}
225 }
226 
227 static void dump_ch(const struct ubifs_ch *ch)
228 {
229 	printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
230 	printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
231 	printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
232 	       dbg_ntype(ch->node_type));
233 	printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
234 	       dbg_gtype(ch->group_type));
235 	printk(KERN_DEBUG "\tsqnum          %llu\n",
236 	       (unsigned long long)le64_to_cpu(ch->sqnum));
237 	printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
238 }
239 
240 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
241 {
242 	const struct ubifs_inode *ui = ubifs_inode(inode);
243 
244 	printk(KERN_DEBUG "Dump in-memory inode:");
245 	printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
246 	printk(KERN_DEBUG "\tsize           %llu\n",
247 	       (unsigned long long)i_size_read(inode));
248 	printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
249 	printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
250 	printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
251 	printk(KERN_DEBUG "\tatime          %u.%u\n",
252 	       (unsigned int)inode->i_atime.tv_sec,
253 	       (unsigned int)inode->i_atime.tv_nsec);
254 	printk(KERN_DEBUG "\tmtime          %u.%u\n",
255 	       (unsigned int)inode->i_mtime.tv_sec,
256 	       (unsigned int)inode->i_mtime.tv_nsec);
257 	printk(KERN_DEBUG "\tctime          %u.%u\n",
258 	       (unsigned int)inode->i_ctime.tv_sec,
259 	       (unsigned int)inode->i_ctime.tv_nsec);
260 	printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
261 	printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
262 	printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
263 	printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
264 	printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
265 	printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
266 	printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
267 	printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
268 	       (unsigned long long)ui->synced_i_size);
269 	printk(KERN_DEBUG "\tui_size        %llu\n",
270 	       (unsigned long long)ui->ui_size);
271 	printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
272 	printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
273 	printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
274 	printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
275 	printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
276 }
277 
278 void dbg_dump_node(const struct ubifs_info *c, const void *node)
279 {
280 	int i, n;
281 	union ubifs_key key;
282 	const struct ubifs_ch *ch = node;
283 
284 	if (dbg_failure_mode)
285 		return;
286 
287 	/* If the magic is incorrect, just hexdump the first bytes */
288 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
289 		printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
290 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
291 			       (void *)node, UBIFS_CH_SZ, 1);
292 		return;
293 	}
294 
295 	spin_lock(&dbg_lock);
296 	dump_ch(node);
297 
298 	switch (ch->node_type) {
299 	case UBIFS_PAD_NODE:
300 	{
301 		const struct ubifs_pad_node *pad = node;
302 
303 		printk(KERN_DEBUG "\tpad_len        %u\n",
304 		       le32_to_cpu(pad->pad_len));
305 		break;
306 	}
307 	case UBIFS_SB_NODE:
308 	{
309 		const struct ubifs_sb_node *sup = node;
310 		unsigned int sup_flags = le32_to_cpu(sup->flags);
311 
312 		printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
313 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
314 		printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
315 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
316 		printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
317 		printk(KERN_DEBUG "\t  big_lpt      %u\n",
318 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
319 		printk(KERN_DEBUG "\tmin_io_size    %u\n",
320 		       le32_to_cpu(sup->min_io_size));
321 		printk(KERN_DEBUG "\tleb_size       %u\n",
322 		       le32_to_cpu(sup->leb_size));
323 		printk(KERN_DEBUG "\tleb_cnt        %u\n",
324 		       le32_to_cpu(sup->leb_cnt));
325 		printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
326 		       le32_to_cpu(sup->max_leb_cnt));
327 		printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
328 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
329 		printk(KERN_DEBUG "\tlog_lebs       %u\n",
330 		       le32_to_cpu(sup->log_lebs));
331 		printk(KERN_DEBUG "\tlpt_lebs       %u\n",
332 		       le32_to_cpu(sup->lpt_lebs));
333 		printk(KERN_DEBUG "\torph_lebs      %u\n",
334 		       le32_to_cpu(sup->orph_lebs));
335 		printk(KERN_DEBUG "\tjhead_cnt      %u\n",
336 		       le32_to_cpu(sup->jhead_cnt));
337 		printk(KERN_DEBUG "\tfanout         %u\n",
338 		       le32_to_cpu(sup->fanout));
339 		printk(KERN_DEBUG "\tlsave_cnt      %u\n",
340 		       le32_to_cpu(sup->lsave_cnt));
341 		printk(KERN_DEBUG "\tdefault_compr  %u\n",
342 		       (int)le16_to_cpu(sup->default_compr));
343 		printk(KERN_DEBUG "\trp_size        %llu\n",
344 		       (unsigned long long)le64_to_cpu(sup->rp_size));
345 		printk(KERN_DEBUG "\trp_uid         %u\n",
346 		       le32_to_cpu(sup->rp_uid));
347 		printk(KERN_DEBUG "\trp_gid         %u\n",
348 		       le32_to_cpu(sup->rp_gid));
349 		printk(KERN_DEBUG "\tfmt_version    %u\n",
350 		       le32_to_cpu(sup->fmt_version));
351 		printk(KERN_DEBUG "\ttime_gran      %u\n",
352 		       le32_to_cpu(sup->time_gran));
353 		printk(KERN_DEBUG "\tUUID           %pUB\n",
354 		       sup->uuid);
355 		break;
356 	}
357 	case UBIFS_MST_NODE:
358 	{
359 		const struct ubifs_mst_node *mst = node;
360 
361 		printk(KERN_DEBUG "\thighest_inum   %llu\n",
362 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
363 		printk(KERN_DEBUG "\tcommit number  %llu\n",
364 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
365 		printk(KERN_DEBUG "\tflags          %#x\n",
366 		       le32_to_cpu(mst->flags));
367 		printk(KERN_DEBUG "\tlog_lnum       %u\n",
368 		       le32_to_cpu(mst->log_lnum));
369 		printk(KERN_DEBUG "\troot_lnum      %u\n",
370 		       le32_to_cpu(mst->root_lnum));
371 		printk(KERN_DEBUG "\troot_offs      %u\n",
372 		       le32_to_cpu(mst->root_offs));
373 		printk(KERN_DEBUG "\troot_len       %u\n",
374 		       le32_to_cpu(mst->root_len));
375 		printk(KERN_DEBUG "\tgc_lnum        %u\n",
376 		       le32_to_cpu(mst->gc_lnum));
377 		printk(KERN_DEBUG "\tihead_lnum     %u\n",
378 		       le32_to_cpu(mst->ihead_lnum));
379 		printk(KERN_DEBUG "\tihead_offs     %u\n",
380 		       le32_to_cpu(mst->ihead_offs));
381 		printk(KERN_DEBUG "\tindex_size     %llu\n",
382 		       (unsigned long long)le64_to_cpu(mst->index_size));
383 		printk(KERN_DEBUG "\tlpt_lnum       %u\n",
384 		       le32_to_cpu(mst->lpt_lnum));
385 		printk(KERN_DEBUG "\tlpt_offs       %u\n",
386 		       le32_to_cpu(mst->lpt_offs));
387 		printk(KERN_DEBUG "\tnhead_lnum     %u\n",
388 		       le32_to_cpu(mst->nhead_lnum));
389 		printk(KERN_DEBUG "\tnhead_offs     %u\n",
390 		       le32_to_cpu(mst->nhead_offs));
391 		printk(KERN_DEBUG "\tltab_lnum      %u\n",
392 		       le32_to_cpu(mst->ltab_lnum));
393 		printk(KERN_DEBUG "\tltab_offs      %u\n",
394 		       le32_to_cpu(mst->ltab_offs));
395 		printk(KERN_DEBUG "\tlsave_lnum     %u\n",
396 		       le32_to_cpu(mst->lsave_lnum));
397 		printk(KERN_DEBUG "\tlsave_offs     %u\n",
398 		       le32_to_cpu(mst->lsave_offs));
399 		printk(KERN_DEBUG "\tlscan_lnum     %u\n",
400 		       le32_to_cpu(mst->lscan_lnum));
401 		printk(KERN_DEBUG "\tleb_cnt        %u\n",
402 		       le32_to_cpu(mst->leb_cnt));
403 		printk(KERN_DEBUG "\tempty_lebs     %u\n",
404 		       le32_to_cpu(mst->empty_lebs));
405 		printk(KERN_DEBUG "\tidx_lebs       %u\n",
406 		       le32_to_cpu(mst->idx_lebs));
407 		printk(KERN_DEBUG "\ttotal_free     %llu\n",
408 		       (unsigned long long)le64_to_cpu(mst->total_free));
409 		printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
410 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
411 		printk(KERN_DEBUG "\ttotal_used     %llu\n",
412 		       (unsigned long long)le64_to_cpu(mst->total_used));
413 		printk(KERN_DEBUG "\ttotal_dead     %llu\n",
414 		       (unsigned long long)le64_to_cpu(mst->total_dead));
415 		printk(KERN_DEBUG "\ttotal_dark     %llu\n",
416 		       (unsigned long long)le64_to_cpu(mst->total_dark));
417 		break;
418 	}
419 	case UBIFS_REF_NODE:
420 	{
421 		const struct ubifs_ref_node *ref = node;
422 
423 		printk(KERN_DEBUG "\tlnum           %u\n",
424 		       le32_to_cpu(ref->lnum));
425 		printk(KERN_DEBUG "\toffs           %u\n",
426 		       le32_to_cpu(ref->offs));
427 		printk(KERN_DEBUG "\tjhead          %u\n",
428 		       le32_to_cpu(ref->jhead));
429 		break;
430 	}
431 	case UBIFS_INO_NODE:
432 	{
433 		const struct ubifs_ino_node *ino = node;
434 
435 		key_read(c, &ino->key, &key);
436 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
437 		printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
438 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
439 		printk(KERN_DEBUG "\tsize           %llu\n",
440 		       (unsigned long long)le64_to_cpu(ino->size));
441 		printk(KERN_DEBUG "\tnlink          %u\n",
442 		       le32_to_cpu(ino->nlink));
443 		printk(KERN_DEBUG "\tatime          %lld.%u\n",
444 		       (long long)le64_to_cpu(ino->atime_sec),
445 		       le32_to_cpu(ino->atime_nsec));
446 		printk(KERN_DEBUG "\tmtime          %lld.%u\n",
447 		       (long long)le64_to_cpu(ino->mtime_sec),
448 		       le32_to_cpu(ino->mtime_nsec));
449 		printk(KERN_DEBUG "\tctime          %lld.%u\n",
450 		       (long long)le64_to_cpu(ino->ctime_sec),
451 		       le32_to_cpu(ino->ctime_nsec));
452 		printk(KERN_DEBUG "\tuid            %u\n",
453 		       le32_to_cpu(ino->uid));
454 		printk(KERN_DEBUG "\tgid            %u\n",
455 		       le32_to_cpu(ino->gid));
456 		printk(KERN_DEBUG "\tmode           %u\n",
457 		       le32_to_cpu(ino->mode));
458 		printk(KERN_DEBUG "\tflags          %#x\n",
459 		       le32_to_cpu(ino->flags));
460 		printk(KERN_DEBUG "\txattr_cnt      %u\n",
461 		       le32_to_cpu(ino->xattr_cnt));
462 		printk(KERN_DEBUG "\txattr_size     %u\n",
463 		       le32_to_cpu(ino->xattr_size));
464 		printk(KERN_DEBUG "\txattr_names    %u\n",
465 		       le32_to_cpu(ino->xattr_names));
466 		printk(KERN_DEBUG "\tcompr_type     %#x\n",
467 		       (int)le16_to_cpu(ino->compr_type));
468 		printk(KERN_DEBUG "\tdata len       %u\n",
469 		       le32_to_cpu(ino->data_len));
470 		break;
471 	}
472 	case UBIFS_DENT_NODE:
473 	case UBIFS_XENT_NODE:
474 	{
475 		const struct ubifs_dent_node *dent = node;
476 		int nlen = le16_to_cpu(dent->nlen);
477 
478 		key_read(c, &dent->key, &key);
479 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
480 		printk(KERN_DEBUG "\tinum           %llu\n",
481 		       (unsigned long long)le64_to_cpu(dent->inum));
