1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements most of the debugging stuff which is compiled in only 25 * when it is enabled. But some debugging check functions are implemented in 26 * corresponding subsystem, just because they are closely related and utilize 27 * various local functions of those subsystems. 28 */ 29 30 #include <linux/module.h> 31 #include <linux/debugfs.h> 32 #include <linux/math64.h> 33 #include <linux/uaccess.h> 34 #include <linux/random.h> 35 #include "ubifs.h" 36 37 static DEFINE_SPINLOCK(dbg_lock); 38 39 static const char *get_key_fmt(int fmt) 40 { 41 switch (fmt) { 42 case UBIFS_SIMPLE_KEY_FMT: 43 return "simple"; 44 default: 45 return "unknown/invalid format"; 46 } 47 } 48 49 static const char *get_key_hash(int hash) 50 { 51 switch (hash) { 52 case UBIFS_KEY_HASH_R5: 53 return "R5"; 54 case UBIFS_KEY_HASH_TEST: 55 return "test"; 56 default: 57 return "unknown/invalid name hash"; 58 } 59 } 60 61 static const char *get_key_type(int type) 62 { 63 switch (type) { 64 case UBIFS_INO_KEY: 65 return "inode"; 66 case UBIFS_DENT_KEY: 67 return "direntry"; 68 case UBIFS_XENT_KEY: 69 return "xentry"; 70 case UBIFS_DATA_KEY: 71 return "data"; 72 case UBIFS_TRUN_KEY: 73 return "truncate"; 74 default: 75 return "unknown/invalid key"; 76 } 77 } 78 79 static const char *get_dent_type(int type) 80 { 81 switch (type) { 82 case UBIFS_ITYPE_REG: 83 return "file"; 84 case UBIFS_ITYPE_DIR: 85 return "dir"; 86 case UBIFS_ITYPE_LNK: 87 return "symlink"; 88 case UBIFS_ITYPE_BLK: 89 return "blkdev"; 90 case UBIFS_ITYPE_CHR: 91 return "char dev"; 92 case UBIFS_ITYPE_FIFO: 93 return "fifo"; 94 case UBIFS_ITYPE_SOCK: 95 return "socket"; 96 default: 97 return "unknown/invalid type"; 98 } 99 } 100 101 const char *dbg_snprintf_key(const struct ubifs_info *c, 102 const union ubifs_key *key, char *buffer, int len) 103 { 104 char *p = buffer; 105 int type = key_type(c, key); 106 107 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 108 switch (type) { 109 case UBIFS_INO_KEY: 110 len -= snprintf(p, len, "(%lu, %s)", 111 (unsigned long)key_inum(c, key), 112 get_key_type(type)); 113 break; 114 case UBIFS_DENT_KEY: 115 case UBIFS_XENT_KEY: 116 len -= snprintf(p, len, "(%lu, %s, %#08x)", 117 (unsigned long)key_inum(c, key), 118 get_key_type(type), key_hash(c, key)); 119 break; 120 case UBIFS_DATA_KEY: 121 len -= snprintf(p, len, "(%lu, %s, %u)", 122 (unsigned long)key_inum(c, key), 123 get_key_type(type), key_block(c, key)); 124 break; 125 case UBIFS_TRUN_KEY: 126 len -= snprintf(p, len, "(%lu, %s)", 127 (unsigned long)key_inum(c, key), 128 get_key_type(type)); 129 break; 130 default: 131 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)", 132 key->u32[0], key->u32[1]); 133 } 134 } else 135 len -= snprintf(p, len, "bad key format %d", c->key_fmt); 136 ubifs_assert(len > 0); 137 return p; 138 } 139 140 const char *dbg_ntype(int type) 141 { 142 switch (type) { 143 case UBIFS_PAD_NODE: 144 return "padding node"; 145 case UBIFS_SB_NODE: 146 return "superblock node"; 147 case UBIFS_MST_NODE: 148 return "master node"; 149 case UBIFS_REF_NODE: 150 return "reference node"; 151 case UBIFS_INO_NODE: 152 return "inode node"; 153 case UBIFS_DENT_NODE: 154 return "direntry node"; 155 case UBIFS_XENT_NODE: 156 return "xentry node"; 157 case UBIFS_DATA_NODE: 158 return "data node"; 159 case UBIFS_TRUN_NODE: 160 return "truncate node"; 161 case UBIFS_IDX_NODE: 162 return "indexing node"; 163 case UBIFS_CS_NODE: 164 return "commit start node"; 165 case UBIFS_ORPH_NODE: 166 return "orphan node"; 167 default: 168 return "unknown node"; 169 } 170 } 171 172 static const char *dbg_gtype(int type) 173 { 174 switch (type) { 175 case UBIFS_NO_NODE_GROUP: 176 return "no node group"; 177 case UBIFS_IN_NODE_GROUP: 178 return "in node group"; 179 case UBIFS_LAST_OF_NODE_GROUP: 180 return "last of node group"; 181 default: 182 return "unknown"; 183 } 184 } 185 186 const char *dbg_cstate(int cmt_state) 187 { 188 switch (cmt_state) { 189 case COMMIT_RESTING: 190 return "commit resting"; 191 case COMMIT_BACKGROUND: 192 return "background commit requested"; 193 case COMMIT_REQUIRED: 194 return "commit required"; 195 case COMMIT_RUNNING_BACKGROUND: 196 return "BACKGROUND commit running"; 197 case COMMIT_RUNNING_REQUIRED: 198 return "commit running and required"; 199 case COMMIT_BROKEN: 200 return "broken commit"; 201 default: 202 return "unknown commit state"; 203 } 204 } 205 206 const char *dbg_jhead(int jhead) 207 { 208 switch (jhead) { 209 case GCHD: 210 return "0 (GC)"; 211 case BASEHD: 212 return "1 (base)"; 213 case DATAHD: 214 return "2 (data)"; 215 default: 216 return "unknown journal head"; 217 } 218 } 219 220 static void dump_ch(const struct ubifs_ch *ch) 221 { 222 printk(KERN_ERR "\tmagic %#x\n", le32_to_cpu(ch->magic)); 223 printk(KERN_ERR "\tcrc %#x\n", le32_to_cpu(ch->crc)); 224 printk(KERN_ERR "\tnode_type %d (%s)\n", ch->node_type, 225 dbg_ntype(ch->node_type)); 226 printk(KERN_ERR "\tgroup_type %d (%s)\n", ch->group_type, 227 dbg_gtype(ch->group_type)); 228 printk(KERN_ERR "\tsqnum %llu\n", 229 (unsigned long long)le64_to_cpu(ch->sqnum)); 230 printk(KERN_ERR "\tlen %u\n", le32_to_cpu(ch->len)); 231 } 232 233 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode) 234 { 235 const struct ubifs_inode *ui = ubifs_inode(inode); 236 struct qstr nm = { .name = NULL }; 237 union ubifs_key key; 238 struct ubifs_dent_node *dent, *pdent = NULL; 239 int count = 2; 240 241 printk(KERN_ERR "Dump in-memory inode:"); 242 printk(KERN_ERR "\tinode %lu\n", inode->i_ino); 243 printk(KERN_ERR "\tsize %llu\n", 244 (unsigned long long)i_size_read(inode)); 245 printk(KERN_ERR "\tnlink %u\n", inode->i_nlink); 246 printk(KERN_ERR "\tuid %u\n", (unsigned int)inode->i_uid); 247 printk(KERN_ERR "\tgid %u\n", (unsigned int)inode->i_gid); 248 printk(KERN_ERR "\tatime %u.%u\n", 249 (unsigned int)inode->i_atime.tv_sec, 250 (unsigned int)inode->i_atime.tv_nsec); 251 printk(KERN_ERR "\tmtime %u.%u\n", 252 (unsigned int)inode->i_mtime.tv_sec, 253 (unsigned int)inode->i_mtime.tv_nsec); 254 printk(KERN_ERR "\tctime %u.%u\n", 255 (unsigned int)inode->i_ctime.tv_sec, 256 (unsigned int)inode->i_ctime.tv_nsec); 257 printk(KERN_ERR "\tcreat_sqnum %llu\n", ui->creat_sqnum); 258 printk(KERN_ERR "\txattr_size %u\n", ui->xattr_size); 259 printk(KERN_ERR "\txattr_cnt %u\n", ui->xattr_cnt); 260 printk(KERN_ERR "\txattr_names %u\n", ui->xattr_names); 261 printk(KERN_ERR "\tdirty %u\n", ui->dirty); 262 printk(KERN_ERR "\txattr %u\n", ui->xattr); 263 printk(KERN_ERR "\tbulk_read %u\n", ui->xattr); 264 printk(KERN_ERR "\tsynced_i_size %llu\n", 265 (unsigned long long)ui->synced_i_size); 266 printk(KERN_ERR "\tui_size %llu\n", 267 (unsigned long long)ui->ui_size); 268 printk(KERN_ERR "\tflags %d\n", ui->flags); 269 printk(KERN_ERR "\tcompr_type %d\n", ui->compr_type); 270 printk(KERN_ERR "\tlast_page_read %lu\n", ui->last_page_read); 271 printk(KERN_ERR "\tread_in_a_row %lu\n", ui->read_in_a_row); 272 printk(KERN_ERR "\tdata_len %d\n", ui->data_len); 273 274 if (!S_ISDIR(inode->i_mode)) 275 return; 276 277 printk(KERN_ERR "List of directory entries:\n"); 278 ubifs_assert(!mutex_is_locked(&c->tnc_mutex)); 279 280 lowest_dent_key(c, &key, inode->i_ino); 281 while (1) { 282 dent = ubifs_tnc_next_ent(c, &key, &nm); 283 if (IS_ERR(dent)) { 284 if (PTR_ERR(dent) != -ENOENT) 285 printk(KERN_ERR "error %ld\n", PTR_ERR(dent)); 286 break; 287 } 288 289 printk(KERN_ERR "\t%d: %s (%s)\n", 290 count++, dent->name, get_dent_type(dent->type)); 291 292 nm.name = dent->name; 293 nm.len = le16_to_cpu(dent->nlen); 294 kfree(pdent); 295 pdent = dent; 296 key_read(c, &dent->key, &key); 297 } 298 kfree(pdent); 299 } 300 301 void ubifs_dump_node(const struct ubifs_info *c, const void *node) 302 { 303 int i, n; 304 union ubifs_key key; 305 const struct ubifs_ch *ch = node; 306 char key_buf[DBG_KEY_BUF_LEN]; 307 308 if (dbg_is_tst_rcvry(c)) 309 return; 310 311 /* If the magic is incorrect, just hexdump the first bytes */ 312 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 313 printk(KERN_ERR "Not a node, first %zu bytes:", UBIFS_CH_SZ); 314 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, 315 (void *)node, UBIFS_CH_SZ, 1); 316 return; 317 } 318 319 spin_lock(&dbg_lock); 320 dump_ch(node); 321 322 switch (ch->node_type) { 323 case UBIFS_PAD_NODE: 324 { 325 const struct ubifs_pad_node *pad = node; 326 327 printk(KERN_ERR "\tpad_len %u\n", 328 le32_to_cpu(pad->pad_len)); 329 break; 330 } 331 case UBIFS_SB_NODE: 332 { 333 const struct ubifs_sb_node *sup = node; 334 unsigned int sup_flags = le32_to_cpu(sup->flags); 335 336 printk(KERN_ERR "\tkey_hash %d (%s)\n", 337 (int)sup->key_hash, get_key_hash(sup->key_hash)); 338 printk(KERN_ERR "\tkey_fmt %d (%s)\n", 339 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 340 printk(KERN_ERR "\tflags %#x\n", sup_flags); 341 printk(KERN_ERR "\t big_lpt %u\n", 342 !!(sup_flags & UBIFS_FLG_BIGLPT)); 343 printk(KERN_ERR "\t space_fixup %u\n", 344 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); 345 printk(KERN_ERR "\tmin_io_size %u\n", 346 le32_to_cpu(sup->min_io_size)); 347 printk(KERN_ERR "\tleb_size %u\n", 348 le32_to_cpu(sup->leb_size)); 349 printk(KERN_ERR "\tleb_cnt %u\n", 350 le32_to_cpu(sup->leb_cnt)); 351 printk(KERN_ERR "\tmax_leb_cnt %u\n", 352 le32_to_cpu(sup->max_leb_cnt)); 353 printk(KERN_ERR "\tmax_bud_bytes %llu\n", 354 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 355 printk(KERN_ERR "\tlog_lebs %u\n", 356 le32_to_cpu(sup->log_lebs)); 357 printk(KERN_ERR "\tlpt_lebs %u\n", 358 le32_to_cpu(sup->lpt_lebs)); 359 printk(KERN_ERR "\torph_lebs %u\n", 360 le32_to_cpu(sup->orph_lebs)); 361 printk(KERN_ERR "\tjhead_cnt %u\n", 362 le32_to_cpu(sup->jhead_cnt)); 363 printk(KERN_ERR "\tfanout %u\n", 364 le32_to_cpu(sup->fanout)); 365 printk(KERN_ERR "\tlsave_cnt %u\n", 366 le32_to_cpu(sup->lsave_cnt)); 367 printk(KERN_ERR "\tdefault_compr %u\n", 368 (int)le16_to_cpu(sup->default_compr)); 369 printk(KERN_ERR "\trp_size %llu\n", 370 (unsigned long long)le64_to_cpu(sup->rp_size)); 371 printk(KERN_ERR "\trp_uid %u\n", 372 le32_to_cpu(sup->rp_uid)); 373 printk(KERN_ERR "\trp_gid %u\n", 374 le32_to_cpu(sup->rp_gid)); 375 printk(KERN_ERR "\tfmt_version %u\n", 376 le32_to_cpu(sup->fmt_version)); 377 printk(KERN_ERR "\ttime_gran %u\n", 378 le32_to_cpu(sup->time_gran)); 379 printk(KERN_ERR "\tUUID %pUB\n", 380 sup->uuid); 381 break; 382 } 383 case UBIFS_MST_NODE: 384 { 385 const struct ubifs_mst_node *mst = node; 386 387 printk(KERN_ERR "\thighest_inum %llu\n", 388 (unsigned long long)le64_to_cpu(mst->highest_inum)); 389 printk(KERN_ERR "\tcommit number %llu\n", 390 (unsigned long long)le64_to_cpu(mst->cmt_no)); 391 printk(KERN_ERR "\tflags %#x\n", 392 le32_to_cpu(mst->flags)); 393 printk(KERN_ERR "\tlog_lnum %u\n", 394 le32_to_cpu(mst->log_lnum)); 395 printk(KERN_ERR "\troot_lnum %u\n", 396 le32_to_cpu(mst->root_lnum)); 397 printk(KERN_ERR "\troot_offs %u\n", 398 le32_to_cpu(mst->root_offs)); 399 printk(KERN_ERR "\troot_len %u\n", 400 le32_to_cpu(mst->root_len)); 401 printk(KERN_ERR "\tgc_lnum %u\n", 402 le32_to_cpu(mst->gc_lnum)); 403 printk(KERN_ERR "\tihead_lnum %u\n", 404 le32_to_cpu(mst->ihead_lnum)); 405 printk(KERN_ERR "\tihead_offs %u\n", 406 le32_to_cpu(mst->ihead_offs)); 407 printk(KERN_ERR "\tindex_size %llu\n", 408 (unsigned long long)le64_to_cpu(mst->index_size)); 409 printk(KERN_ERR "\tlpt_lnum %u\n", 410 le32_to_cpu(mst->lpt_lnum)); 411 printk(KERN_ERR "\tlpt_offs %u\n", 412 le32_to_cpu(mst->lpt_offs)); 413 printk(KERN_ERR "\tnhead_lnum %u\n", 414 le32_to_cpu(mst->nhead_lnum)); 415 printk(KERN_ERR "\tnhead_offs %u\n", 416 le32_to_cpu(mst->nhead_offs)); 417 printk(KERN_ERR "\tltab_lnum %u\n", 418 le32_to_cpu(mst->ltab_lnum)); 419 printk(KERN_ERR "\tltab_offs %u\n", 420 le32_to_cpu(mst->ltab_offs)); 421 printk(KERN_ERR "\tlsave_lnum %u\n", 422 le32_to_cpu(mst->lsave_lnum)); 423 printk(KERN_ERR "\tlsave_offs %u\n", 424 le32_to_cpu(mst->lsave_offs)); 425 printk(KERN_ERR "\tlscan_lnum %u\n", 426 le32_to_cpu(mst->lscan_lnum)); 427 printk(KERN_ERR "\tleb_cnt %u\n", 428 le32_to_cpu(mst->leb_cnt)); 429 printk(KERN_ERR "\tempty_lebs %u\n", 430 le32_to_cpu(mst->empty_lebs)); 431 printk(KERN_ERR "\tidx_lebs %u\n", 432 le32_to_cpu(mst->idx_lebs)); 433 printk(KERN_ERR "\ttotal_free %llu\n", 434 (unsigned long long)le64_to_cpu(mst->total_free)); 435 printk(KERN_ERR "\ttotal_dirty %llu\n", 436 (unsigned long long)le64_to_cpu(mst->total_dirty)); 437 printk(KERN_ERR "\ttotal_used %llu\n", 438 (unsigned long long)le64_to_cpu(mst->total_used)); 439 printk(KERN_ERR "\ttotal_dead %llu\n", 440 (unsigned long long)le64_to_cpu(mst->total_dead)); 441 printk(KERN_ERR "\ttotal_dark %llu\n", 442 (unsigned long long)le64_to_cpu(mst->total_dark)); 443 break; 444 } 445 case UBIFS_REF_NODE: 446 { 447 const struct ubifs_ref_node *ref = node; 448 449 printk(KERN_ERR "\tlnum %u\n", 450 le32_to_cpu(ref->lnum)); 451 printk(KERN_ERR "\toffs %u\n", 452 le32_to_cpu(ref->offs)); 453 printk(KERN_ERR "\tjhead %u\n", 454 le32_to_cpu(ref->jhead)); 455 break; 456 } 457 case UBIFS_INO_NODE: 458 { 459 const struct ubifs_ino_node *ino = node; 460 461 key_read(c, &ino->key, &key); 462 printk(KERN_ERR "\tkey %s\n", 463 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 464 printk(KERN_ERR "\tcreat_sqnum %llu\n", 465 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 466 printk(KERN_ERR "\tsize %llu\n", 467 (unsigned long long)le64_to_cpu(ino->size)); 468 printk(KERN_ERR "\tnlink %u\n", 469 le32_to_cpu(ino->nlink)); 470 printk(KERN_ERR "\tatime %lld.%u\n", 471 (long long)le64_to_cpu(ino->atime_sec), 472 le32_to_cpu(ino->atime_nsec)); 473 printk(KERN_ERR "\tmtime %lld.%u\n", 474 (long long)le64_to_cpu(ino->mtime_sec), 475 le32_to_cpu(ino->mtime_nsec)); 476 printk(KERN_ERR "\tctime %lld.%u\n", 477 (long long)le64_to_cpu(ino->ctime_sec), 478 le32_to_cpu(ino->ctime_nsec)); 479 printk(KERN_ERR "\tuid %u\n", 480 le32_to_cpu(ino->uid)); 481 printk(KERN_ERR "\tgid %u\n", 482 le32_to_cpu(ino->gid)); 483 printk(KERN_ERR "\tmode %u\n", 484 le32_to_cpu(ino->mode)); 485 printk(KERN_ERR "\tflags %#x\n", 486 le32_to_cpu(ino->flags)); 487 printk(KERN_ERR "\txattr_cnt %u\n", 488 le32_to_cpu(ino->xattr_cnt)); 489 printk(KERN_ERR "\txattr_size %u\n", 490 le32_to_cpu(ino->xattr_size)); 491 printk(KERN_ERR "\txattr_names %u\n", 492 le32_to_cpu(ino->xattr_names)); 493 printk(KERN_ERR "\tcompr_type %#x\n", 494 (int)le16_to_cpu(ino->compr_type)); 495 printk(KERN_ERR "\tdata len %u\n", 496 le32_to_cpu(ino->data_len)); 497 break; 498 } 499 case UBIFS_DENT_NODE: 500 case UBIFS_XENT_NODE: 501 { 502 const struct ubifs_dent_node *dent = node; 503 int nlen = le16_to_cpu(dent->nlen); 504 505 key_read(c, &dent->key, &key); 506 printk(KERN_ERR "\tkey %s\n", 507 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 508 printk(KERN_ERR "\tinum %llu\n", 509 (unsigned long long)le64_to_cpu(dent->inum)); 510 printk(KERN_ERR "\ttype %d\n", (int)dent->type); 511 printk(KERN_ERR "\tnlen %d\n", nlen); 512 printk(KERN_ERR "\tname "); 513 514 if (nlen > UBIFS_MAX_NLEN) 515 printk(KERN_ERR "(bad name length, not printing, " 516 "bad or corrupted node)"); 517 else { 518 for (i = 0; i < nlen && dent->name[i]; i++) 519 printk(KERN_CONT "%c", dent->name[i]); 520 } 521 printk(KERN_CONT "\n"); 522 523 break; 524 } 525 case UBIFS_DATA_NODE: 526 { 527 const struct ubifs_data_node *dn = node; 528 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 529 530 key_read(c, &dn->key, &key); 531 printk(KERN_ERR "\tkey %s\n", 532 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 533 printk(KERN_ERR "\tsize %u\n", 534 le32_to_cpu(dn->size)); 535 printk(KERN_ERR "\tcompr_typ %d\n", 536 (int)le16_to_cpu(dn->compr_type)); 537 printk(KERN_ERR "\tdata size %d\n", 538 dlen); 539 printk(KERN_ERR "\tdata:\n"); 540 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1, 541 (void *)&dn->data, dlen, 0); 542 break; 543 } 544 case UBIFS_TRUN_NODE: 545 { 546 const struct ubifs_trun_node *trun = node; 547 548 printk(KERN_ERR "\tinum %u\n", 549 le32_to_cpu(trun->inum)); 550 printk(KERN_ERR "\told_size %llu\n", 551 (unsigned long long)le64_to_cpu(trun->old_size)); 552 printk(KERN_ERR "\tnew_size %llu\n", 553 (unsigned long long)le64_to_cpu(trun->new_size)); 554 break; 555 } 556 case UBIFS_IDX_NODE: 557 { 558 const struct ubifs_idx_node *idx = node; 559 560 n = le16_to_cpu(idx->child_cnt); 561 printk(KERN_ERR "\tchild_cnt %d\n", n); 562 printk(KERN_ERR "\tlevel %d\n", 563 (int)le16_to_cpu(idx->level)); 564 printk(KERN_ERR "\tBranches:\n"); 565 566 for (i = 0; i < n && i < c->fanout - 1; i++) { 567 const struct ubifs_branch *br; 568 569 br = ubifs_idx_branch(c, idx, i); 570 key_read(c, &br->key, &key); 571 printk(KERN_ERR "\t%d: LEB %d:%d len %d key %s\n", 572 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 573 le32_to_cpu(br->len), 574 dbg_snprintf_key(c, &key, key_buf, 575 DBG_KEY_BUF_LEN)); 576 } 577 break; 578 } 579 case UBIFS_CS_NODE: 580 break; 581 case UBIFS_ORPH_NODE: 582 { 583 const struct ubifs_orph_node *orph = node; 584 585 printk(KERN_ERR "\tcommit number %llu\n", 586 (unsigned long long) 587 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 588 printk(KERN_ERR "\tlast node flag %llu\n", 589 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 590 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 591 printk(KERN_ERR "\t%d orphan inode numbers:\n", n); 592 for (i = 0; i < n; i++) 593 printk(KERN_ERR "\t ino %llu\n", 594 (unsigned long long)le64_to_cpu(orph->inos[i])); 595 break; 596 } 597 default: 598 printk(KERN_ERR "node type %d was not recognized\n", 599 (int)ch->node_type); 600 } 601 spin_unlock(&dbg_lock); 602 } 603 604 void ubifs_dump_budget_req(const struct ubifs_budget_req *req) 605 { 606 spin_lock(&dbg_lock); 607 printk(KERN_ERR "Budgeting request: new_ino %d, dirtied_ino %d\n", 608 req->new_ino, req->dirtied_ino); 609 printk(KERN_ERR "\tnew_ino_d %d, dirtied_ino_d %d\n", 610 req->new_ino_d, req->dirtied_ino_d); 611 printk(KERN_ERR "\tnew_page %d, dirtied_page %d\n", 612 req->new_page, req->dirtied_page); 613 printk(KERN_ERR "\tnew_dent %d, mod_dent %d\n", 614 req->new_dent, req->mod_dent); 615 printk(KERN_ERR "\tidx_growth %d\n", req->idx_growth); 616 printk(KERN_ERR "\tdata_growth %d dd_growth %d\n", 617 req->data_growth, req->dd_growth); 618 spin_unlock(&dbg_lock); 619 } 620 621 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst) 622 { 623 spin_lock(&dbg_lock); 624 printk(KERN_ERR "(pid %d) Lprops statistics: empty_lebs %d, " 625 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs); 626 printk(KERN_ERR "\ttaken_empty_lebs %d, total_free %lld, " 627 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free, 628 lst->total_dirty); 629 printk(KERN_ERR "\ttotal_used %lld, total_dark %lld, " 630 "total_dead %lld\n", lst->total_used, lst->total_dark, 631 lst->total_dead); 632 spin_unlock(&dbg_lock); 633 } 634 635 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 636 { 637 int i; 638 struct rb_node *rb; 639 struct ubifs_bud *bud; 640 struct ubifs_gced_idx_leb *idx_gc; 641 long long available, outstanding, free; 642 643 spin_lock(&c->space_lock); 644 spin_lock(&dbg_lock); 645 printk(KERN_ERR "(pid %d) Budgeting info: data budget sum %lld, " 646 "total budget sum %lld\n", current->pid, 647 bi->data_growth + bi->dd_growth, 648 bi->data_growth + bi->dd_growth + bi->idx_growth); 649 printk(KERN_ERR "\tbudg_data_growth %lld, budg_dd_growth %lld, " 650 "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth, 651 bi->idx_growth); 652 printk(KERN_ERR "\tmin_idx_lebs %d, old_idx_sz %llu, " 653 "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz, 654 bi->uncommitted_idx); 655 printk(KERN_ERR "\tpage_budget %d, inode_budget %d, dent_budget %d\n", 656 bi->page_budget, bi->inode_budget, bi->dent_budget); 657 printk(KERN_ERR "\tnospace %u, nospace_rp %u\n", 658 bi->nospace, bi->nospace_rp); 659 printk(KERN_ERR "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 660 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 661 662 if (bi != &c->bi) 663 /* 664 * If we are dumping saved budgeting data, do not print 665 * additional information which is about the current state, not 666 * the old one which corresponded to the saved budgeting data. 667 */ 668 goto out_unlock; 669 670 printk(KERN_ERR "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", 671 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); 672 printk(KERN_ERR "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, " 673 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt), 674 atomic_long_read(&c->dirty_zn_cnt), 675 atomic_long_read(&c->clean_zn_cnt)); 676 printk(KERN_ERR "\tgc_lnum %d, ihead_lnum %d\n", 677 c->gc_lnum, c->ihead_lnum); 678 679 /* If we are in R/O mode, journal heads do not exist */ 680 if (c->jheads) 681 for (i = 0; i < c->jhead_cnt; i++) 682 printk(KERN_ERR "\tjhead %s\t LEB %d\n", 683 dbg_jhead(c->jheads[i].wbuf.jhead), 684 c->jheads[i].wbuf.lnum); 685 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 686 bud = rb_entry(rb, struct ubifs_bud, rb); 687 printk(KERN_ERR "\tbud LEB %d\n", bud->lnum); 688 } 689 list_for_each_entry(bud, &c->old_buds, list) 690 printk(KERN_ERR "\told bud LEB %d\n", bud->lnum); 691 list_for_each_entry(idx_gc, &c->idx_gc, list) 692 printk(KERN_ERR "\tGC'ed idx LEB %d unmap %d\n", 693 idx_gc->lnum, idx_gc->unmap); 694 printk(KERN_ERR "\tcommit state %d\n", c->cmt_state); 695 696 /* Print budgeting predictions */ 697 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 698 outstanding = c->bi.data_growth + c->bi.dd_growth; 699 free = ubifs_get_free_space_nolock(c); 700 printk(KERN_ERR "Budgeting predictions:\n"); 701 printk(KERN_ERR "\tavailable: %lld, outstanding %lld, free %lld\n", 702 available, outstanding, free); 703 out_unlock: 704 spin_unlock(&dbg_lock); 705 spin_unlock(&c->space_lock); 706 } 707 708 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 709 { 710 int i, spc, dark = 0, dead = 0; 711 struct rb_node *rb; 712 struct ubifs_bud *bud; 713 714 spc = lp->free + lp->dirty; 715 if (spc < c->dead_wm) 716 dead = spc; 717 else 718 dark = ubifs_calc_dark(c, spc); 719 720 if (lp->flags & LPROPS_INDEX) 721 printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d " 722 "free + dirty %-8d flags %#x (", lp->lnum, lp->free, 723 lp->dirty, c->leb_size - spc, spc, lp->flags); 724 else 725 printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d " 726 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d " 727 "flags %#-4x (", lp->lnum, lp->free, lp->dirty, 728 c->leb_size - spc, spc, dark, dead, 729 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 730 731 if (lp->flags & LPROPS_TAKEN) { 732 if (lp->flags & LPROPS_INDEX) 733 printk(KERN_CONT "index, taken"); 734 else 735 printk(KERN_CONT "taken"); 736 } else { 737 const char *s; 738 739 if (lp->flags & LPROPS_INDEX) { 740 switch (lp->flags & LPROPS_CAT_MASK) { 741 case LPROPS_DIRTY_IDX: 742 s = "dirty index"; 743 break; 744 case LPROPS_FRDI_IDX: 745 s = "freeable index"; 746 break; 747 default: 748 s = "index"; 749 } 750 } else { 751 switch (lp->flags & LPROPS_CAT_MASK) { 752 case LPROPS_UNCAT: 753 s = "not categorized"; 754 break; 755 case LPROPS_DIRTY: 756 s = "dirty"; 757 break; 758 case LPROPS_FREE: 759 s = "free"; 760 break; 761 case LPROPS_EMPTY: 762 s = "empty"; 763 break; 764 case LPROPS_FREEABLE: 765 s = "freeable"; 766 break; 767 default: 768 s = NULL; 769 break; 770 } 771 } 772 printk(KERN_CONT "%s", s); 773 } 774 775 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 776 bud = rb_entry(rb, struct ubifs_bud, rb); 777 if (bud->lnum == lp->lnum) { 778 int head = 0; 779 for (i = 0; i < c->jhead_cnt; i++) { 780 /* 781 * Note, if we are in R/O mode or in the middle 782 * of mounting/re-mounting, the write-buffers do 783 * not exist. 