1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements most of the debugging stuff which is compiled in only 25 * when it is enabled. But some debugging check functions are implemented in 26 * corresponding subsystem, just because they are closely related and utilize 27 * various local functions of those subsystems. 28 */ 29 30 #define UBIFS_DBG_PRESERVE_UBI 31 32 #include "ubifs.h" 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/debugfs.h> 36 #include <linux/math64.h> 37 38 #ifdef CONFIG_UBIFS_FS_DEBUG 39 40 DEFINE_SPINLOCK(dbg_lock); 41 42 static char dbg_key_buf0[128]; 43 static char dbg_key_buf1[128]; 44 45 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT; 46 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT; 47 unsigned int ubifs_tst_flags; 48 49 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR); 50 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR); 51 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR); 52 53 MODULE_PARM_DESC(debug_msgs, "Debug message type flags"); 54 MODULE_PARM_DESC(debug_chks, "Debug check flags"); 55 MODULE_PARM_DESC(debug_tsts, "Debug special test flags"); 56 57 static const char *get_key_fmt(int fmt) 58 { 59 switch (fmt) { 60 case UBIFS_SIMPLE_KEY_FMT: 61 return "simple"; 62 default: 63 return "unknown/invalid format"; 64 } 65 } 66 67 static const char *get_key_hash(int hash) 68 { 69 switch (hash) { 70 case UBIFS_KEY_HASH_R5: 71 return "R5"; 72 case UBIFS_KEY_HASH_TEST: 73 return "test"; 74 default: 75 return "unknown/invalid name hash"; 76 } 77 } 78 79 static const char *get_key_type(int type) 80 { 81 switch (type) { 82 case UBIFS_INO_KEY: 83 return "inode"; 84 case UBIFS_DENT_KEY: 85 return "direntry"; 86 case UBIFS_XENT_KEY: 87 return "xentry"; 88 case UBIFS_DATA_KEY: 89 return "data"; 90 case UBIFS_TRUN_KEY: 91 return "truncate"; 92 default: 93 return "unknown/invalid key"; 94 } 95 } 96 97 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key, 98 char *buffer) 99 { 100 char *p = buffer; 101 int type = key_type(c, key); 102 103 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 104 switch (type) { 105 case UBIFS_INO_KEY: 106 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key), 107 get_key_type(type)); 108 break; 109 case UBIFS_DENT_KEY: 110 case UBIFS_XENT_KEY: 111 sprintf(p, "(%lu, %s, %#08x)", 112 (unsigned long)key_inum(c, key), 113 get_key_type(type), key_hash(c, key)); 114 break; 115 case UBIFS_DATA_KEY: 116 sprintf(p, "(%lu, %s, %u)", 117 (unsigned long)key_inum(c, key), 118 get_key_type(type), key_block(c, key)); 119 break; 120 case UBIFS_TRUN_KEY: 121 sprintf(p, "(%lu, %s)", 122 (unsigned long)key_inum(c, key), 123 get_key_type(type)); 124 break; 125 default: 126 sprintf(p, "(bad key type: %#08x, %#08x)", 127 key->u32[0], key->u32[1]); 128 } 129 } else 130 sprintf(p, "bad key format %d", c->key_fmt); 131 } 132 133 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key) 134 { 135 /* dbg_lock must be held */ 136 sprintf_key(c, key, dbg_key_buf0); 137 return dbg_key_buf0; 138 } 139 140 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key) 141 { 142 /* dbg_lock must be held */ 143 sprintf_key(c, key, dbg_key_buf1); 144 return dbg_key_buf1; 145 } 146 147 const char *dbg_ntype(int type) 148 { 149 switch (type) { 150 case UBIFS_PAD_NODE: 151 return "padding node"; 152 case UBIFS_SB_NODE: 153 return "superblock node"; 154 case UBIFS_MST_NODE: 155 return "master node"; 156 case UBIFS_REF_NODE: 157 return "reference node"; 158 case UBIFS_INO_NODE: 159 return "inode node"; 160 case UBIFS_DENT_NODE: 161 return "direntry node"; 162 case UBIFS_XENT_NODE: 163 return "xentry node"; 164 case UBIFS_DATA_NODE: 165 return "data node"; 166 case UBIFS_TRUN_NODE: 167 return "truncate node"; 168 case UBIFS_IDX_NODE: 169 return "indexing node"; 170 case UBIFS_CS_NODE: 171 return "commit start node"; 172 case UBIFS_ORPH_NODE: 173 return "orphan node"; 174 default: 175 return "unknown node"; 176 } 177 } 178 179 static const char *dbg_gtype(int type) 180 { 181 switch (type) { 182 case UBIFS_NO_NODE_GROUP: 183 return "no node group"; 184 case UBIFS_IN_NODE_GROUP: 185 return "in node group"; 186 case UBIFS_LAST_OF_NODE_GROUP: 187 return "last of node group"; 188 default: 189 return "unknown"; 190 } 191 } 192 193 const char *dbg_cstate(int cmt_state) 194 { 195 switch (cmt_state) { 196 case COMMIT_RESTING: 197 return "commit resting"; 198 case COMMIT_BACKGROUND: 199 return "background commit requested"; 200 case COMMIT_REQUIRED: 201 return "commit required"; 202 case COMMIT_RUNNING_BACKGROUND: 203 return "BACKGROUND commit running"; 204 case COMMIT_RUNNING_REQUIRED: 205 return "commit running and required"; 206 case COMMIT_BROKEN: 207 return "broken commit"; 208 default: 209 return "unknown commit state"; 210 } 211 } 212 213 const char *dbg_jhead(int jhead) 214 { 215 switch (jhead) { 216 case GCHD: 217 return "0 (GC)"; 218 case BASEHD: 219 return "1 (base)"; 220 case DATAHD: 221 return "2 (data)"; 222 default: 223 return "unknown journal head"; 224 } 225 } 226 227 static void dump_ch(const struct ubifs_ch *ch) 228 { 229 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic)); 230 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc)); 231 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type, 232 dbg_ntype(ch->node_type)); 233 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type, 234 dbg_gtype(ch->group_type)); 235 printk(KERN_DEBUG "\tsqnum %llu\n", 236 (unsigned long long)le64_to_cpu(ch->sqnum)); 237 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len)); 238 } 239 240 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode) 241 { 242 const struct ubifs_inode *ui = ubifs_inode(inode); 243 244 printk(KERN_DEBUG "Dump in-memory inode:"); 245 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino); 246 printk(KERN_DEBUG "\tsize %llu\n", 247 (unsigned long long)i_size_read(inode)); 248 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink); 249 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid); 250 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid); 251 printk(KERN_DEBUG "\tatime %u.%u\n", 252 (unsigned int)inode->i_atime.tv_sec, 253 (unsigned int)inode->i_atime.tv_nsec); 254 printk(KERN_DEBUG "\tmtime %u.%u\n", 255 (unsigned int)inode->i_mtime.tv_sec, 256 (unsigned int)inode->i_mtime.tv_nsec); 257 printk(KERN_DEBUG "\tctime %u.%u\n", 258 (unsigned int)inode->i_ctime.tv_sec, 259 (unsigned int)inode->i_ctime.tv_nsec); 260 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum); 261 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size); 262 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt); 263 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names); 264 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty); 265 printk(KERN_DEBUG "\txattr %u\n", ui->xattr); 266 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr); 267 printk(KERN_DEBUG "\tsynced_i_size %llu\n", 268 (unsigned long long)ui->synced_i_size); 269 printk(KERN_DEBUG "\tui_size %llu\n", 270 (unsigned long long)ui->ui_size); 271 printk(KERN_DEBUG "\tflags %d\n", ui->flags); 272 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type); 273 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read); 274 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row); 275 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len); 276 } 277 278 void dbg_dump_node(const struct ubifs_info *c, const void *node) 279 { 280 int i, n; 281 union ubifs_key key; 282 const struct ubifs_ch *ch = node; 283 284 if (dbg_failure_mode) 285 return; 286 287 /* If the magic is incorrect, just hexdump the first bytes */ 288 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 289 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ); 290 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 291 (void *)node, UBIFS_CH_SZ, 1); 292 return; 293 } 294 295 spin_lock(&dbg_lock); 296 dump_ch(node); 297 298 switch (ch->node_type) { 299 case UBIFS_PAD_NODE: 300 { 301 const struct ubifs_pad_node *pad = node; 302 303 printk(KERN_DEBUG "\tpad_len %u\n", 304 le32_to_cpu(pad->pad_len)); 305 break; 306 } 307 case UBIFS_SB_NODE: 308 { 309 const struct ubifs_sb_node *sup = node; 310 unsigned int sup_flags = le32_to_cpu(sup->flags); 311 312 printk(KERN_DEBUG "\tkey_hash %d (%s)\n", 313 (int)sup->key_hash, get_key_hash(sup->key_hash)); 314 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n", 315 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 316 printk(KERN_DEBUG "\tflags %#x\n", sup_flags); 317 printk(KERN_DEBUG "\t big_lpt %u\n", 318 !!