482 		printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
483 		printk(KERN_DEBUG "\tnlen           %d\n", nlen);
484 		printk(KERN_DEBUG "\tname           ");
485 
486 		if (nlen > UBIFS_MAX_NLEN)
487 			printk(KERN_DEBUG "(bad name length, not printing, "
488 					  "bad or corrupted node)");
489 		else {
490 			for (i = 0; i < nlen && dent->name[i]; i++)
491 				printk(KERN_CONT "%c", dent->name[i]);
492 		}
493 		printk(KERN_CONT "\n");
494 
495 		break;
496 	}
497 	case UBIFS_DATA_NODE:
498 	{
499 		const struct ubifs_data_node *dn = node;
500 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
501 
502 		key_read(c, &dn->key, &key);
503 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
504 		printk(KERN_DEBUG "\tsize           %u\n",
505 		       le32_to_cpu(dn->size));
506 		printk(KERN_DEBUG "\tcompr_typ      %d\n",
507 		       (int)le16_to_cpu(dn->compr_type));
508 		printk(KERN_DEBUG "\tdata size      %d\n",
509 		       dlen);
510 		printk(KERN_DEBUG "\tdata:\n");
511 		print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
512 			       (void *)&dn->data, dlen, 0);
513 		break;
514 	}
515 	case UBIFS_TRUN_NODE:
516 	{
517 		const struct ubifs_trun_node *trun = node;
518 
519 		printk(KERN_DEBUG "\tinum           %u\n",
520 		       le32_to_cpu(trun->inum));
521 		printk(KERN_DEBUG "\told_size       %llu\n",
522 		       (unsigned long long)le64_to_cpu(trun->old_size));
523 		printk(KERN_DEBUG "\tnew_size       %llu\n",
524 		       (unsigned long long)le64_to_cpu(trun->new_size));
525 		break;
526 	}
527 	case UBIFS_IDX_NODE:
528 	{
529 		const struct ubifs_idx_node *idx = node;
530 
531 		n = le16_to_cpu(idx->child_cnt);
532 		printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
533 		printk(KERN_DEBUG "\tlevel          %d\n",
534 		       (int)le16_to_cpu(idx->level));
535 		printk(KERN_DEBUG "\tBranches:\n");
536 
537 		for (i = 0; i < n && i < c->fanout - 1; i++) {
538 			const struct ubifs_branch *br;
539 
540 			br = ubifs_idx_branch(c, idx, i);
541 			key_read(c, &br->key, &key);
542 			printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
543 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
544 			       le32_to_cpu(br->len), DBGKEY(&key));
545 		}
546 		break;
547 	}
548 	case UBIFS_CS_NODE:
549 		break;
550 	case UBIFS_ORPH_NODE:
551 	{
552 		const struct ubifs_orph_node *orph = node;
553 
554 		printk(KERN_DEBUG "\tcommit number  %llu\n",
555 		       (unsigned long long)
556 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
557 		printk(KERN_DEBUG "\tlast node flag %llu\n",
558 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
559 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
560 		printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
561 		for (i = 0; i < n; i++)
562 			printk(KERN_DEBUG "\t  ino %llu\n",
563 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
564 		break;
565 	}
566 	default:
567 		printk(KERN_DEBUG "node type %d was not recognized\n",
568 		       (int)ch->node_type);
569 	}
570 	spin_unlock(&dbg_lock);
571 }
572 
573 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
574 {
575 	spin_lock(&dbg_lock);
576 	printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
577 	       req->new_ino, req->dirtied_ino);
578 	printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
579 	       req->new_ino_d, req->dirtied_ino_d);
580 	printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
581 	       req->new_page, req->dirtied_page);
582 	printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
583 	       req->new_dent, req->mod_dent);
584 	printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
585 	printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
586 	       req->data_growth, req->dd_growth);
587 	spin_unlock(&dbg_lock);
588 }
589 
590 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
591 {
592 	spin_lock(&dbg_lock);
593 	printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
594 	       "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
595 	printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
596 	       "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
597 	       lst->total_dirty);
598 	printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
599 	       "total_dead %lld\n", lst->total_used, lst->total_dark,
600 	       lst->total_dead);
601 	spin_unlock(&dbg_lock);
602 }
603 
604 void dbg_dump_budg(struct ubifs_info *c)
605 {
606 	int i;
607 	struct rb_node *rb;
608 	struct ubifs_bud *bud;
609 	struct ubifs_gced_idx_leb *idx_gc;
610 	long long available, outstanding, free;
611 
612 	ubifs_assert(spin_is_locked(&c->space_lock));
613 	spin_lock(&dbg_lock);
614 	printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
615 	       "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
616 	       c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
617 	printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
618 	       "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
619 	       c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
620 	       c->freeable_cnt);
621 	printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
622 	       "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
623 	       c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
624 	printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
625 	       "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
626 	       atomic_long_read(&c->dirty_zn_cnt),
627 	       atomic_long_read(&c->clean_zn_cnt));
628 	printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
629 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
630 	printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
631 	       c->gc_lnum, c->ihead_lnum);
632 	/* If we are in R/O mode, journal heads do not exist */
633 	if (c->jheads)
634 		for (i = 0; i < c->jhead_cnt; i++)
635 			printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
636 			       dbg_jhead(c->jheads[i].wbuf.jhead),
637 			       c->jheads[i].wbuf.lnum);
638 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
639 		bud = rb_entry(rb, struct ubifs_bud, rb);
640 		printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
641 	}
642 	list_for_each_entry(bud, &c->old_buds, list)
643 		printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
644 	list_for_each_entry(idx_gc, &c->idx_gc, list)
645 		printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
646 		       idx_gc->lnum, idx_gc->unmap);
647 	printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
648 
649 	/* Print budgeting predictions */
650 	available = ubifs_calc_available(c, c->min_idx_lebs);
651 	outstanding = c->budg_data_growth + c->budg_dd_growth;
652 	free = ubifs_get_free_space_nolock(c);
653 	printk(KERN_DEBUG "Budgeting predictions:\n");
654 	printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
655 	       available, outstanding, free);
656 	spin_unlock(&dbg_lock);
657 }
658 
659 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
660 {
661 	int i, spc, dark = 0, dead = 0;
662 	struct rb_node *rb;
663 	struct ubifs_bud *bud;
664 
665 	spc = lp->free + lp->dirty;
666 	if (spc < c->dead_wm)
667 		dead = spc;
668 	else
669 		dark = ubifs_calc_dark(c, spc);
670 
671 	if (lp->flags & LPROPS_INDEX)
672 		printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
673 		       "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
674 		       lp->dirty, c->leb_size - spc, spc, lp->flags);
675 	else
676 		printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
677 		       "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
678 		       "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
679 		       c->leb_size - spc, spc, dark, dead,
680 		       (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
681 
682 	if (lp->flags & LPROPS_TAKEN) {
683 		if (lp->flags & LPROPS_INDEX)
684 			printk(KERN_CONT "index, taken");
685 		else
686 			printk(KERN_CONT "taken");
687 	} else {
688 		const char *s;
689 
690 		if (lp->flags & LPROPS_INDEX) {
691 			switch (lp->flags & LPROPS_CAT_MASK) {
692 			case LPROPS_DIRTY_IDX:
693 				s = "dirty index";
694 				break;
695 			case LPROPS_FRDI_IDX:
696 				s = "freeable index";
697 				break;
698 			default:
699 				s = "index";
700 			}
701 		} else {
702 			switch (lp->flags & LPROPS_CAT_MASK) {
703 			case LPROPS_UNCAT:
704 				s = "not categorized";
705 				break;
706 			case LPROPS_DIRTY:
707 				s = "dirty";
708 				break;
709 			case LPROPS_FREE:
710 				s = "free";
711 				break;
712 			case LPROPS_EMPTY:
713 				s = "empty";
714 				break;
715 			case LPROPS_FREEABLE:
716 				s = "freeable";
717 				break;
718 			default:
719 				s = NULL;
720 				break;
721 			}
722 		}
723 		printk(KERN_CONT "%s", s);
724 	}
725 
726 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
727 		bud = rb_entry(rb, struct ubifs_bud, rb);
728 		if (bud->lnum == lp->lnum) {
729 			int head = 0;
730 			for (i = 0; i < c->jhead_cnt; i++) {
731 				if (lp->lnum == c->jheads[i].wbuf.lnum) {
732 					printk(KERN_CONT ", jhead %s",
733 					       dbg_jhead(i));
734 					head = 1;
735 				}
736 			}
737 			if (!head)
738 				printk(KERN_CONT ", bud of jhead %s",
739 				       dbg_jhead(bud->jhead));
740 		}
741 	}
742 	if (lp->lnum == c->gc_lnum)
743 		printk(KERN_CONT ", GC LEB");
744 	printk(KERN_CONT ")\n");
745 }
746 
747 void dbg_dump_lprops(struct ubifs_info *c)
748 {
749 	int lnum, err;
750 	struct ubifs_lprops lp;
751 	struct ubifs_lp_stats lst;
752 
753 	printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
754 	       current->pid);
755 	ubifs_get_lp_stats(c, &lst);
756 	dbg_dump_lstats(&lst);
757 
758 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
759 		err = ubifs_read_one_lp(c, lnum, &lp);
760 		if (err)
761 			ubifs_err("cannot read lprops for LEB %d", lnum);
762 
763 		dbg_dump_lprop(c, &lp);
764 	}
765 	printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
766 	       current->pid);
767 }
768 
769 void dbg_dump_lpt_info(struct ubifs_info *c)
770 {
771 	int i;
772 
773 	spin_lock(&dbg_lock);
774 	printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
775 	printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
776 	printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
777 	printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
778 	printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
779 	printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
780 	printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
781 	printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
782 	printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
783 	printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
784 	printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
785 	printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
786 	printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
787 	printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
788 	printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