784 */ 785 if (c->jheads && 786 lp->lnum == c->jheads[i].wbuf.lnum) { 787 printk(KERN_CONT ", jhead %s", 788 dbg_jhead(i)); 789 head = 1; 790 } 791 } 792 if (!head) 793 printk(KERN_CONT ", bud of jhead %s", 794 dbg_jhead(bud->jhead)); 795 } 796 } 797 if (lp->lnum == c->gc_lnum) 798 printk(KERN_CONT ", GC LEB"); 799 printk(KERN_CONT ")\n"); 800 } 801 802 void ubifs_dump_lprops(struct ubifs_info *c) 803 { 804 int lnum, err; 805 struct ubifs_lprops lp; 806 struct ubifs_lp_stats lst; 807 808 printk(KERN_ERR "(pid %d) start dumping LEB properties\n", 809 current->pid); 810 ubifs_get_lp_stats(c, &lst); 811 ubifs_dump_lstats(&lst); 812 813 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 814 err = ubifs_read_one_lp(c, lnum, &lp); 815 if (err) 816 ubifs_err("cannot read lprops for LEB %d", lnum); 817 818 ubifs_dump_lprop(c, &lp); 819 } 820 printk(KERN_ERR "(pid %d) finish dumping LEB properties\n", 821 current->pid); 822 } 823 824 void ubifs_dump_lpt_info(struct ubifs_info *c) 825 { 826 int i; 827 828 spin_lock(&dbg_lock); 829 printk(KERN_ERR "(pid %d) dumping LPT information\n", current->pid); 830 printk(KERN_ERR "\tlpt_sz: %lld\n", c->lpt_sz); 831 printk(KERN_ERR "\tpnode_sz: %d\n", c->pnode_sz); 832 printk(KERN_ERR "\tnnode_sz: %d\n", c->nnode_sz); 833 printk(KERN_ERR "\tltab_sz: %d\n", c->ltab_sz); 834 printk(KERN_ERR "\tlsave_sz: %d\n", c->lsave_sz); 835 printk(KERN_ERR "\tbig_lpt: %d\n", c->big_lpt); 836 printk(KERN_ERR "\tlpt_hght: %d\n", c->lpt_hght); 837 printk(KERN_ERR "\tpnode_cnt: %d\n", c->pnode_cnt); 838 printk(KERN_ERR "\tnnode_cnt: %d\n", c->nnode_cnt); 839 printk(KERN_ERR "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 840 printk(KERN_ERR "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 841 printk(KERN_ERR "\tlsave_cnt: %d\n", c->lsave_cnt); 842 printk(KERN_ERR "\tspace_bits: %d\n", c->space_bits); 843 printk(KERN_ERR "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 844 printk(KERN_ERR "\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 845 printk(KERN_ERR "\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 846 printk(KERN_ERR "\tpcnt_bits: %d\n", c->pcnt_bits); 847 printk(KERN_ERR "\tlnum_bits: %d\n", c->lnum_bits); 848 printk(KERN_ERR "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 849 printk(KERN_ERR "\tLPT head is at %d:%d\n", 850 c->nhead_lnum, c->nhead_offs); 851 printk(KERN_ERR "\tLPT ltab is at %d:%d\n", 852 c->ltab_lnum, c->ltab_offs); 853 if (c->big_lpt) 854 printk(KERN_ERR "\tLPT lsave is at %d:%d\n", 855 c->lsave_lnum, c->lsave_offs); 856 for (i = 0; i < c->lpt_lebs; i++) 857 printk(KERN_ERR "\tLPT LEB %d free %d dirty %d tgc %d " 858 "cmt %d\n", i + c->lpt_first, c->ltab[i].free, 859 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt); 860 spin_unlock(&dbg_lock); 861 } 862 863 void ubifs_dump_sleb(const struct ubifs_info *c, 864 const struct ubifs_scan_leb *sleb, int offs) 865 { 866 struct ubifs_scan_node *snod; 867 868 printk(KERN_ERR "(pid %d) start dumping scanned data from LEB %d:%d\n", 869 current->pid, sleb->lnum, offs); 870 871 list_for_each_entry(snod, &sleb->nodes, list) { 872 cond_resched(); 873 printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", sleb->lnum, 874 snod->offs, snod->len); 875 ubifs_dump_node(c, snod->node); 876 } 877 } 878 879 void ubifs_dump_leb(const struct ubifs_info *c, int lnum) 880 { 881 struct ubifs_scan_leb *sleb; 882 struct ubifs_scan_node *snod; 883 void *buf; 884 885 if (dbg_is_tst_rcvry(c)) 886 return; 887 888 printk(KERN_ERR "(pid %d) start dumping LEB %d\n", 889 current->pid, lnum); 890 891 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 892 if (!buf) { 893 ubifs_err("cannot allocate memory for dumping LEB %d", lnum); 894 return; 895 } 896 897 sleb = ubifs_scan(c, lnum, 0, buf, 0); 898 if (IS_ERR(sleb)) { 899 ubifs_err("scan error %d", (int)PTR_ERR(sleb)); 900 goto out; 901 } 902 903 printk(KERN_ERR "LEB %d has %d nodes ending at %d\n", lnum, 904 sleb->nodes_cnt, sleb->endpt); 905 906 list_for_each_entry(snod, &sleb->nodes, list) { 907 cond_resched(); 908 printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", lnum, 909 snod->offs, snod->len); 910 ubifs_dump_node(c, snod->node); 911 } 912 913 printk(KERN_ERR "(pid %d) finish dumping LEB %d\n", 914 current->pid, lnum); 915 ubifs_scan_destroy(sleb); 916 917 out: 918 vfree(buf); 919 return; 920 } 921 922 void ubifs_dump_znode(const struct ubifs_info *c, 923 const struct ubifs_znode *znode) 924 { 925 int n; 926 const struct ubifs_zbranch *zbr; 927 char key_buf[DBG_KEY_BUF_LEN]; 928 929 spin_lock(&dbg_lock); 930 if (znode->parent) 931 zbr = &znode->parent->zbranch[znode->iip]; 932 else 933 zbr = &c->zroot; 934 935 printk(KERN_ERR "znode %p, LEB %d:%d len %d parent %p iip %d level %d" 936 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs, 937 zbr->len, znode->parent, znode->iip, znode->level, 938 znode->child_cnt, znode->flags); 939 940 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 941 spin_unlock(&dbg_lock); 942 return; 943 } 944 945 printk(KERN_ERR "zbranches:\n"); 946 for (n = 0; n < znode->child_cnt; n++) { 947 zbr = &znode->zbranch[n]; 948 if (znode->level > 0) 949 printk(KERN_ERR "\t%d: znode %p LEB %d:%d len %d key " 950 "%s\n", n, zbr->znode, zbr->lnum, 951 zbr->offs, zbr->len, 952 dbg_snprintf_key(c, &zbr->key, 953 key_buf, 954 DBG_KEY_BUF_LEN)); 955 else 956 printk(KERN_ERR "\t%d: LNC %p LEB %d:%d len %d key " 957 "%s\n", n, zbr->znode, zbr->lnum, 958 zbr->offs, zbr->len, 959 dbg_snprintf_key(c, &zbr->key, 960 key_buf, 961 DBG_KEY_BUF_LEN)); 962 } 963 spin_unlock(&dbg_lock); 964 } 965 966 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 967 { 968 int i; 969 970 printk(KERN_ERR "(pid %d) start dumping heap cat %d (%d elements)\n", 971 current->pid, cat, heap->cnt); 972 for (i = 0; i < heap->cnt; i++) { 973 struct ubifs_lprops *lprops = heap->arr[i]; 974 975 printk(KERN_ERR "\t%d. LEB %d hpos %d free %d dirty %d " 976 "flags %d\n", i, lprops->lnum, lprops->hpos, 977 lprops->free, lprops->dirty, lprops->flags); 978 } 979 printk(KERN_ERR "(pid %d) finish dumping heap\n", current->pid); 980 } 981 982 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 983 struct ubifs_nnode *parent, int iip) 984 { 985 int i; 986 987 printk(KERN_ERR "(pid %d) dumping pnode:\n", current->pid); 988 printk(KERN_ERR "\taddress %zx parent %zx cnext %zx\n", 989 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 990 printk(KERN_ERR "\tflags %lu iip %d level %d num %d\n", 991 pnode->flags, iip, pnode->level, pnode->num); 992 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 993 struct ubifs_lprops *lp = &pnode->lprops[i]; 994 995 printk(KERN_ERR "\t%d: free %d dirty %d flags %d lnum %d\n", 996 i, lp->free, lp->dirty, lp->flags, lp->lnum); 997 } 998 } 999 1000 void ubifs_dump_tnc(struct ubifs_info *c) 1001 { 1002 struct ubifs_znode *znode; 1003 int level; 1004 1005 printk(KERN_ERR "\n"); 1006 printk(KERN_ERR "(pid %d) start dumping TNC tree\n", current->pid); 1007 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 1008 level = znode->level; 1009 printk(KERN_ERR "== Level %d ==\n", level); 1010 while (znode) { 1011 if (level != znode->level) { 1012 level = znode->level; 1013 printk(KERN_ERR "== Level %d ==\n", level); 1014 } 1015 ubifs_dump_znode(c, znode); 1016 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 1017 } 1018 printk(KERN_ERR "(pid %d) finish dumping TNC tree\n", current->pid); 1019 } 1020 1021 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 1022 void *priv) 1023 { 1024 ubifs_dump_znode(c, znode); 1025 return 0; 1026 } 1027 1028 /** 1029 * ubifs_dump_index - dump the on-flash index. 1030 * @c: UBIFS file-system description object 1031 * 1032 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()' 1033 * which dumps only in-memory znodes and does not read znodes which from flash. 1034 */ 1035 void ubifs_dump_index(struct ubifs_info *c) 1036 { 1037 dbg_walk_index(c, NULL, dump_znode, NULL); 1038 } 1039 1040 /** 1041 * dbg_save_space_info - save information about flash space. 1042 * @c: UBIFS file-system description object 1043 * 1044 * This function saves information about UBIFS free space, dirty space, etc, in 1045 * order to check it later. 1046 */ 1047 void dbg_save_space_info(struct ubifs_info *c) 1048 { 1049 struct ubifs_debug_info *d = c->dbg; 1050 int freeable_cnt; 1051 1052 spin_lock(&c->space_lock); 1053 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); 1054 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); 1055 d->saved_idx_gc_cnt = c->idx_gc_cnt; 1056 1057 /* 1058 * We use a dirty hack here and zero out @c->freeable_cnt, because it 1059 * affects the free space calculations, and UBIFS might not know about 1060 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks 1061 * only when we read their lprops, and we do this only lazily, upon the 1062 * need. So at any given point of time @c->freeable_cnt might be not 1063 * exactly accurate. 1064 * 1065 * Just one example about the issue we hit when we did not zero 1066 * @c->freeable_cnt. 1067 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the 1068 * amount of free space in @d->saved_free 1069 * 2. We re-mount R/W, which makes UBIFS to read the "lsave" 1070 * information from flash, where we cache LEBs from various 1071 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' 1072 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' 1073 * -> 'ubifs_get_pnode()' -> 'update_cats()' 1074 * -> 'ubifs_add_to_cat()'). 1075 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt 1076 * becomes %1. 1077 * 4. We calculate the amount of free space when the re-mount is 1078 * finished in 'dbg_check_space_info()' and it does not match 1079 * @d->saved_free. 1080 */ 1081 freeable_cnt = c->freeable_cnt; 1082 c->freeable_cnt = 0; 1083 d->saved_free = ubifs_get_free_space_nolock(c); 1084 c->freeable_cnt = freeable_cnt; 1085 spin_unlock(&c->space_lock); 1086 } 1087 1088 /** 1089 * dbg_check_space_info - check flash space information. 1090 * @c: UBIFS file-system description object 1091 * 1092 * This function compares current flash space information with the information 1093 * which was saved when the 'dbg_save_space_info()' function was called. 1094 * Returns zero if the information has not changed, and %-EINVAL it it has 1095 * changed. 