(sup_flags & UBIFS_FLG_BIGLPT)); 319 printk(KERN_DEBUG "\tmin_io_size %u\n", 320 le32_to_cpu(sup->min_io_size)); 321 printk(KERN_DEBUG "\tleb_size %u\n", 322 le32_to_cpu(sup->leb_size)); 323 printk(KERN_DEBUG "\tleb_cnt %u\n", 324 le32_to_cpu(sup->leb_cnt)); 325 printk(KERN_DEBUG "\tmax_leb_cnt %u\n", 326 le32_to_cpu(sup->max_leb_cnt)); 327 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n", 328 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 329 printk(KERN_DEBUG "\tlog_lebs %u\n", 330 le32_to_cpu(sup->log_lebs)); 331 printk(KERN_DEBUG "\tlpt_lebs %u\n", 332 le32_to_cpu(sup->lpt_lebs)); 333 printk(KERN_DEBUG "\torph_lebs %u\n", 334 le32_to_cpu(sup->orph_lebs)); 335 printk(KERN_DEBUG "\tjhead_cnt %u\n", 336 le32_to_cpu(sup->jhead_cnt)); 337 printk(KERN_DEBUG "\tfanout %u\n", 338 le32_to_cpu(sup->fanout)); 339 printk(KERN_DEBUG "\tlsave_cnt %u\n", 340 le32_to_cpu(sup->lsave_cnt)); 341 printk(KERN_DEBUG "\tdefault_compr %u\n", 342 (int)le16_to_cpu(sup->default_compr)); 343 printk(KERN_DEBUG "\trp_size %llu\n", 344 (unsigned long long)le64_to_cpu(sup->rp_size)); 345 printk(KERN_DEBUG "\trp_uid %u\n", 346 le32_to_cpu(sup->rp_uid)); 347 printk(KERN_DEBUG "\trp_gid %u\n", 348 le32_to_cpu(sup->rp_gid)); 349 printk(KERN_DEBUG "\tfmt_version %u\n", 350 le32_to_cpu(sup->fmt_version)); 351 printk(KERN_DEBUG "\ttime_gran %u\n", 352 le32_to_cpu(sup->time_gran)); 353 printk(KERN_DEBUG "\tUUID %pUB\n", 354 sup->uuid); 355 break; 356 } 357 case UBIFS_MST_NODE: 358 { 359 const struct ubifs_mst_node *mst = node; 360 361 printk(KERN_DEBUG "\thighest_inum %llu\n", 362 (unsigned long long)le64_to_cpu(mst->highest_inum)); 363 printk(KERN_DEBUG "\tcommit number %llu\n", 364 (unsigned long long)le64_to_cpu(mst->cmt_no)); 365 printk(KERN_DEBUG "\tflags %#x\n", 366 le32_to_cpu(mst->flags)); 367 printk(KERN_DEBUG "\tlog_lnum %u\n", 368 le32_to_cpu(mst->log_lnum)); 369 printk(KERN_DEBUG "\troot_lnum %u\n", 370 le32_to_cpu(mst->root_lnum)); 371 printk(KERN_DEBUG "\troot_offs %u\n", 372 le32_to_cpu(mst->root_offs)); 373 printk(KERN_DEBUG "\troot_len %u\n", 374 le32_to_cpu(mst->root_len)); 375 printk(KERN_DEBUG "\tgc_lnum %u\n", 376 le32_to_cpu(mst->gc_lnum)); 377 printk(KERN_DEBUG "\tihead_lnum %u\n", 378 le32_to_cpu(mst->ihead_lnum)); 379 printk(KERN_DEBUG "\tihead_offs %u\n", 380 le32_to_cpu(mst->ihead_offs)); 381 printk(KERN_DEBUG "\tindex_size %llu\n", 382 (unsigned long long)le64_to_cpu(mst->index_size)); 383 printk(KERN_DEBUG "\tlpt_lnum %u\n", 384 le32_to_cpu(mst->lpt_lnum)); 385 printk(KERN_DEBUG "\tlpt_offs %u\n", 386 le32_to_cpu(mst->lpt_offs)); 387 printk(KERN_DEBUG "\tnhead_lnum %u\n", 388 le32_to_cpu(mst->nhead_lnum)); 389 printk(KERN_DEBUG "\tnhead_offs %u\n", 390 le32_to_cpu(mst->nhead_offs)); 391 printk(KERN_DEBUG "\tltab_lnum %u\n", 392 le32_to_cpu(mst->ltab_lnum)); 393 printk(KERN_DEBUG "\tltab_offs %u\n", 394 le32_to_cpu(mst->ltab_offs)); 395 printk(KERN_DEBUG "\tlsave_lnum %u\n", 396 le32_to_cpu(mst->lsave_lnum)); 397 printk(KERN_DEBUG "\tlsave_offs %u\n", 398 le32_to_cpu(mst->lsave_offs)); 399 printk(KERN_DEBUG "\tlscan_lnum %u\n", 400 le32_to_cpu(mst->lscan_lnum)); 401 printk(KERN_DEBUG "\tleb_cnt %u\n", 402 le32_to_cpu(mst->leb_cnt)); 403 printk(KERN_DEBUG "\tempty_lebs %u\n", 404 le32_to_cpu(mst->empty_lebs)); 405 printk(KERN_DEBUG "\tidx_lebs %u\n", 406 le32_to_cpu(mst->idx_lebs)); 407 printk(KERN_DEBUG "\ttotal_free %llu\n", 408 (unsigned long long)le64_to_cpu(mst->total_free)); 409 printk(KERN_DEBUG "\ttotal_dirty %llu\n", 410 (unsigned long long)le64_to_cpu(mst->total_dirty)); 411 printk(KERN_DEBUG "\ttotal_used %llu\n", 412 (unsigned long long)le64_to_cpu(mst->total_used)); 413 printk(KERN_DEBUG "\ttotal_dead %llu\n", 414 (unsigned long long)le64_to_cpu(mst->total_dead)); 415 printk(KERN_DEBUG "\ttotal_dark %llu\n", 416 (unsigned long long)le64_to_cpu(mst->total_dark)); 417 break; 418 } 419 case UBIFS_REF_NODE: 420 { 421 const struct ubifs_ref_node *ref = node; 422 423 printk(KERN_DEBUG "\tlnum %u\n", 424 le32_to_cpu(ref->lnum)); 425 printk(KERN_DEBUG "\toffs %u\n", 426 le32_to_cpu(ref->offs)); 427 printk(KERN_DEBUG "\tjhead %u\n", 428 le32_to_cpu(ref->jhead)); 429 break; 430 } 431 case UBIFS_INO_NODE: 432 { 433 const struct ubifs_ino_node *ino = node; 434 435 key_read(c, &ino->key, &key); 436 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 437 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", 438 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 439 printk(KERN_DEBUG "\tsize %llu\n", 440 (unsigned long long)le64_to_cpu(ino->size)); 441 printk(KERN_DEBUG "\tnlink %u\n", 442 le32_to_cpu(ino->nlink)); 443 printk(KERN_DEBUG "\tatime %lld.%u\n", 444 (long long)le64_to_cpu(ino->atime_sec), 445 le32_to_cpu(ino->atime_nsec)); 446 printk(KERN_DEBUG "\tmtime %lld.%u\n", 447 (long long)le64_to_cpu(ino->mtime_sec), 448 le32_to_cpu(ino->mtime_nsec)); 449 printk(KERN_DEBUG "\tctime %lld.%u\n", 450 (long long)le64_to_cpu(ino->ctime_sec), 451 le32_to_cpu(ino->ctime_nsec)); 452 printk(KERN_DEBUG "\tuid %u\n", 453 le32_to_cpu(ino->uid)); 454 printk(KERN_DEBUG "\tgid %u\n", 455 le32_to_cpu(ino->gid)); 456 printk(KERN_DEBUG "\tmode %u\n", 457 le32_to_cpu(ino->mode)); 458 printk(KERN_DEBUG "\tflags %#x\n", 459 le32_to_cpu(ino->flags)); 460 printk(KERN_DEBUG "\txattr_cnt %u\n", 461 le32_to_cpu(ino->xattr_cnt)); 462 printk(KERN_DEBUG "\txattr_size %u\n", 463 le32_to_cpu(ino->xattr_size)); 464 printk(KERN_DEBUG "\txattr_names %u\n", 465 le32_to_cpu(ino->xattr_names)); 466 printk(KERN_DEBUG "\tcompr_type %#x\n", 467 (int)le16_to_cpu(ino->compr_type)); 468 printk(KERN_DEBUG "\tdata len %u\n", 469 le32_to_cpu(ino->data_len)); 470 break; 471 } 472 case UBIFS_DENT_NODE: 473 case UBIFS_XENT_NODE: 474 { 475 const struct ubifs_dent_node *dent = node; 476 int nlen = le16_to_cpu(dent->nlen); 477 478 key_read(c, &dent->key, &key); 479 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 480 printk(KERN_DEBUG "\tinum %llu\n", 481 (unsigned long long)le64_to_cpu(dent->inum)); 482 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type); 483 printk(KERN_DEBUG "\tnlen %d\n", nlen); 484 printk(KERN_DEBUG "\tname "); 485 486 if (nlen > UBIFS_MAX_NLEN) 487 printk(KERN_DEBUG "(bad name length, not printing, " 488 "bad or corrupted node)"); 489 else { 490 for (i = 0; i < nlen && dent->name[i]; i++) 491 printk(KERN_CONT "%c", dent->name[i]); 492 } 493 printk(KERN_CONT "\n"); 494 495 break; 496 } 497 case UBIFS_DATA_NODE: 498 { 499 const struct ubifs_data_node *dn = node; 500 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 501 502 key_read(c, &dn->key, &key); 503 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 504 printk(KERN_DEBUG "\tsize %u\n", 505 le32_to_cpu(dn->size)); 506 printk(KERN_DEBUG "\tcompr_typ %d\n", 507 (int)le16_to_cpu(dn->compr_type)); 508 printk(KERN_DEBUG "\tdata size %d\n", 509 dlen); 510 printk(KERN_DEBUG "\tdata:\n"); 511 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1, 512 (void *)&dn->data, dlen, 0); 513 break; 514 } 515 case UBIFS_TRUN_NODE: 516 { 517 const struct ubifs_trun_node *trun = node; 518 519 printk(KERN_DEBUG "\tinum %u\n", 520 le32_to_cpu(trun->inum)); 521 printk(KERN_DEBUG "\told_size %llu\n", 522 (unsigned long long)le64_to_cpu(trun->old_size)); 523 printk(KERN_DEBUG "\tnew_size %llu\n", 524 (unsigned long long)le64_to_cpu(trun->new_size)); 525 break; 526 } 527 case UBIFS_IDX_NODE: 528 { 529 const struct ubifs_idx_node *idx = node; 530 531 n = le16_to_cpu(idx->child_cnt); 532 printk(KERN_DEBUG "\tchild_cnt %d\n", n); 533 printk(KERN_DEBUG "\tlevel %d\n", 534 (int)le16_to_cpu(idx->level)); 535 printk(KERN_DEBUG "\tBranches:\n"); 536 537 for (i = 0; i < n && i < c->fanout - 1; i++) { 538 const struct ubifs_branch *br; 539 540 br = ubifs_idx_branch(c, idx, i); 541 key_read(c, &br->key, &key); 542 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n", 543 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 544 le32_to_cpu(br->len), DBGKEY(&key)); 545 } 546 break; 547 } 548 case UBIFS_CS_NODE: 549 break; 550 case UBIFS_ORPH_NODE: 551 { 552 const struct ubifs_orph_node *orph = node; 553 554 printk(KERN_DEBUG "\tcommit number %llu\n", 555 (unsigned long long) 556 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 557 printk(KERN_DEBUG "\tlast node flag %llu\n", 558 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 559 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 560 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n); 561 for (i = 0; i < n; i++) 562 printk(KERN_DEBUG "\t ino %llu\n", 563 (unsigned long long)le64_to_cpu(orph->inos[i])); 564 break; 565 } 566 default: 567 printk(KERN_DEBUG "node type %d was not recognized\n", 568 (int)ch->node_type); 569 } 570 spin_unlock(&dbg_lock); 571 } 572 573 void dbg_dump_budget_req(const struct ubifs_budget_req *req) 574 { 575 spin_lock(&dbg_lock); 576 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n", 577 req->new_ino, req->dirtied_ino); 578 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n", 579 req->new_ino_d, req->dirtied_ino_d); 580 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n", 581 req->new_page, req->dirtied_page); 582 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n", 583 req->new_dent, req->mod_dent); 584 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth); 585 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n", 586 req->data_growth, req->dd_growth); 587 spin_unlock(&dbg_lock); 588 } 589 590 void dbg_dump_lstats(const struct ubifs_lp_stats *lst) 591 { 592 spin_lock(&dbg_lock); 593 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, " 594 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs); 595 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, " 596 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free, 597 lst->total_dirty); 598 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, " 599 "total_dead %lld\n", lst->total_used, lst->total_dark, 600 lst->total_dead); 601 spin_unlock(&dbg_lock); 602 } 603 604 void dbg_dump_budg(struct ubifs_info *c) 605 { 606 int i; 607 struct rb_node *rb; 608 struct ubifs_bud *bud; 609 struct ubifs_gced_idx_leb *idx_gc; 610 long long available, outstanding, free; 611 612 ubifs_assert(spin_is_locked(&c->space_lock)); 613 spin_lock(&dbg_lock); 614 printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, " 615 "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid, 616 c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth); 617 printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, " 618 "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth, 619 c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth, 620 c->freeable_cnt); 621 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, " 622 "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs, 623 c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt); 624 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, " 625 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt), 626 atomic_long_read(&c->dirty_zn_cnt), 