789 	printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
790 	printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
791 	printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
792 	printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
793 	printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
794 	printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
795 	       c->nhead_lnum, c->nhead_offs);
796 	printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
797 	       c->ltab_lnum, c->ltab_offs);
798 	if (c->big_lpt)
799 		printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
800 		       c->lsave_lnum, c->lsave_offs);
801 	for (i = 0; i < c->lpt_lebs; i++)
802 		printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
803 		       "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
804 		       c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
805 	spin_unlock(&dbg_lock);
806 }
807 
808 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
809 {
810 	struct ubifs_scan_leb *sleb;
811 	struct ubifs_scan_node *snod;
812 
813 	if (dbg_failure_mode)
814 		return;
815 
816 	printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
817 	       current->pid, lnum);
818 	sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
819 	if (IS_ERR(sleb)) {
820 		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
821 		return;
822 	}
823 
824 	printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
825 	       sleb->nodes_cnt, sleb->endpt);
826 
827 	list_for_each_entry(snod, &sleb->nodes, list) {
828 		cond_resched();
829 		printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
830 		       snod->offs, snod->len);
831 		dbg_dump_node(c, snod->node);
832 	}
833 
834 	printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
835 	       current->pid, lnum);
836 	ubifs_scan_destroy(sleb);
837 	return;
838 }
839 
840 void dbg_dump_znode(const struct ubifs_info *c,
841 		    const struct ubifs_znode *znode)
842 {
843 	int n;
844 	const struct ubifs_zbranch *zbr;
845 
846 	spin_lock(&dbg_lock);
847 	if (znode->parent)
848 		zbr = &znode->parent->zbranch[znode->iip];
849 	else
850 		zbr = &c->zroot;
851 
852 	printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
853 	       " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
854 	       zbr->len, znode->parent, znode->iip, znode->level,
855 	       znode->child_cnt, znode->flags);
856 
857 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
858 		spin_unlock(&dbg_lock);
859 		return;
860 	}
861 
862 	printk(KERN_DEBUG "zbranches:\n");
863 	for (n = 0; n < znode->child_cnt; n++) {
864 		zbr = &znode->zbranch[n];
865 		if (znode->level > 0)
866 			printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
867 					  "%s\n", n, zbr->znode, zbr->lnum,
868 					  zbr->offs, zbr->len,
869 					  DBGKEY(&zbr->key));
870 		else
871 			printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
872 					  "%s\n", n, zbr->znode, zbr->lnum,
873 					  zbr->offs, zbr->len,
874 					  DBGKEY(&zbr->key));
875 	}
876 	spin_unlock(&dbg_lock);
877 }
878 
879 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
880 {
881 	int i;
882 
883 	printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
884 	       current->pid, cat, heap->cnt);
885 	for (i = 0; i < heap->cnt; i++) {
886 		struct ubifs_lprops *lprops = heap->arr[i];
887 
888 		printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
889 		       "flags %d\n", i, lprops->lnum, lprops->hpos,
890 		       lprops->free, lprops->dirty, lprops->flags);
891 	}
892 	printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
893 }
894 
895 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
896 		    struct ubifs_nnode *parent, int iip)
897 {
898 	int i;
899 
900 	printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
901 	printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
902 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
903 	printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
904 	       pnode->flags, iip, pnode->level, pnode->num);
905 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
906 		struct ubifs_lprops *lp = &pnode->lprops[i];
907 
908 		printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
909 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
910 	}
911 }
912 
913 void dbg_dump_tnc(struct ubifs_info *c)
914 {
915 	struct ubifs_znode *znode;
916 	int level;
917 
918 	printk(KERN_DEBUG "\n");
919 	printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
920 	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
921 	level = znode->level;
922 	printk(KERN_DEBUG "== Level %d ==\n", level);
923 	while (znode) {
924 		if (level != znode->level) {
925 			level = znode->level;
926 			printk(KERN_DEBUG "== Level %d ==\n", level);
927 		}
928 		dbg_dump_znode(c, znode);
929 		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
930 	}
931 	printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
932 }
933 
934 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
935 		      void *priv)
936 {
937 	dbg_dump_znode(c, znode);
938 	return 0;
939 }
940 
941 /**
942  * dbg_dump_index - dump the on-flash index.
943  * @c: UBIFS file-system description object
944  *
945  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
946  * which dumps only in-memory znodes and does not read znodes which from flash.
947  */
948 void dbg_dump_index(struct ubifs_info *c)
949 {
950 	dbg_walk_index(c, NULL, dump_znode, NULL);
951 }
952 
953 /**
954  * dbg_save_space_info - save information about flash space.
955  * @c: UBIFS file-system description object
956  *
957  * This function saves information about UBIFS free space, dirty space, etc, in
958  * order to check it later.
959  */
960 void dbg_save_space_info(struct ubifs_info *c)
961 {
962 	struct ubifs_debug_info *d = c->dbg;
963 
964 	ubifs_get_lp_stats(c, &d->saved_lst);
965 
966 	spin_lock(&c->space_lock);
967 	d->saved_free = ubifs_get_free_space_nolock(c);
968 	spin_unlock(&c->space_lock);
969 }
970 
971 /**
972  * dbg_check_space_info - check flash space information.
973  * @c: UBIFS file-system description object
974  *
975  * This function compares current flash space information with the information
976  * which was saved when the 'dbg_save_space_info()' function was called.
977  * Returns zero if the information has not changed, and %-EINVAL it it has
978  * changed.
979  */
980 int dbg_check_space_info(struct ubifs_info *c)
981 {
982 	struct ubifs_debug_info *d = c->dbg;
983 	struct ubifs_lp_stats lst;
984 	long long avail, free;
985 
986 	spin_lock(&c->space_lock);
987 	avail = ubifs_calc_available(c, c->min_idx_lebs);
988 	spin_unlock(&c->space_lock);
989 	free = ubifs_get_free_space(c);
990 
991 	if (free != d->saved_free) {
992 		ubifs_err("free space changed from %lld to %lld",
993 			  d->saved_free, free);
994 		goto out;
995 	}
996 
997 	return 0;
998 
999 out:
1000 	ubifs_msg("saved lprops statistics dump");
1001 	dbg_dump_lstats(&d->saved_lst);
1002 	ubifs_get_lp_stats(c, &lst);
1003 
1004 	ubifs_msg("current lprops statistics dump");
1005 	dbg_dump_lstats(&lst);
1006 
1007 	spin_lock(&c->space_lock);
1008 	dbg_dump_budg(c);
1009 	spin_unlock(&c->space_lock);
1010 	dump_stack();
1011 	return -EINVAL;
1012 }
1013 
1014 /**
1015  * dbg_check_synced_i_size - check synchronized inode size.
1016  * @inode: inode to check
1017  *
1018  * If inode is clean, synchronized inode size has to be equivalent to current
1019  * inode size. This function has to be called only for locked inodes (@i_mutex
1020  * has to be locked). Returns %0 if synchronized inode size if correct, and
1021  * %-EINVAL if not.
1022  */
1023 int dbg_check_synced_i_size(struct inode *inode)
1024 {
1025 	int err = 0;
1026 	struct ubifs_inode *ui = ubifs_inode(inode);
1027 
1028 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1029 		return 0;
1030 	if (!S_ISREG(inode->i_mode))
1031 		return 0;
1032 
1033 	mutex_lock(&ui->ui_mutex);
1034 	spin_lock(&ui->ui_lock);
1035 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1036 		ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1037 			  "is clean", ui->ui_size, ui->synced_i_size);
1038 		ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1039 			  inode->i_mode, i_size_read(inode));
1040 		dbg_dump_stack();
1041 		err = -EINVAL;
1042 	}
1043 	spin_unlock(&ui->ui_lock);
1044 	mutex_unlock(&ui->ui_mutex);
1045 	return err;
1046 }
1047 
1048 /*
1049  * dbg_check_dir - check directory inode size and link count.
1050  * @c: UBIFS file-system description object
1051  * @dir: the directory to calculate size for
1052  * @size: the result is returned here
1053  *
1054  * This function makes sure that directory size and link count are correct.
1055  * Returns zero in case of success and a negative error code in case of
1056  * failure.
1057  *
1058  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1059  * calling this function.
1060  */
1061 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
1062 {
1063 	unsigned int nlink = 2;
1064 	union ubifs_key key;
1065 	struct ubifs_dent_node *dent, *pdent = NULL;
1066 	struct qstr nm = { .name = NULL };
1067 	loff_t size = UBIFS_INO_NODE_SZ;
1068 
1069 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1070 		return 0;
1071 
1072 	if (!S_ISDIR(dir->i_mode))
1073 		return 0;
1074 
1075 	lowest_dent_key(c, &key, dir->i_ino);
1076 	while (1) {
1077 		int err;
1078 
1079 		dent = ubifs_tnc_next_ent(c, &key, &nm);
1080 		if (IS_ERR(dent)) {
1081 			err = PTR_ERR(dent);
1082 			if (err == -ENOENT)
1083 				break;
1084 			return err;
1085 		}
1086 
1087 		nm.name = dent->name;
1088 		nm.len = le16_to_cpu(dent->nlen);
1089 		size += CALC_DENT_SIZE(nm.len);
1090 		if (dent->type == UBIFS_ITYPE_DIR)
1091 			nlink += 1;
1092 		kfree(pdent);
1093 		pdent = dent;
1094 		key_read(c, &dent->key, &key);
1095 	}
1096 	kfree(pdent);
1097 
1098 	if (i_size_read(dir) != size) {
1099 		ubifs_err("directory inode %lu has size %llu, "
1100 			  "but calculated size is %llu", dir->i_ino,
1101 			  (unsigned long long)i_size_read(dir),
1102 			  (unsigned long long)size);
1103 		dump_stack();
1104 		return -EINVAL;
1105 	}
1106 	if (dir->i_nlink != nlink) {
1107 		ubifs_err("directory inode %lu has nlink %u, but calculated "
1108 			  "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1109 		dump_stack();
1110 		return -EINVAL;
1111 	}
1112 
1113 	return 0;
1114 }
1115 
1116 /**
1117  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1118  * @c: UBIFS file-system description object
1119  * @zbr1: first zbranch
1120  * @zbr2: following zbranch
1121  *
1122  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1123  * names of the direntries/xentries which are referred by the keys. This
1124  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1125  * sure the name of direntry/xentry referred by @zbr1 is less than
1126  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1127  * and a negative error code in case of failure.