1096 */ 1097 int dbg_check_space_info(struct ubifs_info *c) 1098 { 1099 struct ubifs_debug_info *d = c->dbg; 1100 struct ubifs_lp_stats lst; 1101 long long free; 1102 int freeable_cnt; 1103 1104 spin_lock(&c->space_lock); 1105 freeable_cnt = c->freeable_cnt; 1106 c->freeable_cnt = 0; 1107 free = ubifs_get_free_space_nolock(c); 1108 c->freeable_cnt = freeable_cnt; 1109 spin_unlock(&c->space_lock); 1110 1111 if (free != d->saved_free) { 1112 ubifs_err("free space changed from %lld to %lld", 1113 d->saved_free, free); 1114 goto out; 1115 } 1116 1117 return 0; 1118 1119 out: 1120 ubifs_msg("saved lprops statistics dump"); 1121 ubifs_dump_lstats(&d->saved_lst); 1122 ubifs_msg("saved budgeting info dump"); 1123 ubifs_dump_budg(c, &d->saved_bi); 1124 ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt); 1125 ubifs_msg("current lprops statistics dump"); 1126 ubifs_get_lp_stats(c, &lst); 1127 ubifs_dump_lstats(&lst); 1128 ubifs_msg("current budgeting info dump"); 1129 ubifs_dump_budg(c, &c->bi); 1130 dump_stack(); 1131 return -EINVAL; 1132 } 1133 1134 /** 1135 * dbg_check_synced_i_size - check synchronized inode size. 1136 * @c: UBIFS file-system description object 1137 * @inode: inode to check 1138 * 1139 * If inode is clean, synchronized inode size has to be equivalent to current 1140 * inode size. This function has to be called only for locked inodes (@i_mutex 1141 * has to be locked). Returns %0 if synchronized inode size if correct, and 1142 * %-EINVAL if not. 1143 */ 1144 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode) 1145 { 1146 int err = 0; 1147 struct ubifs_inode *ui = ubifs_inode(inode); 1148 1149 if (!dbg_is_chk_gen(c)) 1150 return 0; 1151 if (!S_ISREG(inode->i_mode)) 1152 return 0; 1153 1154 mutex_lock(&ui->ui_mutex); 1155 spin_lock(&ui->ui_lock); 1156 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1157 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode " 1158 "is clean", ui->ui_size, ui->synced_i_size); 1159 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1160 inode->i_mode, i_size_read(inode)); 1161 dump_stack(); 1162 err = -EINVAL; 1163 } 1164 spin_unlock(&ui->ui_lock); 1165 mutex_unlock(&ui->ui_mutex); 1166 return err; 1167 } 1168 1169 /* 1170 * dbg_check_dir - check directory inode size and link count. 1171 * @c: UBIFS file-system description object 1172 * @dir: the directory to calculate size for 1173 * @size: the result is returned here 1174 * 1175 * This function makes sure that directory size and link count are correct. 1176 * Returns zero in case of success and a negative error code in case of 1177 * failure. 1178 * 1179 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1180 * calling this function. 1181 */ 1182 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1183 { 1184 unsigned int nlink = 2; 1185 union ubifs_key key; 1186 struct ubifs_dent_node *dent, *pdent = NULL; 1187 struct qstr nm = { .name = NULL }; 1188 loff_t size = UBIFS_INO_NODE_SZ; 1189 1190 if (!dbg_is_chk_gen(c)) 1191 return 0; 1192 1193 if (!S_ISDIR(dir->i_mode)) 1194 return 0; 1195 1196 lowest_dent_key(c, &key, dir->i_ino); 1197 while (1) { 1198 int err; 1199 1200 dent = ubifs_tnc_next_ent(c, &key, &nm); 1201 if (IS_ERR(dent)) { 1202 err = PTR_ERR(dent); 1203 if (err == -ENOENT) 1204 break; 1205 return err; 1206 } 1207 1208 nm.name = dent->name; 1209 nm.len = le16_to_cpu(dent->nlen); 1210 size += CALC_DENT_SIZE(nm.len); 1211 if (dent->type == UBIFS_ITYPE_DIR) 1212 nlink += 1; 1213 kfree(pdent); 1214 pdent = dent; 1215 key_read(c, &dent->key, &key); 1216 } 1217 kfree(pdent); 1218 1219 if (i_size_read(dir) != size) { 1220 ubifs_err("directory inode %lu has size %llu, " 1221 "but calculated size is %llu", dir->i_ino, 1222 (unsigned long long)i_size_read(dir), 1223 (unsigned long long)size); 1224 ubifs_dump_inode(c, dir); 1225 dump_stack(); 1226 return -EINVAL; 1227 } 1228 if (dir->i_nlink != nlink) { 1229 ubifs_err("directory inode %lu has nlink %u, but calculated " 1230 "nlink is %u", dir->i_ino, dir->i_nlink, nlink); 1231 ubifs_dump_inode(c, dir); 1232 dump_stack(); 1233 return -EINVAL; 1234 } 1235 1236 return 0; 1237 } 1238 1239 /** 1240 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1241 * @c: UBIFS file-system description object 1242 * @zbr1: first zbranch 1243 * @zbr2: following zbranch 1244 * 1245 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1246 * names of the direntries/xentries which are referred by the keys. This 1247 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1248 * sure the name of direntry/xentry referred by @zbr1 is less than 1249 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1250 * and a negative error code in case of failure. 1251 */ 1252 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1253 struct ubifs_zbranch *zbr2) 1254 { 1255 int err, nlen1, nlen2, cmp; 1256 struct ubifs_dent_node *dent1, *dent2; 1257 union ubifs_key key; 1258 char key_buf[DBG_KEY_BUF_LEN]; 1259 1260 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 1261 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1262 if (!dent1) 1263 return -ENOMEM; 1264 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1265 if (!dent2) { 1266 err = -ENOMEM; 1267 goto out_free; 1268 } 1269 1270 err = ubifs_tnc_read_node(c, zbr1, dent1); 1271 if (err) 1272 goto out_free; 1273 err = ubifs_validate_entry(c, dent1); 1274 if (err) 1275 goto out_free; 1276 1277 err = ubifs_tnc_read_node(c, zbr2, dent2); 1278 if (err) 1279 goto out_free; 1280 err = ubifs_validate_entry(c, dent2); 1281 if (err) 1282 goto out_free; 1283 1284 /* Make sure node keys are the same as in zbranch */ 1285 err = 1; 1286 key_read(c, &dent1->key, &key); 1287 if (keys_cmp(c, &zbr1->key, &key)) { 1288 ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum, 1289 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1290 DBG_KEY_BUF_LEN)); 1291 ubifs_err("but it should have key %s according to tnc", 1292 dbg_snprintf_key(c, &zbr1->key, key_buf, 1293 DBG_KEY_BUF_LEN)); 1294 ubifs_dump_node(c, dent1); 1295 goto out_free; 1296 } 1297 1298 key_read(c, &dent2->key, &key); 1299 if (keys_cmp(c, &zbr2->key, &key)) { 1300 ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum, 1301 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1302 DBG_KEY_BUF_LEN)); 1303 ubifs_err("but it should have key %s according to tnc", 1304 dbg_snprintf_key(c, &zbr2->key, key_buf, 1305 DBG_KEY_BUF_LEN)); 1306 ubifs_dump_node(c, dent2); 1307 goto out_free; 1308 } 1309 1310 nlen1 = le16_to_cpu(dent1->nlen); 1311 nlen2 = le16_to_cpu(dent2->nlen); 1312 1313 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1314 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1315 err = 0; 1316 goto out_free; 1317 } 1318 if (cmp == 0 && nlen1 == nlen2) 1319 ubifs_err("2 xent/dent nodes with the same name"); 1320 else 1321 ubifs_err("bad order of colliding key %s", 1322 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 1323 1324 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1325 ubifs_dump_node(c, dent1); 1326 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1327 ubifs_dump_node(c, dent2); 1328 1329 out_free: 1330 kfree(dent2); 1331 kfree(dent1); 1332 return err; 1333 } 1334 1335 /** 1336 * dbg_check_znode - check if znode is all right. 1337 * @c: UBIFS file-system description object 1338 * @zbr: zbranch which points to this znode 1339 * 1340 * This function makes sure that znode referred to by @zbr is all right. 1341 * Returns zero if it is, and %-EINVAL if it is not. 1342 */ 1343 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1344 { 1345 struct ubifs_znode *znode = zbr->znode; 1346 struct ubifs_znode *zp = znode->parent; 1347 int n, err, cmp; 1348 1349 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1350 err = 1; 1351 goto out; 1352 } 1353 if (znode->level < 0) { 1354 err = 2; 1355 goto out; 1356 } 1357 if (znode->iip < 0 || znode->iip >= c->fanout) { 1358 err = 3; 1359 goto out; 1360 } 1361 1362 if (zbr->len == 0) 1363 /* Only dirty zbranch may have no on-flash nodes */ 1364 if (!ubifs_zn_dirty(znode)) { 1365 err = 4; 1366 goto out; 1367 } 1368 1369 if (ubifs_zn_dirty(znode)) { 1370 /* 1371 * If znode is dirty, its parent has to be dirty as well. The 1372 * order of the operation is important, so we have to have 1373 * memory barriers. 1374 */ 1375 smp_mb(); 1376 if (zp && !ubifs_zn_dirty(zp)) { 1377 /* 1378 * The dirty flag is atomic and is cleared outside the 1379 * TNC mutex, so znode's dirty flag may now have 1380 * been cleared. The child is always cleared before the 1381 * parent, so we just need to check again. 1382 */ 1383 smp_mb(); 1384 if (ubifs_zn_dirty(znode)) { 1385 err = 5; 1386 goto out; 1387 } 1388 } 1389 } 1390 1391 if (zp) { 1392 const union ubifs_key *min, *max; 1393 1394 if (znode->level != zp->level - 1) { 1395 err = 6; 1396 goto out; 1397 } 1398 1399 /* Make sure the 'parent' pointer in our znode is correct */ 1400 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1401 if (!err) { 1402 /* This zbranch does not exist in the parent */ 1403 err = 7; 1404 goto out; 1405 } 1406 1407 if (znode->iip >= zp->child_cnt) { 1408 err = 8; 1409 goto out; 1410 } 1411 1412 if (znode->iip != n) { 1413 /* This may happen only in case of collisions */ 1414 if (keys_cmp(c, &zp->zbranch[n].key, 1415 &zp->zbranch[znode->iip].key)) { 1416 err = 9; 1417 goto out; 1418 } 1419 n = znode->iip; 1420 } 1421 1422 /* 1423 * Make sure that the first key in our znode is greater than or 1424 * equal to the key in the pointing zbranch. 1425 */ 1426 min = &zbr->key; 1427 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1428 if (cmp == 1) { 1429 err = 10; 1430 goto out; 1431 } 1432 1433 if (n + 1 < zp->child_cnt) { 1434 max = &zp->zbranch[n + 1].key; 1435 1436 /* 1437 * Make sure the last key in our znode is less or 1438 * equivalent than the key in the zbranch which goes 1439 * after our pointing zbranch. 1440 */ 1441 cmp = keys_cmp(c, max, 1442 &znode->zbranch[znode->child_cnt - 1].key); 1443 if (cmp == -1) { 1444 err = 11; 1445 goto out; 1446 } 1447 } 1448 } else { 1449 /* This may only be root znode */ 1450 if (zbr != &c->zroot) { 1451 err = 12; 1452 goto out; 1453 } 1454 } 1455 1456 /* 1457 * Make sure that next key is greater or equivalent then the previous 1458 * one. 1459 */ 1460 for (n = 1; n < znode->child_cnt; n++) { 1461 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1462 &znode->zbranch[n].key); 1463 if (cmp > 0) { 1464 err = 13; 1465 goto out; 1466 } 1467 if (cmp == 0) { 1468 /* This can only be keys with colliding hash */ 1469 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1470 err = 14; 1471 goto out; 1472 } 1473 1474 if (znode->level != 0 || c->replaying) 1475 continue; 1476 1477 /* 1478 * Colliding keys should follow binary order of 1479 * corresponding xentry/dentry names. 1480 */ 1481 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1482 &znode->zbranch[n]); 1483 if (err < 0) 1484 return err; 1485 if (err) { 1486 err = 15; 1487 goto out; 1488 } 1489 } 1490 } 1491 1492 for (n = 0; n < znode->child_cnt; n++) { 1493 if (!znode->zbranch[n].znode && 1494 (znode->zbranch[n].lnum == 0 || 1495 znode->zbranch[n].len == 0)) { 1496 err = 16; 1497 goto out; 1498 } 1499 1500 if (znode->zbranch[n].lnum != 0 && 1501 znode->zbranch[n].len == 0) { 1502 err = 17; 1503 goto out; 1504 } 1505 1506 if (znode->zbranch[n].lnum == 0 && 1507 znode->zbranch[n].len != 0) { 1508 err = 18; 1509 goto out; 1510 } 1511 1512 if (znode->zbranch[n].lnum == 0 && 1513 znode->zbranch[n].offs != 0) { 1514 err = 19; 1515 goto out; 1516 } 1517 1518 if (znode->level != 0 && znode->zbranch[n].znode) 1519 if (znode->zbranch[n].znode->parent != znode) { 1520 err = 20; 1521 goto out; 1522 } 1523 } 1524 1525 return 0; 1526 1527 out: 1528 ubifs_err("failed, error %d", err); 1529 ubifs_msg("dump of the znode"); 1530 ubifs_dump_znode(c, znode); 1531 if (zp) { 1532 ubifs_msg("dump of the parent znode"); 1533 ubifs_dump_znode(c, zp); 1534 } 1535 dump_stack(); 1536 return -EINVAL; 1537 } 1538 1539 /** 1540 * dbg_check_tnc - check TNC tree. 1541 * @c: UBIFS file-system description object 1542 * @extra: do extra checks that are possible at start commit 1543 * 1544 * This function traverses whole TNC tree and checks every znode. Returns zero 1545 * if everything is all right and %-EINVAL if something is wrong with TNC. 1546 */ 1547 int dbg_check_tnc(struct ubifs_info *c, int extra) 1548 { 1549 struct ubifs_znode *znode; 1550 long clean_cnt = 0, dirty_cnt = 0; 1551 int err, last; 1552 1553 if (!dbg_is_chk_index(c)) 1554 return 0; 1555 1556 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1557 if (!c->zroot.znode) 1558 return 0; 1559 1560 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1561 while (1) { 1562 struct ubifs_znode *prev; 1563 struct ubifs_zbranch *zbr; 1564 1565 if (!znode->parent) 1566 zbr = &c->zroot; 1567 else 1568 zbr = &znode->parent->zbranch[znode->iip]; 1569 1570 err = dbg_check_znode(c, zbr); 1571 if (err) 1572 return err; 1573 1574 if (extra) { 1575 if (ubifs_zn_dirty(znode)) 1576 dirty_cnt += 1; 1577 else 1578 clean_cnt += 1; 1579 } 1580 1581 prev = znode; 1582 znode = ubifs_tnc_postorder_next(znode); 1583 if (!znode) 1584 break; 1585 1586 /* 1587 * If the last key of this znode is equivalent to the first key 1588 * of the next znode (collision), then check order of the keys. 1589 */ 1590 last = prev->child_cnt - 1; 1591 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1592 !keys_cmp(c, &prev->zbranch[last].key, 1593 &znode->zbranch[0].key)) { 1594 err = dbg_check_key_order(c, &prev->zbranch[last], 1595 &znode->zbranch[0]); 1596 if (err < 0) 1597 return err; 1598 if (err) { 1599 ubifs_msg("first znode"); 1600 ubifs_dump_znode(c, prev); 1601 ubifs_msg("second znode"); 1602 ubifs_dump_znode(c, znode); 1603 return -EINVAL; 1604 } 1605 } 1606 } 1607 1608 if (extra) { 1609 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1610 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", 1611 atomic_long_read(&c->clean_zn_cnt), 1612 clean_cnt); 1613 return -EINVAL; 1614 } 1615 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1616 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", 1617 atomic_long_read(&c->dirty_zn_cnt), 1618 dirty_cnt); 1619 return -EINVAL; 1620 } 1621 } 1622 1623 return 0; 1624 } 1625 1626 /** 1627 * dbg_walk_index - walk the on-flash index. 