627 atomic_long_read(&c->clean_zn_cnt)); 628 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 629 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 630 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n", 631 c->gc_lnum, c->ihead_lnum); 632 /* If we are in R/O mode, journal heads do not exist */ 633 if (c->jheads) 634 for (i = 0; i < c->jhead_cnt; i++) 635 printk(KERN_DEBUG "\tjhead %s\t LEB %d\n", 636 dbg_jhead(c->jheads[i].wbuf.jhead), 637 c->jheads[i].wbuf.lnum); 638 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 639 bud = rb_entry(rb, struct ubifs_bud, rb); 640 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum); 641 } 642 list_for_each_entry(bud, &c->old_buds, list) 643 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum); 644 list_for_each_entry(idx_gc, &c->idx_gc, list) 645 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n", 646 idx_gc->lnum, idx_gc->unmap); 647 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state); 648 649 /* Print budgeting predictions */ 650 available = ubifs_calc_available(c, c->min_idx_lebs); 651 outstanding = c->budg_data_growth + c->budg_dd_growth; 652 free = ubifs_get_free_space_nolock(c); 653 printk(KERN_DEBUG "Budgeting predictions:\n"); 654 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n", 655 available, outstanding, free); 656 spin_unlock(&dbg_lock); 657 } 658 659 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 660 { 661 int i, spc, dark = 0, dead = 0; 662 struct rb_node *rb; 663 struct ubifs_bud *bud; 664 665 spc = lp->free + lp->dirty; 666 if (spc < c->dead_wm) 667 dead = spc; 668 else 669 dark = ubifs_calc_dark(c, spc); 670 671 if (lp->flags & LPROPS_INDEX) 672 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d " 673 "free + dirty %-8d flags %#x (", lp->lnum, lp->free, 674 lp->dirty, c->leb_size - spc, spc, lp->flags); 675 else 676 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d " 677 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d " 678 "flags %#-4x (", lp->lnum, lp->free, lp->dirty, 679 c->leb_size - spc, spc, dark, dead, 680 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 681 682 if (lp->flags & LPROPS_TAKEN) { 683 if (lp->flags & LPROPS_INDEX) 684 printk(KERN_CONT "index, taken"); 685 else 686 printk(KERN_CONT "taken"); 687 } else { 688 const char *s; 689 690 if (lp->flags & LPROPS_INDEX) { 691 switch (lp->flags & LPROPS_CAT_MASK) { 692 case LPROPS_DIRTY_IDX: 693 s = "dirty index"; 694 break; 695 case LPROPS_FRDI_IDX: 696 s = "freeable index"; 697 break; 698 default: 699 s = "index"; 700 } 701 } else { 702 switch (lp->flags & LPROPS_CAT_MASK) { 703 case LPROPS_UNCAT: 704 s = "not categorized"; 705 break; 706 case LPROPS_DIRTY: 707 s = "dirty"; 708 break; 709 case LPROPS_FREE: 710 s = "free"; 711 break; 712 case LPROPS_EMPTY: 713 s = "empty"; 714 break; 715 case LPROPS_FREEABLE: 716 s = "freeable"; 717 break; 718 default: 719 s = NULL; 720 break; 721 } 722 } 723 printk(KERN_CONT "%s", s); 724 } 725 726 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 727 bud = rb_entry(rb, struct ubifs_bud, rb); 728 if (bud->lnum == lp->lnum) { 729 int head = 0; 730 for (i = 0; i < c->jhead_cnt; i++) { 731 if (lp->lnum == c->jheads[i].wbuf.lnum) { 732 printk(KERN_CONT ", jhead %s", 733 dbg_jhead(i)); 734 head = 1; 735 } 736 } 737 if (!head) 738 printk(KERN_CONT ", bud of jhead %s", 739 dbg_jhead(bud->jhead)); 740 } 741 } 742 if (lp->lnum == c->gc_lnum) 743 printk(KERN_CONT ", GC LEB"); 744 printk(KERN_CONT ")\n"); 745 } 746 747 void dbg_dump_lprops(struct ubifs_info *c) 748 { 749 int lnum, err; 750 struct ubifs_lprops lp; 751 struct ubifs_lp_stats lst; 752 753 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n", 754 current->pid); 755 ubifs_get_lp_stats(c, &lst); 756 dbg_dump_lstats(&lst); 757 758 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 759 err = ubifs_read_one_lp(c, lnum, &lp); 760 if (err) 761 ubifs_err("cannot read lprops for LEB %d", lnum); 762 763 dbg_dump_lprop(c, &lp); 764 } 765 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n", 766 current->pid); 767 } 768 769 void dbg_dump_lpt_info(struct ubifs_info *c) 770 { 771 int i; 772 773 spin_lock(&dbg_lock); 774 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid); 775 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz); 776 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz); 777 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz); 778 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz); 779 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz); 780 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt); 781 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght); 782 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt); 783 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt); 784 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 785 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 786 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt); 787 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits); 788 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 789 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 790 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 791 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits); 792 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits); 793 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 794 printk(KERN_DEBUG "\tLPT head is at %d:%d\n", 795 c->nhead_lnum, c->nhead_offs); 796 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", 797 c->ltab_lnum, c->ltab_offs); 798 if (c->big_lpt) 799 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n", 800 c->lsave_lnum, c->lsave_offs); 801 for (i = 0; i < c->lpt_lebs; i++) 802 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d " 803 "cmt %d\n", i + c->lpt_first, c->ltab[i].free, 804 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt); 805 spin_unlock(&dbg_lock); 806 } 807 808 void dbg_dump_leb(const struct ubifs_info *c, int lnum) 809 { 810 struct ubifs_scan_leb *sleb; 811 struct ubifs_scan_node *snod; 812 813 if (dbg_failure_mode) 814 return; 815 816 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n", 817 current->pid, lnum); 818 sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0); 819 if (IS_ERR(sleb)) { 820 ubifs_err("scan error %d", (int)PTR_ERR(sleb)); 821 return; 822 } 823 824 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum, 825 sleb->nodes_cnt, sleb->endpt); 826 827 list_for_each_entry(snod, &sleb->nodes, list) { 828 cond_resched(); 829 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum, 830 snod->offs, snod->len); 831 dbg_dump_node(c, snod->node); 832 } 833 834 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n", 835 current->pid, lnum); 836 ubifs_scan_destroy(sleb); 837 return; 838 } 839 840 void dbg_dump_znode(const struct ubifs_info *c, 841 const struct ubifs_znode *znode) 842 { 843 int n; 844 const struct ubifs_zbranch *zbr; 845 846 spin_lock(&dbg_lock); 847 if (znode->parent) 848 zbr = &znode->parent->zbranch[znode->iip]; 849 else 850 zbr = &c->zroot; 851 852 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d" 853 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs, 854 zbr->len, znode->parent, znode->iip, znode->level, 855 znode->child_cnt, znode->flags); 856 857 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 858 spin_unlock(&dbg_lock); 859 return; 860 } 861 862 printk(KERN_DEBUG "zbranches:\n"); 863 for (n = 0; n < znode->child_cnt; n++) { 864 zbr = &znode->zbranch[n]; 865 if (znode->level > 0) 866 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key " 867 "%s\n", n, zbr->znode, zbr->lnum, 868 zbr->offs, zbr->len, 869 DBGKEY(&zbr->key)); 870 else 871 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key " 872 "%s\n", n, zbr->znode, zbr->lnum, 873 zbr->offs, zbr->len, 874 DBGKEY(&zbr->key)); 875 } 876 spin_unlock(&dbg_lock); 877 } 878 879 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 880 { 881 int i; 882 883 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n", 884 current->pid, cat, heap->cnt); 885 for (i = 0; i < heap->cnt; i++) { 886 struct ubifs_lprops *lprops = heap->arr[i]; 887 888 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d " 889 "flags %d\n", i, lprops->lnum, lprops->hpos, 890 lprops->free, lprops->dirty, lprops->flags); 891 } 892 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid); 893 } 894 895 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 896 struct ubifs_nnode *parent, int iip) 897 { 898 int i; 899 900 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid); 901 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n", 902 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 903 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n", 904 pnode->flags, iip, pnode->level, pnode->num); 905 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 906 struct ubifs_lprops *lp = &pnode->lprops[i]; 907 908 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n", 909 i, lp->free, lp->dirty, lp->flags, lp->lnum); 910 } 911 } 912 913 void dbg_dump_tnc(struct ubifs_info *c) 914 { 915 struct ubifs_znode *znode; 916 int level; 917 918 printk(KERN_DEBUG "\n"); 919 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid); 920 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 921 level = znode->level; 922 printk(KERN_DEBUG "== Level %d ==\n", level); 923 while (znode) { 924 if (level != znode->level) { 925 level = znode->level; 926 printk(KERN_DEBUG "== Level %d ==\n", level); 927 } 928 dbg_dump_znode(c, znode); 929 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 930 } 931 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid); 932 } 933 934 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 935 void *priv) 936 { 937 dbg_dump_znode(c, znode); 938 return 0; 939 } 940 941 /** 942 * dbg_dump_index - dump the on-flash index. 