1128  */
1129 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1130 			       struct ubifs_zbranch *zbr2)
1131 {
1132 	int err, nlen1, nlen2, cmp;
1133 	struct ubifs_dent_node *dent1, *dent2;
1134 	union ubifs_key key;
1135 
1136 	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1137 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1138 	if (!dent1)
1139 		return -ENOMEM;
1140 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1141 	if (!dent2) {
1142 		err = -ENOMEM;
1143 		goto out_free;
1144 	}
1145 
1146 	err = ubifs_tnc_read_node(c, zbr1, dent1);
1147 	if (err)
1148 		goto out_free;
1149 	err = ubifs_validate_entry(c, dent1);
1150 	if (err)
1151 		goto out_free;
1152 
1153 	err = ubifs_tnc_read_node(c, zbr2, dent2);
1154 	if (err)
1155 		goto out_free;
1156 	err = ubifs_validate_entry(c, dent2);
1157 	if (err)
1158 		goto out_free;
1159 
1160 	/* Make sure node keys are the same as in zbranch */
1161 	err = 1;
1162 	key_read(c, &dent1->key, &key);
1163 	if (keys_cmp(c, &zbr1->key, &key)) {
1164 		dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1165 			zbr1->offs, DBGKEY(&key));
1166 		dbg_err("but it should have key %s according to tnc",
1167 			DBGKEY(&zbr1->key));
1168 		dbg_dump_node(c, dent1);
1169 		goto out_free;
1170 	}
1171 
1172 	key_read(c, &dent2->key, &key);
1173 	if (keys_cmp(c, &zbr2->key, &key)) {
1174 		dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1175 			zbr1->offs, DBGKEY(&key));
1176 		dbg_err("but it should have key %s according to tnc",
1177 			DBGKEY(&zbr2->key));
1178 		dbg_dump_node(c, dent2);
1179 		goto out_free;
1180 	}
1181 
1182 	nlen1 = le16_to_cpu(dent1->nlen);
1183 	nlen2 = le16_to_cpu(dent2->nlen);
1184 
1185 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1186 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1187 		err = 0;
1188 		goto out_free;
1189 	}
1190 	if (cmp == 0 && nlen1 == nlen2)
1191 		dbg_err("2 xent/dent nodes with the same name");
1192 	else
1193 		dbg_err("bad order of colliding key %s",
1194 			DBGKEY(&key));
1195 
1196 	ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1197 	dbg_dump_node(c, dent1);
1198 	ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1199 	dbg_dump_node(c, dent2);
1200 
1201 out_free:
1202 	kfree(dent2);
1203 	kfree(dent1);
1204 	return err;
1205 }
1206 
1207 /**
1208  * dbg_check_znode - check if znode is all right.
1209  * @c: UBIFS file-system description object
1210  * @zbr: zbranch which points to this znode
1211  *
1212  * This function makes sure that znode referred to by @zbr is all right.
1213  * Returns zero if it is, and %-EINVAL if it is not.
1214  */
1215 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1216 {
1217 	struct ubifs_znode *znode = zbr->znode;
1218 	struct ubifs_znode *zp = znode->parent;
1219 	int n, err, cmp;
1220 
1221 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1222 		err = 1;
1223 		goto out;
1224 	}
1225 	if (znode->level < 0) {
1226 		err = 2;
1227 		goto out;
1228 	}
1229 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1230 		err = 3;
1231 		goto out;
1232 	}
1233 
1234 	if (zbr->len == 0)
1235 		/* Only dirty zbranch may have no on-flash nodes */
1236 		if (!ubifs_zn_dirty(znode)) {
1237 			err = 4;
1238 			goto out;
1239 		}
1240 
1241 	if (ubifs_zn_dirty(znode)) {
1242 		/*
1243 		 * If znode is dirty, its parent has to be dirty as well. The
1244 		 * order of the operation is important, so we have to have
1245 		 * memory barriers.
1246 		 */
1247 		smp_mb();
1248 		if (zp && !ubifs_zn_dirty(zp)) {
1249 			/*
1250 			 * The dirty flag is atomic and is cleared outside the
1251 			 * TNC mutex, so znode's dirty flag may now have
1252 			 * been cleared. The child is always cleared before the
1253 			 * parent, so we just need to check again.
1254 			 */
1255 			smp_mb();
1256 			if (ubifs_zn_dirty(znode)) {
1257 				err = 5;
1258 				goto out;
1259 			}
1260 		}
1261 	}
1262 
1263 	if (zp) {
1264 		const union ubifs_key *min, *max;
1265 
1266 		if (znode->level != zp->level - 1) {
1267 			err = 6;
1268 			goto out;
1269 		}
1270 
1271 		/* Make sure the 'parent' pointer in our znode is correct */
1272 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1273 		if (!err) {
1274 			/* This zbranch does not exist in the parent */
1275 			err = 7;
1276 			goto out;
1277 		}
1278 
1279 		if (znode->iip >= zp->child_cnt) {
1280 			err = 8;
1281 			goto out;
1282 		}
1283 
1284 		if (znode->iip != n) {
1285 			/* This may happen only in case of collisions */
1286 			if (keys_cmp(c, &zp->zbranch[n].key,
1287 				     &zp->zbranch[znode->iip].key)) {
1288 				err = 9;
1289 				goto out;
1290 			}
1291 			n = znode->iip;
1292 		}
1293 
1294 		/*
1295 		 * Make sure that the first key in our znode is greater than or
1296 		 * equal to the key in the pointing zbranch.
1297 		 */
1298 		min = &zbr->key;
1299 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1300 		if (cmp == 1) {
1301 			err = 10;
1302 			goto out;
1303 		}
1304 
1305 		if (n + 1 < zp->child_cnt) {
1306 			max = &zp->zbranch[n + 1].key;
1307 
1308 			/*
1309 			 * Make sure the last key in our znode is less or
1310 			 * equivalent than the key in the zbranch which goes
1311 			 * after our pointing zbranch.
1312 			 */
1313 			cmp = keys_cmp(c, max,
1314 				&znode->zbranch[znode->child_cnt - 1].key);
1315 			if (cmp == -1) {
1316 				err = 11;
1317 				goto out;
1318 			}
1319 		}
1320 	} else {
1321 		/* This may only be root znode */
1322 		if (zbr != &c->zroot) {
1323 			err = 12;
1324 			goto out;
1325 		}
1326 	}
1327 
1328 	/*
1329 	 * Make sure that next key is greater or equivalent then the previous
1330 	 * one.
1331 	 */
1332 	for (n = 1; n < znode->child_cnt; n++) {
1333 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1334 			       &znode->zbranch[n].key);
1335 		if (cmp > 0) {
1336 			err = 13;
1337 			goto out;
1338 		}
1339 		if (cmp == 0) {
1340 			/* This can only be keys with colliding hash */
1341 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1342 				err = 14;
1343 				goto out;
1344 			}
1345 
1346 			if (znode->level != 0 || c->replaying)
1347 				continue;
1348 
1349 			/*
1350 			 * Colliding keys should follow binary order of
1351 			 * corresponding xentry/dentry names.
1352 			 */
1353 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1354 						  &znode->zbranch[n]);
1355 			if (err < 0)
1356 				return err;
1357 			if (err) {
1358 				err = 15;
1359 				goto out;
1360 			}
1361 		}
1362 	}
1363 
1364 	for (n = 0; n < znode->child_cnt; n++) {
1365 		if (!znode->zbranch[n].znode &&
1366 		    (znode->zbranch[n].lnum == 0 ||
1367 		     znode->zbranch[n].len == 0)) {
1368 			err = 16;
1369 			goto out;
1370 		}
1371 
1372 		if (znode->zbranch[n].lnum != 0 &&
1373 		    znode->zbranch[n].len == 0) {
1374 			err = 17;
1375 			goto out;
1376 		}
1377 
1378 		if (znode->zbranch[n].lnum == 0 &&
1379 		    znode->zbranch[n].len != 0) {
1380 			err = 18;
1381 			goto out;
1382 		}
1383 
1384 		if (znode->zbranch[n].lnum == 0 &&
1385 		    znode->zbranch[n].offs != 0) {
1386 			err = 19;
1387 			goto out;
1388 		}
1389 
1390 		if (znode->level != 0 && znode->zbranch[n].znode)
1391 			if (znode->zbranch[n].znode->parent != znode) {
1392 				err = 20;
1393 				goto out;
1394 			}
1395 	}
1396 
1397 	return 0;
1398 
1399 out:
1400 	ubifs_err("failed, error %d", err);
1401 	ubifs_msg("dump of the znode");
1402 	dbg_dump_znode(c, znode);
1403 	if (zp) {
1404 		ubifs_msg("dump of the parent znode");
1405 		dbg_dump_znode(c, zp);
1406 	}
1407 	dump_stack();
1408 	return -EINVAL;
1409 }
1410 
1411 /**
1412  * dbg_check_tnc - check TNC tree.
1413  * @c: UBIFS file-system description object
1414  * @extra: do extra checks that are possible at start commit
1415  *
1416  * This function traverses whole TNC tree and checks every znode. Returns zero
1417  * if everything is all right and %-EINVAL if something is wrong with TNC.