1628 * @c: UBIFS file-system description object 1629 * @leaf_cb: called for each leaf node 1630 * @znode_cb: called for each indexing node 1631 * @priv: private data which is passed to callbacks 1632 * 1633 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1634 * node and @znode_cb for each indexing node. Returns zero in case of success 1635 * and a negative error code in case of failure. 1636 * 1637 * It would be better if this function removed every znode it pulled to into 1638 * the TNC, so that the behavior more closely matched the non-debugging 1639 * behavior. 1640 */ 1641 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1642 dbg_znode_callback znode_cb, void *priv) 1643 { 1644 int err; 1645 struct ubifs_zbranch *zbr; 1646 struct ubifs_znode *znode, *child; 1647 1648 mutex_lock(&c->tnc_mutex); 1649 /* If the root indexing node is not in TNC - pull it */ 1650 if (!c->zroot.znode) { 1651 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1652 if (IS_ERR(c->zroot.znode)) { 1653 err = PTR_ERR(c->zroot.znode); 1654 c->zroot.znode = NULL; 1655 goto out_unlock; 1656 } 1657 } 1658 1659 /* 1660 * We are going to traverse the indexing tree in the postorder manner. 1661 * Go down and find the leftmost indexing node where we are going to 1662 * start from. 1663 */ 1664 znode = c->zroot.znode; 1665 while (znode->level > 0) { 1666 zbr = &znode->zbranch[0]; 1667 child = zbr->znode; 1668 if (!child) { 1669 child = ubifs_load_znode(c, zbr, znode, 0); 1670 if (IS_ERR(child)) { 1671 err = PTR_ERR(child); 1672 goto out_unlock; 1673 } 1674 zbr->znode = child; 1675 } 1676 1677 znode = child; 1678 } 1679 1680 /* Iterate over all indexing nodes */ 1681 while (1) { 1682 int idx; 1683 1684 cond_resched(); 1685 1686 if (znode_cb) { 1687 err = znode_cb(c, znode, priv); 1688 if (err) { 1689 ubifs_err("znode checking function returned " 1690 "error %d", err); 1691 ubifs_dump_znode(c, znode); 1692 goto out_dump; 1693 } 1694 } 1695 if (leaf_cb && znode->level == 0) { 1696 for (idx = 0; idx < znode->child_cnt; idx++) { 1697 zbr = &znode->zbranch[idx]; 1698 err = leaf_cb(c, zbr, priv); 1699 if (err) { 1700 ubifs_err("leaf checking function " 1701 "returned error %d, for leaf " 1702 "at LEB %d:%d", 1703 err, zbr->lnum, zbr->offs); 1704 goto out_dump; 1705 } 1706 } 1707 } 1708 1709 if (!znode->parent) 1710 break; 1711 1712 idx = znode->iip + 1; 1713 znode = znode->parent; 1714 if (idx < znode->child_cnt) { 1715 /* Switch to the next index in the parent */ 1716 zbr = &znode->zbranch[idx]; 1717 child = zbr->znode; 1718 if (!child) { 1719 child = ubifs_load_znode(c, zbr, znode, idx); 1720 if (IS_ERR(child)) { 1721 err = PTR_ERR(child); 1722 goto out_unlock; 1723 } 1724 zbr->znode = child; 1725 } 1726 znode = child; 1727 } else 1728 /* 1729 * This is the last child, switch to the parent and 1730 * continue. 1731 */ 1732 continue; 1733 1734 /* Go to the lowest leftmost znode in the new sub-tree */ 1735 while (znode->level > 0) { 1736 zbr = &znode->zbranch[0]; 1737 child = zbr->znode; 1738 if (!child) { 1739 child = ubifs_load_znode(c, zbr, znode, 0); 1740 if (IS_ERR(child)) { 1741 err = PTR_ERR(child); 1742 goto out_unlock; 1743 } 1744 zbr->znode = child; 1745 } 1746 znode = child; 1747 } 1748 } 1749 1750 mutex_unlock(&c->tnc_mutex); 1751 return 0; 1752 1753 out_dump: 1754 if (znode->parent) 1755 zbr = &znode->parent->zbranch[znode->iip]; 1756 else 1757 zbr = &c->zroot; 1758 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1759 ubifs_dump_znode(c, znode); 1760 out_unlock: 1761 mutex_unlock(&c->tnc_mutex); 1762 return err; 1763 } 1764 1765 /** 1766 * add_size - add znode size to partially calculated index size. 1767 * @c: UBIFS file-system description object 1768 * @znode: znode to add size for 1769 * @priv: partially calculated index size 1770 * 1771 * This is a helper function for 'dbg_check_idx_size()' which is called for 1772 * every indexing node and adds its size to the 'long long' variable pointed to 1773 * by @priv. 1774 */ 1775 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1776 { 1777 long long *idx_size = priv; 1778 int add; 1779 1780 add = ubifs_idx_node_sz(c, znode->child_cnt); 1781 add = ALIGN(add, 8); 1782 *idx_size += add; 1783 return 0; 1784 } 1785 1786 /** 1787 * dbg_check_idx_size - check index size. 1788 * @c: UBIFS file-system description object 1789 * @idx_size: size to check 1790 * 1791 * This function walks the UBIFS index, calculates its size and checks that the 1792 * size is equivalent to @idx_size. Returns zero in case of success and a 1793 * negative error code in case of failure. 1794 */ 1795 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1796 { 1797 int err; 1798 long long calc = 0; 1799 1800 if (!dbg_is_chk_index(c)) 1801 return 0; 1802 1803 err = dbg_walk_index(c, NULL, add_size, &calc); 1804 if (err) { 1805 ubifs_err("error %d while walking the index", err); 1806 return err; 1807 } 1808 1809 if (calc != idx_size) { 1810 ubifs_err("index size check failed: calculated size is %lld, " 1811 "should be %lld", calc, idx_size); 1812 dump_stack(); 1813 return -EINVAL; 1814 } 1815 1816 return 0; 1817 } 1818 1819 /** 1820 * struct fsck_inode - information about an inode used when checking the file-system. 1821 * @rb: link in the RB-tree of inodes 1822 * @inum: inode number 1823 * @mode: inode type, permissions, etc 1824 * @nlink: inode link count 1825 * @xattr_cnt: count of extended attributes 1826 * @references: how many directory/xattr entries refer this inode (calculated 1827 * while walking the index) 1828 * @calc_cnt: for directory inode count of child directories 1829 * @size: inode size (read from on-flash inode) 1830 * @xattr_sz: summary size of all extended attributes (read from on-flash 1831 * inode) 1832 * @calc_sz: for directories calculated directory size 1833 * @calc_xcnt: count of extended attributes 1834 * @calc_xsz: calculated summary size of all extended attributes 1835 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1836 * inode (read from on-flash inode) 1837 * @calc_xnms: calculated sum of lengths of all extended attribute names 1838 */ 1839 struct fsck_inode { 1840 struct rb_node rb; 1841 ino_t inum; 1842 umode_t mode; 1843 unsigned int nlink; 1844 unsigned int xattr_cnt; 1845 int references; 1846 int calc_cnt; 1847 long long size; 1848 unsigned int xattr_sz; 1849 long long calc_sz; 1850 long long calc_xcnt; 1851 long long calc_xsz; 1852 unsigned int xattr_nms; 1853 long long calc_xnms; 1854 }; 1855 1856 /** 1857 * struct fsck_data - private FS checking information. 1858 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1859 */ 1860 struct fsck_data { 1861 struct rb_root inodes; 1862 }; 1863 1864 /** 1865 * add_inode - add inode information to RB-tree of inodes. 1866 * @c: UBIFS file-system description object 1867 * @fsckd: FS checking information 1868 * @ino: raw UBIFS inode to add 1869 * 1870 * This is a helper function for 'check_leaf()' which adds information about 1871 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1872 * case of success and a negative error code in case of failure. 1873 */ 1874 static struct fsck_inode *add_inode(struct ubifs_info *c, 1875 struct fsck_data *fsckd, 1876 struct ubifs_ino_node *ino) 1877 { 1878 struct rb_node **p, *parent = NULL; 1879 struct fsck_inode *fscki; 1880 ino_t inum = key_inum_flash(c, &ino->key); 1881 struct inode *inode; 1882 struct ubifs_inode *ui; 1883 1884 p = &fsckd->inodes.rb_node; 1885 while (*p) { 1886 parent = *p; 1887 fscki = rb_entry(parent, struct fsck_inode, rb); 1888 if (inum < fscki->inum) 1889 p = &(*p)->rb_left; 1890 else if (inum > fscki->inum) 1891 p = &(*p)->rb_right; 1892 else 1893 return fscki; 1894 } 1895 1896 if (inum > c->highest_inum) { 1897 ubifs_err("too high inode number, max. is %lu", 1898 (unsigned long)c->highest_inum); 1899 return ERR_PTR(-EINVAL); 1900 } 1901 1902 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1903 if (!fscki) 1904 return ERR_PTR(-ENOMEM); 1905 1906 inode = ilookup(c->vfs_sb, inum); 1907 1908 fscki->inum = inum; 1909 /* 1910 * If the inode is present in the VFS inode cache, use it instead of 1911 * the on-flash inode which might be out-of-date. E.g., the size might 1912 * be out-of-date. If we do not do this, the following may happen, for 1913 * example: 1914 * 1. A power cut happens 1915 * 2. We mount the file-system R/O, the replay process fixes up the 1916 * inode size in the VFS cache, but on on-flash. 1917 * 3. 'check_leaf()' fails because it hits a data node beyond inode 1918 * size. 1919 */ 1920 if (!inode) { 1921 fscki->nlink = le32_to_cpu(ino->nlink); 1922 fscki->size = le64_to_cpu(ino->size); 1923 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1924 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1925 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1926 fscki->mode = le32_to_cpu(ino->mode); 1927 } else { 1928 ui = ubifs_inode(inode); 1929 fscki->nlink = inode->i_nlink; 1930 fscki->size = inode->i_size; 1931 fscki->xattr_cnt = ui->xattr_cnt; 1932 fscki->xattr_sz = ui->xattr_size; 1933 fscki->xattr_nms = ui->xattr_names; 1934 fscki->mode = inode->i_mode; 1935 iput(inode); 1936 } 1937 1938 if (S_ISDIR(fscki->mode)) { 1939 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1940 fscki->calc_cnt = 2; 1941 } 1942 1943 rb_link_node(&fscki->rb, parent, p); 1944 rb_insert_color(&fscki->rb, &fsckd->inodes); 1945 1946 return fscki; 1947 } 1948 1949 /** 1950 * search_inode - search inode in the RB-tree of inodes. 1951 * @fsckd: FS checking information 1952 * @inum: inode number to search 1953 * 1954 * This is a helper function for 'check_leaf()' which searches inode @inum in 1955 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1956 * the inode was not found. 1957 */ 1958 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1959 { 1960 struct rb_node *p; 1961 struct fsck_inode *fscki; 1962 1963 p = fsckd->inodes.rb_node; 1964 while (p) { 1965 fscki = rb_entry(p, struct fsck_inode, rb); 1966 if (inum < fscki->inum) 1967 p = p->rb_left; 1968 else if (inum > fscki->inum) 1969 p = p->rb_right; 1970 else 1971 return fscki; 1972 } 1973 return NULL; 1974 } 1975 1976 /** 1977 * read_add_inode - read inode node and add it to RB-tree of inodes. 