943 * @c: UBIFS file-system description object 944 * 945 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()' 946 * which dumps only in-memory znodes and does not read znodes which from flash. 947 */ 948 void dbg_dump_index(struct ubifs_info *c) 949 { 950 dbg_walk_index(c, NULL, dump_znode, NULL); 951 } 952 953 /** 954 * dbg_save_space_info - save information about flash space. 955 * @c: UBIFS file-system description object 956 * 957 * This function saves information about UBIFS free space, dirty space, etc, in 958 * order to check it later. 959 */ 960 void dbg_save_space_info(struct ubifs_info *c) 961 { 962 struct ubifs_debug_info *d = c->dbg; 963 964 ubifs_get_lp_stats(c, &d->saved_lst); 965 966 spin_lock(&c->space_lock); 967 d->saved_free = ubifs_get_free_space_nolock(c); 968 spin_unlock(&c->space_lock); 969 } 970 971 /** 972 * dbg_check_space_info - check flash space information. 973 * @c: UBIFS file-system description object 974 * 975 * This function compares current flash space information with the information 976 * which was saved when the 'dbg_save_space_info()' function was called. 977 * Returns zero if the information has not changed, and %-EINVAL it it has 978 * changed. 979 */ 980 int dbg_check_space_info(struct ubifs_info *c) 981 { 982 struct ubifs_debug_info *d = c->dbg; 983 struct ubifs_lp_stats lst; 984 long long avail, free; 985 986 spin_lock(&c->space_lock); 987 avail = ubifs_calc_available(c, c->min_idx_lebs); 988 spin_unlock(&c->space_lock); 989 free = ubifs_get_free_space(c); 990 991 if (free != d->saved_free) { 992 ubifs_err("free space changed from %lld to %lld", 993 d->saved_free, free); 994 goto out; 995 } 996 997 return 0; 998 999 out: 1000 ubifs_msg("saved lprops statistics dump"); 1001 dbg_dump_lstats(&d->saved_lst); 1002 ubifs_get_lp_stats(c, &lst); 1003 1004 ubifs_msg("current lprops statistics dump"); 1005 dbg_dump_lstats(&lst); 1006 1007 spin_lock(&c->space_lock); 1008 dbg_dump_budg(c); 1009 spin_unlock(&c->space_lock); 1010 dump_stack(); 1011 return -EINVAL; 1012 } 1013 1014 /** 1015 * dbg_check_synced_i_size - check synchronized inode size. 1016 * @inode: inode to check 1017 * 1018 * If inode is clean, synchronized inode size has to be equivalent to current 1019 * inode size. This function has to be called only for locked inodes (@i_mutex 1020 * has to be locked). Returns %0 if synchronized inode size if correct, and 1021 * %-EINVAL if not. 1022 */ 1023 int dbg_check_synced_i_size(struct inode *inode) 1024 { 1025 int err = 0; 1026 struct ubifs_inode *ui = ubifs_inode(inode); 1027 1028 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 1029 return 0; 1030 if (!S_ISREG(inode->i_mode)) 1031 return 0; 1032 1033 mutex_lock(&ui->ui_mutex); 1034 spin_lock(&ui->ui_lock); 1035 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1036 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode " 1037 "is clean", ui->ui_size, ui->synced_i_size); 1038 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1039 inode->i_mode, i_size_read(inode)); 1040 dbg_dump_stack(); 1041 err = -EINVAL; 1042 } 1043 spin_unlock(&ui->ui_lock); 1044 mutex_unlock(&ui->ui_mutex); 1045 return err; 1046 } 1047 1048 /* 1049 * dbg_check_dir - check directory inode size and link count. 1050 * @c: UBIFS file-system description object 1051 * @dir: the directory to calculate size for 1052 * @size: the result is returned here 1053 * 1054 * This function makes sure that directory size and link count are correct. 1055 * Returns zero in case of success and a negative error code in case of 1056 * failure. 1057 * 1058 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1059 * calling this function. 1060 */ 1061 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir) 1062 { 1063 unsigned int nlink = 2; 1064 union ubifs_key key; 1065 struct ubifs_dent_node *dent, *pdent = NULL; 1066 struct qstr nm = { .name = NULL }; 1067 loff_t size = UBIFS_INO_NODE_SZ; 1068 1069 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 1070 return 0; 1071 1072 if (!S_ISDIR(dir->i_mode)) 1073 return 0; 1074 1075 lowest_dent_key(c, &key, dir->i_ino); 1076 while (1) { 1077 int err; 1078 1079 dent = ubifs_tnc_next_ent(c, &key, &nm); 1080 if (IS_ERR(dent)) { 1081 err = PTR_ERR(dent); 1082 if (err == -ENOENT) 1083 break; 1084 return err; 1085 } 1086 1087 nm.name = dent->name; 1088 nm.len = le16_to_cpu(dent->nlen); 1089 size += CALC_DENT_SIZE(nm.len); 1090 if (dent->type == UBIFS_ITYPE_DIR) 1091 nlink += 1; 1092 kfree(pdent); 1093 pdent = dent; 1094 key_read(c, &dent->key, &key); 1095 } 1096 kfree(pdent); 1097 1098 if (i_size_read(dir) != size) { 1099 ubifs_err("directory inode %lu has size %llu, " 1100 "but calculated size is %llu", dir->i_ino, 1101 (unsigned long long)i_size_read(dir), 1102 (unsigned long long)size); 1103 dump_stack(); 1104 return -EINVAL; 1105 } 1106 if (dir->i_nlink != nlink) { 1107 ubifs_err("directory inode %lu has nlink %u, but calculated " 1108 "nlink is %u", dir->i_ino, dir->i_nlink, nlink); 1109 dump_stack(); 1110 return -EINVAL; 1111 } 1112 1113 return 0; 1114 } 1115 1116 /** 1117 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1118 * @c: UBIFS file-system description object 1119 * @zbr1: first zbranch 1120 * @zbr2: following zbranch 1121 * 1122 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1123 * names of the direntries/xentries which are referred by the keys. This 1124 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1125 * sure the name of direntry/xentry referred by @zbr1 is less than 1126 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1127 * and a negative error code in case of failure. 1128 */ 1129 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1130 struct ubifs_zbranch *zbr2) 1131 { 1132 int err, nlen1, nlen2, cmp; 1133 struct ubifs_dent_node *dent1, *dent2; 1134 union ubifs_key key; 1135 1136 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 1137 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1138 if (!dent1) 1139 return -ENOMEM; 1140 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1141 if (!dent2) { 1142 err = -ENOMEM; 1143 goto out_free; 1144 } 1145 1146 err = ubifs_tnc_read_node(c, zbr1, dent1); 1147 if (err) 1148 goto out_free; 1149 err = ubifs_validate_entry(c, dent1); 1150 if (err) 1151 goto out_free; 1152 1153 err = ubifs_tnc_read_node(c, zbr2, dent2); 1154 if (err) 1155 goto out_free; 1156 err = ubifs_validate_entry(c, dent2); 1157 if (err) 1158 goto out_free; 1159 1160 /* Make sure node keys are the same as in zbranch */ 1161 err = 1; 1162 key_read(c, &dent1->key, &key); 1163 if (keys_cmp(c, &zbr1->key, &key)) { 1164 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum, 1165 zbr1->offs, DBGKEY(&key)); 1166 dbg_err("but it should have key %s according to tnc", 1167 DBGKEY(&zbr1->key)); 1168 dbg_dump_node(c, dent1); 1169 goto out_free; 1170 } 1171 1172 key_read(c, &dent2->key, &key); 1173 if (keys_cmp(c, &zbr2->key, &key)) { 1174 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum, 1175 zbr1->offs, DBGKEY(&key)); 1176 dbg_err("but it should have key %s according to tnc", 1177 DBGKEY(&zbr2->key)); 1178 dbg_dump_node(c, dent2); 1179 goto out_free; 1180 } 1181 1182 nlen1 = le16_to_cpu(dent1->nlen); 1183 nlen2 = le16_to_cpu(dent2->nlen); 1184 1185 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1186 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1187 err = 0; 1188 goto out_free; 1189 } 1190 if (cmp == 0 && nlen1 == nlen2) 1191 dbg_err("2 xent/dent nodes with the same name"); 1192 else 1193 dbg_err("bad order of colliding key %s", 1194 DBGKEY(&key)); 1195 1196 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1197 dbg_dump_node(c, dent1); 1198 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1199 dbg_dump_node(c, dent2); 1200 1201 out_free: 1202 kfree(dent2); 1203 kfree(dent1); 1204 return err; 1205 } 1206 1207 /** 1208 * dbg_check_znode - check if znode is all right. 1209 * @c: UBIFS file-system description object 1210 * @zbr: zbranch which points to this znode 1211 * 1212 * This function makes sure that znode referred to by @zbr is all right. 1213 * Returns zero if it is, and %-EINVAL if it is not. 1214 */ 1215 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1216 { 1217 struct ubifs_znode *znode = zbr->znode; 1218 struct ubifs_znode *zp = znode->parent; 1219 int n, err, cmp; 1220 1221 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1222 err = 1; 1223 goto out; 1224 } 1225 if (znode->level < 0) { 1226 err = 2; 1227 goto out; 1228 } 1229 if (znode->iip < 0 || znode->iip >= c->fanout) { 1230 err = 3; 1231 goto out; 1232 } 1233 1234 if (zbr->len == 0) 1235 /* Only dirty zbranch may have no on-flash nodes */ 1236 if (!ubifs_zn_dirty(znode)) { 1237 err = 4; 1238 goto out; 1239 } 1240 1241 if (ubifs_zn_dirty(znode)) { 1242 /* 1243 * If znode is dirty, its parent has to be dirty as well. The 1244 * order of the operation is important, so we have to have 1245 * memory barriers. 1246 */ 1247 smp_mb(); 1248 if (zp && !ubifs_zn_dirty(zp)) { 1249 /* 1250 * The dirty flag is atomic and is cleared outside the 1251 * TNC mutex, so znode's dirty flag may now have 1252 * been cleared. The child is always cleared before the 1253 * parent, so we just need to check again. 