xref: /openbmc/linux/fs/ubifs/debug.c (revision 95e9fd10)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29 
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include "ubifs.h"
36 
37 static DEFINE_SPINLOCK(dbg_lock);
38 
39 static const char *get_key_fmt(int fmt)
40 {
41 	switch (fmt) {
42 	case UBIFS_SIMPLE_KEY_FMT:
43 		return "simple";
44 	default:
45 		return "unknown/invalid format";
46 	}
47 }
48 
49 static const char *get_key_hash(int hash)
50 {
51 	switch (hash) {
52 	case UBIFS_KEY_HASH_R5:
53 		return "R5";
54 	case UBIFS_KEY_HASH_TEST:
55 		return "test";
56 	default:
57 		return "unknown/invalid name hash";
58 	}
59 }
60 
61 static const char *get_key_type(int type)
62 {
63 	switch (type) {
64 	case UBIFS_INO_KEY:
65 		return "inode";
66 	case UBIFS_DENT_KEY:
67 		return "direntry";
68 	case UBIFS_XENT_KEY:
69 		return "xentry";
70 	case UBIFS_DATA_KEY:
71 		return "data";
72 	case UBIFS_TRUN_KEY:
73 		return "truncate";
74 	default:
75 		return "unknown/invalid key";
76 	}
77 }
78 
79 static const char *get_dent_type(int type)
80 {
81 	switch (type) {
82 	case UBIFS_ITYPE_REG:
83 		return "file";
84 	case UBIFS_ITYPE_DIR:
85 		return "dir";
86 	case UBIFS_ITYPE_LNK:
87 		return "symlink";
88 	case UBIFS_ITYPE_BLK:
89 		return "blkdev";
90 	case UBIFS_ITYPE_CHR:
91 		return "char dev";
92 	case UBIFS_ITYPE_FIFO:
93 		return "fifo";
94 	case UBIFS_ITYPE_SOCK:
95 		return "socket";
96 	default:
97 		return "unknown/invalid type";
98 	}
99 }
100 
101 const char *dbg_snprintf_key(const struct ubifs_info *c,
102 			     const union ubifs_key *key, char *buffer, int len)
103 {
104 	char *p = buffer;
105 	int type = key_type(c, key);
106 
107 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
108 		switch (type) {
109 		case UBIFS_INO_KEY:
110 			len -= snprintf(p, len, "(%lu, %s)",
111 					(unsigned long)key_inum(c, key),
112 					get_key_type(type));
113 			break;
114 		case UBIFS_DENT_KEY:
115 		case UBIFS_XENT_KEY:
116 			len -= snprintf(p, len, "(%lu, %s, %#08x)",
117 					(unsigned long)key_inum(c, key),
118 					get_key_type(type), key_hash(c, key));
119 			break;
120 		case UBIFS_DATA_KEY:
121 			len -= snprintf(p, len, "(%lu, %s, %u)",
122 					(unsigned long)key_inum(c, key),
123 					get_key_type(type), key_block(c, key));
124 			break;
125 		case UBIFS_TRUN_KEY:
126 			len -= snprintf(p, len, "(%lu, %s)",
127 					(unsigned long)key_inum(c, key),
128 					get_key_type(type));
129 			break;
130 		default:
131 			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
132 					key->u32[0], key->u32[1]);
133 		}
134 	} else
135 		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
136 	ubifs_assert(len > 0);
137 	return p;
138 }
139 
140 const char *dbg_ntype(int type)
141 {
142 	switch (type) {
143 	case UBIFS_PAD_NODE:
144 		return "padding node";
145 	case UBIFS_SB_NODE:
146 		return "superblock node";
147 	case UBIFS_MST_NODE:
148 		return "master node";
149 	case UBIFS_REF_NODE:
150 		return "reference node";
151 	case UBIFS_INO_NODE:
152 		return "inode node";
153 	case UBIFS_DENT_NODE:
154 		return "direntry node";
155 	case UBIFS_XENT_NODE:
156 		return "xentry node";
157 	case UBIFS_DATA_NODE:
158 		return "data node";
159 	case UBIFS_TRUN_NODE:
160 		return "truncate node";
161 	case UBIFS_IDX_NODE:
162 		return "indexing node";
163 	case UBIFS_CS_NODE:
164 		return "commit start node";
165 	case UBIFS_ORPH_NODE:
166 		return "orphan node";
167 	default:
168 		return "unknown node";
169 	}
170 }
171 
172 static const char *dbg_gtype(int type)
173 {
174 	switch (type) {
175 	case UBIFS_NO_NODE_GROUP:
176 		return "no node group";
177 	case UBIFS_IN_NODE_GROUP:
178 		return "in node group";
179 	case UBIFS_LAST_OF_NODE_GROUP:
180 		return "last of node group";
181 	default:
182 		return "unknown";
183 	}
184 }
185 
186 const char *dbg_cstate(int cmt_state)
187 {
188 	switch (cmt_state) {
189 	case COMMIT_RESTING:
190 		return "commit resting";
191 	case COMMIT_BACKGROUND:
192 		return "background commit requested";
193 	case COMMIT_REQUIRED:
194 		return "commit required";
195 	case COMMIT_RUNNING_BACKGROUND:
196 		return "BACKGROUND commit running";
197 	case COMMIT_RUNNING_REQUIRED:
198 		return "commit running and required";
199 	case COMMIT_BROKEN:
200 		return "broken commit";
201 	default:
202 		return "unknown commit state";
203 	}
204 }
205 
206 const char *dbg_jhead(int jhead)
207 {
208 	switch (jhead) {
209 	case GCHD:
210 		return "0 (GC)";
211 	case BASEHD:
212 		return "1 (base)";
213 	case DATAHD:
214 		return "2 (data)";
215 	default:
216 		return "unknown journal head";
217 	}
218 }
219 
220 static void dump_ch(const struct ubifs_ch *ch)
221 {
222 	printk(KERN_ERR "\tmagic          %#x\n", le32_to_cpu(ch->magic));
223 	printk(KERN_ERR "\tcrc            %#x\n", le32_to_cpu(ch->crc));
224 	printk(KERN_ERR "\tnode_type      %d (%s)\n", ch->node_type,
225 	       dbg_ntype(ch->node_type));
226 	printk(KERN_ERR "\tgroup_type     %d (%s)\n", ch->group_type,
227 	       dbg_gtype(ch->group_type));
228 	printk(KERN_ERR "\tsqnum          %llu\n",
229 	       (unsigned long long)le64_to_cpu(ch->sqnum));
230 	printk(KERN_ERR "\tlen            %u\n", le32_to_cpu(ch->len));
231 }
232 
233 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
234 {
235 	const struct ubifs_inode *ui = ubifs_inode(inode);
236 	struct qstr nm = { .name = NULL };
237 	union ubifs_key key;
238 	struct ubifs_dent_node *dent, *pdent = NULL;
239 	int count = 2;
240 
241 	printk(KERN_ERR "Dump in-memory inode:");
242 	printk(KERN_ERR "\tinode          %lu\n", inode->i_ino);
243 	printk(KERN_ERR "\tsize           %llu\n",
244 	       (unsigned long long)i_size_read(inode));
245 	printk(KERN_ERR "\tnlink          %u\n", inode->i_nlink);
246 	printk(KERN_ERR "\tuid            %u\n", (unsigned int)inode->i_uid);
247 	printk(KERN_ERR "\tgid            %u\n", (unsigned int)inode->i_gid);
248 	printk(KERN_ERR "\tatime          %u.%u\n",
249 	       (unsigned int)inode->i_atime.tv_sec,
250 	       (unsigned int)inode->i_atime.tv_nsec);
251 	printk(KERN_ERR "\tmtime          %u.%u\n",
252 	       (unsigned int)inode->i_mtime.tv_sec,
253 	       (unsigned int)inode->i_mtime.tv_nsec);
254 	printk(KERN_ERR "\tctime          %u.%u\n",
255 	       (unsigned int)inode->i_ctime.tv_sec,
256 	       (unsigned int)inode->i_ctime.tv_nsec);
257 	printk(KERN_ERR "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
258 	printk(KERN_ERR "\txattr_size     %u\n", ui->xattr_size);
259 	printk(KERN_ERR "\txattr_cnt      %u\n", ui->xattr_cnt);
260 	printk(KERN_ERR "\txattr_names    %u\n", ui->xattr_names);
261 	printk(KERN_ERR "\tdirty          %u\n", ui->dirty);
262 	printk(KERN_ERR "\txattr          %u\n", ui->xattr);
263 	printk(KERN_ERR "\tbulk_read      %u\n", ui->xattr);
264 	printk(KERN_ERR "\tsynced_i_size  %llu\n",
265 	       (unsigned long long)ui->synced_i_size);
266 	printk(KERN_ERR "\tui_size        %llu\n",
267 	       (unsigned long long)ui->ui_size);
268 	printk(KERN_ERR "\tflags          %d\n", ui->flags);
269 	printk(KERN_ERR "\tcompr_type     %d\n", ui->compr_type);
270 	printk(KERN_ERR "\tlast_page_read %lu\n", ui->last_page_read);
271 	printk(KERN_ERR "\tread_in_a_row  %lu\n", ui->read_in_a_row);
272 	printk(KERN_ERR "\tdata_len       %d\n", ui->data_len);
273 
274 	if (!S_ISDIR(inode->i_mode))
275 		return;
276 
277 	printk(KERN_ERR "List of directory entries:\n");
278 	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
279 
280 	lowest_dent_key(c, &key, inode->i_ino);
281 	while (1) {
282 		dent = ubifs_tnc_next_ent(c, &key, &nm);
283 		if (IS_ERR(dent)) {
284 			if (PTR_ERR(dent) != -ENOENT)
285 				printk(KERN_ERR "error %ld\n", PTR_ERR(dent));
286 			break;
287 		}
288 
289 		printk(KERN_ERR "\t%d: %s (%s)\n",
290 		       count++, dent->name, get_dent_type(dent->type));
291 
292 		nm.name = dent->name;
293 		nm.len = le16_to_cpu(dent->nlen);
294 		kfree(pdent);
295 		pdent = dent;
296 		key_read(c, &dent->key, &key);
297 	}
298 	kfree(pdent);
299 }
300 
301 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
302 {
303 	int i, n;
304 	union ubifs_key key;
305 	const struct ubifs_ch *ch = node;
306 	char key_buf[DBG_KEY_BUF_LEN];
307 
308 	if (dbg_is_tst_rcvry(c))
309 		return;
310 
311 	/* If the magic is incorrect, just hexdump the first bytes */
312 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
313 		printk(KERN_ERR "Not a node, first %zu bytes:", UBIFS_CH_SZ);
314 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
315 			       (void *)node, UBIFS_CH_SZ, 1);
316 		return;
317 	}
318 
319 	spin_lock(&dbg_lock);
320 	dump_ch(node);
321 
322 	switch (ch->node_type) {
323 	case UBIFS_PAD_NODE:
324 	{
325 		const struct ubifs_pad_node *pad = node;
326 
327 		printk(KERN_ERR "\tpad_len        %u\n",
328 		       le32_to_cpu(pad->pad_len));
329 		break;
330 	}
331 	case UBIFS_SB_NODE:
332 	{
333 		const struct ubifs_sb_node *sup = node;
334 		unsigned int sup_flags = le32_to_cpu(sup->flags);
335 
336 		printk(KERN_ERR "\tkey_hash       %d (%s)\n",
337 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
338 		printk(KERN_ERR "\tkey_fmt        %d (%s)\n",
339 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
340 		printk(KERN_ERR "\tflags          %#x\n", sup_flags);
341 		printk(KERN_ERR "\t  big_lpt      %u\n",
342 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
343 		printk(KERN_ERR "\t  space_fixup  %u\n",
344 		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
345 		printk(KERN_ERR "\tmin_io_size    %u\n",
346 		       le32_to_cpu(sup->min_io_size));
347 		printk(KERN_ERR "\tleb_size       %u\n",
348 		       le32_to_cpu(sup->leb_size));
349 		printk(KERN_ERR "\tleb_cnt        %u\n",
350 		       le32_to_cpu(sup->leb_cnt));
351 		printk(KERN_ERR "\tmax_leb_cnt    %u\n",
352 		       le32_to_cpu(sup->max_leb_cnt));
353 		printk(KERN_ERR "\tmax_bud_bytes  %llu\n",
354 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
355 		printk(KERN_ERR "\tlog_lebs       %u\n",
356 		       le32_to_cpu(sup->log_lebs));
357 		printk(KERN_ERR "\tlpt_lebs       %u\n",
358 		       le32_to_cpu(sup->lpt_lebs));
359 		printk(KERN_ERR "\torph_lebs      %u\n",
360 		       le32_to_cpu(sup->orph_lebs));
361 		printk(KERN_ERR "\tjhead_cnt      %u\n",
362 		       le32_to_cpu(sup->jhead_cnt));
363 		printk(KERN_ERR "\tfanout         %u\n",
364 		       le32_to_cpu(sup->fanout));
365 		printk(KERN_ERR "\tlsave_cnt      %u\n",
366 		       le32_to_cpu(sup->lsave_cnt));
367 		printk(KERN_ERR "\tdefault_compr  %u\n",
368 		       (int)le16_to_cpu(sup->default_compr));
369 		printk(KERN_ERR "\trp_size        %llu\n",
370 		       (unsigned long long)le64_to_cpu(sup->rp_size));
371 		printk(KERN_ERR "\trp_uid         %u\n",
372 		       le32_to_cpu(sup->rp_uid));
373 		printk(KERN_ERR "\trp_gid         %u\n",
374 		       le32_to_cpu(sup->rp_gid));
375 		printk(KERN_ERR "\tfmt_version    %u\n",
376 		       le32_to_cpu(sup->fmt_version));
377 		printk(KERN_ERR "\ttime_gran      %u\n",
378 		       le32_to_cpu(sup->time_gran));
379 		printk(KERN_ERR "\tUUID           %pUB\n",
380 		       sup->uuid);
381 		break;
382 	}
383 	case UBIFS_MST_NODE:
384 	{