1978 * @c: UBIFS file-system description object 1979 * @fsckd: FS checking information 1980 * @inum: inode number to read 1981 * 1982 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1983 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1984 * information pointer in case of success and a negative error code in case of 1985 * failure. 1986 */ 1987 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1988 struct fsck_data *fsckd, ino_t inum) 1989 { 1990 int n, err; 1991 union ubifs_key key; 1992 struct ubifs_znode *znode; 1993 struct ubifs_zbranch *zbr; 1994 struct ubifs_ino_node *ino; 1995 struct fsck_inode *fscki; 1996 1997 fscki = search_inode(fsckd, inum); 1998 if (fscki) 1999 return fscki; 2000 2001 ino_key_init(c, &key, inum); 2002 err = ubifs_lookup_level0(c, &key, &znode, &n); 2003 if (!err) { 2004 ubifs_err("inode %lu not found in index", (unsigned long)inum); 2005 return ERR_PTR(-ENOENT); 2006 } else if (err < 0) { 2007 ubifs_err("error %d while looking up inode %lu", 2008 err, (unsigned long)inum); 2009 return ERR_PTR(err); 2010 } 2011 2012 zbr = &znode->zbranch[n]; 2013 if (zbr->len < UBIFS_INO_NODE_SZ) { 2014 ubifs_err("bad node %lu node length %d", 2015 (unsigned long)inum, zbr->len); 2016 return ERR_PTR(-EINVAL); 2017 } 2018 2019 ino = kmalloc(zbr->len, GFP_NOFS); 2020 if (!ino) 2021 return ERR_PTR(-ENOMEM); 2022 2023 err = ubifs_tnc_read_node(c, zbr, ino); 2024 if (err) { 2025 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 2026 zbr->lnum, zbr->offs, err); 2027 kfree(ino); 2028 return ERR_PTR(err); 2029 } 2030 2031 fscki = add_inode(c, fsckd, ino); 2032 kfree(ino); 2033 if (IS_ERR(fscki)) { 2034 ubifs_err("error %ld while adding inode %lu node", 2035 PTR_ERR(fscki), (unsigned long)inum); 2036 return fscki; 2037 } 2038 2039 return fscki; 2040 } 2041 2042 /** 2043 * check_leaf - check leaf node. 2044 * @c: UBIFS file-system description object 2045 * @zbr: zbranch of the leaf node to check 2046 * @priv: FS checking information 2047 * 2048 * This is a helper function for 'dbg_check_filesystem()' which is called for 2049 * every single leaf node while walking the indexing tree. It checks that the 2050 * leaf node referred from the indexing tree exists, has correct CRC, and does 2051 * some other basic validation. This function is also responsible for building 2052 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 2053 * calculates reference count, size, etc for each inode in order to later 2054 * compare them to the information stored inside the inodes and detect possible 2055 * inconsistencies. Returns zero in case of success and a negative error code 2056 * in case of failure. 2057 */ 2058 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 2059 void *priv) 2060 { 2061 ino_t inum; 2062 void *node; 2063 struct ubifs_ch *ch; 2064 int err, type = key_type(c, &zbr->key); 2065 struct fsck_inode *fscki; 2066 2067 if (zbr->len < UBIFS_CH_SZ) { 2068 ubifs_err("bad leaf length %d (LEB %d:%d)", 2069 zbr->len, zbr->lnum, zbr->offs); 2070 return -EINVAL; 2071 } 2072 2073 node = kmalloc(zbr->len, GFP_NOFS); 2074 if (!node) 2075 return -ENOMEM; 2076 2077 err = ubifs_tnc_read_node(c, zbr, node); 2078 if (err) { 2079 ubifs_err("cannot read leaf node at LEB %d:%d, error %d", 2080 zbr->lnum, zbr->offs, err); 2081 goto out_free; 2082 } 2083 2084 /* If this is an inode node, add it to RB-tree of inodes */ 2085 if (type == UBIFS_INO_KEY) { 2086 fscki = add_inode(c, priv, node); 2087 if (IS_ERR(fscki)) { 2088 err = PTR_ERR(fscki); 2089 ubifs_err("error %d while adding inode node", err); 2090 goto out_dump; 2091 } 2092 goto out; 2093 } 2094 2095 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 2096 type != UBIFS_DATA_KEY) { 2097 ubifs_err("unexpected node type %d at LEB %d:%d", 2098 type, zbr->lnum, zbr->offs); 2099 err = -EINVAL; 2100 goto out_free; 2101 } 2102 2103 ch = node; 2104 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 2105 ubifs_err("too high sequence number, max. is %llu", 2106 c->max_sqnum); 2107 err = -EINVAL; 2108 goto out_dump; 2109 } 2110 2111 if (type == UBIFS_DATA_KEY) { 2112 long long blk_offs; 2113 struct ubifs_data_node *dn = node; 2114 2115 /* 2116 * Search the inode node this data node belongs to and insert 2117 * it to the RB-tree of inodes. 2118 */ 2119 inum = key_inum_flash(c, &dn->key); 2120 fscki = read_add_inode(c, priv, inum); 2121 if (IS_ERR(fscki)) { 2122 err = PTR_ERR(fscki); 2123 ubifs_err("error %d while processing data node and " 2124 "trying to find inode node %lu", 2125 err, (unsigned long)inum); 2126 goto out_dump; 2127 } 2128 2129 /* Make sure the data node is within inode size */ 2130 blk_offs = key_block_flash(c, &dn->key); 2131 blk_offs <<= UBIFS_BLOCK_SHIFT; 2132 blk_offs += le32_to_cpu(dn->size); 2133 if (blk_offs > fscki->size) { 2134 ubifs_err("data node at LEB %d:%d is not within inode " 2135 "size %lld", zbr->lnum, zbr->offs, 2136 fscki->size); 2137 err = -EINVAL; 2138 goto out_dump; 2139 } 2140 } else { 2141 int nlen; 2142 struct ubifs_dent_node *dent = node; 2143 struct fsck_inode *fscki1; 2144 2145 err = ubifs_validate_entry(c, dent); 2146 if (err) 2147 goto out_dump; 2148 2149 /* 2150 * Search the inode node this entry refers to and the parent 2151 * inode node and insert them to the RB-tree of inodes. 2152 */ 2153 inum = le64_to_cpu(dent->inum); 2154 fscki = read_add_inode(c, priv, inum); 2155 if (IS_ERR(fscki)) { 2156 err = PTR_ERR(fscki); 2157 ubifs_err("error %d while processing entry node and " 2158 "trying to find inode node %lu", 2159 err, (unsigned long)inum); 2160 goto out_dump; 2161 } 2162 2163 /* Count how many direntries or xentries refers this inode */ 2164 fscki->references += 1; 2165 2166 inum = key_inum_flash(c, &dent->key); 2167 fscki1 = read_add_inode(c, priv, inum); 2168 if (IS_ERR(fscki1)) { 2169 err = PTR_ERR(fscki1); 2170 ubifs_err("error %d while processing entry node and " 2171 "trying to find parent inode node %lu", 2172 err, (unsigned long)inum); 2173 goto out_dump; 2174 } 2175 2176 nlen = le16_to_cpu(dent->nlen); 2177 if (type == UBIFS_XENT_KEY) { 2178 fscki1->calc_xcnt += 1; 2179 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2180 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2181 fscki1->calc_xnms += nlen; 2182 } else { 2183 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2184 if (dent->type == UBIFS_ITYPE_DIR) 2185 fscki1->calc_cnt += 1; 2186 } 2187 } 2188 2189 out: 2190 kfree(node); 2191 return 0; 2192 2193 out_dump: 2194 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2195 ubifs_dump_node(c, node); 2196 out_free: 2197 kfree(node); 2198 return err; 2199 } 2200 2201 /** 2202 * free_inodes - free RB-tree of inodes. 2203 * @fsckd: FS checking information 2204 */ 2205 static void free_inodes(struct fsck_data *fsckd) 2206 { 2207 struct rb_node *this = fsckd->inodes.rb_node; 2208 struct fsck_inode *fscki; 2209 2210 while (this) { 2211 if (this->rb_left) 2212 this = this->rb_left; 2213 else if (this->rb_right) 2214 this = this->rb_right; 2215 else { 2216 fscki = rb_entry(this, struct fsck_inode, rb); 2217 this = rb_parent(this); 2218 if (this) { 2219 if (this->rb_left == &fscki->rb) 2220 this->rb_left = NULL; 2221 else 2222 this->rb_right = NULL; 2223 } 2224 kfree(fscki); 2225 } 2226 } 2227 } 2228 2229 /** 2230 * check_inodes - checks all inodes. 2231 * @c: UBIFS file-system description object 2232 * @fsckd: FS checking information 2233 * 2234 * This is a helper function for 'dbg_check_filesystem()' which walks the 2235 * RB-tree of inodes after the index scan has been finished, and checks that 2236 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2237 * %-EINVAL if not, and a negative error code in case of failure. 2238 */ 2239 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2240 { 2241 int n, err; 2242 union ubifs_key key; 2243 struct ubifs_znode *znode; 2244 struct ubifs_zbranch *zbr; 2245 struct ubifs_ino_node *ino; 2246 struct fsck_inode *fscki; 2247 struct rb_node *this = rb_first(&fsckd->inodes); 2248 2249 while (this) { 2250 fscki = rb_entry(this, struct fsck_inode, rb); 2251 this = rb_next(this); 2252 2253 if (S_ISDIR(fscki->mode)) { 2254 /* 2255 * Directories have to have exactly one reference (they 2256 * cannot have hardlinks), although root inode is an 2257 * exception. 2258 */ 2259 if (fscki->inum != UBIFS_ROOT_INO && 2260 fscki->references != 1) { 2261 ubifs_err("directory inode %lu has %d " 2262 "direntries which refer it, but " 2263 "should be 1", 2264 (unsigned long)fscki->inum, 2265 fscki->references); 2266 goto out_dump; 2267 } 2268 if (fscki->inum == UBIFS_ROOT_INO && 2269 fscki->references != 0) { 2270 ubifs_err("root inode %lu has non-zero (%d) " 2271 "direntries which refer it", 2272 (unsigned long)fscki->inum, 2273 fscki->references); 2274 goto out_dump; 2275 } 2276 if (fscki->calc_sz != fscki->size) { 2277 ubifs_err("directory inode %lu size is %lld, " 2278 "but calculated size is %lld", 2279 (unsigned long)fscki->inum, 2280 fscki->size, fscki->calc_sz); 2281 goto out_dump; 2282 } 2283 if (fscki->calc_cnt != fscki->nlink) { 2284 ubifs_err("directory inode %lu nlink is %d, " 2285 "but calculated nlink is %d", 2286 (unsigned long)fscki->inum, 2287 fscki->nlink, fscki->calc_cnt); 2288 goto out_dump; 2289 } 2290 } else { 2291 if (fscki->references != fscki->nlink) { 2292 ubifs_err("inode %lu nlink is %d, but " 2293 "calculated nlink is %d", 2294 (unsigned long)fscki->inum, 2295 fscki->nlink, fscki->references); 2296 goto out_dump; 2297 } 2298 } 2299 if (fscki->xattr_sz != fscki->calc_xsz) { 2300 ubifs_err("inode %lu has xattr size %u, but " 2301 "calculated size is %lld", 2302 (unsigned long)fscki->inum, fscki->xattr_sz, 2303 fscki->calc_xsz); 2304 goto out_dump; 2305 } 2306 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2307 ubifs_err("inode %lu has %u xattrs, but " 2308 "calculated count is %lld", 2309 (unsigned long)fscki->inum, 2310 fscki->xattr_cnt, fscki->calc_xcnt); 2311 goto out_dump; 2312 } 2313 if (fscki->xattr_nms != fscki->calc_xnms) { 2314 ubifs_err("inode %lu has xattr names' size %u, but " 2315 "calculated names' size is %lld", 2316 (unsigned long)fscki->inum, fscki->xattr_nms, 2317 fscki->calc_xnms); 2318 goto out_dump; 2319 } 2320 } 2321 2322 return 0; 2323 2324 out_dump: 2325 /* Read the bad inode and dump it */ 2326 ino_key_init(c, &key, fscki->inum); 2327 err = ubifs_lookup_level0(c, &key, &znode, &n); 2328 if (!err) { 2329 ubifs_err("inode %lu not found in index", 2330 (unsigned long)fscki->inum); 2331 return -ENOENT; 2332 } else if (err < 0) { 2333 ubifs_err("error %d while looking up inode %lu", 2334 err, (unsigned long)fscki->inum); 2335 return err; 2336 } 2337 2338 zbr = &znode->zbranch[n]; 2339 ino = kmalloc(zbr->len, GFP_NOFS); 2340 if (!ino) 2341 return -ENOMEM; 2342 2343 err = ubifs_tnc_read_node(c, zbr, ino); 2344 if (err) { 2345 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 2346 zbr->lnum, zbr->offs, err); 2347 kfree(ino); 2348 return err; 2349 } 2350 2351 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", 2352 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2353 ubifs_dump_node(c, ino); 2354 kfree(ino); 2355 return -EINVAL; 2356 } 2357 2358 /** 2359 * dbg_check_filesystem - check the file-system. 2360 * @c: UBIFS file-system description object 2361 * 2362 * This function checks the file system, namely: 2363 * o makes sure that all leaf nodes exist and their CRCs are correct; 2364 * o makes sure inode nlink, size, xattr size/count are correct (for all 2365 * inodes). 