1418  */
1419 int dbg_check_tnc(struct ubifs_info *c, int extra)
1420 {
1421 	struct ubifs_znode *znode;
1422 	long clean_cnt = 0, dirty_cnt = 0;
1423 	int err, last;
1424 
1425 	if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1426 		return 0;
1427 
1428 	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1429 	if (!c->zroot.znode)
1430 		return 0;
1431 
1432 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1433 	while (1) {
1434 		struct ubifs_znode *prev;
1435 		struct ubifs_zbranch *zbr;
1436 
1437 		if (!znode->parent)
1438 			zbr = &c->zroot;
1439 		else
1440 			zbr = &znode->parent->zbranch[znode->iip];
1441 
1442 		err = dbg_check_znode(c, zbr);
1443 		if (err)
1444 			return err;
1445 
1446 		if (extra) {
1447 			if (ubifs_zn_dirty(znode))
1448 				dirty_cnt += 1;
1449 			else
1450 				clean_cnt += 1;
1451 		}
1452 
1453 		prev = znode;
1454 		znode = ubifs_tnc_postorder_next(znode);
1455 		if (!znode)
1456 			break;
1457 
1458 		/*
1459 		 * If the last key of this znode is equivalent to the first key
1460 		 * of the next znode (collision), then check order of the keys.
1461 		 */
1462 		last = prev->child_cnt - 1;
1463 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1464 		    !keys_cmp(c, &prev->zbranch[last].key,
1465 			      &znode->zbranch[0].key)) {
1466 			err = dbg_check_key_order(c, &prev->zbranch[last],
1467 						  &znode->zbranch[0]);
1468 			if (err < 0)
1469 				return err;
1470 			if (err) {
1471 				ubifs_msg("first znode");
1472 				dbg_dump_znode(c, prev);
1473 				ubifs_msg("second znode");
1474 				dbg_dump_znode(c, znode);
1475 				return -EINVAL;
1476 			}
1477 		}
1478 	}
1479 
1480 	if (extra) {
1481 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1482 			ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1483 				  atomic_long_read(&c->clean_zn_cnt),
1484 				  clean_cnt);
1485 			return -EINVAL;
1486 		}
1487 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1488 			ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1489 				  atomic_long_read(&c->dirty_zn_cnt),
1490 				  dirty_cnt);
1491 			return -EINVAL;
1492 		}
1493 	}
1494 
1495 	return 0;
1496 }
1497 
1498 /**
1499  * dbg_walk_index - walk the on-flash index.
1500  * @c: UBIFS file-system description object
1501  * @leaf_cb: called for each leaf node
1502  * @znode_cb: called for each indexing node
1503  * @priv: private data which is passed to callbacks
1504  *
1505  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1506  * node and @znode_cb for each indexing node. Returns zero in case of success
1507  * and a negative error code in case of failure.
1508  *
1509  * It would be better if this function removed every znode it pulled to into
1510  * the TNC, so that the behavior more closely matched the non-debugging
1511  * behavior.
1512  */
1513 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1514 		   dbg_znode_callback znode_cb, void *priv)
1515 {
1516 	int err;
1517 	struct ubifs_zbranch *zbr;
1518 	struct ubifs_znode *znode, *child;
1519 
1520 	mutex_lock(&c->tnc_mutex);
1521 	/* If the root indexing node is not in TNC - pull it */
1522 	if (!c->zroot.znode) {
1523 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1524 		if (IS_ERR(c->zroot.znode)) {
1525 			err = PTR_ERR(c->zroot.znode);
1526 			c->zroot.znode = NULL;
1527 			goto out_unlock;
1528 		}
1529 	}
1530 
1531 	/*
1532 	 * We are going to traverse the indexing tree in the postorder manner.
1533 	 * Go down and find the leftmost indexing node where we are going to
1534 	 * start from.
1535 	 */
1536 	znode = c->zroot.znode;
1537 	while (znode->level > 0) {
1538 		zbr = &znode->zbranch[0];
1539 		child = zbr->znode;
1540 		if (!child) {
1541 			child = ubifs_load_znode(c, zbr, znode, 0);
1542 			if (IS_ERR(child)) {
1543 				err = PTR_ERR(child);
1544 				goto out_unlock;
1545 			}
1546 			zbr->znode = child;
1547 		}
1548 
1549 		znode = child;
1550 	}
1551 
1552 	/* Iterate over all indexing nodes */
1553 	while (1) {
1554 		int idx;
1555 
1556 		cond_resched();
1557 
1558 		if (znode_cb) {
1559 			err = znode_cb(c, znode, priv);
1560 			if (err) {
1561 				ubifs_err("znode checking function returned "
1562 					  "error %d", err);
1563 				dbg_dump_znode(c, znode);
1564 				goto out_dump;
1565 			}
1566 		}
1567 		if (leaf_cb && znode->level == 0) {
1568 			for (idx = 0; idx < znode->child_cnt; idx++) {
1569 				zbr = &znode->zbranch[idx];
1570 				err = leaf_cb(c, zbr, priv);
1571 				if (err) {
1572 					ubifs_err("leaf checking function "
1573 						  "returned error %d, for leaf "
1574 						  "at LEB %d:%d",
1575 						  err, zbr->lnum, zbr->offs);
1576 					goto out_dump;
1577 				}
1578 			}
1579 		}
1580 
1581 		if (!znode->parent)
1582 			break;
1583 
1584 		idx = znode->iip + 1;
1585 		znode = znode->parent;
1586 		if (idx < znode->child_cnt) {
1587 			/* Switch to the next index in the parent */
1588 			zbr = &znode->zbranch[idx];
1589 			child = zbr->znode;
1590 			if (!child) {
1591 				child = ubifs_load_znode(c, zbr, znode, idx);
1592 				if (IS_ERR(child)) {
1593 					err = PTR_ERR(child);
1594 					goto out_unlock;
1595 				}
1596 				zbr->znode = child;
1597 			}
1598 			znode = child;
1599 		} else
1600 			/*
1601 			 * This is the last child, switch to the parent and
1602 			 * continue.
1603 			 */
1604 			continue;
1605 
1606 		/* Go to the lowest leftmost znode in the new sub-tree */
1607 		while (znode->level > 0) {
1608 			zbr = &znode->zbranch[0];
1609 			child = zbr->znode;
1610 			if (!child) {
1611 				child = ubifs_load_znode(c, zbr, znode, 0);
1612 				if (IS_ERR(child)) {
1613 					err = PTR_ERR(child);
1614 					goto out_unlock;
1615 				}
1616 				zbr->znode = child;
1617 			}
1618 			znode = child;
1619 		}
1620 	}
1621 
1622 	mutex_unlock(&c->tnc_mutex);
1623 	return 0;
1624 
1625 out_dump:
1626 	if (znode->parent)
1627 		zbr = &znode->parent->zbranch[znode->iip];
1628 	else
1629 		zbr = &c->zroot;
1630 	ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1631 	dbg_dump_znode(c, znode);
1632 out_unlock:
1633 	mutex_unlock(&c->tnc_mutex);
1634 	return err;
1635 }
1636 
1637 /**
1638  * add_size - add znode size to partially calculated index size.
1639  * @c: UBIFS file-system description object
1640  * @znode: znode to add size for
1641  * @priv: partially calculated index size
1642  *
1643  * This is a helper function for 'dbg_check_idx_size()' which is called for
1644  * every indexing node and adds its size to the 'long long' variable pointed to
1645  * by @priv.
1646  */
1647 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1648 {
1649 	long long *idx_size = priv;
1650 	int add;
1651 
1652 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1653 	add = ALIGN(add, 8);
1654 	*idx_size += add;
1655 	return 0;
1656 }
1657 
1658 /**
1659  * dbg_check_idx_size - check index size.
1660  * @c: UBIFS file-system description object
1661  * @idx_size: size to check
1662  *
1663  * This function walks the UBIFS index, calculates its size and checks that the
1664  * size is equivalent to @idx_size. Returns zero in case of success and a
1665  * negative error code in case of failure.
1666  */
1667 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1668 {
1669 	int err;
1670 	long long calc = 0;
1671 
1672 	if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1673 		return 0;
1674 
1675 	err = dbg_walk_index(c, NULL, add_size, &calc);
1676 	if (err) {
1677 		ubifs_err("error %d while walking the index", err);
1678 		return err;
1679 	}
1680 
1681 	if (calc != idx_size) {
1682 		ubifs_err("index size check failed: calculated size is %lld, "
1683 			  "should be %lld", calc, idx_size);
1684 		dump_stack();
1685 		return -EINVAL;
1686 	}
1687 
1688 	return 0;
1689 }
1690 
1691 /**
1692  * struct fsck_inode - information about an inode used when checking the file-system.
1693  * @rb: link in the RB-tree of inodes
1694  * @inum: inode number
1695  * @mode: inode type, permissions, etc
1696  * @nlink: inode link count
1697  * @xattr_cnt: count of extended attributes
1698  * @references: how many directory/xattr entries refer this inode (calculated
1699  *              while walking the index)
1700  * @calc_cnt: for directory inode count of child directories
1701  * @size: inode size (read from on-flash inode)
1702  * @xattr_sz: summary size of all extended attributes (read from on-flash
1703  *            inode)
1704  * @calc_sz: for directories calculated directory size
1705  * @calc_xcnt: count of extended attributes
1706  * @calc_xsz: calculated summary size of all extended attributes
1707  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1708  *             inode (read from on-flash inode)
1709  * @calc_xnms: calculated sum of lengths of all extended attribute names
1710  */
1711 struct fsck_inode {
1712 	struct rb_node rb;
1713 	ino_t inum;
1714 	umode_t mode;
1715 	unsigned int nlink;
1716 	unsigned int xattr_cnt;
1717 	int references;
1718 	int calc_cnt;
1719 	long long size;
1720 	unsigned int xattr_sz;
1721 	long long calc_sz;
1722 	long long calc_xcnt;
1723 	long long calc_xsz;
1724 	unsigned int xattr_nms;
1725 	long long calc_xnms;
1726 };
1727 
1728 /**
1729  * struct fsck_data - private FS checking information.
1730  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1731  */
1732 struct fsck_data {
1733 	struct rb_root inodes;
1734 };
1735 
1736 /**
1737  * add_inode - add inode information to RB-tree of inodes.
1738  * @c: UBIFS file-system description object
1739  * @fsckd: FS checking information
1740  * @ino: raw UBIFS inode to add
1741  *
1742  * This is a helper function for 'check_leaf()' which adds information about
1743  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1744  * case of success and a negative error code in case of failure.