385 		const struct ubifs_mst_node *mst = node;
386 
387 		printk(KERN_ERR "\thighest_inum   %llu\n",
388 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
389 		printk(KERN_ERR "\tcommit number  %llu\n",
390 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
391 		printk(KERN_ERR "\tflags          %#x\n",
392 		       le32_to_cpu(mst->flags));
393 		printk(KERN_ERR "\tlog_lnum       %u\n",
394 		       le32_to_cpu(mst->log_lnum));
395 		printk(KERN_ERR "\troot_lnum      %u\n",
396 		       le32_to_cpu(mst->root_lnum));
397 		printk(KERN_ERR "\troot_offs      %u\n",
398 		       le32_to_cpu(mst->root_offs));
399 		printk(KERN_ERR "\troot_len       %u\n",
400 		       le32_to_cpu(mst->root_len));
401 		printk(KERN_ERR "\tgc_lnum        %u\n",
402 		       le32_to_cpu(mst->gc_lnum));
403 		printk(KERN_ERR "\tihead_lnum     %u\n",
404 		       le32_to_cpu(mst->ihead_lnum));
405 		printk(KERN_ERR "\tihead_offs     %u\n",
406 		       le32_to_cpu(mst->ihead_offs));
407 		printk(KERN_ERR "\tindex_size     %llu\n",
408 		       (unsigned long long)le64_to_cpu(mst->index_size));
409 		printk(KERN_ERR "\tlpt_lnum       %u\n",
410 		       le32_to_cpu(mst->lpt_lnum));
411 		printk(KERN_ERR "\tlpt_offs       %u\n",
412 		       le32_to_cpu(mst->lpt_offs));
413 		printk(KERN_ERR "\tnhead_lnum     %u\n",
414 		       le32_to_cpu(mst->nhead_lnum));
415 		printk(KERN_ERR "\tnhead_offs     %u\n",
416 		       le32_to_cpu(mst->nhead_offs));
417 		printk(KERN_ERR "\tltab_lnum      %u\n",
418 		       le32_to_cpu(mst->ltab_lnum));
419 		printk(KERN_ERR "\tltab_offs      %u\n",
420 		       le32_to_cpu(mst->ltab_offs));
421 		printk(KERN_ERR "\tlsave_lnum     %u\n",
422 		       le32_to_cpu(mst->lsave_lnum));
423 		printk(KERN_ERR "\tlsave_offs     %u\n",
424 		       le32_to_cpu(mst->lsave_offs));
425 		printk(KERN_ERR "\tlscan_lnum     %u\n",
426 		       le32_to_cpu(mst->lscan_lnum));
427 		printk(KERN_ERR "\tleb_cnt        %u\n",
428 		       le32_to_cpu(mst->leb_cnt));
429 		printk(KERN_ERR "\tempty_lebs     %u\n",
430 		       le32_to_cpu(mst->empty_lebs));
431 		printk(KERN_ERR "\tidx_lebs       %u\n",
432 		       le32_to_cpu(mst->idx_lebs));
433 		printk(KERN_ERR "\ttotal_free     %llu\n",
434 		       (unsigned long long)le64_to_cpu(mst->total_free));
435 		printk(KERN_ERR "\ttotal_dirty    %llu\n",
436 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
437 		printk(KERN_ERR "\ttotal_used     %llu\n",
438 		       (unsigned long long)le64_to_cpu(mst->total_used));
439 		printk(KERN_ERR "\ttotal_dead     %llu\n",
440 		       (unsigned long long)le64_to_cpu(mst->total_dead));
441 		printk(KERN_ERR "\ttotal_dark     %llu\n",
442 		       (unsigned long long)le64_to_cpu(mst->total_dark));
443 		break;
444 	}
445 	case UBIFS_REF_NODE:
446 	{
447 		const struct ubifs_ref_node *ref = node;
448 
449 		printk(KERN_ERR "\tlnum           %u\n",
450 		       le32_to_cpu(ref->lnum));
451 		printk(KERN_ERR "\toffs           %u\n",
452 		       le32_to_cpu(ref->offs));
453 		printk(KERN_ERR "\tjhead          %u\n",
454 		       le32_to_cpu(ref->jhead));
455 		break;
456 	}
457 	case UBIFS_INO_NODE:
458 	{
459 		const struct ubifs_ino_node *ino = node;
460 
461 		key_read(c, &ino->key, &key);
462 		printk(KERN_ERR "\tkey            %s\n",
463 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
464 		printk(KERN_ERR "\tcreat_sqnum    %llu\n",
465 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
466 		printk(KERN_ERR "\tsize           %llu\n",
467 		       (unsigned long long)le64_to_cpu(ino->size));
468 		printk(KERN_ERR "\tnlink          %u\n",
469 		       le32_to_cpu(ino->nlink));
470 		printk(KERN_ERR "\tatime          %lld.%u\n",
471 		       (long long)le64_to_cpu(ino->atime_sec),
472 		       le32_to_cpu(ino->atime_nsec));
473 		printk(KERN_ERR "\tmtime          %lld.%u\n",
474 		       (long long)le64_to_cpu(ino->mtime_sec),
475 		       le32_to_cpu(ino->mtime_nsec));
476 		printk(KERN_ERR "\tctime          %lld.%u\n",
477 		       (long long)le64_to_cpu(ino->ctime_sec),
478 		       le32_to_cpu(ino->ctime_nsec));
479 		printk(KERN_ERR "\tuid            %u\n",
480 		       le32_to_cpu(ino->uid));
481 		printk(KERN_ERR "\tgid            %u\n",
482 		       le32_to_cpu(ino->gid));
483 		printk(KERN_ERR "\tmode           %u\n",
484 		       le32_to_cpu(ino->mode));
485 		printk(KERN_ERR "\tflags          %#x\n",
486 		       le32_to_cpu(ino->flags));
487 		printk(KERN_ERR "\txattr_cnt      %u\n",
488 		       le32_to_cpu(ino->xattr_cnt));
489 		printk(KERN_ERR "\txattr_size     %u\n",
490 		       le32_to_cpu(ino->xattr_size));
491 		printk(KERN_ERR "\txattr_names    %u\n",
492 		       le32_to_cpu(ino->xattr_names));
493 		printk(KERN_ERR "\tcompr_type     %#x\n",
494 		       (int)le16_to_cpu(ino->compr_type));
495 		printk(KERN_ERR "\tdata len       %u\n",
496 		       le32_to_cpu(ino->data_len));
497 		break;
498 	}
499 	case UBIFS_DENT_NODE:
500 	case UBIFS_XENT_NODE:
501 	{
502 		const struct ubifs_dent_node *dent = node;
503 		int nlen = le16_to_cpu(dent->nlen);
504 
505 		key_read(c, &dent->key, &key);
506 		printk(KERN_ERR "\tkey            %s\n",
507 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
508 		printk(KERN_ERR "\tinum           %llu\n",
509 		       (unsigned long long)le64_to_cpu(dent->inum));
510 		printk(KERN_ERR "\ttype           %d\n", (int)dent->type);
511 		printk(KERN_ERR "\tnlen           %d\n", nlen);
512 		printk(KERN_ERR "\tname           ");
513 
514 		if (nlen > UBIFS_MAX_NLEN)
515 			printk(KERN_ERR "(bad name length, not printing, "
516 					  "bad or corrupted node)");
517 		else {
518 			for (i = 0; i < nlen && dent->name[i]; i++)
519 				printk(KERN_CONT "%c", dent->name[i]);
520 		}
521 		printk(KERN_CONT "\n");
522 
523 		break;
524 	}
525 	case UBIFS_DATA_NODE:
526 	{
527 		const struct ubifs_data_node *dn = node;
528 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
529 
530 		key_read(c, &dn->key, &key);
531 		printk(KERN_ERR "\tkey            %s\n",
532 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
533 		printk(KERN_ERR "\tsize           %u\n",
534 		       le32_to_cpu(dn->size));
535 		printk(KERN_ERR "\tcompr_typ      %d\n",
536 		       (int)le16_to_cpu(dn->compr_type));
537 		printk(KERN_ERR "\tdata size      %d\n",
538 		       dlen);
539 		printk(KERN_ERR "\tdata:\n");
540 		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
541 			       (void *)&dn->data, dlen, 0);
542 		break;
543 	}
544 	case UBIFS_TRUN_NODE:
545 	{
546 		const struct ubifs_trun_node *trun = node;
547 
548 		printk(KERN_ERR "\tinum           %u\n",
549 		       le32_to_cpu(trun->inum));
550 		printk(KERN_ERR "\told_size       %llu\n",
551 		       (unsigned long long)le64_to_cpu(trun->old_size));
552 		printk(KERN_ERR "\tnew_size       %llu\n",
553 		       (unsigned long long)le64_to_cpu(trun->new_size));
554 		break;
555 	}
556 	case UBIFS_IDX_NODE:
557 	{
558 		const struct ubifs_idx_node *idx = node;
559 
560 		n = le16_to_cpu(idx->child_cnt);
561 		printk(KERN_ERR "\tchild_cnt      %d\n", n);
562 		printk(KERN_ERR "\tlevel          %d\n",
563 		       (int)le16_to_cpu(idx->level));
564 		printk(KERN_ERR "\tBranches:\n");
565 
566 		for (i = 0; i < n && i < c->fanout - 1; i++) {
567 			const struct ubifs_branch *br;
568 
569 			br = ubifs_idx_branch(c, idx, i);
570 			key_read(c, &br->key, &key);
571 			printk(KERN_ERR "\t%d: LEB %d:%d len %d key %s\n",
572 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
573 			       le32_to_cpu(br->len),
574 			       dbg_snprintf_key(c, &key, key_buf,
575 						DBG_KEY_BUF_LEN));
576 		}
577 		break;
578 	}
579 	case UBIFS_CS_NODE:
580 		break;
581 	case UBIFS_ORPH_NODE:
582 	{
583 		const struct ubifs_orph_node *orph = node;
584 
585 		printk(KERN_ERR "\tcommit number  %llu\n",
586 		       (unsigned long long)
587 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
588 		printk(KERN_ERR "\tlast node flag %llu\n",
589 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
590 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
591 		printk(KERN_ERR "\t%d orphan inode numbers:\n", n);
592 		for (i = 0; i < n; i++)
593 			printk(KERN_ERR "\t  ino %llu\n",
594 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
595 		break;
596 	}
597 	default:
598 		printk(KERN_ERR "node type %d was not recognized\n",
599 		       (int)ch->node_type);
600 	}
601 	spin_unlock(&dbg_lock);
602 }
603 
604 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
605 {
606 	spin_lock(&dbg_lock);
607 	printk(KERN_ERR "Budgeting request: new_ino %d, dirtied_ino %d\n",
608 	       req->new_ino, req->dirtied_ino);
609 	printk(KERN_ERR "\tnew_ino_d   %d, dirtied_ino_d %d\n",
610 	       req->new_ino_d, req->dirtied_ino_d);
611 	printk(KERN_ERR "\tnew_page    %d, dirtied_page %d\n",
612 	       req->new_page, req->dirtied_page);
613 	printk(KERN_ERR "\tnew_dent    %d, mod_dent     %d\n",
614 	       req->new_dent, req->mod_dent);
615 	printk(KERN_ERR "\tidx_growth  %d\n", req->idx_growth);
616 	printk(KERN_ERR "\tdata_growth %d dd_growth     %d\n",
617 	       req->data_growth, req->dd_growth);
618 	spin_unlock(&dbg_lock);
619 }
620 
621 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
622 {
623 	spin_lock(&dbg_lock);
624 	printk(KERN_ERR "(pid %d) Lprops statistics: empty_lebs %d, "
625 	       "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
626 	printk(KERN_ERR "\ttaken_empty_lebs %d, total_free %lld, "
627 	       "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
628 	       lst->total_dirty);
629 	printk(KERN_ERR "\ttotal_used %lld, total_dark %lld, "
630 	       "total_dead %lld\n", lst->total_used, lst->total_dark,
631 	       lst->total_dead);
632 	spin_unlock(&dbg_lock);
633 }
634 
635 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
636 {
637 	int i;
638 	struct rb_node *rb;
639 	struct ubifs_bud *bud;
640 	struct ubifs_gced_idx_leb *idx_gc;
641 	long long available, outstanding, free;
642 
643 	spin_lock(&c->space_lock);
644 	spin_lock(&dbg_lock);
645 	printk(KERN_ERR "(pid %d) Budgeting info: data budget sum %lld, "
646 	       "total budget sum %lld\n", current->pid,
647 	       bi->data_growth + bi->dd_growth,
648 	       bi->data_growth + bi->dd_growth + bi->idx_growth);
649 	printk(KERN_ERR "\tbudg_data_growth %lld, budg_dd_growth %lld, "
650 	       "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
651 	       bi->idx_growth);
652 	printk(KERN_ERR "\tmin_idx_lebs %d, old_idx_sz %llu, "
653 	       "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
654 	       bi->uncommitted_idx);
655 	printk(KERN_ERR "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
656 	       bi->page_budget, bi->inode_budget, bi->dent_budget);
657 	printk(KERN_ERR "\tnospace %u, nospace_rp %u\n",
658 	       bi->nospace, bi->nospace_rp);
659 	printk(KERN_ERR "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
660 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
661 
662 	if (bi != &c->bi)
663 		/*
664 		 * If we are dumping saved budgeting data, do not print
665 		 * additional information which is about the current state, not
666 		 * the old one which corresponded to the saved budgeting data.