2366 * 2367 * The function reads whole indexing tree and all nodes, so it is pretty 2368 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2369 * not, and a negative error code in case of failure. 2370 */ 2371 int dbg_check_filesystem(struct ubifs_info *c) 2372 { 2373 int err; 2374 struct fsck_data fsckd; 2375 2376 if (!dbg_is_chk_fs(c)) 2377 return 0; 2378 2379 fsckd.inodes = RB_ROOT; 2380 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2381 if (err) 2382 goto out_free; 2383 2384 err = check_inodes(c, &fsckd); 2385 if (err) 2386 goto out_free; 2387 2388 free_inodes(&fsckd); 2389 return 0; 2390 2391 out_free: 2392 ubifs_err("file-system check failed with error %d", err); 2393 dump_stack(); 2394 free_inodes(&fsckd); 2395 return err; 2396 } 2397 2398 /** 2399 * dbg_check_data_nodes_order - check that list of data nodes is sorted. 2400 * @c: UBIFS file-system description object 2401 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2402 * 2403 * This function returns zero if the list of data nodes is sorted correctly, 2404 * and %-EINVAL if not. 2405 */ 2406 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) 2407 { 2408 struct list_head *cur; 2409 struct ubifs_scan_node *sa, *sb; 2410 2411 if (!dbg_is_chk_gen(c)) 2412 return 0; 2413 2414 for (cur = head->next; cur->next != head; cur = cur->next) { 2415 ino_t inuma, inumb; 2416 uint32_t blka, blkb; 2417 2418 cond_resched(); 2419 sa = container_of(cur, struct ubifs_scan_node, list); 2420 sb = container_of(cur->next, struct ubifs_scan_node, list); 2421 2422 if (sa->type != UBIFS_DATA_NODE) { 2423 ubifs_err("bad node type %d", sa->type); 2424 ubifs_dump_node(c, sa->node); 2425 return -EINVAL; 2426 } 2427 if (sb->type != UBIFS_DATA_NODE) { 2428 ubifs_err("bad node type %d", sb->type); 2429 ubifs_dump_node(c, sb->node); 2430 return -EINVAL; 2431 } 2432 2433 inuma = key_inum(c, &sa->key); 2434 inumb = key_inum(c, &sb->key); 2435 2436 if (inuma < inumb) 2437 continue; 2438 if (inuma > inumb) { 2439 ubifs_err("larger inum %lu goes before inum %lu", 2440 (unsigned long)inuma, (unsigned long)inumb); 2441 goto error_dump; 2442 } 2443 2444 blka = key_block(c, &sa->key); 2445 blkb = key_block(c, &sb->key); 2446 2447 if (blka > blkb) { 2448 ubifs_err("larger block %u goes before %u", blka, blkb); 2449 goto error_dump; 2450 } 2451 if (blka == blkb) { 2452 ubifs_err("two data nodes for the same block"); 2453 goto error_dump; 2454 } 2455 } 2456 2457 return 0; 2458 2459 error_dump: 2460 ubifs_dump_node(c, sa->node); 2461 ubifs_dump_node(c, sb->node); 2462 return -EINVAL; 2463 } 2464 2465 /** 2466 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. 2467 * @c: UBIFS file-system description object 2468 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2469 * 2470 * This function returns zero if the list of non-data nodes is sorted correctly, 2471 * and %-EINVAL if not. 2472 */ 2473 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) 2474 { 2475 struct list_head *cur; 2476 struct ubifs_scan_node *sa, *sb; 2477 2478 if (!dbg_is_chk_gen(c)) 2479 return 0; 2480 2481 for (cur = head->next; cur->next != head; cur = cur->next) { 2482 ino_t inuma, inumb; 2483 uint32_t hasha, hashb; 2484 2485 cond_resched(); 2486 sa = container_of(cur, struct ubifs_scan_node, list); 2487 sb = container_of(cur->next, struct ubifs_scan_node, list); 2488 2489 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2490 sa->type != UBIFS_XENT_NODE) { 2491 ubifs_err("bad node type %d", sa->type); 2492 ubifs_dump_node(c, sa->node); 2493 return -EINVAL; 2494 } 2495 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2496 sa->type != UBIFS_XENT_NODE) { 2497 ubifs_err("bad node type %d", sb->type); 2498 ubifs_dump_node(c, sb->node); 2499 return -EINVAL; 2500 } 2501 2502 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2503 ubifs_err("non-inode node goes before inode node"); 2504 goto error_dump; 2505 } 2506 2507 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) 2508 continue; 2509 2510 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2511 /* Inode nodes are sorted in descending size order */ 2512 if (sa->len < sb->len) { 2513 ubifs_err("smaller inode node goes first"); 2514 goto error_dump; 2515 } 2516 continue; 2517 } 2518 2519 /* 2520 * This is either a dentry or xentry, which should be sorted in 2521 * ascending (parent ino, hash) order. 2522 */ 2523 inuma = key_inum(c, &sa->key); 2524 inumb = key_inum(c, &sb->key); 2525 2526 if (inuma < inumb) 2527 continue; 2528 if (inuma > inumb) { 2529 ubifs_err("larger inum %lu goes before inum %lu", 2530 (unsigned long)inuma, (unsigned long)inumb); 2531 goto error_dump; 2532 } 2533 2534 hasha = key_block(c, &sa->key); 2535 hashb = key_block(c, &sb->key); 2536 2537 if (hasha > hashb) { 2538 ubifs_err("larger hash %u goes before %u", 2539 hasha, hashb); 2540 goto error_dump; 2541 } 2542 } 2543 2544 return 0; 2545 2546 error_dump: 2547 ubifs_msg("dumping first node"); 2548 ubifs_dump_node(c, sa->node); 2549 ubifs_msg("dumping second node"); 2550 ubifs_dump_node(c, sb->node); 2551 return -EINVAL; 2552 return 0; 2553 } 2554 2555 static inline int chance(unsigned int n, unsigned int out_of) 2556 { 2557 return !!((random32() % out_of) + 1 <= n); 2558 2559 } 2560 2561 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) 2562 { 2563 struct ubifs_debug_info *d = c->dbg; 2564 2565 ubifs_assert(dbg_is_tst_rcvry(c)); 2566 2567 if (!d->pc_cnt) { 2568 /* First call - decide delay to the power cut */ 2569 if (chance(1, 2)) { 2570 unsigned long delay; 2571 2572 if (chance(1, 2)) { 2573 d->pc_delay = 1; 2574 /* Fail withing 1 minute */ 2575 delay = random32() % 60000; 2576 d->pc_timeout = jiffies; 2577 d->pc_timeout += msecs_to_jiffies(delay); 2578 ubifs_warn("failing after %lums", delay); 2579 } else { 2580 d->pc_delay = 2; 2581 delay = random32() % 10000; 2582 /* Fail within 10000 operations */ 2583 d->pc_cnt_max = delay; 2584 ubifs_warn("failing after %lu calls", delay); 2585 } 2586 } 2587 2588 d->pc_cnt += 1; 2589 } 2590 2591 /* Determine if failure delay has expired */ 2592 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) 2593 return 0; 2594 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) 2595 return 0; 2596 2597 if (lnum == UBIFS_SB_LNUM) { 2598 if (write && chance(1, 2)) 2599 return 0; 2600 if (chance(19, 20)) 2601 return 0; 2602 ubifs_warn("failing in super block LEB %d", lnum); 2603 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2604 if (chance(19, 20)) 2605 return 0; 2606 ubifs_warn("failing in master LEB %d", lnum); 2607 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2608 if (write && chance(99, 100)) 2609 return 0; 2610 if (chance(399, 400)) 2611 return 0; 2612 ubifs_warn("failing in log LEB %d", lnum); 2613 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2614 if (write && chance(7, 8)) 2615 return 0; 2616 if (chance(19, 20)) 2617 return 0; 2618 ubifs_warn("failing in LPT LEB %d", lnum); 2619 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2620 if (write && chance(1, 2)) 2621 return 0; 2622 if (chance(9, 10)) 2623 return 0; 2624 ubifs_warn("failing in orphan LEB %d", lnum); 2625 } else if (lnum == c->ihead_lnum) { 2626 if (chance(99, 100)) 2627 return 0; 2628 ubifs_warn("failing in index head LEB %d", lnum); 2629 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2630 if (chance(9, 10)) 2631 return 0; 2632 ubifs_warn("failing in GC head LEB %d", lnum); 2633 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2634 !ubifs_search_bud(c, lnum)) { 2635 if (chance(19, 20)) 2636 return 0; 2637 ubifs_warn("failing in non-bud LEB %d", lnum); 2638 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2639 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2640 if (chance(999, 1000)) 2641 return 0; 2642 ubifs_warn("failing in bud LEB %d commit running", lnum); 2643 } else { 2644 if (chance(9999, 10000)) 2645 return 0; 2646 ubifs_warn("failing in bud LEB %d commit not running", lnum); 2647 } 2648 2649 d->pc_happened = 1; 2650 ubifs_warn("========== Power cut emulated =========="); 2651 dump_stack(); 2652 return 1; 2653 } 2654 2655 static void cut_data(const void *buf, unsigned int len) 2656 { 2657 unsigned int from, to, i, ffs = chance(1, 2); 2658 unsigned char *p = (void *)buf; 2659 2660 from = random32() % (len + 1); 2661 if (chance(1, 2)) 2662 to = random32() % (len - from + 1); 2663 else 2664 to = len; 2665 2666 if (from < to) 2667 ubifs_warn("filled bytes %u-%u with %s", from, to - 1, 2668 ffs ? "0xFFs" : "random data"); 2669 2670 if (ffs) 2671 for (i = from; i < to; i++) 2672 p[i] = 0xFF; 2673 else 2674 for (i = from; i < to; i++) 2675 p[i] = random32() % 0x100; 2676 } 2677 2678 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, 2679 int offs, int len) 2680 { 2681 int err, failing; 2682 2683 if (c->dbg->pc_happened) 2684 return -EROFS; 2685 2686 failing = power_cut_emulated(c, lnum, 1); 2687 if (failing) 2688 cut_data(buf, len); 2689 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 2690 if (err) 2691 return err; 2692 if (failing) 2693 return -EROFS; 2694 return 0; 2695 } 2696 2697 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, 2698 int len) 2699 { 2700 int err; 2701 2702 if (c->dbg->pc_happened) 2703 return -EROFS; 2704 if (power_cut_emulated(c, lnum, 1)) 2705 return -EROFS; 2706 err = ubi_leb_change(c->ubi, lnum, buf, len); 2707 if (err) 2708 return err; 2709 if (power_cut_emulated(c, lnum, 1)) 2710 return -EROFS; 2711 return 0; 2712 } 2713 2714 int dbg_leb_unmap(struct ubifs_info *c, int lnum) 2715 { 2716 int err; 2717 2718 if (c->dbg->pc_happened) 2719 return -EROFS; 2720 if (power_cut_emulated(c, lnum, 0)) 2721 return -EROFS; 2722 err = ubi_leb_unmap(c->ubi, lnum); 2723 if (err) 2724 return err; 2725 if (power_cut_emulated(c, lnum, 0)) 2726 return -EROFS; 2727 return 0; 2728 } 2729 2730 int dbg_leb_map(struct ubifs_info *c, int lnum) 2731 { 2732 int err; 2733 2734 if (c->dbg->pc_happened) 2735 return -EROFS; 2736 if (power_cut_emulated(c, lnum, 0)) 2737 return -EROFS; 2738 err = ubi_leb_map(c->ubi, lnum); 2739 if (err) 2740 return err; 2741 if (power_cut_emulated(c, lnum, 0)) 2742 return -EROFS; 2743 return 0; 2744 } 2745 2746 /* 2747 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2748 * contain the stuff specific to particular file-system mounts. 2749 */ 2750 static struct dentry *dfs_rootdir; 2751 2752 static int dfs_file_open(struct inode *inode, struct file *file) 2753 { 2754 file->private_data = inode->i_private; 2755 return nonseekable_open(inode, file); 2756 } 2757 2758 /** 2759 * provide_user_output - provide output to the user reading a debugfs file. 2760 * @val: boolean value for the answer 2761 * @u: the buffer to store the answer at 2762 * @count: size of the buffer 2763 * @ppos: position in the @u output buffer 2764 * 2765 * This is a simple helper function which stores @val boolean value in the user 2766 * buffer when the user reads one of UBIFS debugfs files. Returns amount of 2767 * bytes written to @u in case of success and a negative error code in case of 2768 * failure. 2769 */ 2770 static int provide_user_output(int val, char __user *u, size_t count, 2771 loff_t *ppos) 2772 { 2773 char buf[3]; 2774 2775 if (val) 2776 buf[0] = '1'; 2777 else 2778 buf[0] = '0'; 2779 buf[1] = '\n'; 2780 buf[2] = 0x00; 2781 2782 return simple_read_from_buffer(u, count, ppos, buf, 2); 2783 } 2784 2785 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count, 2786 loff_t *ppos) 2787 { 2788 struct dentry *dent = file->f_path.dentry; 2789 struct ubifs_info *c = file->private_data; 2790 struct ubifs_debug_info *d = c->dbg; 2791 int val; 2792 2793 if (dent == d->dfs_chk_gen) 2794 val = d->chk_gen; 2795 else if (dent == d->dfs_chk_index) 2796 val = d->chk_index; 2797 else if (dent == d->dfs_chk_orph) 2798 val = d->chk_orph; 2799 else if (dent == d->dfs_chk_lprops) 2800 val = d->chk_lprops; 2801 else if (dent == d->dfs_chk_fs) 2802 val = d->chk_fs; 2803 else if (dent == d->dfs_tst_rcvry) 2804 val = d->tst_rcvry; 2805 else if (dent == d->dfs_ro_error) 2806 val = c->ro_error; 2807 else 2808 return -EINVAL; 2809 2810 return provide_user_output(val, u, count, ppos); 2811 } 2812 2813 /** 2814 * interpret_user_input - interpret user debugfs file input. 