1745  */
1746 static struct fsck_inode *add_inode(struct ubifs_info *c,
1747 				    struct fsck_data *fsckd,
1748 				    struct ubifs_ino_node *ino)
1749 {
1750 	struct rb_node **p, *parent = NULL;
1751 	struct fsck_inode *fscki;
1752 	ino_t inum = key_inum_flash(c, &ino->key);
1753 
1754 	p = &fsckd->inodes.rb_node;
1755 	while (*p) {
1756 		parent = *p;
1757 		fscki = rb_entry(parent, struct fsck_inode, rb);
1758 		if (inum < fscki->inum)
1759 			p = &(*p)->rb_left;
1760 		else if (inum > fscki->inum)
1761 			p = &(*p)->rb_right;
1762 		else
1763 			return fscki;
1764 	}
1765 
1766 	if (inum > c->highest_inum) {
1767 		ubifs_err("too high inode number, max. is %lu",
1768 			  (unsigned long)c->highest_inum);
1769 		return ERR_PTR(-EINVAL);
1770 	}
1771 
1772 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1773 	if (!fscki)
1774 		return ERR_PTR(-ENOMEM);
1775 
1776 	fscki->inum = inum;
1777 	fscki->nlink = le32_to_cpu(ino->nlink);
1778 	fscki->size = le64_to_cpu(ino->size);
1779 	fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1780 	fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1781 	fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1782 	fscki->mode = le32_to_cpu(ino->mode);
1783 	if (S_ISDIR(fscki->mode)) {
1784 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1785 		fscki->calc_cnt = 2;
1786 	}
1787 	rb_link_node(&fscki->rb, parent, p);
1788 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1789 	return fscki;
1790 }
1791 
1792 /**
1793  * search_inode - search inode in the RB-tree of inodes.
1794  * @fsckd: FS checking information
1795  * @inum: inode number to search
1796  *
1797  * This is a helper function for 'check_leaf()' which searches inode @inum in
1798  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1799  * the inode was not found.
1800  */
1801 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1802 {
1803 	struct rb_node *p;
1804 	struct fsck_inode *fscki;
1805 
1806 	p = fsckd->inodes.rb_node;
1807 	while (p) {
1808 		fscki = rb_entry(p, struct fsck_inode, rb);
1809 		if (inum < fscki->inum)
1810 			p = p->rb_left;
1811 		else if (inum > fscki->inum)
1812 			p = p->rb_right;
1813 		else
1814 			return fscki;
1815 	}
1816 	return NULL;
1817 }
1818 
1819 /**
1820  * read_add_inode - read inode node and add it to RB-tree of inodes.
1821  * @c: UBIFS file-system description object
1822  * @fsckd: FS checking information
1823  * @inum: inode number to read
1824  *
1825  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1826  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1827  * information pointer in case of success and a negative error code in case of
1828  * failure.
1829  */
1830 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1831 					 struct fsck_data *fsckd, ino_t inum)
1832 {
1833 	int n, err;
1834 	union ubifs_key key;
1835 	struct ubifs_znode *znode;
1836 	struct ubifs_zbranch *zbr;
1837 	struct ubifs_ino_node *ino;
1838 	struct fsck_inode *fscki;
1839 
1840 	fscki = search_inode(fsckd, inum);
1841 	if (fscki)
1842 		return fscki;
1843 
1844 	ino_key_init(c, &key, inum);
1845 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1846 	if (!err) {
1847 		ubifs_err("inode %lu not found in index", (unsigned long)inum);
1848 		return ERR_PTR(-ENOENT);
1849 	} else if (err < 0) {
1850 		ubifs_err("error %d while looking up inode %lu",
1851 			  err, (unsigned long)inum);
1852 		return ERR_PTR(err);
1853 	}
1854 
1855 	zbr = &znode->zbranch[n];
1856 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1857 		ubifs_err("bad node %lu node length %d",
1858 			  (unsigned long)inum, zbr->len);
1859 		return ERR_PTR(-EINVAL);
1860 	}
1861 
1862 	ino = kmalloc(zbr->len, GFP_NOFS);
1863 	if (!ino)
1864 		return ERR_PTR(-ENOMEM);
1865 
1866 	err = ubifs_tnc_read_node(c, zbr, ino);
1867 	if (err) {
1868 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1869 			  zbr->lnum, zbr->offs, err);
1870 		kfree(ino);
1871 		return ERR_PTR(err);
1872 	}
1873 
1874 	fscki = add_inode(c, fsckd, ino);
1875 	kfree(ino);
1876 	if (IS_ERR(fscki)) {
1877 		ubifs_err("error %ld while adding inode %lu node",
1878 			  PTR_ERR(fscki), (unsigned long)inum);
1879 		return fscki;
1880 	}
1881 
1882 	return fscki;
1883 }
1884 
1885 /**
1886  * check_leaf - check leaf node.
1887  * @c: UBIFS file-system description object
1888  * @zbr: zbranch of the leaf node to check
1889  * @priv: FS checking information
1890  *
1891  * This is a helper function for 'dbg_check_filesystem()' which is called for
1892  * every single leaf node while walking the indexing tree. It checks that the
1893  * leaf node referred from the indexing tree exists, has correct CRC, and does
1894  * some other basic validation. This function is also responsible for building
1895  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1896  * calculates reference count, size, etc for each inode in order to later
1897  * compare them to the information stored inside the inodes and detect possible
1898  * inconsistencies. Returns zero in case of success and a negative error code
1899  * in case of failure.
1900  */
1901 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1902 		      void *priv)
1903 {
1904 	ino_t inum;
1905 	void *node;
1906 	struct ubifs_ch *ch;
1907 	int err, type = key_type(c, &zbr->key);
1908 	struct fsck_inode *fscki;
1909 
1910 	if (zbr->len < UBIFS_CH_SZ) {
1911 		ubifs_err("bad leaf length %d (LEB %d:%d)",
1912 			  zbr->len, zbr->lnum, zbr->offs);
1913 		return -EINVAL;
1914 	}
1915 
1916 	node = kmalloc(zbr->len, GFP_NOFS);
1917 	if (!node)
1918 		return -ENOMEM;
1919 
1920 	err = ubifs_tnc_read_node(c, zbr, node);
1921 	if (err) {
1922 		ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1923 			  zbr->lnum, zbr->offs, err);
1924 		goto out_free;
1925 	}
1926 
1927 	/* If this is an inode node, add it to RB-tree of inodes */
1928 	if (type == UBIFS_INO_KEY) {
1929 		fscki = add_inode(c, priv, node);
1930 		if (IS_ERR(fscki)) {
1931 			err = PTR_ERR(fscki);
1932 			ubifs_err("error %d while adding inode node", err);
1933 			goto out_dump;
1934 		}
1935 		goto out;
1936 	}
1937 
1938 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1939 	    type != UBIFS_DATA_KEY) {
1940 		ubifs_err("unexpected node type %d at LEB %d:%d",
1941 			  type, zbr->lnum, zbr->offs);
1942 		err = -EINVAL;
1943 		goto out_free;
1944 	}
1945 
1946 	ch = node;
1947 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1948 		ubifs_err("too high sequence number, max. is %llu",
1949 			  c->max_sqnum);
1950 		err = -EINVAL;
1951 		goto out_dump;
1952 	}
1953 
1954 	if (type == UBIFS_DATA_KEY) {
1955 		long long blk_offs;
1956 		struct ubifs_data_node *dn = node;
1957 
1958 		/*
1959 		 * Search the inode node this data node belongs to and insert
1960 		 * it to the RB-tree of inodes.
1961 		 */
1962 		inum = key_inum_flash(c, &dn->key);
1963 		fscki = read_add_inode(c, priv, inum);
1964 		if (IS_ERR(fscki)) {
1965 			err = PTR_ERR(fscki);
1966 			ubifs_err("error %d while processing data node and "
1967 				  "trying to find inode node %lu",
1968 				  err, (unsigned long)inum);
1969 			goto out_dump;
1970 		}
1971 
1972 		/* Make sure the data node is within inode size */
1973 		blk_offs = key_block_flash(c, &dn->key);
1974 		blk_offs <<= UBIFS_BLOCK_SHIFT;
1975 		blk_offs += le32_to_cpu(dn->size);
1976 		if (blk_offs > fscki->size) {
1977 			ubifs_err("data node at LEB %d:%d is not within inode "
1978 				  "size %lld", zbr->lnum, zbr->offs,
1979 				  fscki->size);
1980 			err = -EINVAL;
1981 			goto out_dump;
1982 		}
1983 	} else {
1984 		int nlen;
1985 		struct ubifs_dent_node *dent = node;
1986 		struct fsck_inode *fscki1;
1987 
1988 		err = ubifs_validate_entry(c, dent);
1989 		if (err)
1990 			goto out_dump;
1991 
1992 		/*
1993 		 * Search the inode node this entry refers to and the parent
1994 		 * inode node and insert them to the RB-tree of inodes.
1995 		 */
1996 		inum = le64_to_cpu(dent->inum);
1997 		fscki = read_add_inode(c, priv, inum);
1998 		if (IS_ERR(fscki)) {
1999 			err = PTR_ERR(fscki);
2000 			ubifs_err("error %d while processing entry node and "
2001 				  "trying to find inode node %lu",
2002 				  err, (unsigned long)inum);
2003 			goto out_dump;
2004 		}
2005 
2006 		/* Count how many direntries or xentries refers this inode */
2007 		fscki->references += 1;
2008 
2009 		inum = key_inum_flash(c, &dent->key);
2010 		fscki1 = read_add_inode(c, priv, inum);
2011 		if (IS_ERR(fscki1)) {
2012 			err = PTR_ERR(fscki1);
2013 			ubifs_err("error %d while processing entry node and "
2014 				  "trying to find parent inode node %lu",
2015 				  err, (unsigned long)inum);
2016 			goto out_dump;
2017 		}
2018 
2019 		nlen = le16_to_cpu(dent->nlen);
2020 		if (type == UBIFS_XENT_KEY) {
2021 			fscki1->calc_xcnt += 1;
2022 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2023 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2024 			fscki1->calc_xnms += nlen;
2025 		} else {
2026 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2027 			if (dent->type == UBIFS_ITYPE_DIR)
2028 				fscki1->calc_cnt += 1;
2029 		}
2030 	}
2031 
2032 out:
2033 	kfree(node);
2034 	return 0;
2035 
2036 out_dump:
2037 	ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2038 	dbg_dump_node(c, node);
2039 out_free:
2040 	kfree(node);
2041 	return err;
2042 }
2043 
2044 /**
2045  * free_inodes - free RB-tree of inodes.