1254 */ 1255 smp_mb(); 1256 if (ubifs_zn_dirty(znode)) { 1257 err = 5; 1258 goto out; 1259 } 1260 } 1261 } 1262 1263 if (zp) { 1264 const union ubifs_key *min, *max; 1265 1266 if (znode->level != zp->level - 1) { 1267 err = 6; 1268 goto out; 1269 } 1270 1271 /* Make sure the 'parent' pointer in our znode is correct */ 1272 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1273 if (!err) { 1274 /* This zbranch does not exist in the parent */ 1275 err = 7; 1276 goto out; 1277 } 1278 1279 if (znode->iip >= zp->child_cnt) { 1280 err = 8; 1281 goto out; 1282 } 1283 1284 if (znode->iip != n) { 1285 /* This may happen only in case of collisions */ 1286 if (keys_cmp(c, &zp->zbranch[n].key, 1287 &zp->zbranch[znode->iip].key)) { 1288 err = 9; 1289 goto out; 1290 } 1291 n = znode->iip; 1292 } 1293 1294 /* 1295 * Make sure that the first key in our znode is greater than or 1296 * equal to the key in the pointing zbranch. 1297 */ 1298 min = &zbr->key; 1299 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1300 if (cmp == 1) { 1301 err = 10; 1302 goto out; 1303 } 1304 1305 if (n + 1 < zp->child_cnt) { 1306 max = &zp->zbranch[n + 1].key; 1307 1308 /* 1309 * Make sure the last key in our znode is less or 1310 * equivalent than the key in the zbranch which goes 1311 * after our pointing zbranch. 1312 */ 1313 cmp = keys_cmp(c, max, 1314 &znode->zbranch[znode->child_cnt - 1].key); 1315 if (cmp == -1) { 1316 err = 11; 1317 goto out; 1318 } 1319 } 1320 } else { 1321 /* This may only be root znode */ 1322 if (zbr != &c->zroot) { 1323 err = 12; 1324 goto out; 1325 } 1326 } 1327 1328 /* 1329 * Make sure that next key is greater or equivalent then the previous 1330 * one. 1331 */ 1332 for (n = 1; n < znode->child_cnt; n++) { 1333 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1334 &znode->zbranch[n].key); 1335 if (cmp > 0) { 1336 err = 13; 1337 goto out; 1338 } 1339 if (cmp == 0) { 1340 /* This can only be keys with colliding hash */ 1341 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1342 err = 14; 1343 goto out; 1344 } 1345 1346 if (znode->level != 0 || c->replaying) 1347 continue; 1348 1349 /* 1350 * Colliding keys should follow binary order of 1351 * corresponding xentry/dentry names. 1352 */ 1353 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1354 &znode->zbranch[n]); 1355 if (err < 0) 1356 return err; 1357 if (err) { 1358 err = 15; 1359 goto out; 1360 } 1361 } 1362 } 1363 1364 for (n = 0; n < znode->child_cnt; n++) { 1365 if (!znode->zbranch[n].znode && 1366 (znode->zbranch[n].lnum == 0 || 1367 znode->zbranch[n].len == 0)) { 1368 err = 16; 1369 goto out; 1370 } 1371 1372 if (znode->zbranch[n].lnum != 0 && 1373 znode->zbranch[n].len == 0) { 1374 err = 17; 1375 goto out; 1376 } 1377 1378 if (znode->zbranch[n].lnum == 0 && 1379 znode->zbranch[n].len != 0) { 1380 err = 18; 1381 goto out; 1382 } 1383 1384 if (znode->zbranch[n].lnum == 0 && 1385 znode->zbranch[n].offs != 0) { 1386 err = 19; 1387 goto out; 1388 } 1389 1390 if (znode->level != 0 && znode->zbranch[n].znode) 1391 if (znode->zbranch[n].znode->parent != znode) { 1392 err = 20; 1393 goto out; 1394 } 1395 } 1396 1397 return 0; 1398 1399 out: 1400 ubifs_err("failed, error %d", err); 1401 ubifs_msg("dump of the znode"); 1402 dbg_dump_znode(c, znode); 1403 if (zp) { 1404 ubifs_msg("dump of the parent znode"); 1405 dbg_dump_znode(c, zp); 1406 } 1407 dump_stack(); 1408 return -EINVAL; 1409 } 1410 1411 /** 1412 * dbg_check_tnc - check TNC tree. 1413 * @c: UBIFS file-system description object 1414 * @extra: do extra checks that are possible at start commit 1415 * 1416 * This function traverses whole TNC tree and checks every znode. Returns zero 1417 * if everything is all right and %-EINVAL if something is wrong with TNC. 1418 */ 1419 int dbg_check_tnc(struct ubifs_info *c, int extra) 1420 { 1421 struct ubifs_znode *znode; 1422 long clean_cnt = 0, dirty_cnt = 0; 1423 int err, last; 1424 1425 if (!(ubifs_chk_flags & UBIFS_CHK_TNC)) 1426 return 0; 1427 1428 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1429 if (!c->zroot.znode) 1430 return 0; 1431 1432 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1433 while (1) { 1434 struct ubifs_znode *prev; 1435 struct ubifs_zbranch *zbr; 1436 1437 if (!znode->parent) 1438 zbr = &c->zroot; 1439 else 1440 zbr = &znode->parent->zbranch[znode->iip]; 1441 1442 err = dbg_check_znode(c, zbr); 1443 if (err) 1444 return err; 1445 1446 if (extra) { 1447 if (ubifs_zn_dirty(znode)) 1448 dirty_cnt += 1; 1449 else 1450 clean_cnt += 1; 1451 } 1452 1453 prev = znode; 1454 znode = ubifs_tnc_postorder_next(znode); 1455 if (!znode) 1456 break; 1457 1458 /* 1459 * If the last key of this znode is equivalent to the first key 1460 * of the next znode (collision), then check order of the keys. 1461 */ 1462 last = prev->child_cnt - 1; 1463 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1464 !keys_cmp(c, &prev->zbranch[last].key, 1465 &znode->zbranch[0].key)) { 1466 err = dbg_check_key_order(c, &prev->zbranch[last], 1467 &znode->zbranch[0]); 1468 if (err < 0) 1469 return err; 1470 if (err) { 1471 ubifs_msg("first znode"); 1472 dbg_dump_znode(c, prev); 1473 ubifs_msg("second znode"); 1474 dbg_dump_znode(c, znode); 1475 return -EINVAL; 1476 } 1477 } 1478 } 1479 1480 if (extra) { 1481 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1482 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", 1483 atomic_long_read(&c->clean_zn_cnt), 1484 clean_cnt); 1485 return -EINVAL; 1486 } 1487 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1488 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", 1489 atomic_long_read(&c->dirty_zn_cnt), 1490 dirty_cnt); 1491 return -EINVAL; 1492 } 1493 } 1494 1495 return 0; 1496 } 1497 1498 /** 1499 * dbg_walk_index - walk the on-flash index. 1500 * @c: UBIFS file-system description object 1501 * @leaf_cb: called for each leaf node 1502 * @znode_cb: called for each indexing node 1503 * @priv: private data which is passed to callbacks 1504 * 1505 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1506 * node and @znode_cb for each indexing node. Returns zero in case of success 1507 * and a negative error code in case of failure. 1508 * 1509 * It would be better if this function removed every znode it pulled to into 1510 * the TNC, so that the behavior more closely matched the non-debugging 1511 * behavior. 1512 */ 1513 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1514 dbg_znode_callback znode_cb, void *priv) 1515 { 1516 int err; 1517 struct ubifs_zbranch *zbr; 1518 struct ubifs_znode *znode, *child; 1519 1520 mutex_lock(&c->tnc_mutex); 1521 /* If the root indexing node is not in TNC - pull it */ 1522 if (!c->zroot.znode) { 1523 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1524 if (IS_ERR(c->zroot.znode)) { 1525 err = PTR_ERR(c->zroot.znode); 1526 c->zroot.znode = NULL; 1527 goto out_unlock; 1528 } 1529 } 1530 1531 /* 1532 * We are going to traverse the indexing tree in the postorder manner. 1533 * Go down and find the leftmost indexing node where we are going to 1534 * start from. 1535 */ 1536 znode = c->zroot.znode; 1537 while (znode->level > 0) { 1538 zbr = &znode->zbranch[0]; 1539 child = zbr->znode; 1540 if (!child) { 1541 child = ubifs_load_znode(c, zbr, znode, 0); 1542 if (IS_ERR(child)) { 1543 err = PTR_ERR(child); 1544 goto out_unlock; 1545 } 1546 zbr->znode = child; 1547 } 1548 1549 znode = child; 1550 } 1551 1552 /* Iterate over all indexing nodes */ 1553 while (1) { 1554 int idx; 1555 1556 cond_resched(); 1557 1558 if (znode_cb) { 1559 err = znode_cb(c, znode, priv); 1560 if (err) { 1561 ubifs_err("znode checking function returned " 1562 "error %d", err); 1563 dbg_dump_znode(c, znode); 1564 goto out_dump; 1565 } 1566 } 1567 if (leaf_cb && znode->level == 0) { 1568 for (idx = 0; idx < znode->child_cnt; idx++) { 1569 zbr = &znode->zbranch[idx]; 1570 err = leaf_cb(c, zbr, priv); 1571 if (err) { 1572 ubifs_err("leaf checking function " 1573 "returned error %d, for leaf " 1574 "at LEB %d:%d", 1575 err, zbr->lnum, zbr->offs); 1576 goto out_dump; 1577 } 1578 } 1579 } 1580 1581 if (!znode->parent) 1582 break; 1583 1584 idx = znode->iip + 1; 1585 znode = znode->parent; 1586 if (idx < znode->child_cnt) { 1587 /* Switch to the next index in the parent */ 1588 zbr = &znode->zbranch[idx]; 1589 child = zbr->znode; 1590 if (!child) { 1591 child = ubifs_load_znode(c, zbr, znode, idx); 1592 if (IS_ERR(child)) { 1593 err = PTR_ERR(child); 1594 goto out_unlock; 1595 } 1596 zbr->znode = child; 1597 } 1598 znode = child; 1599 } else 1600 /* 1601 * This is the last child, switch to the parent and 1602 * continue. 1603 */ 1604 continue; 1605 1606 /* Go to the lowest leftmost znode in the new sub-tree */ 1607 while (znode->level > 0) { 1608 zbr = &znode->zbranch[0]; 1609 child = zbr->znode; 1610 if (!child) { 1611 child = ubifs_load_znode(c, zbr, znode, 0); 1612 if (IS_ERR(child)) { 1613 err = PTR_ERR(child); 1614 goto out_unlock; 1615 } 1616 zbr->znode = child; 1617 } 1618 znode = child; 1619 } 1620 } 1621 1622 mutex_unlock(&c->tnc_mutex); 1623 return 0; 1624 1625 out_dump: 1626 if (znode->parent) 1627 zbr = &znode->parent->zbranch[znode->iip]; 1628 else 1629 zbr = &c->zroot; 1630 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1631 dbg_dump_znode(c, znode); 1632 out_unlock: 1633 mutex_unlock(&c->tnc_mutex); 1634 return err; 1635 } 1636 1637 /** 1638 * add_size - add znode size to partially calculated index size. 1639 * @c: UBIFS file-system description object 1640 * @znode: znode to add size for 1641 * @priv: partially calculated index size 1642 * 1643 * This is a helper function for 'dbg_check_idx_size()' which is called for 1644 * every indexing node and adds its size to the 'long long' variable pointed to 1645 * by @priv. 1646 */ 1647 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1648 { 1649 long long *idx_size = priv; 1650 int add; 1651 1652 add = ubifs_idx_node_sz(c, znode->child_cnt); 1653 add = ALIGN(add, 8); 1654 *idx_size += add; 1655 return 0; 1656 } 1657 1658 /** 1659 * dbg_check_idx_size - check index size. 1660 * @c: UBIFS file-system description object 1661 * @idx_size: size to check 1662 * 1663 * This function walks the UBIFS index, calculates its size and checks that the 1664 * size is equivalent to @idx_size. Returns zero in case of success and a 1665 * negative error code in case of failure. 