2815 * @u: user-provided buffer with the input 2816 * @count: buffer size 2817 * 2818 * This is a helper function which interpret user input to a boolean UBIFS 2819 * debugfs file. Returns %0 or %1 in case of success and a negative error code 2820 * in case of failure. 2821 */ 2822 static int interpret_user_input(const char __user *u, size_t count) 2823 { 2824 size_t buf_size; 2825 char buf[8]; 2826 2827 buf_size = min_t(size_t, count, (sizeof(buf) - 1)); 2828 if (copy_from_user(buf, u, buf_size)) 2829 return -EFAULT; 2830 2831 if (buf[0] == '1') 2832 return 1; 2833 else if (buf[0] == '0') 2834 return 0; 2835 2836 return -EINVAL; 2837 } 2838 2839 static ssize_t dfs_file_write(struct file *file, const char __user *u, 2840 size_t count, loff_t *ppos) 2841 { 2842 struct ubifs_info *c = file->private_data; 2843 struct ubifs_debug_info *d = c->dbg; 2844 struct dentry *dent = file->f_path.dentry; 2845 int val; 2846 2847 /* 2848 * TODO: this is racy - the file-system might have already been 2849 * unmounted and we'd oops in this case. The plan is to fix it with 2850 * help of 'iterate_supers_type()' which we should have in v3.0: when 2851 * a debugfs opened, we rember FS's UUID in file->private_data. Then 2852 * whenever we access the FS via a debugfs file, we iterate all UBIFS 2853 * superblocks and fine the one with the same UUID, and take the 2854 * locking right. 2855 * 2856 * The other way to go suggested by Al Viro is to create a separate 2857 * 'ubifs-debug' file-system instead. 2858 */ 2859 if (file->f_path.dentry == d->dfs_dump_lprops) { 2860 ubifs_dump_lprops(c); 2861 return count; 2862 } 2863 if (file->f_path.dentry == d->dfs_dump_budg) { 2864 ubifs_dump_budg(c, &c->bi); 2865 return count; 2866 } 2867 if (file->f_path.dentry == d->dfs_dump_tnc) { 2868 mutex_lock(&c->tnc_mutex); 2869 ubifs_dump_tnc(c); 2870 mutex_unlock(&c->tnc_mutex); 2871 return count; 2872 } 2873 2874 val = interpret_user_input(u, count); 2875 if (val < 0) 2876 return val; 2877 2878 if (dent == d->dfs_chk_gen) 2879 d->chk_gen = val; 2880 else if (dent == d->dfs_chk_index) 2881 d->chk_index = val; 2882 else if (dent == d->dfs_chk_orph) 2883 d->chk_orph = val; 2884 else if (dent == d->dfs_chk_lprops) 2885 d->chk_lprops = val; 2886 else if (dent == d->dfs_chk_fs) 2887 d->chk_fs = val; 2888 else if (dent == d->dfs_tst_rcvry) 2889 d->tst_rcvry = val; 2890 else if (dent == d->dfs_ro_error) 2891 c->ro_error = !!val; 2892 else 2893 return -EINVAL; 2894 2895 return count; 2896 } 2897 2898 static const struct file_operations dfs_fops = { 2899 .open = dfs_file_open, 2900 .read = dfs_file_read, 2901 .write = dfs_file_write, 2902 .owner = THIS_MODULE, 2903 .llseek = no_llseek, 2904 }; 2905 2906 /** 2907 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2908 * @c: UBIFS file-system description object 2909 * 2910 * This function creates all debugfs files for this instance of UBIFS. Returns 2911 * zero in case of success and a negative error code in case of failure. 2912 * 2913 * Note, the only reason we have not merged this function with the 2914 * 'ubifs_debugging_init()' function is because it is better to initialize 2915 * debugfs interfaces at the very end of the mount process, and remove them at 2916 * the very beginning of the mount process. 2917 */ 2918 int dbg_debugfs_init_fs(struct ubifs_info *c) 2919 { 2920 int err, n; 2921 const char *fname; 2922 struct dentry *dent; 2923 struct ubifs_debug_info *d = c->dbg; 2924 2925 if (!IS_ENABLED(CONFIG_DEBUG_FS)) 2926 return 0; 2927 2928 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME, 2929 c->vi.ubi_num, c->vi.vol_id); 2930 if (n == UBIFS_DFS_DIR_LEN) { 2931 /* The array size is too small */ 2932 fname = UBIFS_DFS_DIR_NAME; 2933 dent = ERR_PTR(-EINVAL); 2934 goto out; 2935 } 2936 2937 fname = d->dfs_dir_name; 2938 dent = debugfs_create_dir(fname, dfs_rootdir); 2939 if (IS_ERR_OR_NULL(dent)) 2940 goto out; 2941 d->dfs_dir = dent; 2942 2943 fname = "dump_lprops"; 2944 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2945 if (IS_ERR_OR_NULL(dent)) 2946 goto out_remove; 2947 d->dfs_dump_lprops = dent; 2948 2949 fname = "dump_budg"; 2950 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2951 if (IS_ERR_OR_NULL(dent)) 2952 goto out_remove; 2953 d->dfs_dump_budg = dent; 2954 2955 fname = "dump_tnc"; 2956 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2957 if (IS_ERR_OR_NULL(dent)) 2958 goto out_remove; 2959 d->dfs_dump_tnc = dent; 2960 2961 fname = "chk_general"; 2962 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2963 &dfs_fops); 2964 if (IS_ERR_OR_NULL(dent)) 2965 goto out_remove; 2966 d->dfs_chk_gen = dent; 2967 2968 fname = "chk_index"; 2969 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2970 &dfs_fops); 2971 if (IS_ERR_OR_NULL(dent)) 2972 goto out_remove; 2973 d->dfs_chk_index = dent; 2974 2975 fname = "chk_orphans"; 2976 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2977 &dfs_fops); 2978 if (IS_ERR_OR_NULL(dent)) 2979 goto out_remove; 2980 d->dfs_chk_orph = dent; 2981 2982 fname = "chk_lprops"; 2983 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2984 &dfs_fops); 2985 if (IS_ERR_OR_NULL(dent)) 2986 goto out_remove; 2987 d->dfs_chk_lprops = dent; 2988 2989 fname = "chk_fs"; 2990 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2991 &dfs_fops); 2992 if (IS_ERR_OR_NULL(dent)) 2993 goto out_remove; 2994 d->dfs_chk_fs = dent; 2995 2996 fname = "tst_recovery"; 2997 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2998 &dfs_fops); 2999 if (IS_ERR_OR_NULL(dent)) 3000 goto out_remove; 3001 d->dfs_tst_rcvry = dent; 3002 3003 fname = "ro_error"; 3004 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 3005 &dfs_fops); 3006 if (IS_ERR_OR_NULL(dent)) 3007 goto out_remove; 3008 d->dfs_ro_error = dent; 3009 3010 return 0; 3011 3012 out_remove: 3013 debugfs_remove_recursive(d->dfs_dir); 3014 out: 3015 err = dent ? PTR_ERR(dent) : -ENODEV; 3016 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n", 3017 fname, err); 3018 return err; 3019 } 3020 3021 /** 3022 * dbg_debugfs_exit_fs - remove all debugfs files. 3023 * @c: UBIFS file-system description object 3024 */ 3025 void dbg_debugfs_exit_fs(struct ubifs_info *c) 3026 { 3027 if (IS_ENABLED(CONFIG_DEBUG_FS)) 3028 debugfs_remove_recursive(c->dbg->dfs_dir); 3029 } 3030 3031 struct ubifs_global_debug_info ubifs_dbg; 3032 3033 static struct dentry *dfs_chk_gen; 3034 static struct dentry *dfs_chk_index; 3035 static struct dentry *dfs_chk_orph; 3036 static struct dentry *dfs_chk_lprops; 3037 static struct dentry *dfs_chk_fs; 3038 static struct dentry *dfs_tst_rcvry; 3039 3040 static ssize_t dfs_global_file_read(struct file *file, char __user *u, 3041 size_t count, loff_t *ppos) 3042 { 3043 struct dentry *dent = file->f_path.dentry; 3044 int val; 3045 3046 if (dent == dfs_chk_gen) 3047 val = ubifs_dbg.chk_gen; 3048 else if (dent == dfs_chk_index) 3049 val = ubifs_dbg.chk_index; 3050 else if (dent == dfs_chk_orph) 3051 val = ubifs_dbg.chk_orph; 3052 else if (dent == dfs_chk_lprops) 3053 val = ubifs_dbg.chk_lprops; 3054 else if (dent == dfs_chk_fs) 3055 val = ubifs_dbg.chk_fs; 3056 else if (dent == dfs_tst_rcvry) 3057 val = ubifs_dbg.tst_rcvry; 3058 else 3059 return -EINVAL; 3060 3061 return provide_user_output(val, u, count, ppos); 3062 } 3063 3064 static ssize_t dfs_global_file_write(struct file *file, const char __user *u, 3065 size_t count, loff_t *ppos) 3066 { 3067 struct dentry *dent = file->f_path.dentry; 3068 int val; 3069 3070 val = interpret_user_input(u, count); 3071 if (val < 0) 3072 return val; 3073 3074 if (dent == dfs_chk_gen) 3075 ubifs_dbg.chk_gen = val; 3076 else if (dent == dfs_chk_index) 3077 ubifs_dbg.chk_index = val; 3078 else if (dent == dfs_chk_orph) 3079 ubifs_dbg.chk_orph = val; 3080 else if (dent == dfs_chk_lprops) 3081 ubifs_dbg.chk_lprops = val; 3082 else if (dent == dfs_chk_fs) 3083 ubifs_dbg.chk_fs = val; 3084 else if (dent == dfs_tst_rcvry) 3085 ubifs_dbg.tst_rcvry = val; 3086 else 3087 return -EINVAL; 3088 3089 return count; 3090 } 3091 3092 static const struct file_operations dfs_global_fops = { 3093 .read = dfs_global_file_read, 3094 .write = dfs_global_file_write, 3095 .owner = THIS_MODULE, 3096 .llseek = no_llseek, 3097 }; 3098 3099 /** 3100 * dbg_debugfs_init - initialize debugfs file-system. 3101 * 3102 * UBIFS uses debugfs file-system to expose various debugging knobs to 3103 * user-space. This function creates "ubifs" directory in the debugfs 3104 * file-system. Returns zero in case of success and a negative error code in 3105 * case of failure. 3106 */ 3107 int dbg_debugfs_init(void) 3108 { 3109 int err; 3110 const char *fname; 3111 struct dentry *dent; 3112 3113 if (!IS_ENABLED(CONFIG_DEBUG_FS)) 3114 return 0; 3115 3116 fname = "ubifs"; 3117 dent = debugfs_create_dir(fname, NULL); 3118 if (IS_ERR_OR_NULL(dent)) 3119 goto out; 3120 dfs_rootdir = dent; 3121 3122 fname = "chk_general"; 3123 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3124 &dfs_global_fops); 3125 if (IS_ERR_OR_NULL(dent)) 3126 goto out_remove; 3127 dfs_chk_gen = dent; 3128 3129 fname = "chk_index"; 3130 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3131 &dfs_global_fops); 3132 if (IS_ERR_OR_NULL(dent)) 3133 goto out_remove; 3134 dfs_chk_index = dent; 3135 3136 fname = "chk_orphans"; 3137 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3138 &dfs_global_fops); 3139 if (IS_ERR_OR_NULL(dent)) 3140 goto out_remove; 3141 dfs_chk_orph = dent; 3142 3143 fname = "chk_lprops"; 3144 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3145 &dfs_global_fops); 3146 if (IS_ERR_OR_NULL(dent)) 3147 goto out_remove; 3148 dfs_chk_lprops = dent; 3149 3150 fname = "chk_fs"; 3151 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3152 &dfs_global_fops); 3153 if (IS_ERR_OR_NULL(dent)) 3154 goto out_remove; 3155 dfs_chk_fs = dent; 3156 3157 fname = "tst_recovery"; 3158 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3159 &dfs_global_fops); 3160 if (IS_ERR_OR_NULL(dent)) 3161 goto out_remove; 3162 dfs_tst_rcvry = dent; 3163 3164 return 0; 3165 3166 out_remove: 3167 debugfs_remove_recursive(dfs_rootdir); 3168 out: 3169 err = dent ? PTR_ERR(dent) : -ENODEV; 3170 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n", 3171 fname, err); 3172 return err; 3173 } 3174 3175 /** 3176 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 3177 */ 3178 void dbg_debugfs_exit(void) 3179 { 3180 if (IS_ENABLED(CONFIG_DEBUG_FS)) 3181 debugfs_remove_recursive(dfs_rootdir); 3182 } 3183 3184 /** 3185 * ubifs_debugging_init - initialize UBIFS debugging. 3186 * @c: UBIFS file-system description object 3187 * 3188 * This function initializes debugging-related data for the file system. 3189 * Returns zero in case of success and a negative error code in case of 3190 * failure. 3191 */ 3192 int ubifs_debugging_init(struct ubifs_info *c) 3193 { 3194 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 3195 if (!c->dbg) 3196 return -ENOMEM; 3197 3198 return 0; 3199 } 3200 3201 /** 3202 * ubifs_debugging_exit - free debugging data. 3203 * @c: UBIFS file-system description object 3204 */ 3205 void ubifs_debugging_exit(struct ubifs_info *c) 3206 { 3207 kfree(c->dbg); 3208 } 3209