2046  * @fsckd: FS checking information
2047  */
2048 static void free_inodes(struct fsck_data *fsckd)
2049 {
2050 	struct rb_node *this = fsckd->inodes.rb_node;
2051 	struct fsck_inode *fscki;
2052 
2053 	while (this) {
2054 		if (this->rb_left)
2055 			this = this->rb_left;
2056 		else if (this->rb_right)
2057 			this = this->rb_right;
2058 		else {
2059 			fscki = rb_entry(this, struct fsck_inode, rb);
2060 			this = rb_parent(this);
2061 			if (this) {
2062 				if (this->rb_left == &fscki->rb)
2063 					this->rb_left = NULL;
2064 				else
2065 					this->rb_right = NULL;
2066 			}
2067 			kfree(fscki);
2068 		}
2069 	}
2070 }
2071 
2072 /**
2073  * check_inodes - checks all inodes.
2074  * @c: UBIFS file-system description object
2075  * @fsckd: FS checking information
2076  *
2077  * This is a helper function for 'dbg_check_filesystem()' which walks the
2078  * RB-tree of inodes after the index scan has been finished, and checks that
2079  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2080  * %-EINVAL if not, and a negative error code in case of failure.
2081  */
2082 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2083 {
2084 	int n, err;
2085 	union ubifs_key key;
2086 	struct ubifs_znode *znode;
2087 	struct ubifs_zbranch *zbr;
2088 	struct ubifs_ino_node *ino;
2089 	struct fsck_inode *fscki;
2090 	struct rb_node *this = rb_first(&fsckd->inodes);
2091 
2092 	while (this) {
2093 		fscki = rb_entry(this, struct fsck_inode, rb);
2094 		this = rb_next(this);
2095 
2096 		if (S_ISDIR(fscki->mode)) {
2097 			/*
2098 			 * Directories have to have exactly one reference (they
2099 			 * cannot have hardlinks), although root inode is an
2100 			 * exception.
2101 			 */
2102 			if (fscki->inum != UBIFS_ROOT_INO &&
2103 			    fscki->references != 1) {
2104 				ubifs_err("directory inode %lu has %d "
2105 					  "direntries which refer it, but "
2106 					  "should be 1",
2107 					  (unsigned long)fscki->inum,
2108 					  fscki->references);
2109 				goto out_dump;
2110 			}
2111 			if (fscki->inum == UBIFS_ROOT_INO &&
2112 			    fscki->references != 0) {
2113 				ubifs_err("root inode %lu has non-zero (%d) "
2114 					  "direntries which refer it",
2115 					  (unsigned long)fscki->inum,
2116 					  fscki->references);
2117 				goto out_dump;
2118 			}
2119 			if (fscki->calc_sz != fscki->size) {
2120 				ubifs_err("directory inode %lu size is %lld, "
2121 					  "but calculated size is %lld",
2122 					  (unsigned long)fscki->inum,
2123 					  fscki->size, fscki->calc_sz);
2124 				goto out_dump;
2125 			}
2126 			if (fscki->calc_cnt != fscki->nlink) {
2127 				ubifs_err("directory inode %lu nlink is %d, "
2128 					  "but calculated nlink is %d",
2129 					  (unsigned long)fscki->inum,
2130 					  fscki->nlink, fscki->calc_cnt);
2131 				goto out_dump;
2132 			}
2133 		} else {
2134 			if (fscki->references != fscki->nlink) {
2135 				ubifs_err("inode %lu nlink is %d, but "
2136 					  "calculated nlink is %d",
2137 					  (unsigned long)fscki->inum,
2138 					  fscki->nlink, fscki->references);
2139 				goto out_dump;
2140 			}
2141 		}
2142 		if (fscki->xattr_sz != fscki->calc_xsz) {
2143 			ubifs_err("inode %lu has xattr size %u, but "
2144 				  "calculated size is %lld",
2145 				  (unsigned long)fscki->inum, fscki->xattr_sz,
2146 				  fscki->calc_xsz);
2147 			goto out_dump;
2148 		}
2149 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2150 			ubifs_err("inode %lu has %u xattrs, but "
2151 				  "calculated count is %lld",
2152 				  (unsigned long)fscki->inum,
2153 				  fscki->xattr_cnt, fscki->calc_xcnt);
2154 			goto out_dump;
2155 		}
2156 		if (fscki->xattr_nms != fscki->calc_xnms) {
2157 			ubifs_err("inode %lu has xattr names' size %u, but "
2158 				  "calculated names' size is %lld",
2159 				  (unsigned long)fscki->inum, fscki->xattr_nms,
2160 				  fscki->calc_xnms);
2161 			goto out_dump;
2162 		}
2163 	}
2164 
2165 	return 0;
2166 
2167 out_dump:
2168 	/* Read the bad inode and dump it */
2169 	ino_key_init(c, &key, fscki->inum);
2170 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2171 	if (!err) {
2172 		ubifs_err("inode %lu not found in index",
2173 			  (unsigned long)fscki->inum);
2174 		return -ENOENT;
2175 	} else if (err < 0) {
2176 		ubifs_err("error %d while looking up inode %lu",
2177 			  err, (unsigned long)fscki->inum);
2178 		return err;
2179 	}
2180 
2181 	zbr = &znode->zbranch[n];
2182 	ino = kmalloc(zbr->len, GFP_NOFS);
2183 	if (!ino)
2184 		return -ENOMEM;
2185 
2186 	err = ubifs_tnc_read_node(c, zbr, ino);
2187 	if (err) {
2188 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2189 			  zbr->lnum, zbr->offs, err);
2190 		kfree(ino);
2191 		return err;
2192 	}
2193 
2194 	ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2195 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2196 	dbg_dump_node(c, ino);
2197 	kfree(ino);
2198 	return -EINVAL;
2199 }
2200 
2201 /**
2202  * dbg_check_filesystem - check the file-system.
2203  * @c: UBIFS file-system description object
2204  *
2205  * This function checks the file system, namely:
2206  * o makes sure that all leaf nodes exist and their CRCs are correct;
2207  * o makes sure inode nlink, size, xattr size/count are correct (for all
2208  *   inodes).
2209  *
2210  * The function reads whole indexing tree and all nodes, so it is pretty
2211  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2212  * not, and a negative error code in case of failure.
2213  */
2214 int dbg_check_filesystem(struct ubifs_info *c)
2215 {
2216 	int err;
2217 	struct fsck_data fsckd;
2218 
2219 	if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2220 		return 0;
2221 
2222 	fsckd.inodes = RB_ROOT;
2223 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2224 	if (err)
2225 		goto out_free;
2226 
2227 	err = check_inodes(c, &fsckd);
2228 	if (err)
2229 		goto out_free;
2230 
2231 	free_inodes(&fsckd);
2232 	return 0;
2233 
2234 out_free:
2235 	ubifs_err("file-system check failed with error %d", err);
2236 	dump_stack();
2237 	free_inodes(&fsckd);
2238 	return err;
2239 }
2240 
2241 static int invocation_cnt;
2242 
2243 int dbg_force_in_the_gaps(void)
2244 {
2245 	if (!dbg_force_in_the_gaps_enabled)
2246 		return 0;
2247 	/* Force in-the-gaps every 8th commit */
2248 	return !((invocation_cnt++) & 0x7);
2249 }
2250 
2251 /* Failure mode for recovery testing */
2252 
2253 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2254 
2255 struct failure_mode_info {
2256 	struct list_head list;
2257 	struct ubifs_info *c;
2258 };
2259 
2260 static LIST_HEAD(fmi_list);
2261 static DEFINE_SPINLOCK(fmi_lock);
2262 
2263 static unsigned int next;
2264 
2265 static int simple_rand(void)
2266 {
2267 	if (next == 0)
2268 		next = current->pid;
2269 	next = next * 1103515245 + 12345;
2270 	return (next >> 16) & 32767;
2271 }
2272 
2273 static void failure_mode_init(struct ubifs_info *c)
2274 {
2275 	struct failure_mode_info *fmi;
2276 
2277 	fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2278 	if (!fmi) {
2279 		ubifs_err("Failed to register failure mode - no memory");
2280 		return;
2281 	}
2282 	fmi->c = c;
2283 	spin_lock(&fmi_lock);
2284 	list_add_tail(&fmi->list, &fmi_list);
2285 	spin_unlock(&fmi_lock);
2286 }
2287 
2288 static void failure_mode_exit(struct ubifs_info *c)
2289 {
2290 	struct failure_mode_info *fmi, *tmp;
2291 
2292 	spin_lock(&fmi_lock);
2293 	list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2294 		if (fmi->c == c) {
2295 			list_del(&fmi->list);
2296 			kfree(fmi);
2297 		}
2298 	spin_unlock(&fmi_lock);
2299 }
2300 
2301 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2302 {
2303 	struct failure_mode_info *fmi;
2304 
2305 	spin_lock(&fmi_lock);
2306 	list_for_each_entry(fmi, &fmi_list, list)
2307 		if (fmi->c->ubi == desc) {
2308 			struct ubifs_info *c = fmi->c;
2309 
2310 			spin_unlock(&fmi_lock);
2311 			return c;
2312 		}
2313 	spin_unlock(&fmi_lock);
2314 	return NULL;
2315 }
2316 
2317 static int in_failure_mode(struct ubi_volume_desc *desc)
2318 {
2319 	struct ubifs_info *c = dbg_find_info(desc);
2320 
2321 	if (c && dbg_failure_mode)
2322 		return c->dbg->failure_mode;
2323 	return 0;
2324 }
2325 
2326 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2327 {
2328 	struct ubifs_info *c = dbg_find_info(desc);
2329 	struct ubifs_debug_info *d;
2330 
2331 	if (!c || !dbg_failure_mode)
2332 		return 0;
2333 	d = c->dbg;
2334 	if (d->failure_mode)
2335 		return 1;
2336 	if (!d->fail_cnt) {
2337 		/* First call - decide delay to failure */
2338 		if (chance(1, 2)) {
2339 			unsigned int delay = 1 << (simple_rand() >> 11);
2340 
2341 			if (chance(1, 2)) {
2342 				d->fail_delay = 1;
2343 				d->fail_timeout = jiffies +
2344 						  msecs_to_jiffies(delay);
2345 				dbg_rcvry("failing after %ums", delay);
2346 			} else {
2347 				d->fail_delay = 2;
2348 				d->fail_cnt_max = delay;
2349 				dbg_rcvry("failing after %u calls", delay);
2350 			}
2351 		}
2352 		d->fail_cnt += 1;
2353 	}
2354 	/* Determine if failure delay has expired */
2355 	if (d->fail_delay == 1) {
2356 		if (time_before(jiffies, d->fail_timeout))
2357 			return 0;
2358 	} else if (d->fail_delay == 2)
2359 		if (d->fail_cnt++ < d->fail_cnt_max)
2360 			return 0;
2361 	if (lnum == UBIFS_SB_LNUM) {
2362 		if (write) {
2363 			if (chance(1, 2))
2364 				return 0;