667 		 */
668 		goto out_unlock;
669 
670 	printk(KERN_ERR "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
671 	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
672 	printk(KERN_ERR "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
673 	       "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
674 	       atomic_long_read(&c->dirty_zn_cnt),
675 	       atomic_long_read(&c->clean_zn_cnt));
676 	printk(KERN_ERR "\tgc_lnum %d, ihead_lnum %d\n",
677 	       c->gc_lnum, c->ihead_lnum);
678 
679 	/* If we are in R/O mode, journal heads do not exist */
680 	if (c->jheads)
681 		for (i = 0; i < c->jhead_cnt; i++)
682 			printk(KERN_ERR "\tjhead %s\t LEB %d\n",
683 			       dbg_jhead(c->jheads[i].wbuf.jhead),
684 			       c->jheads[i].wbuf.lnum);
685 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
686 		bud = rb_entry(rb, struct ubifs_bud, rb);
687 		printk(KERN_ERR "\tbud LEB %d\n", bud->lnum);
688 	}
689 	list_for_each_entry(bud, &c->old_buds, list)
690 		printk(KERN_ERR "\told bud LEB %d\n", bud->lnum);
691 	list_for_each_entry(idx_gc, &c->idx_gc, list)
692 		printk(KERN_ERR "\tGC'ed idx LEB %d unmap %d\n",
693 		       idx_gc->lnum, idx_gc->unmap);
694 	printk(KERN_ERR "\tcommit state %d\n", c->cmt_state);
695 
696 	/* Print budgeting predictions */
697 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
698 	outstanding = c->bi.data_growth + c->bi.dd_growth;
699 	free = ubifs_get_free_space_nolock(c);
700 	printk(KERN_ERR "Budgeting predictions:\n");
701 	printk(KERN_ERR "\tavailable: %lld, outstanding %lld, free %lld\n",
702 	       available, outstanding, free);
703 out_unlock:
704 	spin_unlock(&dbg_lock);
705 	spin_unlock(&c->space_lock);
706 }
707 
708 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
709 {
710 	int i, spc, dark = 0, dead = 0;
711 	struct rb_node *rb;
712 	struct ubifs_bud *bud;
713 
714 	spc = lp->free + lp->dirty;
715 	if (spc < c->dead_wm)
716 		dead = spc;
717 	else
718 		dark = ubifs_calc_dark(c, spc);
719 
720 	if (lp->flags & LPROPS_INDEX)
721 		printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
722 		       "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
723 		       lp->dirty, c->leb_size - spc, spc, lp->flags);
724 	else
725 		printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
726 		       "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
727 		       "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
728 		       c->leb_size - spc, spc, dark, dead,
729 		       (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
730 
731 	if (lp->flags & LPROPS_TAKEN) {
732 		if (lp->flags & LPROPS_INDEX)
733 			printk(KERN_CONT "index, taken");
734 		else
735 			printk(KERN_CONT "taken");
736 	} else {
737 		const char *s;
738 
739 		if (lp->flags & LPROPS_INDEX) {
740 			switch (lp->flags & LPROPS_CAT_MASK) {
741 			case LPROPS_DIRTY_IDX:
742 				s = "dirty index";
743 				break;
744 			case LPROPS_FRDI_IDX:
745 				s = "freeable index";
746 				break;
747 			default:
748 				s = "index";
749 			}
750 		} else {
751 			switch (lp->flags & LPROPS_CAT_MASK) {
752 			case LPROPS_UNCAT:
753 				s = "not categorized";
754 				break;
755 			case LPROPS_DIRTY:
756 				s = "dirty";
757 				break;
758 			case LPROPS_FREE:
759 				s = "free";
760 				break;
761 			case LPROPS_EMPTY:
762 				s = "empty";
763 				break;
764 			case LPROPS_FREEABLE:
765 				s = "freeable";
766 				break;
767 			default:
768 				s = NULL;
769 				break;
770 			}
771 		}
772 		printk(KERN_CONT "%s", s);
773 	}
774 
775 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
776 		bud = rb_entry(rb, struct ubifs_bud, rb);
777 		if (bud->lnum == lp->lnum) {
778 			int head = 0;
779 			for (i = 0; i < c->jhead_cnt; i++) {
780 				/*
781 				 * Note, if we are in R/O mode or in the middle
782 				 * of mounting/re-mounting, the write-buffers do
783 				 * not exist.
784 				 */
785 				if (c->jheads &&
786 				    lp->lnum == c->jheads[i].wbuf.lnum) {
787 					printk(KERN_CONT ", jhead %s",
788 					       dbg_jhead(i));
789 					head = 1;
790 				}
791 			}
792 			if (!head)
793 				printk(KERN_CONT ", bud of jhead %s",
794 				       dbg_jhead(bud->jhead));
795 		}
796 	}
797 	if (lp->lnum == c->gc_lnum)
798 		printk(KERN_CONT ", GC LEB");
799 	printk(KERN_CONT ")\n");
800 }
801 
802 void ubifs_dump_lprops(struct ubifs_info *c)
803 {
804 	int lnum, err;
805 	struct ubifs_lprops lp;
806 	struct ubifs_lp_stats lst;
807 
808 	printk(KERN_ERR "(pid %d) start dumping LEB properties\n",
809 	       current->pid);
810 	ubifs_get_lp_stats(c, &lst);
811 	ubifs_dump_lstats(&lst);
812 
813 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
814 		err = ubifs_read_one_lp(c, lnum, &lp);
815 		if (err)
816 			ubifs_err("cannot read lprops for LEB %d", lnum);
817 
818 		ubifs_dump_lprop(c, &lp);
819 	}
820 	printk(KERN_ERR "(pid %d) finish dumping LEB properties\n",
821 	       current->pid);
822 }
823 
824 void ubifs_dump_lpt_info(struct ubifs_info *c)
825 {
826 	int i;
827 
828 	spin_lock(&dbg_lock);
829 	printk(KERN_ERR "(pid %d) dumping LPT information\n", current->pid);
830 	printk(KERN_ERR "\tlpt_sz:        %lld\n", c->lpt_sz);
831 	printk(KERN_ERR "\tpnode_sz:      %d\n", c->pnode_sz);
832 	printk(KERN_ERR "\tnnode_sz:      %d\n", c->nnode_sz);
833 	printk(KERN_ERR "\tltab_sz:       %d\n", c->ltab_sz);
834 	printk(KERN_ERR "\tlsave_sz:      %d\n", c->lsave_sz);
835 	printk(KERN_ERR "\tbig_lpt:       %d\n", c->big_lpt);
836 	printk(KERN_ERR "\tlpt_hght:      %d\n", c->lpt_hght);
837 	printk(KERN_ERR "\tpnode_cnt:     %d\n", c->pnode_cnt);
838 	printk(KERN_ERR "\tnnode_cnt:     %d\n", c->nnode_cnt);
839 	printk(KERN_ERR "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
840 	printk(KERN_ERR "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
841 	printk(KERN_ERR "\tlsave_cnt:     %d\n", c->lsave_cnt);
842 	printk(KERN_ERR "\tspace_bits:    %d\n", c->space_bits);
843 	printk(KERN_ERR "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
844 	printk(KERN_ERR "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
845 	printk(KERN_ERR "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
846 	printk(KERN_ERR "\tpcnt_bits:     %d\n", c->pcnt_bits);
847 	printk(KERN_ERR "\tlnum_bits:     %d\n", c->lnum_bits);
848 	printk(KERN_ERR "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
849 	printk(KERN_ERR "\tLPT head is at %d:%d\n",
850 	       c->nhead_lnum, c->nhead_offs);
851 	printk(KERN_ERR "\tLPT ltab is at %d:%d\n",
852 	       c->ltab_lnum, c->ltab_offs);
853 	if (c->big_lpt)
854 		printk(KERN_ERR "\tLPT lsave is at %d:%d\n",
855 		       c->lsave_lnum, c->lsave_offs);
856 	for (i = 0; i < c->lpt_lebs; i++)
857 		printk(KERN_ERR "\tLPT LEB %d free %d dirty %d tgc %d "
858 		       "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
859 		       c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
860 	spin_unlock(&dbg_lock);
861 }
862 
863 void ubifs_dump_sleb(const struct ubifs_info *c,
864 		     const struct ubifs_scan_leb *sleb, int offs)
865 {
866 	struct ubifs_scan_node *snod;
867 
868 	printk(KERN_ERR "(pid %d) start dumping scanned data from LEB %d:%d\n",
869 	       current->pid, sleb->lnum, offs);
870 
871 	list_for_each_entry(snod, &sleb->nodes, list) {
872 		cond_resched();
873 		printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", sleb->lnum,
874 		       snod->offs, snod->len);
875 		ubifs_dump_node(c, snod->node);
876 	}
877 }
878 
879 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
880 {
881 	struct ubifs_scan_leb *sleb;
882 	struct ubifs_scan_node *snod;
883 	void *buf;
884 
885 	if (dbg_is_tst_rcvry(c))
886 		return;
887 
888 	printk(KERN_ERR "(pid %d) start dumping LEB %d\n",
889 	       current->pid, lnum);
890 
891 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
892 	if (!buf) {
893 		ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
894 		return;
895 	}
896 
897 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
898 	if (IS_ERR(sleb)) {
899 		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
900 		goto out;
901 	}
902 
903 	printk(KERN_ERR "LEB %d has %d nodes ending at %d\n", lnum,
904 	       sleb->nodes_cnt, sleb->endpt);
905 
906 	list_for_each_entry(snod, &sleb->nodes, list) {
907 		cond_resched();
908 		printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", lnum,
909 		       snod->offs, snod->len);
910 		ubifs_dump_node(c, snod->node);
911 	}
912 
913 	printk(KERN_ERR "(pid %d) finish dumping LEB %d\n",
914 	       current->pid, lnum);
915 	ubifs_scan_destroy(sleb);
916 
917 out:
918 	vfree(buf);
919 	return;
920 }
921 
922 void ubifs_dump_znode(const struct ubifs_info *c,
923 		      const struct ubifs_znode *znode)
924 {
925 	int n;
926 	const struct ubifs_zbranch *zbr;
927 	char key_buf[DBG_KEY_BUF_LEN];
928 
929 	spin_lock(&dbg_lock);
930 	if (znode->parent)
931 		zbr = &znode->parent->zbranch[znode->iip];
932 	else
933 		zbr = &c->zroot;
934 
935 	printk(KERN_ERR "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
936 	       " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
937 	       zbr->len, znode->parent, znode->iip, znode->level,
938 	       znode->child_cnt, znode->flags);
939 
940 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
941 		spin_unlock(&dbg_lock);
942 		return;
943 	}
944 
945 	printk(KERN_ERR "zbranches:\n");
946 	for (n = 0; n < znode->child_cnt; n++) {
947 		zbr = &znode->zbranch[n];
948 		if (znode->level > 0)
949 			printk(KERN_ERR "\t%d: znode %p LEB %d:%d len %d key "
950 					  "%s\n", n, zbr->znode, zbr->lnum,
951 					  zbr->offs, zbr->len,
952 					  dbg_snprintf_key(c, &zbr->key,
953 							   key_buf,
954 							   DBG_KEY_BUF_LEN));
955 		else
956 			printk(KERN_ERR "\t%d: LNC %p LEB %d:%d len %d key "
957 					  "%s\n", n, zbr->znode, zbr->lnum,
958 					  zbr->offs, zbr->len,
959 					  dbg_snprintf_key(c, &zbr->key,
960 							   key_buf,
961 							   DBG_KEY_BUF_LEN));
962 	}
963 	spin_unlock(&dbg_lock);
964 }
965 
966 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
967 {
968 	int i;
969 
970 	printk(KERN_ERR "(pid %d) start dumping heap cat %d (%d elements)\n",
971 	       current->pid, cat, heap->cnt);
972 	for (i = 0; i < heap->cnt; i++) {
973 		struct ubifs_lprops *lprops = heap->arr[i];
974 
975 		printk(KERN_ERR "\t%d. LEB %d hpos %d free %d dirty %d "
976 		       "flags %d\n", i, lprops->lnum, lprops->hpos,
977 		       lprops->free, lprops->dirty, lprops->flags);
978 	}
979 	printk(KERN_ERR "(pid %d) finish dumping heap\n", current->pid);
980 }
981 
982 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
983 		      struct ubifs_nnode *parent, int iip)
984 {
985 	int i;
986 
987 	printk(KERN_ERR "(pid %d) dumping pnode:\n", current->pid);
988 	printk(KERN_ERR "\taddress %zx parent %zx cnext %zx\n",
989 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
990 	printk(KERN_ERR "\tflags %lu iip %d level %d num %d\n",
991 	       pnode->flags, iip, pnode->level, pnode->num);
992 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
993 		struct ubifs_lprops *lp = &pnode->lprops[i];
994 
995 		printk(KERN_ERR "\t%d: free %d dirty %d flags %d lnum %d\n",
996 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
997 	}
998 }
999 
1000 void ubifs_dump_tnc(struct ubifs_info *c)
1001 {
1002 	struct ubifs_znode *znode;
1003 	int level;
1004 
1005 	printk(KERN_ERR "\n");
1006 	printk(KERN_ERR "(pid %d) start dumping TNC tree\n", current->pid);
1007 	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
1008 	level = znode->level;
1009 	printk(KERN_ERR "== Level %d ==\n", level);
1010 	while (znode) {
1011 		if (level != znode->level) {
1012 			level = znode->level;
1013 			printk(KERN_ERR "== Level %d ==\n", level);
1014 		}
1015 		ubifs_dump_znode(c, znode);
1016 		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1017 	}
1018 	printk(KERN_ERR "(pid %d) finish dumping TNC tree\n", current->pid);
1019 }
1020 
1021 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1022 		      void *priv)
1023 {
1024 	ubifs_dump_znode(c, znode);
1025 	return 0;
1026 }
1027 
1028 /**
1029  * ubifs_dump_index - dump the on-flash index.
1030  * @c: UBIFS file-system description object
1031  *
1032  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
1033  * which dumps only in-memory znodes and does not read znodes which from flash.
1034  */
1035 void ubifs_dump_index(struct ubifs_info *c)
1036 {
1037 	dbg_walk_index(c, NULL, dump_znode, NULL);
1038 }
1039 
1040 /**
1041  * dbg_save_space_info - save information about flash space.
1042  * @c: UBIFS file-system description object
1043  *
1044  * This function saves information about UBIFS free space, dirty space, etc, in
1045  * order to check it later.
1046  */
1047 void dbg_save_space_info(struct ubifs_info *c)
1048 {
1049 	struct ubifs_debug_info *d = c->dbg;
1050 	int freeable_cnt;
1051 
1052 	spin_lock(&c->space_lock);
1053 	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1054 	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1055 	d->saved_idx_gc_cnt = c->idx_gc_cnt;
1056 
1057 	/*
1058 	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1059 	 * affects the free space calculations, and UBIFS might not know about
1060 	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1061 	 * only when we read their lprops, and we do this only lazily, upon the
1062 	 * need. So at any given point of time @c->freeable_cnt might be not
1063 	 * exactly accurate.
1064 	 *
1065 	 * Just one example about the issue we hit when we did not zero
1066 	 * @c->freeable_cnt.
1067 	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1068 	 *    amount of free space in @d->saved_free
1069 	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1070 	 *    information from flash, where we cache LEBs from various
1071 	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1072 	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1073 	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1074 	 *    -> 'ubifs_add_to_cat()').