1666 */ 1667 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1668 { 1669 int err; 1670 long long calc = 0; 1671 1672 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ)) 1673 return 0; 1674 1675 err = dbg_walk_index(c, NULL, add_size, &calc); 1676 if (err) { 1677 ubifs_err("error %d while walking the index", err); 1678 return err; 1679 } 1680 1681 if (calc != idx_size) { 1682 ubifs_err("index size check failed: calculated size is %lld, " 1683 "should be %lld", calc, idx_size); 1684 dump_stack(); 1685 return -EINVAL; 1686 } 1687 1688 return 0; 1689 } 1690 1691 /** 1692 * struct fsck_inode - information about an inode used when checking the file-system. 1693 * @rb: link in the RB-tree of inodes 1694 * @inum: inode number 1695 * @mode: inode type, permissions, etc 1696 * @nlink: inode link count 1697 * @xattr_cnt: count of extended attributes 1698 * @references: how many directory/xattr entries refer this inode (calculated 1699 * while walking the index) 1700 * @calc_cnt: for directory inode count of child directories 1701 * @size: inode size (read from on-flash inode) 1702 * @xattr_sz: summary size of all extended attributes (read from on-flash 1703 * inode) 1704 * @calc_sz: for directories calculated directory size 1705 * @calc_xcnt: count of extended attributes 1706 * @calc_xsz: calculated summary size of all extended attributes 1707 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1708 * inode (read from on-flash inode) 1709 * @calc_xnms: calculated sum of lengths of all extended attribute names 1710 */ 1711 struct fsck_inode { 1712 struct rb_node rb; 1713 ino_t inum; 1714 umode_t mode; 1715 unsigned int nlink; 1716 unsigned int xattr_cnt; 1717 int references; 1718 int calc_cnt; 1719 long long size; 1720 unsigned int xattr_sz; 1721 long long calc_sz; 1722 long long calc_xcnt; 1723 long long calc_xsz; 1724 unsigned int xattr_nms; 1725 long long calc_xnms; 1726 }; 1727 1728 /** 1729 * struct fsck_data - private FS checking information. 1730 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1731 */ 1732 struct fsck_data { 1733 struct rb_root inodes; 1734 }; 1735 1736 /** 1737 * add_inode - add inode information to RB-tree of inodes. 1738 * @c: UBIFS file-system description object 1739 * @fsckd: FS checking information 1740 * @ino: raw UBIFS inode to add 1741 * 1742 * This is a helper function for 'check_leaf()' which adds information about 1743 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1744 * case of success and a negative error code in case of failure. 1745 */ 1746 static struct fsck_inode *add_inode(struct ubifs_info *c, 1747 struct fsck_data *fsckd, 1748 struct ubifs_ino_node *ino) 1749 { 1750 struct rb_node **p, *parent = NULL; 1751 struct fsck_inode *fscki; 1752 ino_t inum = key_inum_flash(c, &ino->key); 1753 1754 p = &fsckd->inodes.rb_node; 1755 while (*p) { 1756 parent = *p; 1757 fscki = rb_entry(parent, struct fsck_inode, rb); 1758 if (inum < fscki->inum) 1759 p = &(*p)->rb_left; 1760 else if (inum > fscki->inum) 1761 p = &(*p)->rb_right; 1762 else 1763 return fscki; 1764 } 1765 1766 if (inum > c->highest_inum) { 1767 ubifs_err("too high inode number, max. is %lu", 1768 (unsigned long)c->highest_inum); 1769 return ERR_PTR(-EINVAL); 1770 } 1771 1772 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1773 if (!fscki) 1774 return ERR_PTR(-ENOMEM); 1775 1776 fscki->inum = inum; 1777 fscki->nlink = le32_to_cpu(ino->nlink); 1778 fscki->size = le64_to_cpu(ino->size); 1779 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1780 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1781 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1782 fscki->mode = le32_to_cpu(ino->mode); 1783 if (S_ISDIR(fscki->mode)) { 1784 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1785 fscki->calc_cnt = 2; 1786 } 1787 rb_link_node(&fscki->rb, parent, p); 1788 rb_insert_color(&fscki->rb, &fsckd->inodes); 1789 return fscki; 1790 } 1791 1792 /** 1793 * search_inode - search inode in the RB-tree of inodes. 1794 * @fsckd: FS checking information 1795 * @inum: inode number to search 1796 * 1797 * This is a helper function for 'check_leaf()' which searches inode @inum in 1798 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1799 * the inode was not found. 1800 */ 1801 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1802 { 1803 struct rb_node *p; 1804 struct fsck_inode *fscki; 1805 1806 p = fsckd->inodes.rb_node; 1807 while (p) { 1808 fscki = rb_entry(p, struct fsck_inode, rb); 1809 if (inum < fscki->inum) 1810 p = p->rb_left; 1811 else if (inum > fscki->inum) 1812 p = p->rb_right; 1813 else 1814 return fscki; 1815 } 1816 return NULL; 1817 } 1818 1819 /** 1820 * read_add_inode - read inode node and add it to RB-tree of inodes. 1821 * @c: UBIFS file-system description object 1822 * @fsckd: FS checking information 1823 * @inum: inode number to read 1824 * 1825 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1826 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1827 * information pointer in case of success and a negative error code in case of 1828 * failure. 1829 */ 1830 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1831 struct fsck_data *fsckd, ino_t inum) 1832 { 1833 int n, err; 1834 union ubifs_key key; 1835 struct ubifs_znode *znode; 1836 struct ubifs_zbranch *zbr; 1837 struct ubifs_ino_node *ino; 1838 struct fsck_inode *fscki; 1839 1840 fscki = search_inode(fsckd, inum); 1841 if (fscki) 1842 return fscki; 1843 1844 ino_key_init(c, &key, inum); 1845 err = ubifs_lookup_level0(c, &key, &znode, &n); 1846 if (!err) { 1847 ubifs_err("inode %lu not found in index", (unsigned long)inum); 1848 return ERR_PTR(-ENOENT); 1849 } else if (err < 0) { 1850 ubifs_err("error %d while looking up inode %lu", 1851 err, (unsigned long)inum); 1852 return ERR_PTR(err); 1853 } 1854 1855 zbr = &znode->zbranch[n]; 1856 if (zbr->len < UBIFS_INO_NODE_SZ) { 1857 ubifs_err("bad node %lu node length %d", 1858 (unsigned long)inum, zbr->len); 1859 return ERR_PTR(-EINVAL); 1860 } 1861 1862 ino = kmalloc(zbr->len, GFP_NOFS); 1863 if (!ino) 1864 return ERR_PTR(-ENOMEM); 1865 1866 err = ubifs_tnc_read_node(c, zbr, ino); 1867 if (err) { 1868 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 1869 zbr->lnum, zbr->offs, err); 1870 kfree(ino); 1871 return ERR_PTR(err); 1872 } 1873 1874 fscki = add_inode(c, fsckd, ino); 1875 kfree(ino); 1876 if (IS_ERR(fscki)) { 1877 ubifs_err("error %ld while adding inode %lu node", 1878 PTR_ERR(fscki), (unsigned long)inum); 1879 return fscki; 1880 } 1881 1882 return fscki; 1883 } 1884 1885 /** 1886 * check_leaf - check leaf node. 1887 * @c: UBIFS file-system description object 1888 * @zbr: zbranch of the leaf node to check 1889 * @priv: FS checking information 1890 * 1891 * This is a helper function for 'dbg_check_filesystem()' which is called for 1892 * every single leaf node while walking the indexing tree. It checks that the 1893 * leaf node referred from the indexing tree exists, has correct CRC, and does 1894 * some other basic validation. This function is also responsible for building 1895 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 1896 * calculates reference count, size, etc for each inode in order to later 1897 * compare them to the information stored inside the inodes and detect possible 1898 * inconsistencies. Returns zero in case of success and a negative error code 1899 * in case of failure. 1900 */ 1901 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 1902 void *priv) 1903 { 1904 ino_t inum; 1905 void *node; 1906 struct ubifs_ch *ch; 1907 int err, type = key_type(c, &zbr->key); 1908 struct fsck_inode *fscki; 1909 1910 if (zbr->len < UBIFS_CH_SZ) { 1911 ubifs_err("bad leaf length %d (LEB %d:%d)", 1912 zbr->len, zbr->lnum, zbr->offs); 1913 return -EINVAL; 1914 } 1915 1916 node = kmalloc(zbr->len, GFP_NOFS); 1917 if (!node) 1918 return -ENOMEM; 1919 1920 err = ubifs_tnc_read_node(c, zbr, node); 1921 if (err) { 1922 ubifs_err("cannot read leaf node at LEB %d:%d, error %d", 1923 zbr->lnum, zbr->offs, err); 1924 goto out_free; 1925 } 1926 1927 /* If this is an inode node, add it to RB-tree of inodes */ 1928 if (type == UBIFS_INO_KEY) { 1929 fscki = add_inode(c, priv, node); 1930 if (IS_ERR(fscki)) { 1931 err = PTR_ERR(fscki); 1932 ubifs_err("error %d while adding inode node", err); 1933 goto out_dump; 1934 } 1935 goto out; 1936 } 1937 1938 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 1939 type != UBIFS_DATA_KEY) { 1940 ubifs_err("unexpected node type %d at LEB %d:%d", 1941 type, zbr->lnum, zbr->offs); 1942 err = -EINVAL; 1943 goto out_free; 1944 } 1945 1946 ch = node; 1947 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 1948 ubifs_err("too high sequence number, max. is %llu", 1949 c->max_sqnum); 1950 err = -EINVAL; 1951 goto out_dump; 1952 } 1953 1954 if (type == UBIFS_DATA_KEY) { 1955 long long blk_offs; 1956 struct ubifs_data_node *dn = node; 1957 1958 /* 1959 * Search the inode node this data node belongs to and insert 1960 * it to the RB-tree of inodes. 1961 */ 1962 inum = key_inum_flash(c, &dn->key); 1963 fscki = read_add_inode(c, priv, inum); 1964 if (IS_ERR(fscki)) { 1965 err = PTR_ERR(fscki); 1966 ubifs_err("error %d while processing data node and " 1967 "trying to find inode node %lu", 1968 err, (unsigned long)inum); 1969 goto out_dump; 1970 } 1971 1972 /* Make sure the data node is within inode size */ 1973 blk_offs = key_block_flash(c, &dn->key); 1974 blk_offs <<= UBIFS_BLOCK_SHIFT; 1975 blk_offs += le32_to_cpu(dn->size); 1976 if (blk_offs > fscki->size) { 1977 ubifs_err("data node at LEB %d:%d is not within inode " 1978 "size %lld", zbr->lnum, zbr->offs, 1979 fscki->size); 1980 err = -EINVAL; 1981 goto out_dump; 1982 } 1983 } else { 1984 int nlen; 1985 struct ubifs_dent_node *dent = node; 1986 struct fsck_inode *fscki1; 1987 1988 err = ubifs_validate_entry(c, dent); 1989 if (err) 1990 goto out_dump; 1991 1992 /* 1993 * Search the inode node this entry refers to and the parent 1994 * inode node and insert them to the RB-tree of inodes. 