2365 		} else if (chance(19, 20))
2366 			return 0;
2367 		dbg_rcvry("failing in super block LEB %d", lnum);
2368 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2369 		if (chance(19, 20))
2370 			return 0;
2371 		dbg_rcvry("failing in master LEB %d", lnum);
2372 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2373 		if (write) {
2374 			if (chance(99, 100))
2375 				return 0;
2376 		} else if (chance(399, 400))
2377 			return 0;
2378 		dbg_rcvry("failing in log LEB %d", lnum);
2379 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2380 		if (write) {
2381 			if (chance(7, 8))
2382 				return 0;
2383 		} else if (chance(19, 20))
2384 			return 0;
2385 		dbg_rcvry("failing in LPT LEB %d", lnum);
2386 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2387 		if (write) {
2388 			if (chance(1, 2))
2389 				return 0;
2390 		} else if (chance(9, 10))
2391 			return 0;
2392 		dbg_rcvry("failing in orphan LEB %d", lnum);
2393 	} else if (lnum == c->ihead_lnum) {
2394 		if (chance(99, 100))
2395 			return 0;
2396 		dbg_rcvry("failing in index head LEB %d", lnum);
2397 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2398 		if (chance(9, 10))
2399 			return 0;
2400 		dbg_rcvry("failing in GC head LEB %d", lnum);
2401 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2402 		   !ubifs_search_bud(c, lnum)) {
2403 		if (chance(19, 20))
2404 			return 0;
2405 		dbg_rcvry("failing in non-bud LEB %d", lnum);
2406 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2407 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2408 		if (chance(999, 1000))
2409 			return 0;
2410 		dbg_rcvry("failing in bud LEB %d commit running", lnum);
2411 	} else {
2412 		if (chance(9999, 10000))
2413 			return 0;
2414 		dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2415 	}
2416 	ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2417 	d->failure_mode = 1;
2418 	dump_stack();
2419 	return 1;
2420 }
2421 
2422 static void cut_data(const void *buf, int len)
2423 {
2424 	int flen, i;
2425 	unsigned char *p = (void *)buf;
2426 
2427 	flen = (len * (long long)simple_rand()) >> 15;
2428 	for (i = flen; i < len; i++)
2429 		p[i] = 0xff;
2430 }
2431 
2432 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2433 		 int len, int check)
2434 {
2435 	if (in_failure_mode(desc))
2436 		return -EIO;
2437 	return ubi_leb_read(desc, lnum, buf, offset, len, check);
2438 }
2439 
2440 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2441 		  int offset, int len, int dtype)
2442 {
2443 	int err, failing;
2444 
2445 	if (in_failure_mode(desc))
2446 		return -EIO;
2447 	failing = do_fail(desc, lnum, 1);
2448 	if (failing)
2449 		cut_data(buf, len);
2450 	err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2451 	if (err)
2452 		return err;
2453 	if (failing)
2454 		return -EIO;
2455 	return 0;
2456 }
2457 
2458 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2459 		   int len, int dtype)
2460 {
2461 	int err;
2462 
2463 	if (do_fail(desc, lnum, 1))
2464 		return -EIO;
2465 	err = ubi_leb_change(desc, lnum, buf, len, dtype);
2466 	if (err)
2467 		return err;
2468 	if (do_fail(desc, lnum, 1))
2469 		return -EIO;
2470 	return 0;
2471 }
2472 
2473 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2474 {
2475 	int err;
2476 
2477 	if (do_fail(desc, lnum, 0))
2478 		return -EIO;
2479 	err = ubi_leb_erase(desc, lnum);
2480 	if (err)
2481 		return err;
2482 	if (do_fail(desc, lnum, 0))
2483 		return -EIO;
2484 	return 0;
2485 }
2486 
2487 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2488 {
2489 	int err;
2490 
2491 	if (do_fail(desc, lnum, 0))
2492 		return -EIO;
2493 	err = ubi_leb_unmap(desc, lnum);
2494 	if (err)
2495 		return err;
2496 	if (do_fail(desc, lnum, 0))
2497 		return -EIO;
2498 	return 0;
2499 }
2500 
2501 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2502 {
2503 	if (in_failure_mode(desc))
2504 		return -EIO;
2505 	return ubi_is_mapped(desc, lnum);
2506 }
2507 
2508 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2509 {
2510 	int err;
2511 
2512 	if (do_fail(desc, lnum, 0))
2513 		return -EIO;
2514 	err = ubi_leb_map(desc, lnum, dtype);
2515 	if (err)
2516 		return err;
2517 	if (do_fail(desc, lnum, 0))
2518 		return -EIO;
2519 	return 0;
2520 }
2521 
2522 /**
2523  * ubifs_debugging_init - initialize UBIFS debugging.
2524  * @c: UBIFS file-system description object
2525  *
2526  * This function initializes debugging-related data for the file system.
2527  * Returns zero in case of success and a negative error code in case of
2528  * failure.
2529  */
2530 int ubifs_debugging_init(struct ubifs_info *c)
2531 {
2532 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2533 	if (!c->dbg)
2534 		return -ENOMEM;
2535 
2536 	c->dbg->buf = vmalloc(c->leb_size);
2537 	if (!c->dbg->buf)
2538 		goto out;
2539 
2540 	failure_mode_init(c);
2541 	return 0;
2542 
2543 out:
2544 	kfree(c->dbg);
2545 	return -ENOMEM;
2546 }
2547 
2548 /**
2549  * ubifs_debugging_exit - free debugging data.
2550  * @c: UBIFS file-system description object
2551  */
2552 void ubifs_debugging_exit(struct ubifs_info *c)
2553 {
2554 	failure_mode_exit(c);
2555 	vfree(c->dbg->buf);
2556 	kfree(c->dbg);
2557 }
2558 
2559 /*
2560  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2561  * contain the stuff specific to particular file-system mounts.
2562  */
2563 static struct dentry *dfs_rootdir;
2564 
2565 /**
2566  * dbg_debugfs_init - initialize debugfs file-system.
2567  *
2568  * UBIFS uses debugfs file-system to expose various debugging knobs to
2569  * user-space. This function creates "ubifs" directory in the debugfs
2570  * file-system. Returns zero in case of success and a negative error code in
2571  * case of failure.
2572  */
2573 int dbg_debugfs_init(void)
2574 {
2575 	dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2576 	if (IS_ERR(dfs_rootdir)) {
2577 		int err = PTR_ERR(dfs_rootdir);
2578 		ubifs_err("cannot create \"ubifs\" debugfs directory, "
2579 			  "error %d\n", err);
2580 		return err;
2581 	}
2582 
2583 	return 0;
2584 }
2585 
2586 /**
2587  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2588  */
2589 void dbg_debugfs_exit(void)
2590 {
2591 	debugfs_remove(dfs_rootdir);
2592 }
2593 
2594 static int open_debugfs_file(struct inode *inode, struct file *file)
2595 {
2596 	file->private_data = inode->i_private;
2597 	return 0;
2598 }
2599 
2600 static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2601 				  size_t count, loff_t *ppos)
2602 {
2603 	struct ubifs_info *c = file->private_data;
2604 	struct ubifs_debug_info *d = c->dbg;
2605 
2606 	if (file->f_path.dentry == d->dfs_dump_lprops)
2607 		dbg_dump_lprops(c);
2608 	else if (file->f_path.dentry == d->dfs_dump_budg) {
2609 		spin_lock(&c->space_lock);
2610 		dbg_dump_budg(c);
2611 		spin_unlock(&c->space_lock);
2612 	} else if (file->f_path.dentry == d->dfs_dump_tnc) {
2613 		mutex_lock(&c->tnc_mutex);
2614 		dbg_dump_tnc(c);
2615 		mutex_unlock(&c->tnc_mutex);
2616 	} else
2617 		return -EINVAL;
2618 
2619 	*ppos += count;
2620 	return count;
2621 }
2622 
2623 static const struct file_operations dfs_fops = {
2624 	.open = open_debugfs_file,
2625 	.write = write_debugfs_file,
2626 	.owner = THIS_MODULE,
2627 };
2628 
2629 /**
2630  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2631  * @c: UBIFS file-system description object
2632  *
2633  * This function creates all debugfs files for this instance of UBIFS. Returns
2634  * zero in case of success and a negative error code in case of failure.
2635  *
2636  * Note, the only reason we have not merged this function with the
2637  * 'ubifs_debugging_init()' function is because it is better to initialize
2638  * debugfs interfaces at the very end of the mount process, and remove them at
2639  * the very beginning of the mount process.
2640  */
2641 int dbg_debugfs_init_fs(struct ubifs_info *c)
2642 {
2643 	int err;
2644 	const char *fname;
2645 	struct dentry *dent;
2646 	struct ubifs_debug_info *d = c->dbg;
2647 
2648 	sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2649 	d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir);
2650 	if (IS_ERR(d->dfs_dir)) {
2651 		err = PTR_ERR(d->dfs_dir);
2652 		ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2653 			  d->dfs_dir_name, err);
2654 		goto out;
2655 	}
2656 
2657 	fname = "dump_lprops";
2658 	dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2659 	if (IS_ERR(dent))
2660 		goto out_remove;
2661 	d->dfs_dump_lprops = dent;
2662 
2663 	fname = "dump_budg";
2664 	dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2665 	if (IS_ERR(dent))
2666 		goto out_remove;
2667 	d->dfs_dump_budg = dent;
2668 
2669 	fname = "dump_tnc";
2670 	dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2671 	if (IS_ERR(dent))
2672 		goto out_remove;
2673 	d->dfs_dump_tnc = dent;
2674 
2675 	return 0;
2676 
2677 out_remove:
2678 	err = PTR_ERR(dent);
2679 	ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2680 		  fname, err);
2681 	debugfs_remove_recursive(d->dfs_dir);
2682 out:
2683 	return err;
2684 }
2685 
2686 /**
2687  * dbg_debugfs_exit_fs - remove all debugfs files.
2688  * @c: UBIFS file-system description object
2689  */
2690 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2691 {
2692 	debugfs_remove_recursive(c->dbg->dfs_dir);
2693 }
2694 
2695 #endif /* CONFIG_UBIFS_FS_DEBUG */
2696