1075 	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1076 	 *    becomes %1.
1077 	 * 4. We calculate the amount of free space when the re-mount is
1078 	 *    finished in 'dbg_check_space_info()' and it does not match
1079 	 *    @d->saved_free.
1080 	 */
1081 	freeable_cnt = c->freeable_cnt;
1082 	c->freeable_cnt = 0;
1083 	d->saved_free = ubifs_get_free_space_nolock(c);
1084 	c->freeable_cnt = freeable_cnt;
1085 	spin_unlock(&c->space_lock);
1086 }
1087 
1088 /**
1089  * dbg_check_space_info - check flash space information.
1090  * @c: UBIFS file-system description object
1091  *
1092  * This function compares current flash space information with the information
1093  * which was saved when the 'dbg_save_space_info()' function was called.
1094  * Returns zero if the information has not changed, and %-EINVAL it it has
1095  * changed.
1096  */
1097 int dbg_check_space_info(struct ubifs_info *c)
1098 {
1099 	struct ubifs_debug_info *d = c->dbg;
1100 	struct ubifs_lp_stats lst;
1101 	long long free;
1102 	int freeable_cnt;
1103 
1104 	spin_lock(&c->space_lock);
1105 	freeable_cnt = c->freeable_cnt;
1106 	c->freeable_cnt = 0;
1107 	free = ubifs_get_free_space_nolock(c);
1108 	c->freeable_cnt = freeable_cnt;
1109 	spin_unlock(&c->space_lock);
1110 
1111 	if (free != d->saved_free) {
1112 		ubifs_err("free space changed from %lld to %lld",
1113 			  d->saved_free, free);
1114 		goto out;
1115 	}
1116 
1117 	return 0;
1118 
1119 out:
1120 	ubifs_msg("saved lprops statistics dump");
1121 	ubifs_dump_lstats(&d->saved_lst);
1122 	ubifs_msg("saved budgeting info dump");
1123 	ubifs_dump_budg(c, &d->saved_bi);
1124 	ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1125 	ubifs_msg("current lprops statistics dump");
1126 	ubifs_get_lp_stats(c, &lst);
1127 	ubifs_dump_lstats(&lst);
1128 	ubifs_msg("current budgeting info dump");
1129 	ubifs_dump_budg(c, &c->bi);
1130 	dump_stack();
1131 	return -EINVAL;
1132 }
1133 
1134 /**
1135  * dbg_check_synced_i_size - check synchronized inode size.
1136  * @c: UBIFS file-system description object
1137  * @inode: inode to check
1138  *
1139  * If inode is clean, synchronized inode size has to be equivalent to current
1140  * inode size. This function has to be called only for locked inodes (@i_mutex
1141  * has to be locked). Returns %0 if synchronized inode size if correct, and
1142  * %-EINVAL if not.
1143  */
1144 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1145 {
1146 	int err = 0;
1147 	struct ubifs_inode *ui = ubifs_inode(inode);
1148 
1149 	if (!dbg_is_chk_gen(c))
1150 		return 0;
1151 	if (!S_ISREG(inode->i_mode))
1152 		return 0;
1153 
1154 	mutex_lock(&ui->ui_mutex);
1155 	spin_lock(&ui->ui_lock);
1156 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1157 		ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1158 			  "is clean", ui->ui_size, ui->synced_i_size);
1159 		ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1160 			  inode->i_mode, i_size_read(inode));
1161 		dump_stack();
1162 		err = -EINVAL;
1163 	}
1164 	spin_unlock(&ui->ui_lock);
1165 	mutex_unlock(&ui->ui_mutex);
1166 	return err;
1167 }
1168 
1169 /*
1170  * dbg_check_dir - check directory inode size and link count.
1171  * @c: UBIFS file-system description object
1172  * @dir: the directory to calculate size for
1173  * @size: the result is returned here
1174  *
1175  * This function makes sure that directory size and link count are correct.
1176  * Returns zero in case of success and a negative error code in case of
1177  * failure.
1178  *
1179  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1180  * calling this function.
1181  */
1182 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1183 {
1184 	unsigned int nlink = 2;
1185 	union ubifs_key key;
1186 	struct ubifs_dent_node *dent, *pdent = NULL;
1187 	struct qstr nm = { .name = NULL };
1188 	loff_t size = UBIFS_INO_NODE_SZ;
1189 
1190 	if (!dbg_is_chk_gen(c))
1191 		return 0;
1192 
1193 	if (!S_ISDIR(dir->i_mode))
1194 		return 0;
1195 
1196 	lowest_dent_key(c, &key, dir->i_ino);
1197 	while (1) {
1198 		int err;
1199 
1200 		dent = ubifs_tnc_next_ent(c, &key, &nm);
1201 		if (IS_ERR(dent)) {
1202 			err = PTR_ERR(dent);
1203 			if (err == -ENOENT)
1204 				break;
1205 			return err;
1206 		}
1207 
1208 		nm.name = dent->name;
1209 		nm.len = le16_to_cpu(dent->nlen);
1210 		size += CALC_DENT_SIZE(nm.len);
1211 		if (dent->type == UBIFS_ITYPE_DIR)
1212 			nlink += 1;
1213 		kfree(pdent);
1214 		pdent = dent;
1215 		key_read(c, &dent->key, &key);
1216 	}
1217 	kfree(pdent);
1218 
1219 	if (i_size_read(dir) != size) {
1220 		ubifs_err("directory inode %lu has size %llu, "
1221 			  "but calculated size is %llu", dir->i_ino,
1222 			  (unsigned long long)i_size_read(dir),
1223 			  (unsigned long long)size);
1224 		ubifs_dump_inode(c, dir);
1225 		dump_stack();
1226 		return -EINVAL;
1227 	}
1228 	if (dir->i_nlink != nlink) {
1229 		ubifs_err("directory inode %lu has nlink %u, but calculated "
1230 			  "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1231 		ubifs_dump_inode(c, dir);
1232 		dump_stack();
1233 		return -EINVAL;
1234 	}
1235 
1236 	return 0;
1237 }
1238 
1239 /**
1240  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1241  * @c: UBIFS file-system description object
1242  * @zbr1: first zbranch
1243  * @zbr2: following zbranch
1244  *
1245  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1246  * names of the direntries/xentries which are referred by the keys. This
1247  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1248  * sure the name of direntry/xentry referred by @zbr1 is less than
1249  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1250  * and a negative error code in case of failure.
1251  */
1252 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1253 			       struct ubifs_zbranch *zbr2)
1254 {
1255 	int err, nlen1, nlen2, cmp;
1256 	struct ubifs_dent_node *dent1, *dent2;
1257 	union ubifs_key key;
1258 	char key_buf[DBG_KEY_BUF_LEN];
1259 
1260 	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1261 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1262 	if (!dent1)
1263 		return -ENOMEM;
1264 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1265 	if (!dent2) {
1266 		err = -ENOMEM;
1267 		goto out_free;
1268 	}
1269 
1270 	err = ubifs_tnc_read_node(c, zbr1, dent1);
1271 	if (err)
1272 		goto out_free;
1273 	err = ubifs_validate_entry(c, dent1);
1274 	if (err)
1275 		goto out_free;
1276 
1277 	err = ubifs_tnc_read_node(c, zbr2, dent2);
1278 	if (err)
1279 		goto out_free;
1280 	err = ubifs_validate_entry(c, dent2);
1281 	if (err)
1282 		goto out_free;
1283 
1284 	/* Make sure node keys are the same as in zbranch */
1285 	err = 1;
1286 	key_read(c, &dent1->key, &key);
1287 	if (keys_cmp(c, &zbr1->key, &key)) {
1288 		ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
1289 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1290 						       DBG_KEY_BUF_LEN));
1291 		ubifs_err("but it should have key %s according to tnc",
1292 			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1293 					   DBG_KEY_BUF_LEN));
1294 		ubifs_dump_node(c, dent1);
1295 		goto out_free;
1296 	}
1297 
1298 	key_read(c, &dent2->key, &key);
1299 	if (keys_cmp(c, &zbr2->key, &key)) {
1300 		ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1301 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1302 						       DBG_KEY_BUF_LEN));
1303 		ubifs_err("but it should have key %s according to tnc",
1304 			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1305 					   DBG_KEY_BUF_LEN));
1306 		ubifs_dump_node(c, dent2);
1307 		goto out_free;
1308 	}
1309 
1310 	nlen1 = le16_to_cpu(dent1->nlen);
1311 	nlen2 = le16_to_cpu(dent2->nlen);
1312 
1313 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1314 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1315 		err = 0;
1316 		goto out_free;
1317 	}
1318 	if (cmp == 0 && nlen1 == nlen2)
1319 		ubifs_err("2 xent/dent nodes with the same name");
1320 	else
1321 		ubifs_err("bad order of colliding key %s",
1322 			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1323 
1324 	ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1325 	ubifs_dump_node(c, dent1);
1326 	ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1327 	ubifs_dump_node(c, dent2);
1328 
1329 out_free:
1330 	kfree(dent2);
1331 	kfree(dent1);
1332 	return err;
1333 }
1334 
1335 /**
1336  * dbg_check_znode - check if znode is all right.
1337  * @c: UBIFS file-system description object
1338  * @zbr: zbranch which points to this znode
1339  *
1340  * This function makes sure that znode referred to by @zbr is all right.
1341  * Returns zero if it is, and %-EINVAL if it is not.
1342  */
1343 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1344 {
1345 	struct ubifs_znode *znode = zbr->znode;
1346 	struct ubifs_znode *zp = znode->parent;
1347 	int n, err, cmp;
1348 
1349 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1350 		err = 1;
1351 		goto out;
1352 	}
1353 	if (znode->level < 0) {
1354 		err = 2;
1355 		goto out;
1356 	}
1357 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1358 		err = 3;
1359 		goto out;
1360 	}
1361 
1362 	if (zbr->len == 0)
1363 		/* Only dirty zbranch may have no on-flash nodes */
1364 		if (!ubifs_zn_dirty(znode)) {
1365 			err = 4;
1366 			goto out;
1367 		}
1368 
1369 	if (ubifs_zn_dirty(znode)) {
1370 		/*
1371 		 * If znode is dirty, its parent has to be dirty as well. The
1372 		 * order of the operation is important, so we have to have
1373 		 * memory barriers.
1374 		 */
1375 		smp_mb();
1376 		if (zp && !ubifs_zn_dirty(zp)) {
1377 			/*
1378 			 * The dirty flag is atomic and is cleared outside the
1379 			 * TNC mutex, so znode's dirty flag may now have
1380 			 * been cleared. The child is always cleared before the
1381 			 * parent, so we just need to check again.
1382 			 */
1383 			smp_mb();
1384 			if (ubifs_zn_dirty(znode)) {
1385 				err = 5;
1386 				goto out;
1387 			}
1388 		}
1389 	}
1390 
1391 	if (zp) {
1392 		const union ubifs_key *min, *max;
1393 
1394 		if (znode->level != zp->level - 1) {
1395 			err = 6;
1396 			goto out;
1397 		}
1398 
1399 		/* Make sure the 'parent' pointer in our znode is correct */
1400 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1401 		if (!err) {
1402 			/* This zbranch does not exist in the parent */
1403 			err = 7;
1404 			goto out;
1405 		}
1406 
1407 		if (znode->iip >= zp->child_cnt) {
1408 			err = 8;
1409 			goto out;
1410 		}
1411 
1412 		if (znode->iip != n) {
1413 			/* This may happen only in case of collisions */
1414 			if (keys_cmp(c, &zp->zbranch[n].key,
1415 				     &zp->zbranch[znode->iip].key)) {
1416 				err = 9;
1417 				goto out;
1418 			}
1419 			n = znode->iip;
1420 		}
1421 
1422 		/*
1423 		 * Make sure that the first key in our znode is greater than or
1424 		 * equal to the key in the pointing zbranch.
1425 		 */
1426 		min = &zbr->key;
1427 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1428 		if (cmp == 1) {
1429 			err = 10;
1430 			goto out;
1431 		}
1432 
1433 		if (n + 1 < zp->child_cnt) {
1434 			max = &zp->zbranch[n + 1].key;
1435 
1436 			/*
1437 			 * Make sure the last key in our znode is less or
1438 			 * equivalent than the key in the zbranch which goes
1439 			 * after our pointing zbranch.
1440 			 */
1441 			cmp = keys_cmp(c, max,
1442 				&znode->zbranch[znode->child_cnt - 1].key);
1443 			if (cmp == -1) {
1444 				err = 11;
1445 				goto out;
1446 			}
1447 		}
1448 	} else {
1449 		/* This may only be root znode */
1450 		if (zbr != &c->zroot) {
1451 			err = 12;
1452 			goto out;
1453 		}
1454 	}
1455 
1456 	/*
1457 	 * Make sure that next key is greater or equivalent then the previous
1458 	 * one.
1459 	 */
1460 	for (n = 1; n < znode->child_cnt; n++) {
1461 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1462 			       &znode->zbranch[n].key);
1463 		if (cmp > 0) {
1464 			err = 13;
1465 			goto out;
1466 		}
1467 		if (cmp == 0) {
1468 			/* This can only be keys with colliding hash */
1469 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1470 				err = 14;
1471 				goto out;
1472 			}
1473 
1474 			if (znode->level != 0 || c->replaying)
1475 				continue;
1476 
1477 			/*
1478 			 * Colliding keys should follow binary order of
1479 			 * corresponding xentry/dentry names.