1995 */ 1996 inum = le64_to_cpu(dent->inum); 1997 fscki = read_add_inode(c, priv, inum); 1998 if (IS_ERR(fscki)) { 1999 err = PTR_ERR(fscki); 2000 ubifs_err("error %d while processing entry node and " 2001 "trying to find inode node %lu", 2002 err, (unsigned long)inum); 2003 goto out_dump; 2004 } 2005 2006 /* Count how many direntries or xentries refers this inode */ 2007 fscki->references += 1; 2008 2009 inum = key_inum_flash(c, &dent->key); 2010 fscki1 = read_add_inode(c, priv, inum); 2011 if (IS_ERR(fscki1)) { 2012 err = PTR_ERR(fscki1); 2013 ubifs_err("error %d while processing entry node and " 2014 "trying to find parent inode node %lu", 2015 err, (unsigned long)inum); 2016 goto out_dump; 2017 } 2018 2019 nlen = le16_to_cpu(dent->nlen); 2020 if (type == UBIFS_XENT_KEY) { 2021 fscki1->calc_xcnt += 1; 2022 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2023 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2024 fscki1->calc_xnms += nlen; 2025 } else { 2026 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2027 if (dent->type == UBIFS_ITYPE_DIR) 2028 fscki1->calc_cnt += 1; 2029 } 2030 } 2031 2032 out: 2033 kfree(node); 2034 return 0; 2035 2036 out_dump: 2037 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2038 dbg_dump_node(c, node); 2039 out_free: 2040 kfree(node); 2041 return err; 2042 } 2043 2044 /** 2045 * free_inodes - free RB-tree of inodes. 2046 * @fsckd: FS checking information 2047 */ 2048 static void free_inodes(struct fsck_data *fsckd) 2049 { 2050 struct rb_node *this = fsckd->inodes.rb_node; 2051 struct fsck_inode *fscki; 2052 2053 while (this) { 2054 if (this->rb_left) 2055 this = this->rb_left; 2056 else if (this->rb_right) 2057 this = this->rb_right; 2058 else { 2059 fscki = rb_entry(this, struct fsck_inode, rb); 2060 this = rb_parent(this); 2061 if (this) { 2062 if (this->rb_left == &fscki->rb) 2063 this->rb_left = NULL; 2064 else 2065 this->rb_right = NULL; 2066 } 2067 kfree(fscki); 2068 } 2069 } 2070 } 2071 2072 /** 2073 * check_inodes - checks all inodes. 2074 * @c: UBIFS file-system description object 2075 * @fsckd: FS checking information 2076 * 2077 * This is a helper function for 'dbg_check_filesystem()' which walks the 2078 * RB-tree of inodes after the index scan has been finished, and checks that 2079 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2080 * %-EINVAL if not, and a negative error code in case of failure. 2081 */ 2082 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2083 { 2084 int n, err; 2085 union ubifs_key key; 2086 struct ubifs_znode *znode; 2087 struct ubifs_zbranch *zbr; 2088 struct ubifs_ino_node *ino; 2089 struct fsck_inode *fscki; 2090 struct rb_node *this = rb_first(&fsckd->inodes); 2091 2092 while (this) { 2093 fscki = rb_entry(this, struct fsck_inode, rb); 2094 this = rb_next(this); 2095 2096 if (S_ISDIR(fscki->mode)) { 2097 /* 2098 * Directories have to have exactly one reference (they 2099 * cannot have hardlinks), although root inode is an 2100 * exception. 2101 */ 2102 if (fscki->inum != UBIFS_ROOT_INO && 2103 fscki->references != 1) { 2104 ubifs_err("directory inode %lu has %d " 2105 "direntries which refer it, but " 2106 "should be 1", 2107 (unsigned long)fscki->inum, 2108 fscki->references); 2109 goto out_dump; 2110 } 2111 if (fscki->inum == UBIFS_ROOT_INO && 2112 fscki->references != 0) { 2113 ubifs_err("root inode %lu has non-zero (%d) " 2114 "direntries which refer it", 2115 (unsigned long)fscki->inum, 2116 fscki->references); 2117 goto out_dump; 2118 } 2119 if (fscki->calc_sz != fscki->size) { 2120 ubifs_err("directory inode %lu size is %lld, " 2121 "but calculated size is %lld", 2122 (unsigned long)fscki->inum, 2123 fscki->size, fscki->calc_sz); 2124 goto out_dump; 2125 } 2126 if (fscki->calc_cnt != fscki->nlink) { 2127 ubifs_err("directory inode %lu nlink is %d, " 2128 "but calculated nlink is %d", 2129 (unsigned long)fscki->inum, 2130 fscki->nlink, fscki->calc_cnt); 2131 goto out_dump; 2132 } 2133 } else { 2134 if (fscki->references != fscki->nlink) { 2135 ubifs_err("inode %lu nlink is %d, but " 2136 "calculated nlink is %d", 2137 (unsigned long)fscki->inum, 2138 fscki->nlink, fscki->references); 2139 goto out_dump; 2140 } 2141 } 2142 if (fscki->xattr_sz != fscki->calc_xsz) { 2143 ubifs_err("inode %lu has xattr size %u, but " 2144 "calculated size is %lld", 2145 (unsigned long)fscki->inum, fscki->xattr_sz, 2146 fscki->calc_xsz); 2147 goto out_dump; 2148 } 2149 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2150 ubifs_err("inode %lu has %u xattrs, but " 2151 "calculated count is %lld", 2152 (unsigned long)fscki->inum, 2153 fscki->xattr_cnt, fscki->calc_xcnt); 2154 goto out_dump; 2155 } 2156 if (fscki->xattr_nms != fscki->calc_xnms) { 2157 ubifs_err("inode %lu has xattr names' size %u, but " 2158 "calculated names' size is %lld", 2159 (unsigned long)fscki->inum, fscki->xattr_nms, 2160 fscki->calc_xnms); 2161 goto out_dump; 2162 } 2163 } 2164 2165 return 0; 2166 2167 out_dump: 2168 /* Read the bad inode and dump it */ 2169 ino_key_init(c, &key, fscki->inum); 2170 err = ubifs_lookup_level0(c, &key, &znode, &n); 2171 if (!err) { 2172 ubifs_err("inode %lu not found in index", 2173 (unsigned long)fscki->inum); 2174 return -ENOENT; 2175 } else if (err < 0) { 2176 ubifs_err("error %d while looking up inode %lu", 2177 err, (unsigned long)fscki->inum); 2178 return err; 2179 } 2180 2181 zbr = &znode->zbranch[n]; 2182 ino = kmalloc(zbr->len, GFP_NOFS); 2183 if (!ino) 2184 return -ENOMEM; 2185 2186 err = ubifs_tnc_read_node(c, zbr, ino); 2187 if (err) { 2188 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 2189 zbr->lnum, zbr->offs, err); 2190 kfree(ino); 2191 return err; 2192 } 2193 2194 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", 2195 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2196 dbg_dump_node(c, ino); 2197 kfree(ino); 2198 return -EINVAL; 2199 } 2200 2201 /** 2202 * dbg_check_filesystem - check the file-system. 2203 * @c: UBIFS file-system description object 2204 * 2205 * This function checks the file system, namely: 2206 * o makes sure that all leaf nodes exist and their CRCs are correct; 2207 * o makes sure inode nlink, size, xattr size/count are correct (for all 2208 * inodes). 2209 * 2210 * The function reads whole indexing tree and all nodes, so it is pretty 2211 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2212 * not, and a negative error code in case of failure. 2213 */ 2214 int dbg_check_filesystem(struct ubifs_info *c) 2215 { 2216 int err; 2217 struct fsck_data fsckd; 2218 2219 if (!(ubifs_chk_flags & UBIFS_CHK_FS)) 2220 return 0; 2221 2222 fsckd.inodes = RB_ROOT; 2223 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2224 if (err) 2225 goto out_free; 2226 2227 err = check_inodes(c, &fsckd); 2228 if (err) 2229 goto out_free; 2230 2231 free_inodes(&fsckd); 2232 return 0; 2233 2234 out_free: 2235 ubifs_err("file-system check failed with error %d", err); 2236 dump_stack(); 2237 free_inodes(&fsckd); 2238 return err; 2239 } 2240 2241 static int invocation_cnt; 2242 2243 int dbg_force_in_the_gaps(void) 2244 { 2245 if (!dbg_force_in_the_gaps_enabled) 2246 return 0; 2247 /* Force in-the-gaps every 8th commit */ 2248 return !((invocation_cnt++) & 0x7); 2249 } 2250 2251 /* Failure mode for recovery testing */ 2252 2253 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d)) 2254 2255 struct failure_mode_info { 2256 struct list_head list; 2257 struct ubifs_info *c; 2258 }; 2259 2260 static LIST_HEAD(fmi_list); 2261 static DEFINE_SPINLOCK(fmi_lock); 2262 2263 static unsigned int next; 2264 2265 static int simple_rand(void) 2266 { 2267 if (next == 0) 2268 next = current->pid; 2269 next = next * 1103515245 + 12345; 2270 return (next >> 16) & 32767; 2271 } 2272 2273 static void failure_mode_init(struct ubifs_info *c) 2274 { 2275 struct failure_mode_info *fmi; 2276 2277 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS); 2278 if (!fmi) { 2279 ubifs_err("Failed to register failure mode - no memory"); 2280 return; 2281 } 2282 fmi->c = c; 2283 spin_lock(&fmi_lock); 2284 list_add_tail(&fmi->list, &fmi_list); 2285 spin_unlock(&fmi_lock); 2286 } 2287 2288 static void failure_mode_exit(struct ubifs_info *c) 2289 { 2290 struct failure_mode_info *fmi, *tmp; 2291 2292 spin_lock(&fmi_lock); 2293 list_for_each_entry_safe(fmi, tmp, &fmi_list, list) 2294 if (fmi->c == c) { 2295 list_del(&fmi->list); 2296 kfree(fmi); 2297 } 2298 spin_unlock(&fmi_lock); 2299 } 2300 2301 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc) 2302 { 2303 struct failure_mode_info *fmi; 2304 2305 spin_lock(&fmi_lock); 2306 list_for_each_entry(fmi, &fmi_list, list) 2307 if (fmi->c->ubi == desc) { 2308 struct ubifs_info *c = fmi->c; 2309 2310 spin_unlock(&fmi_lock); 2311 return c; 2312 } 2313 spin_unlock(&fmi_lock); 2314 return NULL; 2315 } 2316 2317 static int in_failure_mode(struct ubi_volume_desc *desc) 2318 { 2319 struct ubifs_info *c = dbg_find_info(desc); 2320 2321 if (c && dbg_failure_mode) 2322 return c->dbg->failure_mode; 2323 return 0; 2324 } 2325 2326 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write) 2327 { 2328 struct ubifs_info *c = dbg_find_info(desc); 2329 struct ubifs_debug_info *d; 2330 2331 if (!c || !dbg_failure_mode) 2332 return 0; 2333 d = c->dbg; 2334 if (d->failure_mode) 2335 return 1; 2336 if (!d->fail_cnt) { 2337 /* First call - decide delay to failure */ 2338 if (chance(1, 2)) { 2339 unsigned int delay = 1 << (simple_rand() >> 11); 2340 2341 if (chance(1, 2)) { 2342 d->fail_delay = 1; 2343 d->fail_timeout = jiffies + 2344 msecs_to_jiffies(delay); 2345 dbg_rcvry("failing after %ums", delay); 2346 } else { 2347 d->fail_delay = 2; 2348 d->fail_cnt_max = delay; 2349 dbg_rcvry("failing after %u calls", delay); 2350 } 2351 } 2352 d->fail_cnt += 1; 2353 } 2354 /* Determine if failure delay has expired */ 2355 if (d->fail_delay == 1) { 2356 if (time_before(jiffies, d->fail_timeout)) 2357 return 0; 2358 } else if (d->fail_delay == 2) 2359 if (d->fail_cnt++ < d->fail_cnt_max) 2360 return 0; 2361 if (lnum == UBIFS_SB_LNUM) { 2362 if (write) { 2363 if (chance(1, 2)) 2364 return 0; 2365 } else if (chance(19, 20)) 2366 return 0; 2367 dbg_rcvry("failing in super block LEB %d", lnum); 2368 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2369 if (chance(19, 20)) 2370 return 0; 2371 dbg_rcvry("failing in master LEB %d", lnum); 2372 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2373 if (write) { 2374 if (chance(99, 100)) 2375 return 0; 2376 } else if (chance(399, 400)) 2377 return 0; 2378 dbg_rcvry("failing in log LEB %d", lnum); 2379 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2380 if (write) { 2381 if (chance(7, 8)) 2382 return 0; 2383 } else if (chance(19, 20)) 2384 return 0; 2385 dbg_rcvry("failing in LPT LEB %d", lnum); 2386 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2387 if (write) { 2388 if (chance(1, 2)) 2389 return 0; 2390 } else if (chance(9, 10)) 2391 return 0; 2392 dbg_rcvry("failing in orphan LEB %d", lnum); 2393 } else if (lnum == c->ihead_lnum) { 2394 if (chance(99, 100)) 2395 return 0; 2396 dbg_rcvry("failing in index head LEB %d", lnum); 2397 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2398 if (chance(9, 10)) 2399 return 0; 2400 dbg_rcvry("failing in GC head LEB %d", lnum); 2401 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2402 !ubifs_search_bud(c, lnum)) { 2403 if (chance(19, 20)) 2404 return 0; 2405 dbg_rcvry("failing in non-bud LEB %d", lnum); 2406 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2407 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2408 if (chance(999, 1000)) 2409 return 0; 2410 dbg_rcvry("failing in bud LEB %d commit running", lnum); 2411 } else { 2412 if (chance(9999, 10000)) 2413 return 0; 2414 dbg_rcvry("failing in bud LEB %d commit not running", lnum); 2415 } 2416 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum); 2417 d->failure_mode = 1; 2418 dump_stack(); 2419 return 1; 2420 } 2421 2422 static void cut_data(const void *buf, int len) 2423 { 2424 int flen, i; 2425 unsigned char *p = (void *)buf; 2426 2427 flen = (len * (long long)simple_rand()) >> 15; 2428 for (i = flen; i < len; i++) 2429 p[i] = 0xff; 2430 } 2431 2432 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset, 2433 int len, int check) 2434 { 2435 if (in_failure_mode(desc)) 2436 return -EIO; 2437 return ubi_leb_read(desc, lnum, buf, offset, len, check); 2438 } 2439 2440 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf, 2441 int offset, int len, int dtype) 2442 { 2443 int err, failing; 2444 2445 if (in_failure_mode(desc)) 2446 return -EIO; 2447 failing = do_fail(desc, lnum, 1); 2448 if (failing) 2449 cut_data(buf, len); 2450 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype); 2451 if (err) 2452 return err; 2453 if (failing) 2454 return -EIO; 2455 return 0; 2456 } 2457 2458 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf, 2459 int len, int dtype) 2460 { 2461 int err; 2462 2463 if (do_fail(desc, lnum, 1)) 2464 return -EIO; 2465 err = ubi_leb_change(desc, lnum, buf, len, dtype); 2466 if (err) 2467 return err; 2468 if (do_fail(desc, lnum, 1)) 2469 return -EIO; 2470 return 0; 2471 } 2472 2473 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum) 2474 { 2475 int err; 2476 2477 if (do_fail(desc, lnum, 0)) 2478 return -EIO; 2479 err = ubi_leb_erase(desc, lnum); 2480 if (err) 2481 return err; 2482 if (do_fail(desc, lnum, 0)) 2483 return -EIO; 2484 return 0; 2485 } 2486 2487 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum) 2488 { 2489 int err; 2490 2491 if (do_fail(desc, lnum, 0)) 2492 return -EIO; 2493 err = ubi_leb_unmap(desc, lnum); 2494 if (err) 2495 return err; 2496 if (do_fail(desc, lnum, 0)) 2497 return -EIO; 2498 return 0; 2499 } 2500 2501 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum) 2502 { 2503 if (in_failure_mode(desc)) 2504 return -EIO; 2505 return ubi_is_mapped(desc, lnum); 2506 } 2507 2508 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype) 2509 { 2510 int err; 2511 2512 if (do_fail(desc, lnum, 0)) 2513 return -EIO; 2514 err = ubi_leb_map(desc, lnum, dtype); 2515 if (err) 2516 return err; 2517 if (do_fail(desc, lnum, 0)) 2518 return -EIO; 2519 return 0; 2520 } 2521 2522 /** 2523 * ubifs_debugging_init - initialize UBIFS debugging. 2524 * @c: UBIFS file-system description object 2525 * 2526 * This function initializes debugging-related data for the file system. 2527 * Returns zero in case of success and a negative error code in case of 2528 * failure. 2529 */ 2530 int ubifs_debugging_init(struct ubifs_info *c) 2531 { 2532 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 2533 if (!c->dbg) 2534 return -ENOMEM; 2535 2536 c->dbg->buf = vmalloc(c->leb_size); 2537 if (!c->dbg->buf) 2538 goto out; 2539 2540 failure_mode_init(c); 2541 return 0; 2542 2543 out: 2544 kfree(c->dbg); 2545 return -ENOMEM; 2546 } 2547 2548 /** 2549 * ubifs_debugging_exit - free debugging data. 2550 * @c: UBIFS file-system description object 2551 */ 2552 void ubifs_debugging_exit(struct ubifs_info *c) 2553 { 2554 failure_mode_exit(c); 2555 vfree(c->dbg->buf); 2556 kfree(c->dbg); 2557 } 2558 2559 /* 2560 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2561 * contain the stuff specific to particular file-system mounts. 2562 */ 2563 static struct dentry *dfs_rootdir; 2564 2565 /** 2566 * dbg_debugfs_init - initialize debugfs file-system. 2567 * 2568 * UBIFS uses debugfs file-system to expose various debugging knobs to 2569 * user-space. This function creates "ubifs" directory in the debugfs 2570 * file-system. Returns zero in case of success and a negative error code in 2571 * case of failure. 2572 */ 2573 int dbg_debugfs_init(void) 2574 { 2575 dfs_rootdir = debugfs_create_dir("ubifs", NULL); 2576 if (IS_ERR(dfs_rootdir)) { 2577 int err = PTR_ERR(dfs_rootdir); 2578 ubifs_err("cannot create \"ubifs\" debugfs directory, " 2579 "error %d\n", err); 2580 return err; 2581 } 2582 2583 return 0; 2584 } 2585 2586 /** 2587 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 2588 */ 2589 void dbg_debugfs_exit(void) 2590 { 2591 debugfs_remove(dfs_rootdir); 2592 } 2593 2594 static int open_debugfs_file(struct inode *inode, struct file *file) 2595 { 2596 file->private_data = inode->i_private; 2597 return 0; 2598 } 2599 2600 static ssize_t write_debugfs_file(struct file *file, const char __user *buf, 2601 size_t count, loff_t *ppos) 2602 { 2603 struct ubifs_info *c = file->private_data; 2604 struct ubifs_debug_info *d = c->dbg; 2605 2606 if (file->f_path.dentry == d->dfs_dump_lprops) 2607 dbg_dump_lprops(c); 2608 else if (file->f_path.dentry == d->dfs_dump_budg) { 2609 spin_lock(&c->space_lock); 2610 dbg_dump_budg(c); 2611 spin_unlock(&c->space_lock); 2612 } else if (file->f_path.dentry == d->dfs_dump_tnc) { 2613 mutex_lock(&c->tnc_mutex); 2614 dbg_dump_tnc(c); 2615 mutex_unlock(&c->tnc_mutex); 2616 } else 2617 return -EINVAL; 2618 2619 *ppos += count; 2620 return count; 2621 } 2622 2623 static const struct file_operations dfs_fops = { 2624 .open = open_debugfs_file, 2625 .write = write_debugfs_file, 2626 .owner = THIS_MODULE, 2627 }; 2628 2629 /** 2630 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2631 * @c: UBIFS file-system description object 2632 * 2633 * This function creates all debugfs files for this instance of UBIFS. Returns 2634 * zero in case of success and a negative error code in case of failure. 2635 * 2636 * Note, the only reason we have not merged this function with the 2637 * 'ubifs_debugging_init()' function is because it is better to initialize 2638 * debugfs interfaces at the very end of the mount process, and remove them at 2639 * the very beginning of the mount process. 2640 */ 2641 int dbg_debugfs_init_fs(struct ubifs_info *c) 2642 { 2643 int err; 2644 const char *fname; 2645 struct dentry *dent; 2646 struct ubifs_debug_info *d = c->dbg; 2647 2648 sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2649 d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir); 2650 if (IS_ERR(d->dfs_dir)) { 2651 err = PTR_ERR(d->dfs_dir); 2652 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n", 2653 d->dfs_dir_name, err); 2654 goto out; 2655 } 2656 2657 fname = "dump_lprops"; 2658 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops); 2659 if (IS_ERR(dent)) 2660 goto out_remove; 2661 d->dfs_dump_lprops = dent; 2662 2663 fname = "dump_budg"; 2664 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops); 2665 if (IS_ERR(dent)) 2666 goto out_remove; 2667 d->dfs_dump_budg = dent; 2668 2669 fname = "dump_tnc"; 2670 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops); 2671 if (IS_ERR(dent)) 2672 goto out_remove; 2673 d->dfs_dump_tnc = dent; 2674 2675 return 0; 2676 2677 out_remove: 2678 err = PTR_ERR(dent); 2679 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n", 2680 fname, err); 2681 debugfs_remove_recursive(d->dfs_dir); 2682 out: 2683 return err; 2684 } 2685 2686 /** 2687 * dbg_debugfs_exit_fs - remove all debugfs files. 2688 * @c: UBIFS file-system description object 2689 */ 2690 void dbg_debugfs_exit_fs(struct ubifs_info *c) 2691 { 2692 debugfs_remove_recursive(c->dbg->dfs_dir); 2693 } 2694 2695 #endif /* CONFIG_UBIFS_FS_DEBUG */ 2696