1480 			 */
1481 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1482 						  &znode->zbranch[n]);
1483 			if (err < 0)
1484 				return err;
1485 			if (err) {
1486 				err = 15;
1487 				goto out;
1488 			}
1489 		}
1490 	}
1491 
1492 	for (n = 0; n < znode->child_cnt; n++) {
1493 		if (!znode->zbranch[n].znode &&
1494 		    (znode->zbranch[n].lnum == 0 ||
1495 		     znode->zbranch[n].len == 0)) {
1496 			err = 16;
1497 			goto out;
1498 		}
1499 
1500 		if (znode->zbranch[n].lnum != 0 &&
1501 		    znode->zbranch[n].len == 0) {
1502 			err = 17;
1503 			goto out;
1504 		}
1505 
1506 		if (znode->zbranch[n].lnum == 0 &&
1507 		    znode->zbranch[n].len != 0) {
1508 			err = 18;
1509 			goto out;
1510 		}
1511 
1512 		if (znode->zbranch[n].lnum == 0 &&
1513 		    znode->zbranch[n].offs != 0) {
1514 			err = 19;
1515 			goto out;
1516 		}
1517 
1518 		if (znode->level != 0 && znode->zbranch[n].znode)
1519 			if (znode->zbranch[n].znode->parent != znode) {
1520 				err = 20;
1521 				goto out;
1522 			}
1523 	}
1524 
1525 	return 0;
1526 
1527 out:
1528 	ubifs_err("failed, error %d", err);
1529 	ubifs_msg("dump of the znode");
1530 	ubifs_dump_znode(c, znode);
1531 	if (zp) {
1532 		ubifs_msg("dump of the parent znode");
1533 		ubifs_dump_znode(c, zp);
1534 	}
1535 	dump_stack();
1536 	return -EINVAL;
1537 }
1538 
1539 /**
1540  * dbg_check_tnc - check TNC tree.
1541  * @c: UBIFS file-system description object
1542  * @extra: do extra checks that are possible at start commit
1543  *
1544  * This function traverses whole TNC tree and checks every znode. Returns zero
1545  * if everything is all right and %-EINVAL if something is wrong with TNC.
1546  */
1547 int dbg_check_tnc(struct ubifs_info *c, int extra)
1548 {
1549 	struct ubifs_znode *znode;
1550 	long clean_cnt = 0, dirty_cnt = 0;
1551 	int err, last;
1552 
1553 	if (!dbg_is_chk_index(c))
1554 		return 0;
1555 
1556 	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1557 	if (!c->zroot.znode)
1558 		return 0;
1559 
1560 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1561 	while (1) {
1562 		struct ubifs_znode *prev;
1563 		struct ubifs_zbranch *zbr;
1564 
1565 		if (!znode->parent)
1566 			zbr = &c->zroot;
1567 		else
1568 			zbr = &znode->parent->zbranch[znode->iip];
1569 
1570 		err = dbg_check_znode(c, zbr);
1571 		if (err)
1572 			return err;
1573 
1574 		if (extra) {
1575 			if (ubifs_zn_dirty(znode))
1576 				dirty_cnt += 1;
1577 			else
1578 				clean_cnt += 1;
1579 		}
1580 
1581 		prev = znode;
1582 		znode = ubifs_tnc_postorder_next(znode);
1583 		if (!znode)
1584 			break;
1585 
1586 		/*
1587 		 * If the last key of this znode is equivalent to the first key
1588 		 * of the next znode (collision), then check order of the keys.
1589 		 */
1590 		last = prev->child_cnt - 1;
1591 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1592 		    !keys_cmp(c, &prev->zbranch[last].key,
1593 			      &znode->zbranch[0].key)) {
1594 			err = dbg_check_key_order(c, &prev->zbranch[last],
1595 						  &znode->zbranch[0]);
1596 			if (err < 0)
1597 				return err;
1598 			if (err) {
1599 				ubifs_msg("first znode");
1600 				ubifs_dump_znode(c, prev);
1601 				ubifs_msg("second znode");
1602 				ubifs_dump_znode(c, znode);
1603 				return -EINVAL;
1604 			}
1605 		}
1606 	}
1607 
1608 	if (extra) {
1609 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1610 			ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1611 				  atomic_long_read(&c->clean_zn_cnt),
1612 				  clean_cnt);
1613 			return -EINVAL;
1614 		}
1615 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1616 			ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1617 				  atomic_long_read(&c->dirty_zn_cnt),
1618 				  dirty_cnt);
1619 			return -EINVAL;
1620 		}
1621 	}
1622 
1623 	return 0;
1624 }
1625 
1626 /**
1627  * dbg_walk_index - walk the on-flash index.
1628  * @c: UBIFS file-system description object
1629  * @leaf_cb: called for each leaf node
1630  * @znode_cb: called for each indexing node
1631  * @priv: private data which is passed to callbacks
1632  *
1633  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1634  * node and @znode_cb for each indexing node. Returns zero in case of success
1635  * and a negative error code in case of failure.
1636  *
1637  * It would be better if this function removed every znode it pulled to into
1638  * the TNC, so that the behavior more closely matched the non-debugging
1639  * behavior.
1640  */
1641 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1642 		   dbg_znode_callback znode_cb, void *priv)
1643 {
1644 	int err;
1645 	struct ubifs_zbranch *zbr;
1646 	struct ubifs_znode *znode, *child;
1647 
1648 	mutex_lock(&c->tnc_mutex);
1649 	/* If the root indexing node is not in TNC - pull it */
1650 	if (!c->zroot.znode) {
1651 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1652 		if (IS_ERR(c->zroot.znode)) {
1653 			err = PTR_ERR(c->zroot.znode);
1654 			c->zroot.znode = NULL;
1655 			goto out_unlock;
1656 		}
1657 	}
1658 
1659 	/*
1660 	 * We are going to traverse the indexing tree in the postorder manner.
1661 	 * Go down and find the leftmost indexing node where we are going to
1662 	 * start from.
1663 	 */
1664 	znode = c->zroot.znode;
1665 	while (znode->level > 0) {
1666 		zbr = &znode->zbranch[0];
1667 		child = zbr->znode;
1668 		if (!child) {
1669 			child = ubifs_load_znode(c, zbr, znode, 0);
1670 			if (IS_ERR(child)) {
1671 				err = PTR_ERR(child);
1672 				goto out_unlock;
1673 			}
1674 			zbr->znode = child;
1675 		}
1676 
1677 		znode = child;
1678 	}
1679 
1680 	/* Iterate over all indexing nodes */
1681 	while (1) {
1682 		int idx;
1683 
1684 		cond_resched();
1685 
1686 		if (znode_cb) {
1687 			err = znode_cb(c, znode, priv);
1688 			if (err) {
1689 				ubifs_err("znode checking function returned "
1690 					  "error %d", err);
1691 				ubifs_dump_znode(c, znode);
1692 				goto out_dump;
1693 			}
1694 		}
1695 		if (leaf_cb && znode->level == 0) {
1696 			for (idx = 0; idx < znode->child_cnt; idx++) {
1697 				zbr = &znode->zbranch[idx];
1698 				err = leaf_cb(c, zbr, priv);
1699 				if (err) {
1700 					ubifs_err("leaf checking function "
1701 						  "returned error %d, for leaf "
1702 						  "at LEB %d:%d",
1703 						  err, zbr->lnum, zbr->offs);
1704 					goto out_dump;
1705 				}
1706 			}
1707 		}
1708 
1709 		if (!znode->parent)
1710 			break;
1711 
1712 		idx = znode->iip + 1;
1713 		znode = znode->parent;
1714 		if (idx < znode->child_cnt) {
1715 			/* Switch to the next index in the parent */
1716 			zbr = &znode->zbranch[idx];
1717 			child = zbr->znode;
1718 			if (!child) {
1719 				child = ubifs_load_znode(c, zbr, znode, idx);
1720 				if (IS_ERR(child)) {
1721 					err = PTR_ERR(child);
1722 					goto out_unlock;
1723 				}
1724 				zbr->znode = child;
1725 			}
1726 			znode = child;
1727 		} else
1728 			/*
1729 			 * This is the last child, switch to the parent and
1730 			 * continue.
1731 			 */
1732 			continue;
1733 
1734 		/* Go to the lowest leftmost znode in the new sub-tree */
1735 		while (znode->level > 0) {
1736 			zbr = &znode->zbranch[0];
1737 			child = zbr->znode;
1738 			if (!child) {
1739 				child = ubifs_load_znode(c, zbr, znode, 0);
1740 				if (IS_ERR(child)) {
1741 					err = PTR_ERR(child);
1742 					goto out_unlock;
1743 				}
1744 				zbr->znode = child;
1745 			}
1746 			znode = child;
1747 		}
1748 	}
1749 
1750 	mutex_unlock(&c->tnc_mutex);
1751 	return 0;
1752 
1753 out_dump:
1754 	if (znode->parent)
1755 		zbr = &znode->parent->zbranch[znode->iip];
1756 	else
1757 		zbr = &c->zroot;
1758 	ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1759 	ubifs_dump_znode(c, znode);
1760 out_unlock:
1761 	mutex_unlock(&c->tnc_mutex);
1762 	return err;
1763 }
1764 
1765 /**
1766  * add_size - add znode size to partially calculated index size.
1767  * @c: UBIFS file-system description object
1768  * @znode: znode to add size for
1769  * @priv: partially calculated index size
1770  *
1771  * This is a helper function for 'dbg_check_idx_size()' which is called for
1772  * every indexing node and adds its size to the 'long long' variable pointed to
1773  * by @priv.
1774  */
1775 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1776 {
1777 	long long *idx_size = priv;
1778 	int add;
1779 
1780 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1781 	add = ALIGN(add, 8);
1782 	*idx_size += add;
1783 	return 0;
1784 }
1785 
1786 /**
1787  * dbg_check_idx_size - check index size.
1788  * @c: UBIFS file-system description object
1789  * @idx_size: size to check
1790  *
1791  * This function walks the UBIFS index, calculates its size and checks that the
1792  * size is equivalent to @idx_size. Returns zero in case of success and a
1793  * negative error code in case of failure.
1794  */
1795 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1796 {
1797 	int err;
1798 	long long calc = 0;
1799 
1800 	if (!dbg_is_chk_index(c))
1801 		return 0;
1802 
1803 	err = dbg_walk_index(c, NULL, add_size, &calc);
1804 	if (err) {
1805 		ubifs_err("error %d while walking the index", err);
1806 		return err;
1807 	}
1808 
1809 	if (calc != idx_size) {
1810 		ubifs_err("index size check failed: calculated size is %lld, "
1811 			  "should be %lld", calc, idx_size);
1812 		dump_stack();
1813 		return -EINVAL;
1814 	}
1815 
1816 	return 0;
1817 }
1818 
1819 /**
1820  * struct fsck_inode - information about an inode used when checking the file-system.
1821  * @rb: link in the RB-tree of inodes
1822  * @inum: inode number
1823  * @mode: inode type, permissions, etc
1824  * @nlink: inode link count
1825  * @xattr_cnt: count of extended attributes
1826  * @references: how many directory/xattr entries refer this inode (calculated
1827  *              while walking the index)
1828  * @calc_cnt: for directory inode count of child directories
1829  * @size: inode size (read from on-flash inode)
1830  * @xattr_sz: summary size of all extended attributes (read from on-flash
1831  *            inode)
1832  * @calc_sz: for directories calculated directory size
1833  * @calc_xcnt: count of extended attributes
1834  * @calc_xsz: calculated summary size of all extended attributes
1835  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1836  *             inode (read from on-flash inode)
1837  * @calc_xnms: calculated sum of lengths of all extended attribute names
1838  */
1839 struct fsck_inode {
1840 	struct rb_node rb;
1841 	ino_t inum;
1842 	umode_t mode;
1843 	unsigned int nlink;
1844 	unsigned int xattr_cnt;
1845 	int references;
1846 	int calc_cnt;
1847 	long long size;
1848 	unsigned int xattr_sz;
1849 	long long calc_sz;
1850 	long long calc_xcnt;
1851 	long long calc_xsz;
1852 	unsigned int xattr_nms;
1853 	long long calc_xnms;
1854 };
1855 
1856 /**
1857  * struct fsck_data - private FS checking information.
1858  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1859  */
1860 struct fsck_data {
1861 	struct rb_root inodes;
1862 };
1863 
1864 /**
1865  * add_inode - add inode information to RB-tree of inodes.
1866  * @c: UBIFS file-system description object
1867  * @fsckd: FS checking information
1868  * @ino: raw UBIFS inode to add
1869  *
1870  * This is a helper function for 'check_leaf()' which adds information about
1871  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1872  * case of success and a negative error code in case of failure.
1873  */
1874 static struct fsck_inode *add_inode(struct ubifs_info *c,
1875 				    struct fsck_data *fsckd,
1876 				    struct ubifs_ino_node *ino)
1877 {
1878 	struct rb_node **p, *parent = NULL;
1879 	struct fsck_inode *fscki;
1880 	ino_t inum = key_inum_flash(c, &ino->key);
1881 	struct inode *inode;
1882 	struct ubifs_inode *ui;
1883 
1884 	p = &fsckd->inodes.rb_node;
1885 	while (*p) {
1886 		parent = *p;
1887 		fscki = rb_entry(parent, struct fsck_inode, rb);
1888 		if (inum < fscki->inum)
1889 			p = &(*p)->rb_left;
1890 		else if (inum > fscki->inum)
1891 			p = &(*p)->rb_right;
1892 		else
1893 			return fscki;
1894 	}
1895 
1896 	if (inum > c->highest_inum) {
1897 		ubifs_err("too high inode number, max. is %lu",
1898 			  (unsigned long)c->highest_inum);
1899 		return ERR_PTR(-EINVAL);
1900 	}
1901 
1902 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1903 	if (!fscki)
1904 		return ERR_PTR(-ENOMEM);
1905 
1906 	inode = ilookup(c->vfs_sb, inum);
1907 
1908 	fscki->inum = inum;
1909 	/*
1910 	 * If the inode is present in the VFS inode cache, use it instead of
1911 	 * the on-flash inode which might be out-of-date. E.g., the size might
1912 	 * be out-of-date. If we do not do this, the following may happen, for
1913 	 * example:
1914 	 *   1. A power cut happens
1915 	 *   2. We mount the file-system R/O, the replay process fixes up the
1916 	 *      inode size in the VFS cache, but on on-flash.
1917 	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1918 	 *      size.
1919 	 */
1920 	if (!inode) {
1921 		fscki->nlink = le32_to_cpu(ino->nlink);
1922 		fscki->size = le64_to_cpu(ino->size);
1923 		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1924 		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1925 		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1926 		fscki->mode = le32_to_cpu(ino->mode);
1927 	} else {
1928 		ui = ubifs_inode(inode);
1929 		fscki->nlink = inode->i_nlink;
1930 		fscki->size = inode->i_size;
1931 		fscki->xattr_cnt = ui->xattr_cnt;
1932 		fscki->xattr_sz = ui->xattr_size;
1933 		fscki->xattr_nms = ui->xattr_names;
1934 		fscki->mode = inode->i_mode;
1935 		iput(inode);
1936 	}
1937 
1938 	if (S_ISDIR(fscki->mode)) {
1939 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1940 		fscki->calc_cnt = 2;
1941 	}
1942 
1943 	rb_link_node(&fscki->rb, parent, p);
1944 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1945 
1946 	return fscki;
1947 }
1948 
1949 /**
1950  * search_inode - search inode in the RB-tree of inodes.
1951  * @fsckd: FS checking information
1952  * @inum: inode number to search
1953  *
1954  * This is a helper function for 'check_leaf()' which searches inode @inum in
1955  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1956  * the inode was not found.
1957  */
1958 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1959 {
1960 	struct rb_node *p;
1961 	struct fsck_inode *fscki;
1962 
1963 	p = fsckd->inodes.rb_node;
1964 	while (p) {
1965 		fscki = rb_entry(p, struct fsck_inode, rb);
1966 		if (inum < fscki->inum)
1967 			p = p->rb_left;
1968 		else if (inum > fscki->inum)
1969 			p = p->rb_right;
1970 		else
1971 			return fscki;
1972 	}
1973 	return NULL;
1974 }
1975 
1976 /**
1977  * read_add_inode - read inode node and add it to RB-tree of inodes.
1978  * @c: UBIFS file-system description object
1979  * @fsckd: FS checking information
1980  * @inum: inode number to read
1981  *
1982  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1983  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1984  * information pointer in case of success and a negative error code in case of
1985  * failure.
1986  */
1987 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1988 					 struct fsck_data *fsckd, ino_t inum)
1989 {
1990 	int n, err;
1991 	union ubifs_key key;
1992 	struct ubifs_znode *znode;
1993 	struct ubifs_zbranch *zbr;
1994 	struct ubifs_ino_node *ino;
1995 	struct fsck_inode *fscki;
1996 
1997 	fscki = search_inode(fsckd, inum);
1998 	if (fscki)
1999 		return fscki;
2000 
2001 	ino_key_init(c, &key, inum);
2002 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2003 	if (!err) {
2004 		ubifs_err("inode %lu not found in index", (unsigned long)inum);
2005 		return ERR_PTR(-ENOENT);
2006 	} else if (err < 0) {
2007 		ubifs_err("error %d while looking up inode %lu",
2008 			  err, (unsigned long)inum);
2009 		return ERR_PTR(err);
2010 	}
2011 
2012 	zbr = &znode->zbranch[n];
2013 	if (zbr->len < UBIFS_INO_NODE_SZ) {
2014 		ubifs_err("bad node %lu node length %d",
2015 			  (unsigned long)inum, zbr->len);
2016 		return ERR_PTR(-EINVAL);
2017 	}
2018 
2019 	ino = kmalloc(zbr->len, GFP_NOFS);
2020 	if (!ino)
2021 		return ERR_PTR(-ENOMEM);
2022 
2023 	err = ubifs_tnc_read_node(c, zbr, ino);
2024 	if (err) {
2025 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2026 			  zbr->lnum, zbr->offs, err);
2027 		kfree(ino);
2028 		return ERR_PTR(err);
2029 	}
2030 
2031 	fscki = add_inode(c, fsckd, ino);
2032 	kfree(ino);
2033 	if (IS_ERR(fscki)) {
2034 		ubifs_err("error %ld while adding inode %lu node",
2035 			  PTR_ERR(fscki), (unsigned long)inum);
2036 		return fscki;
2037 	}
2038 
2039 	return fscki;
2040 }
2041 
2042 /**
2043  * check_leaf - check leaf node.
2044  * @c: UBIFS file-system description object
2045  * @zbr: zbranch of the leaf node to check
2046  * @priv: FS checking information
2047  *
2048  * This is a helper function for 'dbg_check_filesystem()' which is called for
2049  * every single leaf node while walking the indexing tree. It checks that the
2050  * leaf node referred from the indexing tree exists, has correct CRC, and does
2051  * some other basic validation. This function is also responsible for building
2052  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2053  * calculates reference count, size, etc for each inode in order to later
2054  * compare them to the information stored inside the inodes and detect possible
2055  * inconsistencies. Returns zero in case of success and a negative error code
2056  * in case of failure.
2057  */
2058 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2059 		      void *priv)
2060 {
2061 	ino_t inum;
2062 	void *node;
2063 	struct ubifs_ch *ch;
2064 	int err, type = key_type(c, &zbr->key);
2065 	struct fsck_inode *fscki;
2066 
2067 	if (zbr->len < UBIFS_CH_SZ) {
2068 		ubifs_err("bad leaf length %d (LEB %d:%d)",
2069 			  zbr->len, zbr->lnum, zbr->offs);
2070 		return -EINVAL;
2071 	}
2072 
2073 	node = kmalloc(zbr->len, GFP_NOFS);
2074 	if (!node)
2075 		return -ENOMEM;
2076 
2077 	err = ubifs_tnc_read_node(c, zbr, node);
2078 	if (err) {
2079 		ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2080 			  zbr->lnum, zbr->offs, err);
2081 		goto out_free;
2082 	}
2083 
2084 	/* If this is an inode node, add it to RB-tree of inodes */
2085 	if (type == UBIFS_INO_KEY) {
2086 		fscki = add_inode(c, priv, node);
2087 		if (IS_ERR(fscki)) {
2088 			err = PTR_ERR(fscki);
2089 			ubifs_err("error %d while adding inode node", err);
2090 			goto out_dump;
2091 		}
2092 		goto out;
2093 	}
2094 
2095 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2096 	    type != UBIFS_DATA_KEY) {
2097 		ubifs_err("unexpected node type %d at LEB %d:%d",
2098 			  type, zbr->lnum, zbr->offs);
2099 		err = -EINVAL;
2100 		goto out_free;
2101 	}
2102 
2103 	ch = node;
2104 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2105 		ubifs_err("too high sequence number, max. is %llu",
2106 			  c->max_sqnum);
2107 		err = -EINVAL;
2108 		goto out_dump;
2109 	}
2110 
2111 	if (type == UBIFS_DATA_KEY) {
2112 		long long blk_offs;
2113 		struct ubifs_data_node *dn = node;
2114 
2115 		/*
2116 		 * Search the inode node this data node belongs to and insert
2117 		 * it to the RB-tree of inodes.
2118 		 */
2119 		inum = key_inum_flash(c, &dn->key);
2120 		fscki = read_add_inode(c, priv, inum);
2121 		if (IS_ERR(fscki)) {
2122 			err = PTR_ERR(fscki);
2123 			ubifs_err("error %d while processing data node and "
2124 				  "trying to find inode node %lu",
2125 				  err, (unsigned long)inum);
2126 			goto out_dump;
2127 		}
2128 
2129 		/* Make sure the data node is within inode size */
2130 		blk_offs = key_block_flash(c, &dn->key);
2131 		blk_offs <<= UBIFS_BLOCK_SHIFT;
2132 		blk_offs += le32_to_cpu(dn->size);
2133 		if (blk_offs > fscki->size) {
2134 			ubifs_err("data node at LEB %d:%d is not within inode "
2135 				  "size %lld", zbr->lnum, zbr->offs,
2136 				  fscki->size);
2137 			err = -EINVAL;
2138 			goto out_dump;
2139 		}
2140 	} else {
2141 		int nlen;
2142 		struct ubifs_dent_node *dent = node;
2143 		struct fsck_inode *fscki1;
2144 
2145 		err = ubifs_validate_entry(c, dent);
2146 		if (err)
2147 			goto out_dump;
2148 
2149 		/*
2150 		 * Search the inode node this entry refers to and the parent
2151 		 * inode node and insert them to the RB-tree of inodes.
2152 		 */
2153 		inum = le64_to_cpu(dent->inum);
2154 		fscki = read_add_inode(c, priv, inum);
2155 		if (IS_ERR(fscki)) {
2156 			err = PTR_ERR(fscki);
2157 			ubifs_err("error %d while processing entry node and "
2158 				  "trying to find inode node %lu",
2159 				  err, (unsigned long)inum);
2160 			goto out_dump;
2161 		}
2162 
2163 		/* Count how many direntries or xentries refers this inode */
2164 		fscki->references += 1;
2165 
2166 		inum = key_inum_flash(c, &dent->key);
2167 		fscki1 = read_add_inode(c, priv, inum);
2168 		if (IS_ERR(fscki1)) {
2169 			err = PTR_ERR(fscki1);
2170 			ubifs_err("error %d while processing entry node and "
2171 				  "trying to find parent inode node %lu",
2172 				  err, (unsigned long)inum);
2173 			goto out_dump;
2174 		}
2175 
2176 		nlen = le16_to_cpu(dent->nlen);
2177 		if (type == UBIFS_XENT_KEY) {
2178 			fscki1->calc_xcnt += 1;
2179 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2180 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2181 			fscki1->calc_xnms += nlen;
2182 		} else {
2183 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2184 			if (dent->type == UBIFS_ITYPE_DIR)
2185 				fscki1->calc_cnt += 1;
2186 		}
2187 	}
2188 
2189 out:
2190 	kfree(node);
2191 	return 0;
2192 
2193 out_dump:
2194 	ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2195 	ubifs_dump_node(c, node);
2196 out_free:
2197 	kfree(node);
2198 	return err;
2199 }
2200 
2201 /**
2202  * free_inodes - free RB-tree of inodes.
2203  * @fsckd: FS checking information
2204  */
2205 static void free_inodes(struct fsck_data *fsckd)
2206 {
2207 	struct rb_node *this = fsckd->inodes.rb_node;
2208 	struct fsck_inode *fscki;
2209 
2210 	while (this) {
2211 		if (this->rb_left)
2212 			this = this->rb_left;
2213 		else if (this->rb_right)
2214 			this = this->rb_right;
2215 		else {
2216 			fscki = rb_entry(this, struct fsck_inode, rb);
2217 			this = rb_parent(this);
2218 			if (this) {
2219 				if (this->rb_left == &fscki->rb)
2220 					this->rb_left = NULL;
2221 				else
2222 					this->rb_right = NULL;
2223 			}
2224 			kfree(fscki);
2225 		}
2226 	}
2227 }
2228 
2229 /**
2230  * check_inodes - checks all inodes.
2231  * @c: UBIFS file-system description object
2232  * @fsckd: FS checking information
2233  *
2234  * This is a helper function for 'dbg_check_filesystem()' which walks the
2235  * RB-tree of inodes after the index scan has been finished, and checks that
2236  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2237  * %-EINVAL if not, and a negative error code in case of failure.
2238  */
2239 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2240 {
2241 	int n, err;
2242 	union ubifs_key key;
2243 	struct ubifs_znode *znode;
2244 	struct ubifs_zbranch *zbr;
2245 	struct ubifs_ino_node *ino;
2246 	struct fsck_inode *fscki;
2247 	struct rb_node *this = rb_first(&fsckd->inodes);
2248 
2249 	while (this) {
2250 		fscki = rb_entry(this, struct fsck_inode, rb);
2251 		this = rb_next(this);
2252 
2253 		if (S_ISDIR(fscki->mode)) {
2254 			/*
2255 			 * Directories have to have exactly one reference (they
2256 			 * cannot have hardlinks), although root inode is an
2257 			 * exception.
2258 			 */
2259 			if (fscki->inum != UBIFS_ROOT_INO &&
2260 			    fscki->references != 1) {
2261 				ubifs_err("directory inode %lu has %d "
2262 					  "direntries which refer it, but "
2263 					  "should be 1",
2264 					  (unsigned long)fscki->inum,
2265 					  fscki->references);
2266 				goto out_dump;
2267 			}
2268 			if (fscki->inum == UBIFS_ROOT_INO &&
2269 			    fscki->references != 0) {
2270 				ubifs_err("root inode %lu has non-zero (%d) "
2271 					  "direntries which refer it",
2272 					  (unsigned long)fscki->inum,
2273 					  fscki->references);
2274 				goto out_dump;
2275 			}
2276 			if (fscki->calc_sz != fscki->size) {
2277 				ubifs_err("directory inode %lu size is %lld, "
2278 					  "but calculated size is %lld",
2279 					  (unsigned long)fscki->inum,
2280 					  fscki->size, fscki->calc_sz);
2281 				goto out_dump;
2282 			}
2283 			if (fscki->calc_cnt != fscki->nlink) {
2284 				ubifs_err("directory inode %lu nlink is %d, "
2285 					  "but calculated nlink is %d",
2286 					  (unsigned long)fscki->inum,
2287 					  fscki->nlink, fscki->calc_cnt);
2288 				goto out_dump;
2289 			}
2290 		} else {
2291 			if (fscki->references != fscki->nlink) {
2292 				ubifs_err("inode %lu nlink is %d, but "
2293 					  "calculated nlink is %d",
2294 					  (unsigned long)fscki->inum,
2295 					  fscki->nlink, fscki->references);
2296 				goto out_dump;
2297 			}
2298 		}
2299 		if (fscki->xattr_sz != fscki->calc_xsz) {
2300 			ubifs_err("inode %lu has xattr size %u, but "
2301 				  "calculated size is %lld",
2302 				  (unsigned long)fscki->inum, fscki->xattr_sz,
2303 				  fscki->calc_xsz);
2304 			goto out_dump;
2305 		}
2306 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2307 			ubifs_err("inode %lu has %u xattrs, but "
2308 				  "calculated count is %lld",
2309 				  (unsigned long)fscki->inum,
2310 				  fscki->xattr_cnt, fscki->calc_xcnt);
2311 			goto out_dump;
2312 		}
2313 		if (fscki->xattr_nms != fscki->calc_xnms) {
2314 			ubifs_err("inode %lu has xattr names' size %u, but "
2315 				  "calculated names' size is %lld",
2316 				  (unsigned long)fscki->inum, fscki->xattr_nms,
2317 				  fscki->calc_xnms);
2318 			goto out_dump;
2319 		}
2320 	}
2321 
2322 	return 0;
2323 
2324 out_dump:
2325 	/* Read the bad inode and dump it */
2326 	ino_key_init(c, &key, fscki->inum);
2327 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2328 	if (!err) {
2329 		ubifs_err("inode %lu not found in index",
2330 			  (unsigned long)fscki->inum);
2331 		return -ENOENT;
2332 	} else if (err < 0) {
2333 		ubifs_err("error %d while looking up inode %lu",
2334 			  err, (unsigned long)fscki->inum);
2335 		return err;
2336 	}
2337 
2338 	zbr = &znode->zbranch[n];
2339 	ino = kmalloc(zbr->len, GFP_NOFS);
2340 	if (!ino)
2341 		return -ENOMEM;
2342 
2343 	err = ubifs_tnc_read_node(c, zbr, ino);
2344 	if (err) {
2345 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2346 			  zbr->lnum, zbr->offs, err);
2347 		kfree(ino);
2348 		return err;
2349 	}
2350 
2351 	ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2352 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2353 	ubifs_dump_node(c, ino);
2354 	kfree(ino);
2355 	return -EINVAL;
2356 }
2357 
2358 /**
2359  * dbg_check_filesystem - check the file-system.
2360  * @c: UBIFS file-system description object
2361  *
2362  * This function checks the file system, namely:
2363  * o makes sure that all leaf nodes exist and their CRCs are correct;
2364  * o makes sure inode nlink, size, xattr size/count are correct (for all
2365  *   inodes).
2366  *
2367  * The function reads whole indexing tree and all nodes, so it is pretty
2368  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2369  * not, and a negative error code in case of failure.
2370  */
2371 int dbg_check_filesystem(struct ubifs_info *c)
2372 {
2373 	int err;
2374 	struct fsck_data fsckd;
2375 
2376 	if (!dbg_is_chk_fs(c))
2377 		return 0;
2378 
2379 	fsckd.inodes = RB_ROOT;
2380 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2381 	if (err)
2382 		goto out_free;
2383 
2384 	err = check_inodes(c, &fsckd);
2385 	if (err)
2386 		goto out_free;
2387 
2388 	free_inodes(&fsckd);
2389 	return 0;
2390 
2391 out_free:
2392 	ubifs_err("file-system check failed with error %d", err);
2393 	dump_stack();
2394 	free_inodes(&fsckd);
2395 	return err;
2396 }
2397 
2398 /**
2399  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2400  * @c: UBIFS file-system description object
2401  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2402  *
2403  * This function returns zero if the list of data nodes is sorted correctly,
2404  * and %-EINVAL if not.
2405  */
2406 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2407 {
2408 	struct list_head *cur;
2409 	struct ubifs_scan_node *sa, *sb;
2410 
2411 	if (!dbg_is_chk_gen(c))
2412 		return 0;
2413 
2414 	for (cur = head->next; cur->next != head; cur = cur->next) {
2415 		ino_t inuma, inumb;
2416 		uint32_t blka, blkb;
2417 
2418 		cond_resched();
2419 		sa = container_of(cur, struct ubifs_scan_node, list);
2420 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2421 
2422 		if (sa->type != UBIFS_DATA_NODE) {
2423 			ubifs_err("bad node type %d", sa->type);
2424 			ubifs_dump_node(c, sa->node);
2425 			return -EINVAL;
2426 		}
2427 		if (sb->type != UBIFS_DATA_NODE) {
2428 			ubifs_err("bad node type %d", sb->type);
2429 			ubifs_dump_node(c, sb->node);
2430 			return -EINVAL;
2431 		}
2432 
2433 		inuma = key_inum(c, &sa->key);
2434 		inumb = key_inum(c, &sb->key);
2435 
2436 		if (inuma < inumb)
2437 			continue;
2438 		if (inuma > inumb) {
2439 			ubifs_err("larger inum %lu goes before inum %lu",
2440 				  (unsigned long)inuma, (unsigned long)inumb);
2441 			goto error_dump;
2442 		}
2443 
2444 		blka = key_block(c, &sa->key);
2445 		blkb = key_block(c, &sb->key);
2446 
2447 		if (blka > blkb) {
2448 			ubifs_err("larger block %u goes before %u", blka, blkb);
2449 			goto error_dump;
2450 		}
2451 		if (blka == blkb) {
2452 			ubifs_err("two data nodes for the same block");
2453 			goto error_dump;
2454 		}
2455 	}
2456 
2457 	return 0;
2458 
2459 error_dump:
2460 	ubifs_dump_node(c, sa->node);
2461 	ubifs_dump_node(c, sb->node);
2462 	return -EINVAL;
2463 }
2464 
2465 /**
2466  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2467  * @c: UBIFS file-system description object
2468  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2469  *
2470  * This function returns zero if the list of non-data nodes is sorted correctly,
2471  * and %-EINVAL if not.
2472  */
2473 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2474 {
2475 	struct list_head *cur;
2476 	struct ubifs_scan_node *sa, *sb;
2477 
2478 	if (!dbg_is_chk_gen(c))
2479 		return 0;
2480 
2481 	for (cur = head->next; cur->next != head; cur = cur->next) {
2482 		ino_t inuma, inumb;
2483 		uint32_t hasha, hashb;
2484 
2485 		cond_resched();
2486 		sa = container_of(cur, struct ubifs_scan_node, list);
2487 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2488 
2489 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2490 		    sa->type != UBIFS_XENT_NODE) {
2491 			ubifs_err("bad node type %d", sa->type);
2492 			ubifs_dump_node(c, sa->node);
2493 			return -EINVAL;
2494 		}
2495 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2496 		    sa->type != UBIFS_XENT_NODE) {
2497 			ubifs_err("bad node type %d", sb->type);
2498 			ubifs_dump_node(c, sb->node);
2499 			return -EINVAL;
2500 		}
2501 
2502 		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2503 			ubifs_err("non-inode node goes before inode node");
2504 			goto error_dump;
2505 		}
2506 
2507 		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2508 			continue;
2509 
2510 		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2511 			/* Inode nodes are sorted in descending size order */
2512 			if (sa->len < sb->len) {
2513 				ubifs_err("smaller inode node goes first");
2514 				goto error_dump;
2515 			}
2516 			continue;
2517 		}
2518 
2519 		/*
2520 		 * This is either a dentry or xentry, which should be sorted in
2521 		 * ascending (parent ino, hash) order.
2522 		 */
2523 		inuma = key_inum(c, &sa->key);
2524 		inumb = key_inum(c, &sb->key);
2525 
2526 		if (inuma < inumb)
2527 			continue;
2528 		if (inuma > inumb) {
2529 			ubifs_err("larger inum %lu goes before inum %lu",
2530 				  (unsigned long)inuma, (unsigned long)inumb);
2531 			goto error_dump;
2532 		}
2533 
2534 		hasha = key_block(c, &sa->key);
2535 		hashb = key_block(c, &sb->key);
2536 
2537 		if (hasha > hashb) {
2538 			ubifs_err("larger hash %u goes before %u",
2539 				  hasha, hashb);
2540 			goto error_dump;
2541 		}
2542 	}
2543 
2544 	return 0;
2545 
2546 error_dump:
2547 	ubifs_msg("dumping first node");
2548 	ubifs_dump_node(c, sa->node);
2549 	ubifs_msg("dumping second node");
2550 	ubifs_dump_node(c, sb->node);
2551 	return -EINVAL;
2552 	return 0;
2553 }
2554 
2555 static inline int chance(unsigned int n, unsigned int out_of)
2556 {
2557 	return !!((random32() % out_of) + 1 <= n);
2558 
2559 }
2560 
2561 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2562 {
2563 	struct ubifs_debug_info *d = c->dbg;
2564 
2565 	ubifs_assert(dbg_is_tst_rcvry(c));
2566 
2567 	if (!d->pc_cnt) {
2568 		/* First call - decide delay to the power cut */
2569 		if (chance(1, 2)) {
2570 			unsigned long delay;
2571 
2572 			if (chance(1, 2)) {
2573 				d->pc_delay = 1;
2574 				/* Fail withing 1 minute */
2575 				delay = random32() % 60000;
2576 				d->pc_timeout = jiffies;
2577 				d->pc_timeout += msecs_to_jiffies(delay);
2578 				ubifs_warn("failing after %lums", delay);
2579 			} else {
2580 				d->pc_delay = 2;
2581 				delay = random32() % 10000;
2582 				/* Fail within 10000 operations */
2583 				d->pc_cnt_max = delay;
2584 				ubifs_warn("failing after %lu calls", delay);
2585 			}
2586 		}
2587 
2588 		d->pc_cnt += 1;
2589 	}
2590 
2591 	/* Determine if failure delay has expired */
2592 	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2593 			return 0;
2594 	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2595 			return 0;
2596 
2597 	if (lnum == UBIFS_SB_LNUM) {
2598 		if (write && chance(1, 2))
2599 			return 0;
2600 		if (chance(19, 20))
2601 			return 0;
2602 		ubifs_warn("failing in super block LEB %d", lnum);
2603 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2604 		if (chance(19, 20))
2605 			return 0;
2606 		ubifs_warn("failing in master LEB %d", lnum);
2607 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2608 		if (write && chance(99, 100))
2609 			return 0;
2610 		if (chance(399, 400))
2611 			return 0;
2612 		ubifs_warn("failing in log LEB %d", lnum);
2613 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2614 		if (write && chance(7, 8))
2615 			return 0;
2616 		if (chance(19, 20))
2617 			return 0;
2618 		ubifs_warn("failing in LPT LEB %d", lnum);
2619 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2620 		if (write && chance(1, 2))
2621 			return 0;
2622 		if (chance(9, 10))
2623 			return 0;
2624 		ubifs_warn("failing in orphan LEB %d", lnum);
2625 	} else if (lnum == c->ihead_lnum) {
2626 		if (chance(99, 100))
2627 			return 0;
2628 		ubifs_warn("failing in index head LEB %d", lnum);
2629 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2630 		if (chance(9, 10))
2631 			return 0;
2632 		ubifs_warn("failing in GC head LEB %d", lnum);
2633 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2634 		   !ubifs_search_bud(c, lnum)) {
2635 		if (chance(19, 20))
2636 			return 0;
2637 		ubifs_warn("failing in non-bud LEB %d", lnum);
2638 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2639 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2640 		if (chance(999, 1000))
2641 			return 0;
2642 		ubifs_warn("failing in bud LEB %d commit running", lnum);
2643 	} else {
2644 		if (chance(9999, 10000))
2645 			return 0;
2646 		ubifs_warn("failing in bud LEB %d commit not running", lnum);
2647 	}
2648 
2649 	d->pc_happened = 1;
2650 	ubifs_warn("========== Power cut emulated ==========");
2651 	dump_stack();
2652 	return 1;
2653 }
2654 
2655 static void cut_data(const void *buf, unsigned int len)
2656 {
2657 	unsigned int from, to, i, ffs = chance(1, 2);
2658 	unsigned char *p = (void *)buf;
2659 
2660 	from = random32() % (len + 1);
2661 	if (chance(1, 2))
2662 		to = random32() % (len - from + 1);
2663 	else
2664 		to = len;
2665 
2666 	if (from < to)
2667 		ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2668 			   ffs ? "0xFFs" : "random data");
2669 
2670 	if (ffs)
2671 		for (i = from; i < to; i++)
2672 			p[i] = 0xFF;
2673 	else
2674 		for (i = from; i < to; i++)
2675 			p[i] = random32() % 0x100;
2676 }
2677 
2678 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2679 		  int offs, int len)
2680 {
2681 	int err, failing;
2682 
2683 	if (c->dbg->pc_happened)
2684 		return -EROFS;
2685 
2686 	failing = power_cut_emulated(c, lnum, 1);
2687 	if (failing)
2688 		cut_data(buf, len);
2689 	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2690 	if (err)
2691 		return err;
2692 	if (failing)
2693 		return -EROFS;
2694 	return 0;
2695 }
2696 
2697 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2698 		   int len)
2699 {
2700 	int err;
2701 
2702 	if (c->dbg->pc_happened)
2703 		return -EROFS;
2704 	if (power_cut_emulated(c, lnum, 1))
2705 		return -EROFS;
2706 	err = ubi_leb_change(c->ubi, lnum, buf, len);
2707 	if (err)
2708 		return err;
2709 	if (power_cut_emulated(c, lnum, 1))
2710 		return -EROFS;
2711 	return 0;
2712 }
2713 
2714 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2715 {
2716 	int err;
2717 
2718 	if (c->dbg->pc_happened)
2719 		return -EROFS;
2720 	if (power_cut_emulated(c, lnum, 0))
2721 		return -EROFS;
2722 	err = ubi_leb_unmap(c->ubi, lnum);
2723 	if (err)
2724 		return err;
2725 	if (power_cut_emulated(c, lnum, 0))
2726 		return -EROFS;
2727 	return 0;
2728 }
2729 
2730 int dbg_leb_map(struct ubifs_info *c, int lnum)
2731 {
2732 	int err;
2733 
2734 	if (c->dbg->pc_happened)
2735 		return -EROFS;
2736 	if (power_cut_emulated(c, lnum, 0))
2737 		return -EROFS;
2738 	err = ubi_leb_map(c->ubi, lnum);
2739 	if (err)
2740 		return err;
2741 	if (power_cut_emulated(c, lnum, 0))
2742 		return -EROFS;
2743 	return 0;
2744 }
2745 
2746 /*
2747  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2748  * contain the stuff specific to particular file-system mounts.
2749  */
2750 static struct dentry *dfs_rootdir;
2751 
2752 static int dfs_file_open(struct inode *inode, struct file *file)
2753 {
2754 	file->private_data = inode->i_private;
2755 	return nonseekable_open(inode, file);
2756 }
2757 
2758 /**
2759  * provide_user_output - provide output to the user reading a debugfs file.
2760  * @val: boolean value for the answer
2761  * @u: the buffer to store the answer at
2762  * @count: size of the buffer
2763  * @ppos: position in the @u output buffer
2764  *
2765  * This is a simple helper function which stores @val boolean value in the user
2766  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2767  * bytes written to @u in case of success and a negative error code in case of
2768  * failure.
2769  */
2770 static int provide_user_output(int val, char __user *u, size_t count,
2771 			       loff_t *ppos)
2772 {
2773 	char buf[3];
2774 
2775 	if (val)
2776 		buf[0] = '1';
2777 	else
2778 		buf[0] = '0';
2779 	buf[1] = '\n';
2780 	buf[2] = 0x00;
2781 
2782 	return simple_read_from_buffer(u, count, ppos, buf, 2);
2783 }
2784 
2785 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2786 			     loff_t *ppos)
2787 {
2788 	struct dentry *dent = file->f_path.dentry;
2789 	struct ubifs_info *c = file->private_data;
2790 	struct ubifs_debug_info *d = c->dbg;
2791 	int val;
2792 
2793 	if (dent == d->dfs_chk_gen)
2794 		val = d->chk_gen;
2795 	else if (dent == d->dfs_chk_index)
2796 		val = d->chk_index;
2797 	else if (dent == d->dfs_chk_orph)
2798 		val = d->chk_orph;
2799 	else if (dent == d->dfs_chk_lprops)
2800 		val = d->chk_lprops;
2801 	else if (dent == d->dfs_chk_fs)
2802 		val = d->chk_fs;
2803 	else if (dent == d->dfs_tst_rcvry)
2804 		val = d->tst_rcvry;
2805 	else if (dent == d->dfs_ro_error)
2806 		val = c->ro_error;
2807 	else
2808 		return -EINVAL;
2809 
2810 	return provide_user_output(val, u, count, ppos);
2811 }
2812 
2813 /**
2814  * interpret_user_input - interpret user debugfs file input.
2815  * @u: user-provided buffer with the input
2816  * @count: buffer size
2817  *
2818  * This is a helper function which interpret user input to a boolean UBIFS
2819  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2820  * in case of failure.
2821  */
2822 static int interpret_user_input(const char __user *u, size_t count)
2823 {
2824 	size_t buf_size;
2825 	char buf[8];
2826 
2827 	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2828 	if (copy_from_user(buf, u, buf_size))
2829 		return -EFAULT;
2830 
2831 	if (buf[0] == '1')
2832 		return 1;
2833 	else if (buf[0] == '0')
2834 		return 0;
2835 
2836 	return -EINVAL;
2837 }
2838 
2839 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2840 			      size_t count, loff_t *ppos)
2841 {
2842 	struct ubifs_info *c = file->private_data;
2843 	struct ubifs_debug_info *d = c->dbg;
2844 	struct dentry *dent = file->f_path.dentry;
2845 	int val;
2846 
2847 	/*
2848 	 * TODO: this is racy - the file-system might have already been
2849 	 * unmounted and we'd oops in this case. The plan is to fix it with
2850 	 * help of 'iterate_supers_type()' which we should have in v3.0: when
2851 	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2852 	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2853 	 * superblocks and fine the one with the same UUID, and take the
2854 	 * locking right.
2855 	 *
2856 	 * The other way to go suggested by Al Viro is to create a separate
2857 	 * 'ubifs-debug' file-system instead.
2858 	 */
2859 	if (file->f_path.dentry == d->dfs_dump_lprops) {
2860 		ubifs_dump_lprops(c);
2861 		return count;
2862 	}
2863 	if (file->f_path.dentry == d->dfs_dump_budg) {
2864 		ubifs_dump_budg(c, &c->bi);
2865 		return count;
2866 	}
2867 	if (file->f_path.dentry == d->dfs_dump_tnc) {
2868 		mutex_lock(&c->tnc_mutex);
2869 		ubifs_dump_tnc(c);
2870 		mutex_unlock(&c->tnc_mutex);
2871 		return count;
2872 	}
2873 
2874 	val = interpret_user_input(u, count);
2875 	if (val < 0)
2876 		return val;
2877 
2878 	if (dent == d->dfs_chk_gen)
2879 		d->chk_gen = val;
2880 	else if (dent == d->dfs_chk_index)
2881 		d->chk_index = val;
2882 	else if (dent == d->dfs_chk_orph)
2883 		d->chk_orph = val;
2884 	else if (dent == d->dfs_chk_lprops)
2885 		d->chk_lprops = val;
2886 	else if (dent == d->dfs_chk_fs)
2887 		d->chk_fs = val;
2888 	else if (dent == d->dfs_tst_rcvry)
2889 		d->tst_rcvry = val;
2890 	else if (dent == d->dfs_ro_error)
2891 		c->ro_error = !!val;
2892 	else
2893 		return -EINVAL;
2894 
2895 	return count;
2896 }
2897 
2898 static const struct file_operations dfs_fops = {
2899 	.open = dfs_file_open,
2900 	.read = dfs_file_read,
2901 	.write = dfs_file_write,
2902 	.owner = THIS_MODULE,
2903 	.llseek = no_llseek,
2904 };
2905 
2906 /**
2907  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2908  * @c: UBIFS file-system description object
2909  *
2910  * This function creates all debugfs files for this instance of UBIFS. Returns
2911  * zero in case of success and a negative error code in case of failure.
2912  *
2913  * Note, the only reason we have not merged this function with the
2914  * 'ubifs_debugging_init()' function is because it is better to initialize
2915  * debugfs interfaces at the very end of the mount process, and remove them at
2916  * the very beginning of the mount process.
2917  */
2918 int dbg_debugfs_init_fs(struct ubifs_info *c)
2919 {
2920 	int err, n;
2921 	const char *fname;
2922 	struct dentry *dent;
2923 	struct ubifs_debug_info *d = c->dbg;
2924 
2925 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
2926 		return 0;
2927 
2928 	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2929 		     c->vi.ubi_num, c->vi.vol_id);
2930 	if (n == UBIFS_DFS_DIR_LEN) {
2931 		/* The array size is too small */
2932 		fname = UBIFS_DFS_DIR_NAME;
2933 		dent = ERR_PTR(-EINVAL);
2934 		goto out;
2935 	}
2936 
2937 	fname = d->dfs_dir_name;
2938 	dent = debugfs_create_dir(fname, dfs_rootdir);
2939 	if (IS_ERR_OR_NULL(dent))
2940 		goto out;
2941 	d->dfs_dir = dent;
2942 
2943 	fname = "dump_lprops";
2944 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2945 	if (IS_ERR_OR_NULL(dent))
2946 		goto out_remove;
2947 	d->dfs_dump_lprops = dent;
2948 
2949 	fname = "dump_budg";
2950 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2951 	if (IS_ERR_OR_NULL(dent))
2952 		goto out_remove;
2953 	d->dfs_dump_budg = dent;
2954 
2955 	fname = "dump_tnc";
2956 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2957 	if (IS_ERR_OR_NULL(dent))
2958 		goto out_remove;
2959 	d->dfs_dump_tnc = dent;
2960 
2961 	fname = "chk_general";
2962 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2963 				   &dfs_fops);
2964 	if (IS_ERR_OR_NULL(dent))
2965 		goto out_remove;
2966 	d->dfs_chk_gen = dent;
2967 
2968 	fname = "chk_index";
2969 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2970 				   &dfs_fops);
2971 	if (IS_ERR_OR_NULL(dent))
2972 		goto out_remove;
2973 	d->dfs_chk_index = dent;
2974 
2975 	fname = "chk_orphans";
2976 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2977 				   &dfs_fops);
2978 	if (IS_ERR_OR_NULL(dent))
2979 		goto out_remove;
2980 	d->dfs_chk_orph = dent;
2981 
2982 	fname = "chk_lprops";
2983 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2984 				   &dfs_fops);
2985 	if (IS_ERR_OR_NULL(dent))
2986 		goto out_remove;
2987 	d->dfs_chk_lprops = dent;
2988 
2989 	fname = "chk_fs";
2990 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2991 				   &dfs_fops);
2992 	if (IS_ERR_OR_NULL(dent))
2993 		goto out_remove;
2994 	d->dfs_chk_fs = dent;
2995 
2996 	fname = "tst_recovery";
2997 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2998 				   &dfs_fops);
2999 	if (IS_ERR_OR_NULL(dent))
3000 		goto out_remove;
3001 	d->dfs_tst_rcvry = dent;
3002 
3003 	fname = "ro_error";
3004 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
3005 				   &dfs_fops);
3006 	if (IS_ERR_OR_NULL(dent))
3007 		goto out_remove;
3008 	d->dfs_ro_error = dent;
3009 
3010 	return 0;
3011 
3012 out_remove:
3013 	debugfs_remove_recursive(d->dfs_dir);
3014 out:
3015 	err = dent ? PTR_ERR(dent) : -ENODEV;
3016 	ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3017 		  fname, err);
3018 	return err;
3019 }
3020 
3021 /**
3022  * dbg_debugfs_exit_fs - remove all debugfs files.
3023  * @c: UBIFS file-system description object
3024  */
3025 void dbg_debugfs_exit_fs(struct ubifs_info *c)
3026 {
3027 	if (IS_ENABLED(CONFIG_DEBUG_FS))
3028 		debugfs_remove_recursive(c->dbg->dfs_dir);
3029 }
3030 
3031 struct ubifs_global_debug_info ubifs_dbg;
3032 
3033 static struct dentry *dfs_chk_gen;
3034 static struct dentry *dfs_chk_index;
3035 static struct dentry *dfs_chk_orph;
3036 static struct dentry *dfs_chk_lprops;
3037 static struct dentry *dfs_chk_fs;
3038 static struct dentry *dfs_tst_rcvry;
3039 
3040 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3041 				    size_t count, loff_t *ppos)
3042 {
3043 	struct dentry *dent = file->f_path.dentry;
3044 	int val;
3045 
3046 	if (dent == dfs_chk_gen)
3047 		val = ubifs_dbg.chk_gen;
3048 	else if (dent == dfs_chk_index)
3049 		val = ubifs_dbg.chk_index;
3050 	else if (dent == dfs_chk_orph)
3051 		val = ubifs_dbg.chk_orph;
3052 	else if (dent == dfs_chk_lprops)
3053 		val = ubifs_dbg.chk_lprops;
3054 	else if (dent == dfs_chk_fs)
3055 		val = ubifs_dbg.chk_fs;
3056 	else if (dent == dfs_tst_rcvry)
3057 		val = ubifs_dbg.tst_rcvry;
3058 	else
3059 		return -EINVAL;
3060 
3061 	return provide_user_output(val, u, count, ppos);
3062 }
3063 
3064 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3065 				     size_t count, loff_t *ppos)
3066 {
3067 	struct dentry *dent = file->f_path.dentry;
3068 	int val;
3069 
3070 	val = interpret_user_input(u, count);
3071 	if (val < 0)
3072 		return val;
3073 
3074 	if (dent == dfs_chk_gen)
3075 		ubifs_dbg.chk_gen = val;
3076 	else if (dent == dfs_chk_index)
3077 		ubifs_dbg.chk_index = val;
3078 	else if (dent == dfs_chk_orph)
3079 		ubifs_dbg.chk_orph = val;
3080 	else if (dent == dfs_chk_lprops)
3081 		ubifs_dbg.chk_lprops = val;
3082 	else if (dent == dfs_chk_fs)
3083 		ubifs_dbg.chk_fs = val;
3084 	else if (dent == dfs_tst_rcvry)
3085 		ubifs_dbg.tst_rcvry = val;
3086 	else
3087 		return -EINVAL;
3088 
3089 	return count;
3090 }
3091 
3092 static const struct file_operations dfs_global_fops = {
3093 	.read = dfs_global_file_read,
3094 	.write = dfs_global_file_write,
3095 	.owner = THIS_MODULE,
3096 	.llseek = no_llseek,
3097 };
3098 
3099 /**
3100  * dbg_debugfs_init - initialize debugfs file-system.
3101  *
3102  * UBIFS uses debugfs file-system to expose various debugging knobs to
3103  * user-space. This function creates "ubifs" directory in the debugfs
3104  * file-system. Returns zero in case of success and a negative error code in
3105  * case of failure.
3106  */
3107 int dbg_debugfs_init(void)
3108 {
3109 	int err;
3110 	const char *fname;
3111 	struct dentry *dent;
3112 
3113 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
3114 		return 0;
3115 
3116 	fname = "ubifs";
3117 	dent = debugfs_create_dir(fname, NULL);
3118 	if (IS_ERR_OR_NULL(dent))
3119 		goto out;
3120 	dfs_rootdir = dent;
3121 
3122 	fname = "chk_general";
3123 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3124 				   &dfs_global_fops);
3125 	if (IS_ERR_OR_NULL(dent))
3126 		goto out_remove;
3127 	dfs_chk_gen = dent;
3128 
3129 	fname = "chk_index";
3130 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3131 				   &dfs_global_fops);
3132 	if (IS_ERR_OR_NULL(dent))
3133 		goto out_remove;
3134 	dfs_chk_index = dent;
3135 
3136 	fname = "chk_orphans";
3137 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3138 				   &dfs_global_fops);
3139 	if (IS_ERR_OR_NULL(dent))
3140 		goto out_remove;
3141 	dfs_chk_orph = dent;
3142 
3143 	fname = "chk_lprops";
3144 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3145 				   &dfs_global_fops);
3146 	if (IS_ERR_OR_NULL(dent))
3147 		goto out_remove;
3148 	dfs_chk_lprops = dent;
3149 
3150 	fname = "chk_fs";
3151 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3152 				   &dfs_global_fops);
3153 	if (IS_ERR_OR_NULL(dent))
3154 		goto out_remove;
3155 	dfs_chk_fs = dent;
3156 
3157 	fname = "tst_recovery";
3158 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3159 				   &dfs_global_fops);
3160 	if (IS_ERR_OR_NULL(dent))
3161 		goto out_remove;
3162 	dfs_tst_rcvry = dent;
3163 
3164 	return 0;
3165 
3166 out_remove:
3167 	debugfs_remove_recursive(dfs_rootdir);
3168 out:
3169 	err = dent ? PTR_ERR(dent) : -ENODEV;
3170 	ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3171 		  fname, err);
3172 	return err;
3173 }
3174 
3175 /**
3176  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3177  */
3178 void dbg_debugfs_exit(void)
3179 {
3180 	if (IS_ENABLED(CONFIG_DEBUG_FS))
3181 		debugfs_remove_recursive(dfs_rootdir);
3182 }
3183 
3184 /**
3185  * ubifs_debugging_init - initialize UBIFS debugging.
3186  * @c: UBIFS file-system description object
3187  *
3188  * This function initializes debugging-related data for the file system.
3189  * Returns zero in case of success and a negative error code in case of
3190  * failure.
3191  */
3192 int ubifs_debugging_init(struct ubifs_info *c)
3193 {
3194 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3195 	if (!c->dbg)
3196 		return -ENOMEM;
3197 
3198 	return 0;
3199 }
3200 
3201 /**
3202  * ubifs_debugging_exit - free debugging data.
3203  * @c: UBIFS file-system description object
3204  */
3205 void ubifs_debugging_exit(struct ubifs_info *c)
3206 {
3207 	kfree(c->dbg);
3208 }
3209